JP2004357500A - 誘導電動機駆動装置 - Google Patents

誘導電動機駆動装置 Download PDF

Info

Publication number
JP2004357500A
JP2004357500A JP2004268480A JP2004268480A JP2004357500A JP 2004357500 A JP2004357500 A JP 2004357500A JP 2004268480 A JP2004268480 A JP 2004268480A JP 2004268480 A JP2004268480 A JP 2004268480A JP 2004357500 A JP2004357500 A JP 2004357500A
Authority
JP
Japan
Prior art keywords
value
command value
induction motor
frequency
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004268480A
Other languages
English (en)
Inventor
Koichiro Nagata
浩一郎 永田
Toshiaki Okuyama
俊昭 奥山
Shigetoshi Okamatsu
茂俊 岡松
Jiro Nemoto
治郎 根本
Toshio Katayama
敏男 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004268480A priority Critical patent/JP2004357500A/ja
Publication of JP2004357500A publication Critical patent/JP2004357500A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

【課題】 誘導電動機の起動時や加速時などの負荷トルクの急激な増加に追従させて十分なトルクを発生させる。
【解決手段】 速度指令値ωr*にすべり周波数に相関する物理量を修正値ωs’として加算し、該修正された速度指令値(ωr*+ωs’)に基づいて出力電圧の周波数を制御して誘導電動機をベクトル制御する誘導電動機駆動装置において、前記すべり周波数に相関する物理量IdFB、IqFBに応じて前記修正値を低減(k・ωs’、ただし0<k≦1)補正することにより、周波数制御に係る速度指令値を実際の電動機速度に近付けて実すべり周波数を低減し、電流Id、Iq制御の追従性を改善して負荷トルクの急激な増加に追従させて十分なトルクを発生させるようにした。
【選択図】 図1

