JP2004017107A - Die and method for forming hollow shaft with projection - Google Patents

Die and method for forming hollow shaft with projection Download PDF

Info

Publication number
JP2004017107A
JP2004017107A JP2002176702A JP2002176702A JP2004017107A JP 2004017107 A JP2004017107 A JP 2004017107A JP 2002176702 A JP2002176702 A JP 2002176702A JP 2002176702 A JP2002176702 A JP 2002176702A JP 2004017107 A JP2004017107 A JP 2004017107A
Authority
JP
Japan
Prior art keywords
mold
forming
projection
side wall
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002176702A
Other languages
Japanese (ja)
Inventor
Noriyuki Kurokawa
黒川 宣幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002176702A priority Critical patent/JP2004017107A/en
Publication of JP2004017107A publication Critical patent/JP2004017107A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a die with which a hollow shaft with a projection is formed at small internal pressure load without generating inside surface flaws and outside fins, and a forming method for the shaft. <P>SOLUTION: Upper and lower dies 2, 3 are respectively provided with at least one or more sets of projection part forming dies 1. The projection part forming die 1 is composed of dies 2c, 2e, 3c, 3e for forming the side wall of the projection part and dies 2d, 3d for forming the upper surface of the projection part. The dies 2c, 2e, 3c, 3e for forming the side wall are bisected in the direction perpendicular to a housed metallic tube stock A. The dies 2d, 3d for forming the upper surface of the projection part are fit into the side wall forming dies 2c, 2e, 3c, 3e so that a caliber of an inside surface shape having the same shape as the contour shape of the projection part is formed together with the side wall forming dies 2c, 2e, 3c, 3e and the each die is made slidable in the axial direction of the housed metallic tube stock A. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、4サイクルレシプロエンジンの吸気および排気弁を開閉するためのカム部を備えたカムシャフト等の突起付き中空軸の成形用金型および成形方法に関する。
【0002】
【従来の技術】
従来、例えば4サイクルレシプロエンジンの吸気弁および排気弁を駆動させるためのカムを有する回転軸であるカムシャフトは、中実材料を鋳造や鍛造にて粗形状に加工した後、機械加工により最終形状に仕げられていた。しかし、上記のような加工方法で製造されたカムシャフトは、中実材であるために重く車軸の軽量化に反するという問題があった。
【0003】
車軸の軽量化を図るために、耐摩耗性が要求されるカムを焼結合金により中空の部材として製造するとともに回転軸を中空軸として製造し、これらを溶接、ろう付けまたは機械的固定により一体化して組み立て、カムャフトとする技術が開発された。しかし、溶接またはろう付けをおこなうには、カム部材および回転軸のそれぞれの材質が制限され、最適な材料を用いることができない。また、機械的固定法は、その固定操作をカム部材の設置数だけ繰り返しおこなう必要があり、生産性が低いという問題があった。
【0004】
車軸の軽量化と生産性の向上とを目的とした、金属素管より成形する中空突起付き中空軸の製造方法や製造装置が、特開昭57−206530号公報、特開2000−192805号公報および特開2000−210726号公報に開示されている。
【0005】
特開昭57−206530号公報には、突起部の外形に対応する凹溝を内面に設けたダイス型内に金属素管を収容し、この金属素管に液圧と軸圧縮による液圧バルジ加工を施すことにより、突起付き中空軸を成形する方法が開示されている。しかし、この方法は、液圧バルジ加工による膨出加工のみにて突起部を形成する方法であるため、突起部の減肉が大きく、十分な製品強度が得難いのに加え下記の欠点を有する。
【0006】
すなわち、金属管の肉厚をto、突起部先端の軸方向角部外面の曲率半径R(後述する図7(c)参照)とした時、Rがtoと同等の突起部を成形しようとした場合、Rに対応する内面角部の曲率半径がゼロとなり、係る形状の突起部を膨出加工のみで成形するには、理論上、無限大の内圧付与が必要になる。このため、上記の方法ではR/toが1以下の突起付き中空軸は製造することができない。
【0007】
ここで、前記の曲率半径Rが小さい方がよいのは次の理由による。すなわち、突起部には、その先端に定幅のフラット面を有することが要求される場合があるが、Rが大きいとフラット面が小さくなるためである。なお、Rが大きくても突起部全体の幅を大きくすれば所定幅のフラット面を確保することは可能である。しかし、このような中空軸は、例えば、エンジンなどの装置全体の小型化を妨げると共に、装置の軽量化の障害となる。
【0008】
特開2000−192805号公報には、分割された構造の金型を用い、金属素管の一部を縮径加工した後、膨出成形することにより突起付き中空軸を成形する方法が開示されている。しかし、この方法では、金属素管の縮径加工という別工程が必要になる他、金属素管の内面に疵があった場合、縮径加工により疵が大きくなるおそれがある。したがって、素管内面を平滑に仕上げる必要があり、製造コスト高となる欠点がある。また、分割金型での型寄せ加工時に、分割金型間に噛み出しが発生し、所望の形状に成形できないか、若しくは外面にかじり疵が発生するので別工程での外面かじり疵部分の手入れが必要となる欠点もある。
【0009】
特開2000−210726号公報には、軸方向に複数に分割され、所定の距離だけ離間させた状態でセットされた分割金型内に収容した金属素管に膨出加工を施した後、分割型を軸方向に型寄せして膨出部に軸圧縮を付加することにより、突起部の減肉を抑制しながら突起付き中空軸を成形する方法が示されている。
【0010】
しかし、この方法では、分割金型での型寄せ加工時に、分割金型間に噛み出しが発生し、所望の形状が成形できないか、若しくは外面にかじり庇が発生するので別工程での手入れが必要になるという欠点を有している。
【0011】
【発明が解決しようとする課題】
本発明は上記の事情に鑑みなされたものであり、その課題は突起部と軸部が一体となった突起付き中空軸を小さな内圧で、内面庇および外面噛み出しを発生させることなく成形でき、突起部先端の軸方向角部外面の曲率半径Rが金属管の肉厚以下の突起付き中空軸を製造するのに好適な成形用金型および成形方法を提供することにある。
【0012】
なお、上記外面噛みだしについて以下により詳しく説明する。
【0013】
図8は、突起部の側壁成形用金型と上面成形用金型とが嵌合されていない金型による加工途中の金型の縦断面図である。
【0014】
金型は上型2と下型3からなり、上下金型はそれぞれ突起部成形用金型2c、2d、2e、3c、3d、3eと、それに隣接して設けられた軸部成形用金型2b、2f、3b、3fとを備え、突起部成形用金型は、突起部の側壁成形用金型2c、2e、3c、3eと、突起部の上面成形用金型2d、3dとからなり、側壁成形用金型は収容された金属素管の周方向に二分割されており、突起部の上面成形用金型は側壁成形用金型とで突起部の外郭形状の孔型を形成するように配置されている。これらの各金型は収納した金属素管の軸方向に摺動可能となっている。上記図8は、突起部の成形途中の状態を示しているが、突起部の側壁成形用金型と上面成形用金型とが嵌合されていないため、下金型の突起部の外面に噛み出しE部(点線の丸印)が発生している。なお、前記特開2000−210726号公報に記載の方法においても、上記と同様に型寄せ時に分割金型間に噛み出しが発生する。
【0015】
【課題を解決するための手段】
本発明者は、上記課題を解消するためJIS G 4051、G 4052およびG 4805に規定される機械構造用炭素鋼と、焼入れ性を保証した構造用鋼、および高炭素クロム軸受鋼からなる鋼管を用いて液圧バルジ加工の実験を重ね、検討をおこなった結果、以下の知見(a)〜(d)を得るに至った。
(a)図8で示したような金型間における噛み出しの発生を防止するには、突起部の上面成形用金型と側壁成形用金型とで突起部の外郭形状を形成するように突起部の上面成形用金型を側壁成形用金型内に嵌合して金型間の隙間をなくすることが必要である。
(b)小さな内圧負荷で先端の軸方向角部外面の曲率半径Rが小さな突起部を成形するためには、第1工程の液圧バルジ加工後の膨出部の軸方向外面線長をL(mm)、第2工程の型寄せ液圧バルジ加工後の突起部の軸方向外面線長をL(mm)とした場合、第1工程の液圧バルジ加工においてLがLよりも大きい膨出部を形成させるのが有効である。
(c)また、第1工程の液圧バルジ加工後の膨出部の軸方向中央位置における外周長をd(mm)、第2工程の型寄せバルジ加工後の突起部の軸方向中央位置における外周長をd(mm)とした場合、両者の比(d/d)と前記LとLとの比(L/L)が、第2工程の型寄せ液圧バルジ加工時における曲率半径Rの大きさを左右するパラメータとなっている。
(d)成形目標とする突起部先端の軸方向角部外面の曲率半径をR(mm)としたとき、下式を満たす条件で第1工程の液圧バルジ加工と第2工程の型寄せ液圧バルジ加工とをおこなうと、小さな付与内圧にて突起部先端の軸方向角部外面の曲率半径Rが金属素管の肉厚to(mm)以下となり、しかも内面疵がない突起付き中空軸の製造が可能となる。
【0016】
1.2−0.2×(R/t。)≦(d/d)×(L/L)≦1.4
(e)突起部の膨出加工時に発生する減肉は、第2工程の型寄せパルジ加工時のアブセット効果により抑制される。
【0017】
本発明はこのような知見になされたもので、その要旨は下記の通りである。
