JP2004356763A - ミキサ回路 - Google Patents

ミキサ回路 Download PDF

Info

Publication number
JP2004356763A
JP2004356763A JP2003149732A JP2003149732A JP2004356763A JP 2004356763 A JP2004356763 A JP 2004356763A JP 2003149732 A JP2003149732 A JP 2003149732A JP 2003149732 A JP2003149732 A JP 2003149732A JP 2004356763 A JP2004356763 A JP 2004356763A
Authority
JP
Japan
Prior art keywords
output
signal
input
mixer circuit
switch stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003149732A
Other languages
English (en)
Other versions
JP4219736B2 (ja
Inventor
Masato Koya
真人 幸谷
Yoshihisa Fujimoto
義久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003149732A priority Critical patent/JP4219736B2/ja
Publication of JP2004356763A publication Critical patent/JP2004356763A/ja
Application granted granted Critical
Publication of JP4219736B2 publication Critical patent/JP4219736B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

【課題】スーパーヘテロダイン方式の受信装置に用いられるミキサ回路11において、スイッチ段12の動作に関して、ローカル信号の振幅変動に伴うDC動作電流の変化は定電流源を付加することで抑えることができるけれども、定電流源を構成するトランジスタ自体を飽和領域で動作させるオーバードライブ電圧が必要となり、該スイッチ段のスイッチ段トランジスタの動作マージンが小さくなってしまう。一方、ミキサの線形性を向上させるのは非常に難しく、前記のようにスイッチ段トランジスタの動作マージンが小さくなると、ミキサの線形性は容易に限界に達してしまう。
【解決手段】出力端子14からスイッチ段12のゲートに、フィードバック回路15を付加することによって、該スイッチ段12に流れるDC動作電流を安定させ、ローカル信号の振幅変動による性能劣化を低減することができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、スーパーヘテロダイン方式の受信装置などで好適に実施されるミキサ回路に関する。
【0002】
【従来の技術】
前記スーパーヘテロダイン方式の受信装置などでは、ミキサ回路は、高周波信号(RF信号)に、ローカル信号(LO信号)を乗算して周波数変換し、乗算結果として中間周波信号(IF信号)を生成する。また、ケーブルテレビチューナ等に用いられるような広帯域の受信装置では、チャンネル間の相互干渉を防ぐために、線形性の高い(歪の小さい)ミキサが必要となる。さらに、局部発信器からミキサに供給されるローカル信号強度のばらつきによる性能劣化を回避するために、スイッチ段のDC動作電流を一定に供給する必要がある。
【0003】
そこで、前記ローカル信号強度の増加に伴うDC動作電流の増加を抑制するために、ダブルバランス型のミキサ回路に、定電流回路を接続した構成が、特開昭60−7210号公報で示される。図8は、その典型的な従来技術によるミキサ回路1の回路構成図である。このミキサ回路は、2対のNMOSトランジスタ1d,2d;3d,4dが交差接続されて成るスイッチ段dのソース端子に、バランcを介してRF信号を供給するとともに、ゲート端子にLO信号を供給し、2つの共通ドレイン端子からIF信号を得るミキサにおいて、変換損失、混変調特性が著しく劣化しないように、前記スイッチ段dのソース端子に接続されたバランcのセンタータップjに定電流源回路kを接続し、ローカル信号強度の増加に伴うDC動作電流の増加を低減させることを特徴としている。この図8のミキサ回路1では、LO信号が、バランス入力(入力端子が2個あり、その入力端子間に信号を加えるもの)となっている。ここで、参照符a,bはバラン、fはRF信号源、eはローカル信号源である。