Description

本発明は,誘導電動機をベクトル制御により可変速制御する駆動装置に係り、具体的には起動ないし加速時における制御技術に属する。
誘導電動機をベクトル制御により可変速制御する場合、速度指令値ωr*にすべり周波数ωsを加算してインバータの周波数指令値ω1*を求め、これに基づいてd軸電圧指令値Vd*、q軸電圧指令値Vq*及び位相θを演算して、誘導電動機に供給する交流電圧をベクトル制御して速度を可変している。つまり、周波数指令値ω1*に対応した位相θによりVd*、Vq*を座標変換して、周波数指令値に対応した周波数を有する交流電圧指令値Vu*、Vv*、Vw*を生成し、これに基づいてインバータを可変速制御している。なお、通常のベクトル制御では電動機の磁束に平行な成分をd軸、垂直な成分をq軸と定義している。
ここで、d軸電圧指令値Vd*とq軸電圧指令値Vq*の理論式を数1と数2に示す。それらの式において、r1は誘導電動機の一次抵抗、Mは相互インダクタンス、L2は二次側自己インダクタンス、Lσは漏れインダクタンス一次側換算値の和を示す。
Figure 2004357500
Figure 2004357500
ところで、実際のすべり周波数ωsは直接検出できないことから、例えば、数3に示す誘導電動機の検出電流に基づいた式により推定したすべり周波数推定値ωs’を用いている。同式中、IdFBはd軸検出電流値、IqFBはq軸検出電流値、T2は電動機の二次時定数である。
Figure 2004357500
したがって、周波数指令値ω1*は数4に示すように、速度指令値ωr*とすべり周波数推定値ωs’の和となる。
Figure 2004357500
一方、定常状態において誘導電動機に流れる励磁電流Idとトルク電流Iq、及びd軸磁束Φ2dとq軸磁束Φ2qは、数5、数式6の関係を満たしている。なお、ωsは電動機の実際のすべり周波数である。
Figure 2004357500
Figure 2004357500
ここで、ベクトル制御では、Φ2d>0、Φ2q=0が常に満たされているものとして制御する。また、誘導電動機に発生するトルクτは、Φ2dとIqの積に比例する。この誘導電動機の制御方法は、例えば、非特許文献1に記載されている。
総合電子出版社発行の「ACサーボシステムの理論と設計の実際(p102-p103)」
しかし、従来方式においては、誘導電動機の起動や加速時のように、電動機の発生トルクに対して負荷トルクが大きい場合には、過渡的に数5、数6の条件が崩れて磁束が変動し、トルクτが不足して起動失敗や加速失敗に至る場合がある。これは、起動時のように負荷トルクが大きいと、実際のすべり周波数ωsが急激に増加し、電流Id、Iqがその変化に追従できない場合が生ずることによる。
すなわち、前述したように、ベクトル制御はΦ2q=0、Φ2d>0の条件が満たされているものとして制御理論が組み立てられている。しかし、数6のΦ2qの理論式には、実すべり周波数ωs(=ω1*−実モータ速度)が負の項に含まれているため、起動時又は加速時に周波数指令値ω1*を急激に増加させることにより実すべり周波数ωsが増加すると、過渡的にΦ2qが定常時の“0”から負側(Φ2q<0)になる。Φ2qが負になると、数5から明らかなように、Φ2dが減少する。その結果、トルクτ=Φ2d×Iqが減少し、発生トルクがますます不足して起動及び加速できないという問題が出るのである。
そこで、本発明は、誘導電動機の起動時や加速時における過渡的な磁束低下を抑制し、十分なトルクを発生させることを課題とする。
本発明は、次に述べる手段により、上記課題を解決するものである。
本発明は、速度指令値にすべり周波数に相関する物理量の修正値を加算し、該修正された速度指令値に基づいて出力電圧の周波数を制御して誘導電動機をベクトル制御する誘導電動機駆動装置において、前記すべり周波数に相関する物理量に応じて前記修正値を低減補正することを特徴とする。
すなわち、負荷トルクが大きい場合に周波数指令を増加させると、実すべり周波数が増大するから、すべり周波数に相関する物理量の修正値が増大し、これにより益々周波数指令値が高くなる一方、電流Id、Iqの制御がその変化に追従できないために、ますます発生トルクが不足することになる。
そこで、本発明は、少なくとも出力電圧の周波数制御に係る速度指令値に加算する修正値を、例えば、すべり周波数推定値よりも小さな値に低減補正することにより、周波数制御に係る速度指令値を実際の電動機速度に近付けて実すべり周波数を低減するようにしたのである。その結果、電流Id、Iq制御の追従性が改善され、十分なトルクを発生させることができるのである。
ここで、修正値を補正する因子のすべり周波数に相関する物理量は、電動機電流と電動機の発生トルクと電動機電流に基づいて推定されるすべり周波数推定値の少なくとも1つを適用できる。この場合、すべり周波数に相関する物理量が設定値以上のときと、変化率の少なくとも一方に応じて修正値を低減補正することが好ましい。また、速度指令値が設定値以下のときに、修正値を低減補正するようにしてもよい。この場合、修正値の低減補正の度合いは、速度指令値が設定値以下のときに、速度指令値に応じて変えるようにすることができる。
ところで、上記のように低減補正すると、修正値は、同一トルク条件もしくは同一電動機電流条件下で、所定の電動機速度以下における値が該所定の電動機速度以上における値よりも小さくなる。