【0018】
(1)上金型と下金型とで形成される孔型内に収容した金属素管に液圧バルジ加工を施して突起部と軸部とが一体となった突起付き中空軸を成形するための金型であって、上下金型はそれぞれ少なくとも一組以上の突起部成形用金型を備えており、突起部成形用金型は、突起部の側壁を成形するための側壁成形用金型と突起部の上面を成形するための上面成形用金型とからなり、側壁成形用金型は収容された金属素管の軸方向と直交する方向に二分割されており、上面成形用金型は側壁成形用金型とで突起部の外郭形状と同じ形状の内面形状の孔型を形成することができるように側壁成形用金型内に嵌合されており、側壁成形用金型と上面成形用金型は、金属素管の軸方向に摺動可能である突起付き中空軸の成形用金型。
【0019】
(2)上金型と下金型とで形成される孔型内に収容した金属素管に液圧バルジ加工を施して突起部と軸部とが一体となった突起付き中空軸を成形するための金型であって、上下金型はそれぞれ少なくとも一組以上の突起部成形用金型を備えており、突起部成形用金型は、突起部の側壁の一部と上面とを成形するための側壁上面成形用金型と、残部の側壁を成形するための側壁成形用金型とからなり、側壁成形用金型は側壁上面成形用金型とで突起部の外郭形状と同じ形状の内面形状の孔型を形成することができるように嵌合されており、側壁成形用金型と側壁上面成形用金型は、金属素管の軸方向に摺動可能である突起付き中空軸の成形用金型。
【0020】
(3)上記(1)に記載の突起付き中空軸の成形用金型を用いて突起部と軸部とが一体となった突起付き中空軸を成形する方法であって、側壁成形用金型と上面成形用金型とを両金型間に所定の間隙を設けてセットし、上金型と下金型間に収容した金属素管の内部に液圧を負荷して側壁成形用金型と上面成形用金型とで形成された孔型内に金属素管の一部を膨出させる第1工程の液圧バルジ加工と、その加工後に金属素管の内部に液圧を負荷した状態で前記型間の間隙を狭めて前記孔型内の膨出部を目標の突起部形状に成形する第2工程の型寄せ液圧バルジ加工とをおこなう突起付き中空軸の成形方法。
【0021】
(4)上記(2)に記載の突起付き中空軸の成形用金型を用いて突起部と軸部とが一体となった突起付き中空軸を成形する方法であって、側壁成形用金型と側壁上面成形用金型とを両金型間に所定の間隙を設けてセットし、上金型と下金型間に収容した金属素管の内部に液圧を負荷して側壁成形用金型と側壁上面成形用金型とで形成された孔型内に金属素管の一部を膨出させる第1工程の液圧バルジ加工と、その加工後に金属素管の内部に液圧を負荷した状態で前記型間の間隙を狭めて前記孔型内の膨出部を目標の突起部形状に成形する第2工程の型寄せ液圧バルジ加工とをおこなう突起付き中空軸の成形方法。
【0022】
(5)第2工程の型寄せ液圧バルジ加工後における突起部先端の軸方向角部外面の目標曲率半径をR(mm)としたとき、下式を満たす条件で第1工程の液圧バルジ加工と第2工程の型寄せ液圧バルジ加工とをおこなう上記(3)または(4)に記載の突起付き中空軸の製造方法。
【0023】
1.2−0.2×(R/t)≦(d/d)×(L/L)≦1.4
但し、t:金属素管の肉厚(mm)
:第1工程後の膨出部の軸方向中央位置における外周長(mm)
:第2工程後の突起部の軸方向中央位置における外周長(mm)
:第1工程後の膨出部の軸方向外面線長(mm)
:第2工程後の突起部の軸方向外面線長(mm)
【0024】
【発明の実施の形態】.
図1は、本発明の突起付き中空軸の成形用金型の一例を示す縦断面図であり、金属素管Aを上下の金型で形成される孔型内に収容した成形直前の状態を示す。
【0025】
本発明の金型は、上金型2および下金型3のそれぞれに少なくとも一組以上の突起部成形用金型を備えた金型である。図1に示す金型において、一組の突起部成形用金型とは、突起部の側壁成形用金型(上金型:2c、2e、下金型:3c、3e)と突起部の上面成形用金型(上金型:2d、下金型:3d)とをいい、側壁成形用金型は収容された金属素管Aと直交する方向に二分割2cと2e(下型の場合:3cと3e)されており、突起部の上面成形用金型は側壁成形用金型とで製品の突起部の外郭形状と同じ内面形状の孔型を形成することができるように側壁成形用金型内に嵌合(図1D部)されている。また、突起部成形用金型2c、2e、2dおよび3c、3e、3dは、それぞれ取付け板2a、3aに対して、例えば、蟻溝機構等のような適宜な手段により、金属素管Aの軸方向に摺動可能なように装着されている。
【0026】
なお、図1中のbは破断線を示し、金型の長手方向の一部が省略されており、上下の金型にはそれぞれ1組の突起部成形用金型が示されているが、複数の突起部を有する中空軸を成形する場合は、当然のことながら複数組の突起部成形用金型を備えた金型となる。金型2b、2f、3bおよび3fは管端部分の成形用金型であり、例えば2bの場合2cのような突起部側壁成形用金型であってもよく、また通常の軸部成形用可動金型であってもよい。
【0027】
図1に示すように、本発明の金型は突起部成形用金型が素管の周方向に二分割されている突起部の側壁成形用金型2c、2e、3c、3e内に突起部の上面成形用金型2d、3dが嵌合(D部)されていることが大きな特徴であり、このような構成とすることにより、図8で示したような金型間に外面噛み出しは発生しない。
【0028】
図4は、本発明の突起付き中空軸の成形用金型の他の例を示す縦断面図である。この金型は、前記図1で示した上面成形用金型2d、3dと一方の側壁成形用金型2e、3eとが一体になっている以外は図1に示した金型と同じである。一方の側壁成形用金型と上面成形用金型とを一体とした図4に示すような側壁上面成形用金型2gとしても図1で示した金型と同様の効果が得られる。
【0029】
次に、本発明の成形方法について説明する。以下では図1に示した金型を用いた場合について説明するが、図4で示した金型も同様である。
【0030】
液圧バルジ加工時には、金属素管内に負荷された圧力により上下金型を分割しようとする力が働くため、上下から図示を省略したプレス機構により上下金型を押圧しながら液圧バルジ加工がおこなわれる。このプレス機構の上下動によって上型1と下型2のいずれか一方または両方が上下動し、これにより、金属素管Aの孔型内への搬入と、加工終了後の突起付き中空軸Cの型外への搬出とがおこなわれる。
【0031】
液圧バルジ加工は、先ず図示しないプレス機構を作動させて上金型2と下金型3とを開き図1に示すように、各金型を配置して固定し、素材の金属素管Aを孔型内に収容し、上金2と下金型3とを閉じる。このとき、突起部の側壁成形用金型2c、2eおよび3c、3eは、それぞれ突起部の上面成形用金型2dおよび3dに対して嵌合された状態で、かつ、所定の間隙を設けてセットされる。
【0032】
管端拘束治具7a、7bにより金属素管Aの両端を気密保持する。この管端拘束冶具は、図示しない油圧リング等の適宜な押圧機構に接続されており液圧バルジ加工時には金属素管の両端から軸方向の圧縮力を付与することができる。
【0033】
図1に示した状態に金型をセットした後、金属素管Aに以下に述べる第1工程の液圧バルジ加工と第2工程の型寄せ液圧バルジ加工を施す。
【0034】
すなわち、第1工程の液圧バルジ加工では、突起部の上面成形用金型2dおよび3dと、突起部の側壁成形用金型2c、2eおよび3c、3eの位置を、油圧シリンダ等の適宜な押圧機構を備えた型移動用治具8a、8bによって図1に示す状態に固定保持する。なお、各金型は製品の形状に応じて所定の位置に固定される。
【0035】
そして、金属素管Aの内部に、管端拘束治具7a、7bの軸心に設けられた加工液導入路7c、7dから高圧の加工用液体を注入しつつ、管端拘束治具7a、7bにより金属素管の両側より軸方向圧縮力を加えて金属素管Aを膨出変形させる。
【0036】
図2は、前記図1突起付き中空軸の成形用金型を用いた第1工程の液圧バルジ加工後の状態を示す金型の縦断面図である。
【0037】
第1工程の液圧バルジ加工は、管端拘束治具7aまたは7bのみにて片側からの軸方向圧縮力を加えた場合でも金属素管Aの管膨出変形は可能である。また、使用する金属素管Aの変形能が高い場合や拡管膨出加工量が小さな場合は、管端拘束治具7a、7bによる軸方向圧縮力を負荷しないで、内圧付与のみにて金属素管Aを膨出加工することも可能である。
【0038】
次いで、第2工程の型寄せ液圧バルジ加工では、型移動用治具8a、8bを作動させて突起部の側壁成形用金型2c、2eおよび3c、3eを、突起部の上面成形用金型2dおよび3dに向けて両側より移動させる。このとき、管端拘束治具7a、7bの軸心に設けられた加工液導入路7c、7dからの加工液の注入および軸方向圧縮力付与を継続しておこない、膨出加工品Bをさらに拡管膨出変形させる。
【0039】
図3は、前記図1に示した突起付き中空軸成形用金型を用いた第2工程の型寄せ液圧バルジ加工後の状態を示す金型の縦断面図である。図3に示す状態になった時点で型寄せ液圧バルジ加工が終了する。
【0040】
具体的には、突起部の側壁成形用金型2c、2eおよび3c、3eが嵌合した状態で当接し、かつ、この突起部の上面成形用金型2dおよび3dに対して突起部の側壁成形用金型2c、2eおよび3c、3eが当接して一体となった孔型内面に、突起付き中空軸の突起部が充満した時点で液圧バルジ加工を終了する。
第2工程の型寄せ液圧バルジ加工は、管端拘束治具7a、7bによる軸方向圧縮力の付与は、第1工程の液圧バルジ加工の場合と同様にいずれか一方のみにて付与するようにしてもよく、使用する金属素管Aの変形能が高い場合や拡管膨出加工量が小さな場合には省略し、単に金型の移動に追従移動させてもよい。
【0041】
また、型寄せ液圧バルジ加工を施す場合に金型の寄せ移動は、一方の型移動用治具のみを作動させて、他方の型移動用治具を固定して行ってもよい。
【0042】
なお、成形前にセットする側壁成型用金型と上面成型用金型(または、側壁上面成型用金型)との間の間隙は、型寄せして間隙を0としたときに第1工程で加工した膨出部を孔型内に充満させることができるような間隙とするのがよい。
【0043】
上記のように、金属素管Aに対する液圧バルジ加工を2工程に分けておこなうので、第1工程の液圧バルジ加工において成形される金属素管軸方向の拡管膨出領域が、上下にのみ分割された従来の液圧バルジ加工金型を用いる場合に比べて長くなる。また、金属素管Aに付与する内圧が同じ場合、その膨出量と材料体積も大きくなる。この管軸方向に長く、かつ膨出量と材料体積が大きくなった膨出加工品Bの拡管膨出領域を、第2工程の型寄せ液圧バルジ加工の型寄せにより膨出領域が圧縮加工を受けて膨出部の肉厚の減少が防止される。また、型寄せにより管軸方向への曲げ加工が付与されるため、管軸方向の角部外面半径を小さな内圧にて成形できる。
【0044】
第2工程の型寄せ液圧バルジ加工時、膨出加工品Bの内部に付与する内圧は、突起部の外形形状や第2工程の液圧バルジ加工後の膨出加工品Bの拡管膨出部の張出し形状等により決定されるが、第2工程の型寄せ液圧バルジ加工においては付与する内圧が高ければ高いほど成形後の形状は良好になる。このため、第2工程の型寄せ液圧バルジ加工おいて膨出加工品Bの内部に付与する内圧はできるだけ高くするのがよい。
【0045】
第2工程の型寄せ液圧バルジ加工終了後、プレスを作動させて上金型2と下金型3を開き、液圧バルジ加工された突付き中空軸Cを金型1外に搬出する。
【0046】
上記のように、第1工程の液圧バルジ加工と第2工程の型寄せ液圧バルジ加工は、側壁成形用金型と上面成形用金型とが嵌合された状態、すなわち両金型間に隙間がない状態でおこなわれるので、第1工程の液圧バルジ加工と第2工程の液圧バルジ加工の際の噛み出しを防止することができる。なお、本発明の方法は、基本的に膨出加工であるので、縮径加工の場合に発生する内面疵の発生はない。
【0047】