【0004】
【特許文献1】
特開昭60−7210号公報(公開日:昭和60年1月16日)
【0005】
【発明が解決しようとする課題】
上述のような従来技術では、特開昭60−7210号では、バランcのセンタータップjに定電流源kを付加することで、ローカル振幅変動に伴うDC動作電流の変動を抑制している。しかしながら、定電流源であるトランジスタ2を飽和領域で動作させるためには、該トランジスタ2のゲートに、オーバードライブ電圧Δov(Δov=(2Id/β)1/2 :β=u*Cox*W/L)分のバイアスが必要であり、スイッチ段dのトランジスタの動作マージンを小さくしてしまうという問題がある。このため、ミキサの線形性を十分に得ることができない。したがって、この特開昭60−7210号のように、ローカル振幅変動によるDC動作電流の変動を回避しつつも、スイッチ段のトランジスタの動作マージンを最大限に利用できるようにすることが望まれる。
【0006】
本発明の目的は、ローカル振幅変動に対して安定した利得・線形性特性を実現することができるミキサ回路を提供することである。
【0007】
【課題を解決するための手段】
本発明のミキサ回路は、電源ライン間に、差動対を構成する一対のトランジスタから成るスイッチ段と、それぞれのトランジスタのコレクタ(ドレイン)に接続される出力負荷とが直列に接続され、前記トランジスタのエミッタ(ソース)にはバランを介して第1の信号が入力され、ベース(ゲート)には第2の信号が入力され、前記第1および第2の信号を混合した出力を対を成す前記トランジスタのコレクタ(ドレイン)から出力するようにしたミキサ回路において、前記混合出力を入力とし、前記スイッチ段のDC動作電流を一定に保持する制御電圧を前記対を成すトランジスタのベース(ゲート)に与えるフィードバック回路を有することを特徴とする。
【0008】
上記の構成によれば、スーパーヘテロダイン方式の受信装置などに用いられ、電源ライン間に、差動対を構成する一対のトランジスタから成るスイッチ段と、それぞれのトランジスタのコレクタ(ドレイン)に接続される出力負荷とが直列に接続され、前記トランジスタのエミッタ(ソース)にはバランを介して第1の信号(RF信号)が入力され、ベース(ゲート)には第2の信号(LO信号)が入力され、前記第1および第2の信号を混合した出力(IF信号)を対を成す前記トランジスタのコレクタ(ドレイン)から出力するようにしたシングルバランス型のミキサ回路において、フィードバック回路は、前記混合出力の平均電圧によって前記トランジスタのベース(ゲート)に与える制御電圧を変化し、すなわち前記一対のトランジスタがN型である場合、前記混合出力の平均電圧が大きくなる程、すなわち第2の信号の振幅が大きくなる程、前記制御電圧が低くなるように積分動作が働き、前記スイッチ段のDC動作電流を一定に保持させる。
【0009】
したがって、スイッチ段のターゲット電流が一定となるように、出力平均電圧をモニタしたフィードバックループによって該スイッチ段のベース(ゲート)バイアスにフィードバックがかかり、前記第2の信号(LO信号)の振幅変動の影響を受けず、該スイッチ段のDC動作電流を一定に保つことができ、ミキサ回路全体としての低消費電力化を図ることができるとともに、ミキサの利得・線形性性能を安定させることができる。また、前記スイッチ段のトランジスタを飽和領域で動作させるために、オーバードライブ電圧が必要となる電流源を備えていなくても、該スイッチ段のDC動作電流を一定に保つことができ、前記第2の信号(LO信号)の振幅変動によるDC動作電流の変動を回避しつつも、スイッチ段トランジスタの動作マージンを最大限に利用することができる。
【0010】
また、本発明のミキサ回路は、電源ライン間に、それぞれ差動対を構成する2対のトランジスタが交差接続されて成り、該2対のトランジスタのエミッタ(ソース)には各対毎にバランを介して第1の信号が入力され、交差接続されたベース(ゲート)には第2の信号が入力されるスイッチ段と、前記交差接続されたトランジスタのコレクタ(ドレイン)に接続される出力負荷とが直列に接続され、前記第1および第2の信号を混合した出力を対を成す前記交差接続されたトランジスタのコレクタ(ドレイン)から出力するようにしたミキサ回路において、前記混合出力を入力とし、前記スイッチ段のDC動作電流を一定に保持する制御電圧を前記2対のトランジスタのベース(ゲート)に与えるフィードバック回路を有することを特徴とする。
【0011】