本発明によれば、誘導電動機の起動時や加速時にも十分なトルクを発生させることができる。
また、d軸電圧指令値の演算及び位相の演算に用いる周波数指令値を、電動機電流に応じて小さく修正するようにしたものによれば、起動時や加速時にも十分なトルクを発生させ、かつ過電流を抑制する効果がある。
また、d軸電圧指令値の演算及び位相の演算に用いる周波数指令値を、速度指令値又は電動機電流に応じて補正して小さい値にしたものによれば、加速後の高速運転時においても安定して運転を行える効果がある。
以下、本発明の実施の形態について図を用いて説明する。
(第一実施形態)
本発明の第一の実施形態について、図1〜図3を用いて説明する。図2は、本発明に係る誘導電動機駆動装置の第一実施形態及び周辺部を含む全体構成図である。図1は、図2の交流電圧指令演算部20の詳細構成図である。
図2に示すように、誘導電動機駆動装置は、交流電源1から供給される三相交流電圧を順変換器2で直流電圧に変換し、変換された直流電圧を平滑コンデンサ3で平滑し、平滑された直流電圧を逆変換器4により所望の周波数の三相交流電圧に変換して誘導電動機6に供給するようになっている。逆変換器4は、例えばIGBTなどの半導体スイッチ素子を用いて構成され、それらの半導体スイッチ素子はPWMゲートパルス演算部11で生成されたゲート信号によって制御される。PWMゲートパルス演算部11へ入力される交流電圧指令値は、電流検出部5により検出された電動機電流と速度指令値ωr*に基づいて交流電圧指令演算部20で演算により求められるようになっている。
次に、交流電圧指令演算部20の詳細について述べる。第一実施形態は、誘導電動機の起動時や加速時等のように負荷トルクが大きい時に周は巣指令を増加させた場合に起きる過渡的なトルク不足を補償するため、位相θ及びd軸電圧指令値Vd*の演算に用いる周波数指令値ω1*を、すべり周波数推定値ωs’に相関させた小さな値より修正することを特徴とする。つまり、周波数指令値自体を低減すると共に、数5、数6で説明したように、実すべり周波数ωsが大きくなるとΦ2dが減少するので、その減少を抑えるためである。
一方、q軸電圧指令値Vq*の演算に用いるすべり周波数推定値ωs’は、従来同様に、例えば数3により求めた値とすることを特徴とする。その理由は、Vq*=ω1*×Φ2qであるから、すべり周波数推定値ωs’を小さく補正すると、ω1*が小さくなってVq*が低下し、Iqが下がって、却ってトルクが減少してしまうからである。
図1において、図示していない制御器等から入力される速度指令値ωr*は、加算器21、22に入力されている。すべり周波数演算部23は、電動機電流Imをdq軸座標変換して得られるIdFBとIqFBを入力し、数3に基づいてすべり周波数推定値ωs’を演算して出力するように構成されている。なお、IdFB、IqFBは検出値に代えて制御部内で生成される電流指令値Id*、Iq*を用いることも、よく知られている。また、IdFB、IqFBは図示していない座標変換部により、電動機電流Imをdq軸座標系に変換して得られることもよく知られている。
すべり周波数補正部24は、すべり周波数演算部23から出力されるすべり周波数推定値ωs’を入力し、これに係数k(ただし、0≦k<1)を掛けてすべり周波数補正値k・ωs’を出力する。つまり、加算器21に入力されるすべり周波数補正値k・ωs’は、加算器22に入力されるすべり周波数推定値ωs’に比例し、かつすべり周波数推定値ωs’よりも小さい値である。また、すべり周波数推定値ωs’とすべり周波数補正値k・ωs’は、図3に示すすべり周波数演算部23とすべり周波数補正部24において、電動機電流に基づいてそれぞれ独立に求めるようにしてもよい。
加算器21と加算器22は、速度指令値ωr*にすべり周波数を加算して修正する部分である。加算器21は、出力(ωr*+k・ωs’)を周波数指令値ω1*Cとして位相演算部25に、また周波数指令値ω1*BとしてVd*演算部26に入力する。また、加算器22は、出力(ωr*+ωs’)を周波数指令値ω1*AとしてVq*演算部27に入力する。Vd*演算部26は、入力される励磁電流指令値Id*とトルク電流指令値Iq*及び周波数指令値ω1*Bを用いて、d軸電圧指令値Vd*を演算する。Vq*演算部27は、励磁電流指令値Id*とトルク電流指令Iq*及び周波数指令値ω1*A を用いて、q軸電圧指令値Vq*を演算する。位相演算部25においては、周波数指令値ω1*C を積分して位相θを演算する。座標変換部28は、d軸電圧指令値Vd*とq軸電圧指令値Vq*を位相θに従って座標変換を行い、周波数指令値ω1*Cに対応する周波数の交流電圧指令値Vu*、Vv*、Vw*を生成し、図1のPWMゲートパルス演算部11に出力する。
次に、本実施形態の動作を説明する。ここで、位相θを演算する際の周波数指令値ω1*Cと、Vd*の演算に用いる周波数指令値ω1*Bは、何れも加算器21の出力(ωr*+k・ωs’)であるから本来同一値であるが、理論式の理解を助けるために、便宜的に両者を区別して表している。本実施形態のVd*、Vq*は、数7〜数9の様になり、電動機電流Id、Iqは数10〜12の様になる。なお、rσは電動機抵抗の一次側換算値の和である。
Figure 2004357500
Figure 2004357500