本発明の方法により、上記のようにして突起付き中空軸を成形することができるが、特に、下式を満たす条件で第1工程の液圧バルジ加工と第2工程の型寄せ液圧バルジ加工をおこなうことにより、噛み出しを防止しながら、突起付き中空軸の突起部先端の軸方向角部外面の目標曲率半径R[図7(c)参照]が金属管Aの肉厚t[ 図7(a)参照]以下の突起付き中空軸を製造することが可能となる。
1.2−0.2×(R/t。)≦(d/d)×(L/L)≦1.4
但し、t:金属素管の肉圧(mm)
:第1工程後の膨出部の軸方向中央位置における外周長(mm)
:第2工程後の突起部の軸方向中央位置における外周長(mm)
:第1工程後の膨出部の軸方向外面線長(mm)
:第2工程後の突起部の軸方向外面線長(mm)
このことは、以下に示す実験結果から究明したものである。
【0048】
図7は、金属素管、膨出加工品および突起付き中空軸の縦断面とそれらの断面図を示し、同図(a)は金属素管Aの断面図、同図(b)は膨出加工品Bの断面図、同(c)は突起付き中空軸Cの断面図である。
【0049】
図7に示すように、金属素管Aの肉厚をto、外周長をdo、膨出加工品Bの膨出部の軸方中央位置における外周長をd、軸方向外面線長をL、および突起付き中空軸Cの突起部の軸方向中央位置における外周長をd、軸方向外面線長をLとする。
【0050】
図5は、突起部の拡管率が30%、換言すれば、比(do/d)が0.77で、かつ、比(R/to)が0.6の突起付き中空軸Cを成形する際に、d、L、d、およびLがRにおよぼす影響を整理して示した図で、目標通りのRを有する突起部が成形できた場合を○印、成形できなかった場合を△印、第2工程の型寄せ液圧バルジ加工時に膨出部先端の幅が先端部分の幅よりも小さくなったり、先端面が凹んだりする坐屈が発生した場合を×印で示した図である。
【0051】
図6は、突起部の拡管率が10%、換言すれば、比(do/d)が0.91で、かつ比(R/t。)が0.6の突起付き中空軸Cを成形する際におけるd、L、d、およびLがRにおよぼす影響を整理て示した上記図5と同様の図である。
【0052】
なお、比(d/d)は、d=doのときに下限値(do/d)、d=dのときに最大値1となり、(d/d)≦(d、/d)≦1となる。
【0053】
図5および図6に示す結果からわかるように、1.2−0.2×(R/t。)>(d/d)×(L/L)の条件では、△印であり、目標とする曲率半径Rを有する突起部は成形できない。また、(d/d)×(L/L)>1.4の条件では×印であり、第2工程の型寄せ液圧バルジ加工時、膨出部に坐屈が発生する。
【0054】
これに対し、1.2−0.2×(R/to)≦(d/d)×(L/L)≦1.4の範囲の条件では○印であり、目標とする曲半径Rを有する突起部が得られている。
【0055】
なお、成形できる金属素管Aとしては、JIS G4051、同G4052および同G4805に規定される機構造用炭素鋼とその相当鋼、焼入れ性を保証した構造用鋼とその相当鋼、および高炭素クロム軸受鋼とそ相当鋼などからなる鋼管に限らず、前記以外のFe基合金管やNi基合金管、さらにはアルミニウムとそ合金に代表される非鉄管や非鉄合金管などを挙げることができる。
【0056】
【実施例】
図9は、実施例で成形した突起付き中空軸の縦断面図で、同図(a)は、第2液圧バルジ加工後の膨出加工品の断面図、同図(b)は最終成形品の突起付き中空軸の断面図である。
【0057】
外径30mm、肉厚3mmの機械構造用炭素鋼の金属管を素管として用い、図1〜図2に示す第1工程の液圧バルジ加工を施して図9(a)に示す形状の膨出加工品に成形し、次いで、図2の状態から図3に示す状態にする第2工程の液圧バルジ加工にて図9(b)に示す4個の突起部を有する突起付き中空軸を成形した。また、比較例として図8で示した金型を用いた他は、本発明例と同じ条件で第1液圧バルジ加工と第2液圧バルジ加工とをおこなった。
【0058】
【表1】

Figure 2004017107
【0059】
成形後、突起部を目視にて観察して噛み出しの発生の有無を調べると共に、突起部先端の曲率半径Rを測定した。その結果を、成形条件と共に表1に示す。
【0060】
なお、金属管内に負荷した圧力は、第1加工では最高300MPa、第2加工も最高300MPaであった。
表1に示す結果から明らかなように、第1工程の液圧バルジ加工と第2の型寄せ液圧バルジ加工とを本発明で規定する金型を用いておこなった試番1〜4では、低い内圧付与で外面に噛み出しを発生することなく目標通の曲率半径Rを有する突起部を備えた突起付き中空軸が得られた。
【0061】
これに対し、図8に示すような突起部の側壁成形用金型と突起部の上面成形用金型とが嵌合していない金型を用いて加工をおこなった試番5と6では、外面に図8のE部に示すような噛み出しが発生した。なお、試番1〜6のいずれにも、しわや割れなどの内面疵の発生は認められなかった。
【0062】
【発明の効果】
本発明の成形金型および方法によれば、低い内圧負荷で突起部先端の軸方向角部外面の曲率半径が金属素管の肉厚以下と小さい突起部を有する突起付き中空軸を噛み出しの発生をさせることなく成形ができる。
【図面の簡単な説明】
【図1】本発明の突起付き中空軸の成形用金型の一例を示す縦断面図である。
【図2】図1に示した成型用金型を用いた第1工程の液圧バルジ加工後の状態を示す金型の縦断面図である。
【図3】′図1に示した成型用金型を用いた第2工程の型寄せ加工後の状態を示す金型の縦断面図である。
【図4】本発明の突起付き中空軸の成形用金型の他の例を示す縦断面図である。
【図5】実験結果の一例を整理して示す図で、突起部の拡管率が30%のときにおける寸法dl、Ll、d2おびL2が突起部の軸方向角部外面の曲率半径Rに及ぼす影響を示す図である。
【図6】図5と同様の図で、突起部の拡管率が10%の時における図である。
【図7】金属素管、膨出加工品、突起付き中空軸品の模式的縦断面および横断面図である。
【図8】嵌合部を備えない分割型での噛み出し状況を示す図である
【図9】実施例で成形した膨出加工品、突起付き中空軸品の模式的縦断面および横断面図である。
【符号の説明】
A 金属素管
B 膨出加工品
C 突起付き中空軸
D 分割型験合部
E 噛み出し部
1 金型
2 上金型
3 下金型、
2a、3a 取付け板、
2d、3d 突起部の上面成形用金型
2c、2e 3c、3e 突起部側壁成形用金型
7a、7b 管端拘束治具
7c、7d 加工液導入路
8a、8b 型移動用治具、[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a molding die and a molding method for a hollow shaft with a projection such as a camshaft provided with a cam portion for opening and closing intake and exhaust valves of a four-cycle reciprocating engine.
[0002]
[Prior art]
Conventionally, for example, a camshaft, which is a rotating shaft having a cam for driving an intake valve and an exhaust valve of a four-cycle reciprocating engine, is formed by machining a solid material into a rough shape by casting or forging, and then machining the final shape by machining. Was served. However, since the camshaft manufactured by the above-described processing method is a solid material, there is a problem that the camshaft is heavy and contravenes the weight reduction of the axle.
[0003]
In order to reduce the weight of the axle, a cam that requires abrasion resistance is manufactured as a hollow member using a sintered alloy, and the rotating shaft is manufactured as a hollow shaft, and these are integrated by welding, brazing, or mechanical fixing. The technology for making and assembling camshafts was developed. However, when performing welding or brazing, the respective materials of the cam member and the rotating shaft are limited, and an optimum material cannot be used. Further, the mechanical fixing method needs to repeat the fixing operation as many times as the number of the cam members, and thus has a problem of low productivity.
[0004]
Japanese Patent Application Laid-Open Nos. 57-206530 and 2000-192805 disclose a method and an apparatus for manufacturing a hollow shaft with a hollow projection formed from a metal tube for the purpose of reducing the weight of an axle and improving productivity. And JP-A-2000-210726.
[0005]
JP-A-57-206530 discloses that a metal tube is housed in a die having an inner surface provided with a concave groove corresponding to the outer shape of a projection, and the metal tube has a hydraulic bulge formed by hydraulic pressure and axial compression. A method of forming a hollow shaft with a projection by performing processing is disclosed. However, since this method is a method of forming a projection only by bulging by hydraulic bulging, the thickness of the projection is greatly reduced, and it is difficult to obtain sufficient product strength, and further, has the following disadvantages.
[0006]