上記の構成によれば、スーパーヘテロダイン方式の受信装置などに用いられ、電源ライン間に、それぞれ差動対を構成する2対のトランジスタが交差接続されて成り、該2対のトランジスタのエミッタ(ソース)には各対毎にバランを介して第1の信号(RF信号)が入力され、交差接続されたベース(ゲート)には第2の信号(LO信号)が入力されるスイッチ段と、前記交差接続されたトランジスタのコレクタ(ドレイン)に接続される出力負荷とが直列に接続され、前記第1および第2の信号を混合した出力(IF信号)を対を成す前記交差接続されたトランジスタのコレクタ(ドレイン)から出力するようにしたダブルバランス型のミキサ回路において、フィードバック回路は、前記混合出力の平均電圧によって前記トランジスタのベース(ゲート)に与える制御電圧を変化し、前記混合出力の平均電圧が大きくなる程、すなわち第2の信号の振幅が大きくなる程、前記制御電圧が低くなるように積分機能が働き、前記スイッチ段のDC動作電流を一定に保持させる。
【0012】
したがって、スイッチ段のターゲット電流が一定となるように、出力平均電圧をモニタしたフィードバックループによって該スイッチ段のベース(ゲート)バイアスにフィードバックがかかり、前記第2の信号の振幅変動の影響を受けず、該スイッチ段のDC動作電流を一定に保つことができ、ミキサ回路全体としての低消費電力化を図ることができるとともに、ミキサの性能を安定させることができる。また、前記スイッチ段のトランジスタを飽和領域で動作させるために、オーバードライブ電圧が必要となる電流源を備えていなくても、該スイッチ段のDC動作電流を一定に保つことができ、前記第2の信号(LO信号)の振幅変動によるDC動作電流の変動を回避しつつも、スイッチ段トランジスタの動作マージンを最大限に利用することができる。このようにして、スイッチ段のトランジスタの動作電圧を犠牲にすることなく、動作電流を制御でき、ローカル振幅変動に強い低消費電力ミキサを提供することができる。また、スイッチ段のトランジスタの動作マージンを拡大できるので、利得・線形性の特性を向上したミキサ回路を提供することができる。
【0013】
また、本発明のミキサ回路では、前記フィードバック回路は、相互に等しい抵抗値に形成され、バランス出力である前記混合出力がそれぞれの一端から入力され、他端が相互に接続されることで、前記混合出力の平均値を求める2つの抵抗を有することを特徴とする。
【0014】
上記の構成によれば、相互に等しい2つの抵抗のそれぞれ一端にバランス出力である混合出力を与えることで、他端はその抵抗体の中点となり、前記バランス出力におけるAC成分が抵抗からなるローパスフィルタ(LPF)により除去され、DC成分のみが抽出される。こうして、フィードバックを行うにあたって、一定に保持すべき前記DC動作電流の情報を容易に抽出することができる。
【0015】
さらにまた、本発明のミキサ回路では、前記フィードバック回路は、前記制御電圧を、相互に等しい抵抗値に形成される2つの抵抗の一端に入力し、前記抵抗の他端から、対を成す各トランジスタのベース(ゲート)にそれぞれ与えることを特徴とする。
【0016】
上記の構成によれば、前記制御電圧を、大きさの等しい抵抗を直列接続した中点に与えることで、スイッチ段トランジスタのベース(ゲート)に等しい電圧を供給することができる。また、ローカル信号のAC成分は、DC設定用(制御電圧用)の抵抗を通過せず、トランジスタのベース(ゲート)に直接与えられる。
【0017】
また、本発明のミキサ回路では、前記フィードバック回路は、2入力1出力のオペアンプと、1つのキャパシタとを用いた積分器から構成されることを特徴とする。
【0018】
上記の構成によれば、前記抵抗からなるローパスフィルタ(LPF)によるDC平均電圧と所望のDC動作電流動作を設定する参照電圧との差が無くなるまで積分機能が働き、回路にフィードバックをかけることで安定した動作を実現することができる。また、オーバードライブ電圧を必要とする電流源を用いないので、スイッチ段の動作マージンを拡大することが可能である。さらにまた、ローカル振幅変動に対して、安定した利得・線形性を実現できる。
【0019】
さらにまた、本発明のミキサ回路では、前記オペアンプは、スイッチ段のDC動作電流を該スイッチ段のバランス出力端子から正の入力端子で受け、所望のDC動作電流時における参照電圧を負入力端子で受けることで、正負入力電圧が略等しくなるように積分動作が働き、前記スイッチ段のDC動作電流を制御することを特徴とする。
【0020】
上記の構成によれば、正負入力端子間の差が無くなるまで出力信号を生成する積分器の性質を容易に利用することができる。
【0021】
また、本発明のミキサ回路は、前記参照電圧を、前記出力負荷のレプリカ抵抗と電流源とで作成することを特徴とする。
【0022】