Figure 2004357500
Figure 2004357500
Figure 2004357500
Figure 2004357500
本実施形態のように、ω1*B=ω1*C<ω1*Aに設定することにより、電動機の実すべり周波数ωsは、数13のように、すべり周波数推定値ωs’に比べて小さめに制御される。その結果、数式5、数式6におけるωsの増加に伴う磁束Φ2dの急減を抑えることができる。
Figure 2004357500
特に、Vq*演算用の周波数指令値ω1*Aは、数8から判るように、数式3に従いすべり周波数推定値ωs’をそのまま用いている。したがって、Vq*は低下しない。これは、電圧指令値Vq*の低下に伴う磁束Φ2qの低下を起こさせないようにして、トルクの減少を抑えるためである。
ところで、Vd*演算用の周波数指令値ω1*Bを、位相θ演算用の周波数指令値ω1*Cと同一にしたのは、仮に、ω1*B>ω1*Cにすると、数7のVd*を数10に代入して明らかなように、Idが低下して磁束及びトルクが減少するからである。そこで、本実施形態では、ω1*B=ω1*Cに設定することにより、Idの低下を抑えて磁束Φ2dの低減を抑制しているのである。
このように、本実施形態は、インバータを制御する周波数指令値ω1*Cを小さな値に補正し、周波数指令値ω1*Cを電動機の実回転速度に近付けて、実すべり周波数の急激な増加に起因する過渡的な磁束低下を抑制して、十分なトルクを発生させることを本旨とする。
また、周波数指令値ω1*Cに合わせてd軸電圧指令値Vd*を制御する周波数指令値ω1*Bを小さな値に補正することが好ましい。これによれば、(ω1*C−ω1*B)の要素を含むd軸励磁電流Idの低下を抑えてトルクの低下を抑えることができる。
更に、q軸電圧指令値Vq*の制御に用いる周波数指令値ω1*Aは、周波数指令値ω1*Cよりも大きな値にすることが好ましい。例えば、すべり周波数推定値を基準にして制御することにより、q軸電流Iqの低下を抑えてトルクの低下を抑えることができる。
ここで、図4を用いて、本実施形態による検証結果を説明する。図4は、本実施形態を用いた場合と従来方式の場合の電動機起動特性のシミュレーション結果を示す。従来方式においては、周波数指令を増加させた場合、磁束が低下してトルク電流が許容値以上に流れているにも拘わらず、トルクは起動トルクにも達していない。これに対し、本発明方式においては、周波数指令増加後に磁束は一旦下がるものの、直ぐに増加し、トルク電流が許容値以下で起動トルクが発生している。このため、従来方式では起動失敗を起こし電動機速度はゼロのままだが、本発明方式によれば電動機の起動が達成されている。
(第二実施形態)
本発明の第二実施形態を図5〜図7を用いて説明する。本実施形態が図1の実施形態と異なる部分は、すべり周波数補正部24に代えて、数9における係数kを速度指令値ωr*に応じて変化させるようにしたすべり周波数補正部30を設けたことにある。その他については、第一実施形態と同一であることから、同一符号を付して説明を省略する。
つまり、図1の実施形態において、係数kを一定値に保持すると、電動機が起動又は加速して所定の速度に到達した場合でも、周波数指令値ω1*Aと周波数指令値ω1*Bが異なったままになり、定常状態において磁束の不安定要因となる。
そこで、本実施形態のすべり周波数補正部30は、速度指令ωr*を取り込み、ωr*に応じて係数kを増加し、所定以上の速度において係数kを“1”に変更して、周波数指令値ω1*Aと周波数指令値ω1*Bを一致させるようにしている。すなわち、すべり周波数補正部30は、例えば図6に示すように、速度指令ωr*が停止時からωr1*までは数9の係数kをk1(0≦k1<1)に設定し、ωr1*からωr2*までは徐々に増加させて、ωr2*以上でk=1に変更するように設定する。例えば、ωr1*は定格速度の3~4%、ωr2*は定格速度の10%程度に設定することができる。
なお、速度指令ωr*に応じて係数kを増加する方法は、図6に限らず図7のようにすることができる。つまり、ωr*がωr1*に到達した時間t1から所定の時間t2までの間はkをk1から1に徐々に変化させる。図6、図7のように、係数kを一定の増加率で緩やかに“1”に変化させる理由は、kを例えばステップ的に“1”に増加すると、過渡的なトルク変動を生じるからである。そこで、kを“1”に変化させる時間は、例えば電流が変化する場合の時定数Tσ(=Lσ/rσ)の1/10以上から、磁束が変化する場合の時定数T2の10倍程度とするのが好ましい。
(第三実施形態)
本発明の第三の実施形態を図8に示す。本実施形態が図5の実施形態と異なる点は、すべり周波数補正部30の係数kを電動機電流に応じて変化させるようにした点にある。例えば、トルク電流Iqが所定値を超える場合、それは磁束が十分でないことが原因と考えられる。そこで、トルク電流Iqが所定値Iqrefを越えた場合、すべり周波数補正値k・ωs’を更に小さくする。これにより、第一実施例で述べたように磁束Φ2dの低下を抑制して、Iqの増加を抑えることができる。ここで、Iqrefの設定値は、インバータに流すことができる許容電流値よりも低く設定する。この本実施形態によれば、電動機の起動又は加速時における過電流を抑制する効果もある。