That is, when the thickness of the metal tube is set to to and the radius of curvature R of the outer surface of the corner in the axial direction at the tip of the protruding portion (see FIG. 7C described later), an attempt is made to form a protruding portion in which R is equivalent to to. In this case, the radius of curvature of the inner surface corner corresponding to R becomes zero, and in order to form the projection having such a shape only by bulging, it is theoretically necessary to apply an infinite internal pressure. For this reason, a hollow shaft with a projection having an R / to of 1 or less cannot be manufactured by the above method.
[0007]
Here, the reason why the radius of curvature R is preferably small is as follows. That is, the projection may be required to have a flat surface with a constant width at the tip thereof, but the larger the R, the smaller the flat surface. Even if R is large, it is possible to secure a flat surface of a predetermined width by increasing the width of the entire protrusion. However, such a hollow shaft hinders a reduction in the size of the entire device such as an engine and an obstacle in reducing the weight of the device.
[0008]
Japanese Patent Application Laid-Open No. 2000-192805 discloses a method of forming a hollow shaft with projections by using a mold having a divided structure, reducing the diameter of a part of a metal tube, and then performing bulging. ing. However, in this method, a separate step of reducing the diameter of the metal tube is required, and if there is a flaw on the inner surface of the metal tube, the flaw may increase due to the reduction. Therefore, it is necessary to finish the inner surface of the raw tube smoothly, and there is a disadvantage that the production cost is increased. In addition, at the time of the mold approaching process with the divided molds, biting occurs between the divided molds, and it is impossible to mold into a desired shape, or the outer surface has galling flaws. There is also a drawback that requires.
[0009]
Japanese Patent Application Laid-Open No. 2000-210726 discloses that after a metal tube accommodated in a split mold that is divided into a plurality of pieces in an axial direction and set at a predetermined distance from each other, is subjected to swelling processing, A method of forming a hollow shaft with projections while suppressing the thickness reduction of the projections by shifting the mold in the axial direction and applying axial compression to the bulging portion is disclosed.
[0010]
However, in this method, at the time of the mold approaching process with the split molds, biting occurs between the split molds, and a desired shape cannot be formed, or an eaves are formed on the outer surface, so that care in a separate process is required. It has the disadvantage that it becomes necessary.
[0011]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and the problem is that a hollow shaft with a projection in which the projection and the shaft are integrated can be molded with a small internal pressure, without causing the inner surface eaves and the outer surface to bite out, An object of the present invention is to provide a molding die and a molding method suitable for manufacturing a hollow shaft with a projection in which the radius of curvature R of the axial corner outer surface of the tip of the projection is equal to or less than the thickness of the metal tube.
[0012]
Note that the outer surface biting will be described in more detail below.
[0013]
FIG. 8 is a longitudinal sectional view of a mold in the process of being processed by a mold in which the mold for forming the side wall of the projection and the mold for forming the upper surface are not fitted.
[0014]
The mold is composed of an upper mold 2 and a lower mold 3, and the upper and lower molds are respectively molds 2c, 2d, 2e, 3c, 3d, 3e for forming projections, and molds for molding shafts provided adjacent thereto. 2b, 2f, 3b and 3f, and the projection molding die is composed of a projection side wall molding die 2c, 2e, 3c and 3e, and a projection upper surface molding die 2d and 3d. The mold for forming the side wall is divided into two parts in the circumferential direction of the metal tube accommodated therein, and the mold for forming the upper surface of the protrusion forms the outer shape of the protrusion with the mold for forming the side wall. Are arranged as follows. Each of these molds is slidable in the axial direction of the stored metal tube. Although FIG. 8 shows a state in which the projection is being formed, the mold for forming the side wall of the projection and the mold for forming the upper surface are not fitted to each other. The start E portion (dotted circle) has occurred. In the method described in Japanese Patent Application Laid-Open No. 2000-210726, biting occurs between the split molds at the time of moving the mold in the same manner as described above.
[0015]
[Means for Solving the Problems]
The present inventor has proposed a steel pipe made of carbon steel for mechanical structure specified in JIS G 4051, G 4052 and G 4805, structural steel with guaranteed hardenability, and high carbon chromium bearing steel in order to solve the above problems. As a result of repeated experiments of hydraulic bulge processing using the same, the following findings (a) to (d) were obtained.