上記の構成によれば、前記積分器の性質を利用することで、参照電圧を容易に設定可能となる。また、参照電圧を設定する回路構成は、ミキサ回路と完全に独立しており、ミキサ動作に影響を与えない。
【0023】
【発明の実施の形態】
本発明の実施の第1の形態について、図1〜図6に基づいて説明すれば、以下のとおりである。
【0024】
図1は、本発明の実施の第1の形態のミキサ回路11の概略的構成を示すブロック図である。このミキサ回路11は、前述の図8で示す特開昭60−7210号と同様に、バランを用いたダブルバランス型のミキサ回路である。このミキサ回路11は、電源ライン間に、スイッチ段12と、出力負荷13とが直列に接続されるとともに、注目すべきは、本発明では、常に出力端子14から出力されるIF信号の出力平均電圧をモニタし、スイッチ段12のバイアス電圧を決定する端子に制御電圧CTLをフィードバックするフィードバック回路15を備えていることである。
【0025】
図2は、上述のミキサ回路11の電気的構成を示すブロック図である。前記スイッチ段12は、2対のNMOSトランジスタM1,M2;M3,M4が交差接続されて成り、NMOSトランジスタM1,M3のドレインおよびNMOSトランジスタM2,M4のドレインは、出力負荷13a,13bを介してハイレベルの電源にそれぞれ接続されるとともに、出力端子14a,14bへのIF信号のバランス出力端となる。また、前記NMOSトランジスタM1,M4;M2,M3のゲートには、同一の半導体集積回路上に形成されるVCO(Voltage Controlled Oscillator)から入力端子16a,16bにバランス入力されるLO信号が与えられる。また、スイッチ段12のソース端子には、バラン17を介して、入力端子18へのシングル入力であるRF信号が入力される。
【0026】
これによって、NMOSトランジスタM1,M2から成る差動対およびNMOSトランジスタM3,M4から成る差動対は、LO信号に応じてNMOSトランジスタM1,M4とNMOSトランジスタM2,M3とが、それぞれ同期スイッチとしてスイッチング動作して、RF信号と該LO信号との2つの信号を混合し、積としてIF信号を出力する。
【0027】
そして、このミキサ回路11では、前述のようにバランス出力端子14a,14bをモニタして、スイッチ段12のDC動作電流を決定するゲートバイアスを制御するためのフィードバック回路15が付加されている。このフィードバック回路15へは、前記IF信号のバランス出力が、平均値回路21において、合成かつ平均化されて入力される。
【0028】
図3は、前記フィードバック回路15および平均値回路21の一構成例を示すブロック図である。前記平均値回路21は、相互に等しい2つの抵抗R1,R2から構成されている。前記IF信号のバランス出力は、抵抗R1,R2の一端からそれぞれ入力され、他端が相互に接続されることで、該他端からは前記IF信号のバランス出力の平均値を出力することができる。すなわち、前記抵抗R1,R2の他端は、抵抗体の中点となり、LPF動作により、前記バランス出力におけるAC成分が除去され、DC成分のみが抽出される。こうして、フィードバックを行うにあたって、一定に保持すべき前記DC動作電流の情報を容易に抽出することができる。
【0029】
前記フィードバック回路15は、オペアンプOp1に積分用のキャパシタC1を備えた積分器と、抵抗R3,R4とを備えて構成されており、前記キャパシタC1は、オペアンプOp1の出力端子と負入力端子との間に接続されている。オペアンプOp1の正入力端子には、前記平均値回路21によるバランス出力の平均電圧が与えられており、負入力端子にはまた、参照電圧Vrefが与えられる。
【0030】
前記参照電圧Vrefは、前記出力負荷13a,13bのレプリカ抵抗22と、電流源23とを電源ライン間に直列に接続した簡易な構成で作成されている。オペアンプOp1は、正負入力が略等しく等しくなるように動作し、したがって前記電流源23によって設定されるスイッチ段12のDC動作電流が所望の値になるように、前記制御電圧CTLを出力する。すなわち、前記2対のトランジスタM1,M2;M3,M4がN型であるので、LO信号の振幅が大きくなる程、負荷抵抗により前記IF信号の平均電圧が降下するため、前記制御電圧CTLは低くなり、前記スイッチ段12のDC動作電流を一定に保持させる。このDC動作電流は、前記電流源23の電流値I1を変化することで、容易に調整することができる。
【0031】
前記制御電圧CTLは、相互に等しい抵抗値に形成される2つの抵抗R3,R4の一端に出力され、前記抵抗R3,R4の他端から、それぞれ対を成す各トランジスタM1,M2;M3,M4のゲートに、DCバイアスとして供給される。また、前記LO信号は、AC信号として直接トランジスタM1,M2;M3,M4のゲートに与えられる。