上述した第二及び第三実施形態は、見方を変えると、すべり周波数推定値ωs’は、同一トルクもしくは同一電流の条件下では電動機速度に関わらず同一である。一方、すべり周波数補正値k・ωs’は、同一トルクもしくは同一電流の条件下では、低速度領域と高速度領域で値が異なるように設定される。そして、電動機の起動又は加速時における磁束の低下を抑制して高トルクを得ることができる。特に、第二及び第三実施形態によれば、加速後の高速運転時においても安定した運転を行うことができる。
また、図5、図8の実施形態では、すべり周波数補正部24の係数kを速度指令値又は電動機電流に応じて変化させるようにしたが、これに代えてすべり周波数補正部24はすべり周波数推定値ωs’の急激な変化を抑えるように、例えばωs’の変化率を制限する要素を用いることができる。
(第四実施形態)
図9に、本発明の第四実施形態の交流電圧指令演算部の構成図を示す。本実施形態は第一実施形態に対して演算の手順が異なるだけであり、実質的に等価である。すなわち、Vq*演算部27に入力する周波数指令を、Vd*演算部26に入力する周波数指令ω1*Bと同じにする。そして、すべり周波数推定値ωs’からすべり周波数補正値k・ωs’を減算する減算器31を設け、この減算器31の出力(1−k)ωs’をVq*補正値演算部32に入力する。Vq*補正値演算部32は、数14によりΔVq*を求めて加算器33に出力してVq*演算部27の出力の電圧指令値Vq*に加算してVq*補正するようにしている。
つまり、Vd*演算部26とVq*演算部27は、各々数1、2に従って演算する。Vq*補正値演算部32は、数14にしたがってΔVq*を演算する。
Figure 2004357500
(第四実施形態の変形例)
また、図9のすべり周波数補正部24に代えて、図5又は図8のすべり周波数補正部30を適用し、電動機速度が所定の速度に達した際に、係数kをωr*もしくは電動機電流に基づいて変化させることにより、第二又は第三実施形態と同様の効果が得られる。
ここで、第四実施形態及びその変形例について、見方を変えると、同一トルクもしくは同一電流の条件下において、低速度領域におけるVq*補正値ΔVq*を高速度領域での値より大きく設定して、電動機の起動又は加速時における磁束低下を抑制して高トルクを得ているということができる。また、第四実施形態の変形例によれば、加速後の高速運転時でも安定した運転を行うことができる。
(第五実施形態)
図10に第五実施形態の特徴部の構成を示す。本実施形態のすべり周波数演算部34は、トルク電流の検出値IqFBと、励磁電流の指令値Id*とから、数15に基づいて、すべり周波数推定値ωs’を演算する。数15は数4のIdFBを指令値Id*に置き換えたものである。定常状態においてはIdFB=Id*となるから、数15は数4と等価となる。
Figure 2004357500
このようにして求めたすべり周波数推定値ωs’を、加算器21で速度指令値ωr*に足して周波数指令値ω1*を演算する。Vd*演算部26は数1に基づいてVd*を演算する。一方、本実施形態では、Vd*補正値演算部35により、例えば数16のようにVd*補正値ΔVd*を演算する。そして、加算器36でΔVd*をVd*に足して、過渡トルク補償を実現している。
Figure 2004357500
ここで、係数kを0≦k<1とし、ΔVd*>0とする。ΔVd*をVd*に足すことで演算された新しいVd*は、数式7、数式12に表されるVd*と等価となる。また、数16のkを電動機が所定の速度に達した後、 kを1に変化させることは、図5、図8の実施形態と同様である。また、同一トルクもしくは同一電流の条件下において、低速度領域でのVd*補正値を高速度領域での値より大きく設定する場合も同様であり、これにより第一及び第二実施形態と同様の効果が得られる。
なお、本実施形態では図示を省略したが、Vq*演算部27及び位相演算部25は、加算器21から出力される周波数指令値ω1*に基づいて、それぞれVq*及びθを演算する。
なお、kを変化させる場合は、急峻なトルクの変動を防止するため、例えば、電流が変化する場合の時定数Tσ(=Lσ/rσ)の1/10以上から、磁束が変化する場合の時定数T2の10倍の時間でkを0から1に変化させるようなレートで行なえばよい。
本発明の誘導電動機駆動装置の特徴部に係る一実施の形態の交流電圧指令演算部の構成図である。 本発明の誘導電動機駆動装置に係る一実施の形態の全体構成図である。 図1のすべり周波数補正部の変形例を示す図である。 図1実施形態の効果を説明する動作波形図である。 本発明の誘導電動機駆動装置の特徴部に係る他の実施の形態の交流電圧指令演算部の構成図である。 図5実施形態のすべり周波数補正部の係数kの設定法を説明する図である。 図5実施形態のすべり周波数補正部の係数kの他の設定法を説明する図である。 本発明の誘導電動機駆動装置の特徴部に係る更に他の実施の形態の交流電圧指令演算部の構成図である。 本発明の誘導電動機駆動装置の特徴部に係る更に他の実施の形態の交流電圧指令演算部の構成図である。 本発明の誘導電動機駆動装置の特徴部に係る更に他の実施の形態の交流電圧指令演算部に係る主要部の構成図である。
符号の説明
20 交流電圧指令演算手段
21、22 加算器
23 すべり周波数演算部
24 すべり周波数補正部
25 位相演算部
26 Vd*演算部
27 Vq*演算部
28 座標変換部