(A) In order to prevent the occurrence of biting between the dies as shown in FIG. 8, the outer shape of the protrusion is formed by the upper surface forming die and the side wall forming die of the protrusion. It is necessary to fit the upper surface forming die of the projection into the side wall forming die to eliminate the gap between the dies.
(B) In order to form a projection having a small radius of curvature R at the outer end of the axial corner portion with a small internal pressure load, the length of the external line in the axial direction of the bulge after the hydraulic bulging in the first step is set to L. l (Mm), the axial length of the outer surface in the axial direction of the protrusion after the hydraulic bulging in the second step is L 2 (Mm), L in the hydraulic bulging in the first step l Is L 2 It is effective to form a bulge larger than that.
(C) Further, the outer peripheral length at the axial center position of the bulging portion after the hydraulic bulging in the first step is d. l (Mm), the outer peripheral length at the axial center position of the protruding portion after the bulging in the second step is d 2 (Mm), the ratio (d) l / D 2 ) And L l And L 2 And the ratio (L 1 / L 2 ) Is a parameter that determines the magnitude of the radius of curvature R during the hydraulic bulging in the second step.
(D) Assuming that the radius of curvature of the outer surface of the corner portion in the axial direction of the tip of the projection to be formed is R (mm), the hydraulic bulge processing in the first step and the mold approach liquid in the second step are performed under the following conditions. When pressure bulging is performed, the radius of curvature R of the outer surface of the axial corner at the tip of the projection becomes smaller than the thickness to (mm) of the metal tube at a small applied internal pressure, and the hollow shaft with projections having no inner surface flaws. Manufacturing becomes possible.
[0016]
1.2−0.2 × (R / t.) ≦ (d l / D 2 ) × (L l / L 2 ) ≦ 1.4
(E) The wall thinning generated at the time of the bulging process of the projection is suppressed by the abset effect at the time of the pallet processing at the second step.
[0017]
The present invention has been made based on such findings, and the gist is as follows.
[0018]
(1) Hydraulic bulging is performed on a metal tube accommodated in a hole mold formed by an upper mold and a lower mold to form a hollow shaft with a projection in which a projection and a shaft are integrated. Upper and lower molds each include at least one or more sets of protrusion forming molds, and the protrusion forming molds include side wall forming molds for forming side walls of the protrusions. The side wall forming mold is divided into two parts in a direction orthogonal to the axial direction of the accommodated metal tube, and the upper surface forming metal The mold is fitted into the side wall forming mold so that a hole having the same inner surface shape as the outer shape of the projection can be formed with the side wall forming mold. The upper surface forming mold is a mold for forming a hollow shaft with a protrusion which can slide in the axial direction of the metal tube.
[0019]
(2) A metal hollow pipe formed by an upper mold and a lower mold is subjected to hydraulic bulging to form a hollow shaft with a projection in which the projection and the shaft are integrated. Upper and lower dies each include at least one set of protrusion forming dies, and the protrusion forming dies form a part of a side wall and an upper surface of the protrusion. And a sidewall molding die for molding the remaining side wall, and the sidewall molding die has the same shape as the outer shape of the projection with the sidewall upper surface molding die. The mold for forming the side wall and the mold for forming the upper surface of the side wall are fitted with a hollow shaft with a protrusion that is slidable in the axial direction of the metal tube. Mold for molding.
[0020]
(3) A method for molding a hollow shaft with a projection in which a projection and a shaft are integrated with each other, using the mold for molding a hollow shaft with a projection according to (1) above, wherein the mold for sidewall molding is formed. The upper mold and the upper mold are set with a predetermined gap between both molds, and a liquid pressure is applied to the inside of the metal tube housed between the upper mold and the lower mold to form the side wall mold. A hydraulic bulging process of the first step in which a part of the metal tube is swelled in a hole formed by the metal mold and the upper surface forming die, and a state in which hydraulic pressure is applied to the inside of the metal tube after the processing And forming a hollow shaft with projections in a second step of closing the gap between the dies to form a bulge in the die into a target projection shape.
[0021]
(4) A method for molding a hollow shaft with a projection in which the projection and the shaft are integrated with each other by using the mold for molding a hollow shaft with a projection according to the above (2), wherein the mold for sidewall molding is provided. And the side wall upper surface forming mold are set with a predetermined gap between both the molds, and a liquid pressure is applied to the inside of the metal tube housed between the upper mold and the lower mold to form the side wall forming mold. Hydraulic bulging in the first step in which a part of the metal tube is swelled into a hole formed by the mold and the side wall upper surface forming die, and after the processing, hydraulic pressure is applied to the inside of the metal tube. A method of forming a hollow shaft with projections, comprising performing a mold-pulling hydraulic bulge process in a second step of narrowing a gap between the dies and forming a bulge portion in the die into a target projection shape in the formed state.
[0022]
(5) When the target radius of curvature of the outer surface of the corner portion in the axial direction at the tip of the protrusion after the bulging hydraulic bulge processing in the second step is R (mm), the hydraulic bulge in the first step under the condition satisfying the following equation: The method for producing a hollow shaft with projections according to the above (3) or (4), wherein the processing and the second-step hydraulic bulging process are performed.
[0023]
1.2−0.2 × (R / t 0 ) ≦ (d 1 / D 2 ) × (L l / L 2 ) ≦ 1.4
Where t 0 : Thickness of metal tube (mm)
d 1 : Perimeter length (mm) at the axial center of the bulge after the first step
d 2 : Outer peripheral length (mm) at the axial center position of the protrusion after the second step
L 1 : Axial outer surface line length (mm) of the swollen portion after the first step
L 2 : Axial outer surface line length of the protrusion after the second step (mm)
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a longitudinal sectional view showing an example of a mold for forming a hollow shaft with a projection according to the present invention. FIG. 1 shows a state immediately before molding in which a metal tube A is housed in a hole formed by upper and lower molds. Show.
[0025]
The mold of the present invention is a mold provided with at least one or more sets of protrusion forming molds in each of the upper mold 2 and the lower mold 3. In the mold shown in FIG. 1, a pair of molds for forming a protrusion is a mold for forming a side wall of the protrusion (upper mold: 2c, 2e, lower mold: 3c, 3e) and an upper surface of the protrusion. Molding mold (upper mold: 2d, lower mold: 3d), and the side wall molding mold is divided into two parts 2c and 2e in the direction perpendicular to the metal tube A accommodated (in the case of the lower mold: 3c and 3e), and the upper surface forming die of the protrusion is formed with the side wall forming die so that a mold having the same inner surface shape as the outer shape of the protrusion of the product can be formed. It is fitted in the mold (FIG. 1D). Further, the protrusion forming dies 2c, 2e, 2d and 3c, 3e, 3d are respectively attached to the mounting plates 2a, 3a by an appropriate means such as a dovetail groove mechanism. It is mounted so that it can slide in the axial direction.
[0026]
In addition, b in FIG. 1 shows a breaking line, a part of the longitudinal direction of the mold is omitted, and one set of protrusion forming molds is shown in each of the upper and lower molds. When a hollow shaft having a plurality of protrusions is formed, a mold having a plurality of sets of protrusion-forming dies is naturally used. The molds 2b, 2f, 3b, and 3f are molds for molding the tube end portion. For example, in the case of 2b, the molds may be molds for molding a side wall of a projection, such as 2c, or may be a normal movable mold for molding a shaft. It may be a mold.
[0027]
As shown in FIG. 1, the mold according to the present invention has protrusions formed in the side wall forming molds 2c, 2e, 3c, 3e of the protrusions in which the protrusion molding die is divided into two in the circumferential direction of the raw tube. It is a great feature that the upper surface forming molds 2d and 3d are fitted (D part). With such a configuration, the outer surface between the molds as shown in FIG. Does not occur.
[0028]
FIG. 4 is a longitudinal sectional view showing another example of a mold for molding a hollow shaft with a projection of the present invention. This mold is the same as the mold shown in FIG. 1 except that the upper molds 2d and 3d shown in FIG. 1 and one of the side wall molds 2e and 3e are integrated. . The same effect as the mold shown in FIG. 1 can be obtained also by using the side wall upper mold 2g as shown in FIG. 4 in which one of the side wall molds and the upper mold is integrated.
[0029]
Next, the molding method of the present invention will be described. Hereinafter, the case where the mold shown in FIG. 1 is used will be described, but the same applies to the mold shown in FIG.