Claims (31)

  1. 速度指令値にすべり周波数に相関する物理量を修正値として加算し、該修正された速度指令値に基づいて出力電圧の周波数を制御して誘導電動機をベクトル制御する誘導電動機駆動装置において、
    前記すべり周波数に相関する物理量に応じて前記修正値を低減補正することを特徴とする誘導電動機駆動装置。
  2. 前記すべり周波数に相関する物理量は、電動機電流と電動機発生トルクと前記電動機電流に基づいて推定されるすべり周波数推定値の少なくとも1つであることを特徴とする請求項1に記載の誘導電動機駆動装置。
  3. 前記すべり周波数に相関する物理量が設定値以上のときと変化率の少なくとも一方に応じて前記修正値を低減補正することを特徴とする請求項1に記載の誘導電動機駆動装置。
  4. 前記速度指令値が設定値以下のときに、前記修正値を低減補正することを特徴とする請求項1に記載の誘導電動機駆動装置。
  5. 前記速度指令値が設定値以下のときに、前記速度指令値に応じて前記修正値を低減補正することを特徴とする請求項4に記載の誘導電動機駆動装置。
  6. 前記修正値は、同一トルク条件もしくは同一電動機電流条件下で、所定の電動機速度以下における値が該所定の電動機速度以上における値よりも小さいことを特徴とする請求項1乃至5のいずれかに記載の誘導電動機駆動装置。
  7. 速度指令値にすべり周波数に相関する物理量を修正値として加算し、該修正された速度指令値に基づいて出力電圧の周波数を制御して誘導電動機をベクトル制御する誘導電動機駆動装置において、
    電動機電流と電動機速度の少なくとも一方に応じて前記修正値を補正する手段を設け、該手段により補正された前記修正値は、同一トルク条件もしくは同一電動機電流条件下で、所定の電動機速度以下における値が、該所定の電動機速度以上における値よりも小さいことを特徴とする誘導電動機駆動装置。
  8. 前記修正値を補正する手段は、前記電動機電流と前記電動機速度の変化率との少なくとも一方に応じて前記修正値を低減補正することを特徴とする請求項7に記載の誘導電動機駆動装置。
  9. 前記修正値を補正する手段は、前記誘導電動機の特性パラメータに係る所定の時定数の変化率に応じて前記修正値を低減補正することを特徴とする請求項7に記載の誘導電動機駆動装置。
  10. 速度指令値にすべり周波数に相関する物理量を修正値として加算し、該修正された速度指令値に応じてベクトル制御に係る出力電圧を制御するとともに、前記修正された速度指令値に基づいて前記出力電圧の周波数を制御する誘導電動機駆動装置において、
    電動機電流と電動機速度と前記誘導電動機の特性パラメータに係る所定の時定数の少なくとも1つに応じて、少なくとも前記出力電圧の周波数を制御する前記速度指令値に係る前記修正値を補正する手段を設けたことを特徴とする誘導電動機駆動装置。
  11. 前記修正値を補正する手段は、前記電動機電流と前記電動機速度と前記誘導電動機の特性パラメータに係る所定の時定数の少なくとも1つの変化率に応じて前記修正値を低減補正することを特徴とする請求項10に記載の誘導電動機駆動装置。
  12. 前記修正値を補正する手段は、前記周波数の制御に係る前記修正値と同一の修正値により前記出力電圧のd軸電圧の制御に係る前記速度指令値を修正することを特徴とする請求項10又は11に記載の誘導電動機駆動装置。
  13. 前記修正値を補正する手段は、電動機電流と電動機速度と前記誘導電動機の特性パラメータに係る所定の時定数の少なくとも1つに応じて、前記修正値を変化させることを特徴とする請求項10に記載の誘導電動機駆動装置。
  14. 前記修正値を補正する手段により補正された前記修正値は、同一トルク条件もしくは同一電動機電流条件下で、所定の電動機速度以下における値が、該所定の電動機速度以上における値よりも小さいことを特徴とする請求項10乃至12のいずれかに記載の誘導電動機駆動装置。
  15. 速度指令値にすべり周波数に相関する物理量を修正値として加算し、該修正された速度指令値に応じてベクトル制御に係る出力電圧を制御するとともに、前記修正された速度指令値に基づいて前記出力電圧の周波数を制御する誘導電動機駆動装置において、
    電動機電流と電動機速度と前記誘導電動機の特性パラメータに係る所定の時定数の少なくとも1つに応じて前記修正値を補正する手段と、前記出力電圧のq軸電圧指令値を前記修正前の前記速度指令値に対応する値に補正することを特徴とする誘導電動機駆動装置。
  16. 速度指令値にすべり周波数に相関する物理量を修正値として加算し、該修正された速度指令値に応じてベクトル制御に係る出力電圧を制御するとともに、前記修正された速度指令値に基づいて前記出力電圧の周波数を制御する誘導電動機駆動装置において、
    電動機電流と電動機速度と前記誘導電動機の特性パラメータに係る所定の時定数の少なくとも1つに応じて、前記出力電圧のq軸電圧指令値を補正する手段を設けたことを特徴とする誘導電動機駆動装置。
  17. 前記q軸電圧指令値を補正する手段は、同一トルク条件もしくは同一電動機電流条件下で、補正後のq軸電圧指令値を所定の電動機速度以上に比べ該所定の電動機速度以下において大きく補正することを特徴とする請求項16に記載の誘導電動機駆動装置。
  18. 前記q軸電圧指令値を補正する手段は、前記q軸電圧指令値の補正量を、前記電動機電流と前記電動機速度と前記時定数の少なくとも1つの変化率に応じて変化させることを特徴とする請求項17に記載の誘導電動機駆動装置。
  19. 速度指令値に電動機電流に基づいて求めたすべり周波数推定値を加算して周波数指令値を生成し、該周波数指令値に基づいてベクトル制御に係る電圧指令値を生成するとともに出力電圧の周波数を制御する誘導電動機駆動装置において、
    前記すべり周波数推定値よりも小さいすべり周波数補償値を生成し、前記速度指令値に前記すべり周波数推定値を加算した周波数指令値Aと前記すべり周波数補償値を加算した周波数指令値Bを生成し、前記周波数指令値Aを用いてq軸電圧指令値を演算し、前記周波数指令値Bを用いて出力電圧の周波数を制御してなる誘導電動機駆動装置。
  20. 前記周波数指令値Bを用いてd軸電圧指令値を演算することを特徴とする請求項19に記載の誘導電動機駆動装置。
  21. 前記周波数指令値Aから前記周波数指令値Bを引いた差分が、定格すべり角周波数の0倍より大きく1倍以下であることを特徴とする請求項19又は20に記載の誘導電動機駆動装置。
  22. 前記速度指令値又は電動機速度が設定値以上に達したとき、前記周波数指令値Aと前記周波数指令値Bを一致させることを特徴とする請求項19に記載の誘導電動機駆動装置。
  23. 前記周波数指令値Aと前記周波数指令値Bを一致させる際に、前記誘導電動機の特性パラメータに係る所定の時定数の変化率で両者の値を変化させることを特徴とする請求項22に記載の誘導電動機駆動装置。
  24. 前記周波数指令値Aと前記周波数指令値Bを一致させるのに要する時間を、前記誘導電動機のTσ(漏れインダクタンスの一次側換算値の和Lσ/電動機抵抗の一次側換算値の和rσ)の1/10以上で、前記誘導電動機の二次時定数T2の10倍以下にすることを特徴とする請求項23に記載の誘導電動機駆動装置。
  25. 前記周波数指令値Aと前記周波数指令値Bを一致させるにあたり、前記速度指令値の変化率に応じて両者の差を変化させて一致させることを特徴とする請求項22に記載の誘導電動機駆動装置。
  26. 前記電動機電流が設定値を超えたとき、前記周波数指令値Aと前記周波数指令値Bの差を大きくすることを特徴とする請求項19に記載の誘導電動機駆動装置。
  27. 前記すべり周波数補償値を小さくして、前記周波数指令値Aと前記周波数指令値Bの差を大きくすることを特徴とする請求項26に記載の誘導電動機駆動装置。
  28. 前記電動機電流が設定値を超えたとき、前記すべり周波数補償値を0にすることを特徴とする請求項19に記載の誘導電動機駆動装置。
  29. 前記すべり周波数補償値を0にする際に、前記誘導電動機の特性パラメータに係る所定の時定数の変化率で前記すべり周波数補償値を変化させることを特徴とする請求項28に記載の誘導電動機駆動装置。
  30. 前記すべり周波数補償値を0にするのに要する時間を、前記誘導電動機のTσ(漏れインダクタンスの一次側換算値の和Lσ/電動機抵抗の一次側換算値の和rσ)の1/10以上で、前記誘導電動機の二次時定数T2の10倍以下であることを特徴とする請求項29に記載の誘導電動機駆動装置。
  31. 前記すべり周波数補償値を0にする際に、前記速度指令値の変化率に応じてゼロにすることを特徴とする請求項28に記載の誘導電動機駆動装置。
JP2004268480A 2004-09-15 2004-09-15 誘導電動機駆動装置 Pending JP2004357500A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268480A JP2004357500A (ja) 2004-09-15 2004-09-15 誘導電動機駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004268480A JP2004357500A (ja) 2004-09-15 2004-09-15 誘導電動機駆動装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002148829A Division JP3716347B2 (ja) 2002-05-23 2002-05-23 誘導電動機駆動装置、誘導電動機制御装置及び誘導電動機制御方法