[0030]
At the time of hydraulic bulging, since a force is applied to divide the upper and lower molds by the pressure applied to the metal tube, the hydraulic bulging is performed while pressing the upper and lower molds from above and below by a press mechanism (not shown). It is. Either or both of the upper mold 1 and the lower mold 2 are moved up and down by the vertical movement of the press mechanism, whereby the metal tube A is carried into the mold and the hollow shaft C with the projection after the processing is completed. Is carried out of the mold.
[0031]
In the hydraulic bulging process, first, an upper mold 2 and a lower mold 3 are opened by operating a press mechanism (not shown), and the respective molds are arranged and fixed as shown in FIG. Is accommodated in the mold, and the upper mold 2 and the lower mold 3 are closed. At this time, the side wall forming molds 2c, 2e and 3c, 3e of the protrusion are fitted to the upper surface forming molds 2d and 3d of the protrusion, respectively, and a predetermined gap is provided. Set.
[0032]
Both ends of the metal tube A are kept airtight by the tube end restraining jigs 7a and 7b. The pipe end restraining jig is connected to an appropriate pressing mechanism such as a hydraulic ring (not shown), and can apply a compressive force in the axial direction from both ends of the metal pipe during hydraulic bulging.
[0033]
After the mold is set in the state shown in FIG. 1, the metal tube A is subjected to a first step hydraulic bulging and a second step hydraulic bulging described below.
[0034]
That is, in the hydraulic bulging process in the first step, the positions of the upper surface forming dies 2d and 3d of the protrusion and the side wall forming dies 2c, 2e and 3c and 3e of the protrusion are adjusted as appropriate by a hydraulic cylinder or the like. The state shown in FIG. 1 is fixed and held by mold moving jigs 8a and 8b having a pressing mechanism. Each mold is fixed at a predetermined position according to the shape of the product.
[0035]
Then, while the high-pressure processing liquid is injected into the inside of the metal pipe A from the processing liquid introduction paths 7c and 7d provided at the axis of the pipe end restraining jigs 7a and 7b, the pipe end restraining jigs 7a and 7b 7b, the metal tube A is expanded and deformed by applying an axial compressive force from both sides of the metal tube.
[0036]
FIG. 2 is a longitudinal sectional view of the mold shown in FIG. 1 after the hydraulic bulging in the first step using the mold for forming a hollow shaft with a projection.
[0037]
In the hydraulic bulging process of the first step, even when an axial compressive force is applied from only one side only by the pipe end restraining jig 7a or 7b, the pipe bulging deformation of the metal pipe A is possible. When the deformability of the metal tube A to be used is high or when the amount of expanded tube swelling is small, the axial compression force by the tube end restraining jigs 7a and 7b is not applied, and the metal tube A is applied only by applying the internal pressure. It is also possible to bulge the tube A.
[0038]
Next, in the mold approach hydraulic bulging process of the second step, the mold moving jigs 8a and 8b are operated to move the side wall forming dies 2c, 2e and 3c and 3e of the protrusion to the upper surface forming metal of the protrusion. Move from both sides toward dies 2d and 3d. At this time, the injection of the working fluid from the working fluid introduction passages 7c and 7d provided at the axis of the pipe end restraining jigs 7a and 7b and the application of the axial compressive force are continuously performed to further expand the bulging processed product B. Expand and bulge.
[0039]
FIG. 3 is a longitudinal sectional view of a mold showing a state after a mold approach hydraulic bulge processing in a second step using the mold for forming a hollow shaft with a projection shown in FIG. When the state shown in FIG. 3 is attained, the mold approach hydraulic bulging is completed.
[0040]
More specifically, the side wall forming molds 2c, 2e and 3c, 3e of the protrusion are in contact with each other in a fitted state, and the side wall of the protrusion is opposed to the upper surface forming molds 2d and 3d of the protrusion. Hydraulic bulging is completed when the protrusions of the hollow shaft with protrusions fill the inner surface of the hole mold in which the molding dies 2c, 2e and 3c, 3e are abutted and integrated.
In the bulging hydraulic bulging in the second step, the application of the axial compressive force by the pipe end restraining jigs 7a and 7b is performed by only one of them similarly to the hydraulic bulging in the first step. When the deformability of the metal pipe A used is high or when the expanded pipe swelling amount is small, it may be omitted, and the metal pipe A may be simply moved to follow the movement of the mold.
[0041]
Also, when performing the mold approach hydraulic bulging process, the approach movement of the mold may be performed by operating only one mold moving jig and fixing the other mold moving jig.
[0042]
In addition, the gap between the side wall molding die and the upper surface molding die (or the side wall upper surface molding die) set before molding is determined in the first step when the gap is reduced to zero. It is preferable that the gap is formed so that the processed bulging portion can be filled in the mold.
[0043]
As described above, the hydraulic bulging process for the metal pipe A is performed in two steps, so that the expanded area in the axial direction of the metal pipe formed in the hydraulic bulging processing in the first step is only vertically. It is longer than in the case of using the divided conventional hydraulic bulging die. When the internal pressure applied to the metal pipe A is the same, the swelling amount and the material volume also increase. The expanded area of the expanded product B, which is longer in the pipe axis direction and has a larger amount of expansion and a larger material volume, is subjected to compression processing by the second-step die-sliding hydraulic bulging process. Accordingly, a decrease in the thickness of the bulging portion is prevented. Further, since bending in the tube axis direction is given by the mold shift, the outer radius of the corner in the tube axis direction can be formed with a small internal pressure.
[0044]
At the time of the hydraulic bulging in the second step, the internal pressure applied to the inside of the bulged product B depends on the outer shape of the projection and the expanded bulged product B after the hydraulic bulging in the second step. Although it is determined by the overhanging shape of the portion, in the mold closing hydraulic bulging in the second step, the higher the internal pressure applied, the better the shape after molding. For this reason, it is preferable that the internal pressure applied to the inside of the bulging product B be as high as possible in the bulging hydraulic bulging in the second step.
[0045]
After the hydraulic bulging process in the second step is completed, the upper mold 2 and the lower mold 3 are opened by operating the press, and the hollow boss C with hydraulic bulging is carried out of the mold 1.
[0046]
As described above, the hydraulic bulging in the first step and the hydraulic bulging in the second step are performed in a state where the side wall forming die and the upper surface forming die are fitted to each other, that is, between the two dies. Since there is no gap in the hydraulic bulge processing in the first step and the hydraulic bulge processing in the second step, biting can be prevented. In addition, since the method of the present invention is basically a bulging process, there is no occurrence of an inner surface flaw generated in the case of the diameter reducing process.
[0047]
According to the method of the present invention, a hollow shaft with projections can be formed as described above. In particular, the hydraulic bulging in the first step and the hydraulic bulging in the second step can be performed under the following conditions. The target radius of curvature R (see FIG. 7 (c)) of the outer surface of the corner portion in the axial direction at the tip of the projection of the hollow shaft with projection is reduced while preventing the bite from being formed. 0 [See FIG. 7 (a)] The following hollow shaft with projection can be manufactured.
1.2−0.2 × (R / t.) ≦ (d 1 / D 2 ) × (L 1 / L 2 ) ≦ 1.4
Where t 0 : Wall pressure of metal pipe (mm)
d 1 : Perimeter length (mm) at the axial center of the bulge after the first step
d 2 : Outer peripheral length (mm) at the axial center position of the protrusion after the second step
L 1 : Axial outer surface line length (mm) of the swollen portion after the first step
L 1 : Axial outer surface line length of the protrusion after the second step (mm)
This has been clarified from the following experimental results.
[0048]
7A and 7B show a longitudinal section and a sectional view of a metal tube, a bulged product, and a hollow shaft with a projection. FIG. 7A is a sectional view of the metal tube A, and FIG. FIG. 3C is a cross-sectional view of a processed product B, and FIG.
[0049]
As shown in FIG. 7, the wall thickness of the metal pipe A is to, the outer peripheral length is do, and the outer peripheral length at the axial center position of the expanded portion of the expanded product B is d. l , The line length of the outer surface in the axial direction is L l , And the outer peripheral length at the axial center position of the projection of the hollow shaft C with the projection is d. 2 , The line length of the outer surface in the axial direction is L 2 And
[0050]
FIG. 5 shows that the expansion ratio of the protrusion is 30%, in other words, the ratio (do / d 2 ) Is 0.77 and the ratio (R / to) is 0.6. l , L l , D 2 , And L 2 Is a graph showing the effect of R on R. In the figure, a circle indicates that a protrusion having the desired R could be formed, a triangle indicates that a protrusion could not be formed, and a hydraulic bulging process in the second step. It is the figure shown by x mark when buckling that the width of the tip of the bulging part sometimes becomes smaller than the width of the tip part, or the tip surface is dented occurs.