Publications (1)

Publication Number Publication Date
JP2004357500A true JP2004357500A (ja) 2004-12-16

Family

ID=34056557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268480A Pending JP2004357500A (ja) 2004-09-15 2004-09-15 誘導電動機駆動装置

Country Status (1)

Country Link
JP (1) JP2004357500A (ja)

Similar Documents

Publication Publication Date Title
RU2407140C1 (ru) Векторный регулятор для синхронного электродвигателя с постоянными магнитами
US6809492B2 (en) Speed control device for AC electric motor
JP5257365B2 (ja) モータ制御装置とその制御方法
US8378601B2 (en) Control apparatus for permanent magnet synchronous motor
JP6260502B2 (ja) モータ制御装置
JP4581739B2 (ja) 電動機の駆動装置
JPWO2016121751A1 (ja) インバータ制御装置及びモータ駆動システム
JP5418961B2 (ja) 誘導電動機の制御装置
JP4650110B2 (ja) 電動機の制御装置
JPH1189297A (ja) 電力変換装置
JP2013187931A (ja) モータ制御装置
JP7329735B2 (ja) モータ制御装置
JP2003088194A (ja) 電動機駆動システム
JP6641445B2 (ja) 電力変換装置の制御方法および電力変換装置
JP6358834B2 (ja) ベクトル制御装置、それを組み込んだインバータ及びそれを組み込んだインバータとモータとのセット装置
JP3716347B2 (ja) 誘導電動機駆動装置、誘導電動機制御装置及び誘導電動機制御方法
JP6590196B2 (ja) 電力変換装置
JP2004357500A (ja) 誘導電動機駆動装置
JP2020058231A (ja) 電力変換装置の制御方法および電力変換装置
JP2010200544A (ja) 交流電動機制御装置および制御方法
JP6627702B2 (ja) 電力変換器の制御装置
JPH11285299A (ja) 誘導電動機のベクトル制御装置および方法
JPH06233576A (ja) 誘導電動機の制御装置
JP2003219697A (ja) 誘導電動機制御装置
KR102131003B1 (ko) 5레그 인버터 제어 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930