[0051]
FIG. 6 shows that the expansion ratio of the projection is 10%, in other words, the ratio (do / d 2 ) Is 0.91 and the ratio (R / t.) Is 0.6 when forming a hollow shaft C with projections having a ratio of 0.6. l , L l , D 2 , And L 2 FIG. 6 is a diagram similar to FIG.
[0052]
Note that the ratio (d l / D 2 ) Is d l = Lower limit value (do / d 2 ), D l = D 2 , The maximum value is 1 and (d 0 / D 2 ) ≦ (d 1 , / D 2 ) ≦ 1.
[0053]
As can be seen from the results shown in FIGS. 5 and 6, 1.2−0.2 × (R / t.)> (D 1 / D 2 ) × (L 1 / L 2 In the condition of ()), the mark is a mark, and the projection having the target radius of curvature R cannot be formed. Also, (d 1 / D 2 ) × (L l / L 2 )> 1.4 under the condition of 1.4, and buckling occurs at the bulging portion during the hydraulic bulging in the second step.
[0054]
On the other hand, 1.2−0.2 × (R / to) ≦ (d l / D 2 ) × (L l / L 2 In the condition of ≦≦ 1.4, the mark “○” indicates that a projection having the target radius of curvature R is obtained.
[0055]
Examples of the metal pipe A that can be formed include carbon steel for machine structural use and its equivalent steel specified in JIS G4051, G4052 and G4805, structural steel and its equivalent steel with guaranteed hardenability, and high carbon chromium. It is not limited to a steel pipe made of bearing steel and its equivalent steel, but may also be a Fe-based alloy pipe or Ni-based alloy pipe other than those described above, and a non-ferrous pipe or a non-ferrous alloy pipe represented by aluminum and its alloys.
[0056]
【Example】
9A and 9B are longitudinal sectional views of the hollow shaft with projections formed in the example. FIG. 9A is a sectional view of a bulged product after the second hydraulic bulge processing, and FIG. It is sectional drawing of the hollow shaft with a protrusion of an article.
[0057]
Using a metal tube of carbon steel for machine structure having an outer diameter of 30 mm and a wall thickness of 3 mm as a raw tube, a hydraulic bulging process in the first step shown in FIGS. The hollow shaft with protrusions shown in FIG. 9 (b) is formed into a processed product by a hydraulic bulging process in a second step of changing the state shown in FIG. 2 to the state shown in FIG. Molded. Also, the first hydraulic bulge processing and the second hydraulic bulge processing were performed under the same conditions as those of the present invention except that the mold shown in FIG. 8 was used as a comparative example.
[0058]
[Table 1]
Figure 2004017107
[0059]
After the molding, the protrusions were visually observed to check for occurrence of biting, and the radius of curvature R at the tip of the protrusions was measured. The results are shown in Table 1 together with the molding conditions.
[0060]
The pressure applied to the inside of the metal pipe was 300 MPa at the maximum in the first processing and 300 MPa at the second processing.
As is clear from the results shown in Table 1, in Test Nos. 1 to 4 in which the hydraulic bulging in the first step and the second hydraulic bulging in the second mold were performed using the mold defined in the present invention, A hollow shaft with a projection having a projection having a target radius of curvature R was obtained without application of a low internal pressure to the outer surface of the projection.
[0061]
On the other hand, in Test Nos. 5 and 6, which were performed using a mold in which the mold for forming the side wall of the protrusion and the mold for forming the upper surface of the protrusion were not fitted as shown in FIG. A biting as shown in a portion E in FIG. 8 occurred on the outer surface. In addition, generation | occurrence | production of the internal surface flaws, such as a wrinkle and a crack, was not recognized in any of the test numbers 1-6.
[0062]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the molding die and method of this invention, the radius of curvature of the axial corner outer surface of the tip of the projection at the low internal pressure load is less than the thickness of the metal pipe, and the hollow shaft with the projection having the projection is small. Molding can be performed without causing generation.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of a mold for molding a hollow shaft with a projection of the present invention.
FIG. 2 is a longitudinal sectional view of a mold showing a state after a hydraulic bulging process in a first step using the molding mold shown in FIG. 1;
FIG. 3 is a longitudinal sectional view of the mold showing a state after a mold shifting process in a second step using the molding mold shown in FIG. 1;
FIG. 4 is a longitudinal sectional view showing another example of a mold for molding a hollow shaft with a projection of the present invention.
FIG. 5 is a diagram showing an example of the experimental results, in which dimensions dl, L1, d2 and L2 affect the radius of curvature R of the outer surface of the protrusion in the axial direction when the expansion ratio of the protrusion is 30%. It is a figure showing an influence.
FIG. 6 is a view similar to FIG. 5, but when the expansion ratio of the protrusion is 10%.
FIG. 7 is a schematic longitudinal sectional view and a transverse sectional view of a metal tube, a bulged product, and a hollow shaft product with a projection.
FIG. 8 is a diagram showing a state of biting in a split type having no fitting portion.
FIG. 9 is a schematic vertical cross-sectional view and a cross-sectional view of a bulged product and a hollow shaft product with a protrusion formed in the example.
[Explanation of symbols]
A Metal tube
B bulge product
C Hollow shaft with projection
D Split type joint
E Ejection part
1 Mold
2 Upper mold
3 Lower mold,
2a, 3a mounting plate,
2d, 3d Mold for molding top surface of protrusion
2c, 2e 3c, 3e Mold for forming side wall of projection
7a, 7b Pipe end restraining jig
7c, 7d machining fluid introduction path
8a, 8b type moving jig,

Claims (5)

上金型とで下金型で形成される孔型内に収容した金属素管に液圧バルジ加工を施して突起部と軸部とが一体となった突起付き中空軸を成形するための金型であって、上下金型はそれぞれ少なくとも一組以上の突起部成形用金型を備えており、突起部成形用金型は、突起部の側壁を成形するための側壁成形用金型と突起部の上面を成形するための上面成形用金型とからなり、側壁成形用金型は収容された金属素管の軸方向と直交する方向に二分割されており、上面成形用金型は側壁成形用金型とで突起部の外郭形状と同じ形状の内面形状の孔型を形成することができるように側壁成形用金型内に嵌合されており、側壁成形用金型と上面成形用金型は、金属素管の軸方向に摺動可能であることを特徴とする突起付き中空軸の成形用金型。A metal for forming a hollow shaft with a projection in which a projection and a shaft are integrated by subjecting a metal tube housed in a hole mold formed by an upper mold and a lower mold to a hydraulic bulging process. The upper and lower molds each include at least one or more sets of protrusion forming molds, and the protrusion forming molds include a side wall forming mold and a protrusion for forming side walls of the protrusions. An upper surface forming die for forming the upper surface of the portion is formed, and the side wall forming die is divided into two parts in a direction orthogonal to the axial direction of the accommodated metal tube, and the upper surface forming die is formed of a side wall. It is fitted in the side wall forming mold so that a hole having the same inner surface shape as the outer shape of the projection can be formed with the forming die, and the side wall forming mold and the upper surface forming mold are fitted. A mold for forming a hollow shaft with a protrusion, wherein the mold is slidable in the axial direction of the metal tube. 上金型と下金型とで形成される孔型内に収容した金属素管に液圧バルジ加工を施して突起部と軸部とが一体となった突起付き中空軸を成形するための金型であって、上下金型はそれぞれ少なくとも一組以上の突起部成形用金型を備えており、突起部成形用金型は、突起部の側壁の一部と上面とを成形するための側壁上面成形用金型と、残部の側壁を成形するための側壁成形用金型とからなり、側壁成形用金型は側壁上面成形用金型とで突起部の外郭形状と同じ形状の内面形状の孔型を形成することができるように嵌合されており、側壁成形用金型と側壁上面成形用金型は、金属素管の軸方向に摺動可能であることを特徴とする突起付き中空軸の成形用金型。A metal for forming a hollow shaft with a projection in which a projection and a shaft are integrated by subjecting a metal tube accommodated in a hole mold formed by an upper mold and a lower mold to hydraulic bulging. A mold, wherein the upper and lower molds each include at least one or more sets of protrusion forming molds, and the protrusion forming molds have side walls for forming a part of the side walls of the protrusions and the upper surface. An upper surface forming die and a side wall forming die for forming the remaining side wall. The side wall forming die has the same inner shape as the outer shape of the projection with the side wall upper surface forming die. A hollow having a protrusion, which is fitted so that a hole mold can be formed, wherein the side wall forming mold and the side wall upper surface forming mold are slidable in the axial direction of the metal tube. Mold for molding shafts. 請求項1に記載の突起付き中空軸の成形用金型を用いて突起部と軸部とが一体となった突起付き中空軸を成形する方法であって、側壁成形用金型と上面成形用金型とを両金型間に所定の間隙を設けてセットし、上金型と下金型間に収容した金属素管の内部に液圧を負荷して側壁成形用金型と上面成形用金型とで形成された孔型内に金属素管の一部を膨出させる第1工程の液圧バルジ加工と、その加工後に金属素管の内部に液圧を負荷した状態で前記型間の間隙を狭めて前記孔型内の膨出部を目標の突起部形状に成形する第2工程の型寄せ液圧バルジ加工とをおこなうことを特徴とする突起付き中空軸の成形方法。A method for molding a hollow shaft with a projection in which a projection and a shaft are integrated with each other using the mold for molding a hollow shaft with a projection according to claim 1, wherein the mold for forming a side wall and the molding for an upper surface are formed. The mold and the mold are set with a predetermined gap between them, and a liquid pressure is applied to the inside of the metal tube housed between the upper mold and the lower mold to mold the side wall mold and the upper mold. A hydraulic bulging process in a first step for swelling a part of the metal tube into a die formed by a mold, and after the working, pressurizing the metal tube while applying a hydraulic pressure inside the metal tube. And forming a bulging portion in the die in a second step of forming a bulge portion in the die into a target projection shape. 請求項2に記載の突起付き中空軸の成形用金型を用いて突起部と軸部とが一体となった突起付き中空軸を成形する方法であって、側壁成形用金型と側壁上面成形用金型とを両金型間に所定の間隙を設けてセットし、上金型と下金型間に収容した金属素管の内部に液圧を負荷して側壁成形用金型と側壁上面成形用金型とで形成された孔型内に金属素管の一部を膨出させる第1工程の液圧バルジ加工と、その加工後に金属素管の内部に液圧を負荷した状態で前記型間の間隙を狭めて前記孔型内の膨出部を目標の突起部形状に成形する第2工程の型寄せ液圧バルジ加工とをおこなうことを特徴とする突起付き中空軸の成形方法。A method for molding a hollow shaft with a projection in which a projection and a shaft are integrated with each other using the mold for molding a hollow shaft with a projection according to claim 2, wherein the sidewall molding die and the sidewall upper surface molding are formed. The mold is set with a predetermined gap between the two molds, and a liquid pressure is applied to the inside of the metal tube accommodated between the upper mold and the lower mold to form the side wall forming mold and the upper surface of the side wall. A hydraulic bulging process in a first step of bulging a part of the metal tube into a hole formed by a molding die, and after the processing, a hydraulic pressure is applied to the inside of the metal tube. A method of forming a hollow shaft with projections, comprising performing a mold-pulling hydraulic bulge process in a second step of narrowing a gap between the dies and forming a bulge portion in the die into a target projection shape. 第2工程の型寄せ液圧バルジ加工後における突起部先端の軸方向角部外面の目標曲率半径をR(mm)としたとき、下式を満たす条件で第1工程の液圧バルジ加工と第2工程の型寄せ液圧バルジ加工とをおこなうことを特徴とする請求項3または4に記載の突起付き中空軸の製造方法。
1.2−0.2×(R/t)≦(d/d)×(L/L)≦1.4
但し、t:金属素管の肉厚(mm)
:第1工程後の膨出部の軸方向中央位置における外周長(mm)
:第2工程後の突起部の軸方向中央位置における外周長(mm)
:第1工程後の膨出部の軸方向外面線長(mm)
:第2工程後の突起部の軸方向外面線長(mm)
Assuming that the target radius of curvature of the outer surface of the corner portion in the axial direction at the tip of the protrusion after the hydraulic bulging in the second step is R (mm), the hydraulic bulging in the first step and the hydraulic bulging in the first step are performed under the following conditions. The method for producing a hollow shaft with protrusions according to claim 3 or 4, wherein a two-step hydraulic bulging process is performed.
1.2−0.2 × (R / t 0 ) ≦ (d 1 / d 2 ) × (L 1 / L 2 ) ≦ 1.4
Here, t 0 is the wall thickness (mm) of the metal tube.
d 1 : outer peripheral length (mm) at the center position in the axial direction of the swollen portion after the first step
d 2 : outer peripheral length (mm) at the axial center position of the protrusion after the second step
L 1 : Line length (mm) of the outer surface in the axial direction of the swollen portion after the first step
L 2: axial outer surface line length of the projecting portion after the second step (mm)
JP2002176702A 2002-06-18 2002-06-18 Die and method for forming hollow shaft with projection Pending JP2004017107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002176702A JP2004017107A (en) 2002-06-18 2002-06-18 Die and method for forming hollow shaft with projection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176702A JP2004017107A (en) 2002-06-18 2002-06-18 Die and method for forming hollow shaft with projection

Publications (1)

Publication Number Publication Date
JP2004017107A true JP2004017107A (en) 2004-01-22

Family

ID=31174936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176702A Pending JP2004017107A (en) 2002-06-18 2002-06-18 Die and method for forming hollow shaft with projection

Country Status (1)

Country Link
JP (1) JP2004017107A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103658296A (en) * 2012-09-14 2014-03-26 财团法人工业技术研究院 Pipe fitting manufacturing method and hydraulic forming die thereof
WO2019230795A1 (en) 2018-05-31 2019-12-05 株式会社関プレス Method for forming projecting portion, system for forming projecting portion, and method for manufacturing metal component having projecting portion
CN113028114A (en) * 2021-04-15 2021-06-25 陈崇南 Blank body suitable for flat oval cavity of multi-valve type valve and containing valve body and valve cover and forming method
CN113028116A (en) * 2021-03-29 2021-06-25 陈崇南 Blank body of circular cavity valve body-containing valve cover suitable for multi-valve valves and machining method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103658296A (en) * 2012-09-14 2014-03-26 财团法人工业技术研究院 Pipe fitting manufacturing method and hydraulic forming die thereof
US9505048B2 (en) 2012-09-14 2016-11-29 Industrial Technology Research Institute Pipe manufacturing method and hydroforming mold thereof
WO2019230795A1 (en) 2018-05-31 2019-12-05 株式会社関プレス Method for forming projecting portion, system for forming projecting portion, and method for manufacturing metal component having projecting portion
KR20210005189A (en) 2018-05-31 2021-01-13 가부시키가이샤 세키 푸레스 Protrusion forming method, protrusion forming system, and manufacturing method of metal parts having protrusions
US11648599B2 (en) 2018-05-31 2023-05-16 Seki Press Co., Ltd. Method and system for forming protrusions, and method for manufacturing metal component having protrusions
US11931787B2 (en) 2018-05-31 2024-03-19 Seki Press Co., Ltd. Method and system for forming protrusions, and method for manufacturing metal component having protrusions
CN113028116A (en) * 2021-03-29 2021-06-25 陈崇南 Blank body of circular cavity valve body-containing valve cover suitable for multi-valve valves and machining method
CN113028114A (en) * 2021-04-15 2021-06-25 陈崇南 Blank body suitable for flat oval cavity of multi-valve type valve and containing valve body and valve cover and forming method

Similar Documents

Publication Publication Date Title
US6932040B2 (en) Metal plate rocker arm and method of manufacturing the metal plate rocker arm
JP6245369B2 (en) Manufacturing method of forged crankshaft
WO2011104921A1 (en) Method for manufacturing hollow engine valve
WO2015075934A1 (en) Production method for forged crank shaft
KR20060028816A (en) Forging method, forged product and forging apparatus
EP0800874B1 (en) Bulge forming method and apparatus
KR20120069129A (en) Manufacturing device and method thereof for crank throw
WO2016159246A1 (en) Method for manufacturing forged crankshaft
KR20000016325A (en) Method and device for manufacturing cam shaft
JP6561575B2 (en) Manufacturing method of forged crankshaft
JP2004017107A (en) Die and method for forming hollow shaft with projection
JPH08117904A (en) Manufacture of high pressure gas container
JPH10175027A (en) Metallic tube for hydro-form
JP3820882B2 (en) Manufacturing method of hollow shaft with protrusion
JP3709786B2 (en) Manufacturing method of hollow shaft with protrusion
JP2002500105A (en) Method for manufacturing a shaft from a single tube, apparatus for manufacturing a shaft from a single tube, and camshaft manufactured from a single tube
JP3601420B2 (en) Forming method of overhang by hydroforming method
JP2000192805A (en) Manufacture of hollow cam shaft and hollow cam shaft
WO2019039199A1 (en) Method for manufacturing forged crankshaft
WO2017110887A1 (en) Method for manufacturing forged crankshaft
JP6555393B2 (en) Manufacturing method of forged crankshaft
JP4060723B2 (en) Hydraulic bulge processing apparatus and hydraulic bulge processing method
JP3684971B2 (en) Hollow shaft with protrusion and method of manufacturing the same
RU2343033C2 (en) Method for shaping of exceptionally thin-walled multi-layer bellows
JP7406084B2 (en) Crankshaft manufacturing method