【0032】
以上のようにして、このミキサ回路11は、スイッチ段12を流れる電流を負荷抵抗13a,13bによって電圧変換し、その平均電圧をフィードバック回路15のオペアンプOp1の正入力電圧とし、ミキサ出力負荷である負荷抵抗13a,13bのレプリカ抵抗22と所望の電流値I1とで決定される負入力電圧と、前記正入力電圧とが等しくなるようにオペアンプOp1が積分動作し、制御電圧CTLをスイッチ段12のゲートバイアスにフィードバックすることで、DC動作電流が制御される。したがって、前記LO信号の振幅変動の影響を受けず、スイッチ段12のDC動作電流を一定に保つことができ、ミキサ回路11全体としての低消費電力化を図ることができるとともに、ミキサの性能を安定させることができる。
【0033】
一方、こうしてフィードバック回路15によってスイッチ段12のDC動作電流が制御されるので、このミキサ回路11では、前記バラン17のセンタータップ19は、ローレベルの電源に接続されており、前記スイッチ段12のトランジスタM1,M2;M3,M4の動作マージンを減少させてしまう前記特開昭60−7210号のような、電流源となるトランジスタを用いていない。このことで、前記電流源トランジスタを駆動する場合に必要となるオーバードライブ電圧の分だけさらに、該スイッチ段12の動作マージンを広く使うことができる。
【0034】
図4に、ローカル強度が変化した際の、前記フィードバック回路15を用いない場合と、用いた場合とのスイッチ段12のNMOSトランジスタM1〜M4における全ドレイン電流Itotalの比較結果を示す。同図において、参照符αが前記フィードバック回路15を用いない場合を示し、参照符βが本発明(図3)である前記フィードバック回路15を用いた場合を示す。同図から、フィードバック回路15がある場合、ローカル強度の増加に関わらず、DC動作電流が一定に保持されていることが理解される。
【0035】
また、図5および図6には、ローカル強度が変化した場合に、それぞれ前記フィードバック回路15を用いない場合と、用いた場合との利得(Gain)および線形性(IIP3)の比較結果を示す。図5が前記フィードバック回路35を用いない場合を示し、図6が本発明(図3)である前記フィードバック回路15を用いた場合を示す。これらの図から、フィードバック回路15が有り、ローカル強度が12dBmのとき、利得が約1.3dB、線形性が約7.8dBm以上改善していることが理解される。また、ローカル強度が12dBmのとき、消費電流を約8.6mA低減できていることが理解される。
【0036】
ここで、スイッチ段12のメカニズムを、以下に簡単に示す。スイッチ段12を構成するNMOSトランジスタM1〜M4の電流切替えスイッチ動作において、スイッチを完全にOFFできる振幅電圧をVrとすると、LO信号の振幅VLOが、Vr≦VLOの関係が成り立つ時、スイッチとして完全にOFFすることができる。ここで、LO信号の振幅VLOが増加する程、OFF動作が確実となりスイッチ特性が向上するので、変換電圧利得Gainは増加することになる。一方、入力3次インターセプトポイントIIP3は、Vr=VLOを境に、急激に劣化する。つまりミキサの性能を示す出力3次インターセプトポイントOIP3が最大となるのは、近似的にVr≒VLOの関係が成り立つ時である。
【0037】
本発明の実施の第2の形態について、図7に基づいて説明すれば、以下のとおりである。
【0038】
図7は、本発明の実施の第2の形態のミキサ回路31の電気的構成を示すブロック図である。このミキサ回路31は、シングルバランス型のミキサ回路であり、したがってスイッチ段32は一対のNMOSトランジスタM1,M2から構成される。このミキサ回路31において、図2で示すダブルバランス型のミキサ回路11に類似し、対応する部分には同一の参照符号を付して、その説明を省略する。
【0039】
前記NMOSトランジスタM1,M2のドレインは出力負荷13a,13bをそれぞれ介してハイレベルの電源に接続され、ソースにはバラン37を介してシングル入力であるRF信号が与えられ、ゲートにはバランス入力であるLO信号が入力され、これらの信号を混合したIF信号が前記スイッチ段32と出力負荷13a,13bとの間のバランス出力端子14a,14bから出力される。
【0040】
このようにシングルバランス型のミキサ回路31においても、前記フィードバック回路15および平均値回路21を設け、スイッチ段32のターゲット電流が一定となるように制御電圧CTLをフィードバック制御することで、前記LO信号の振幅変動の影響を受けず、スイッチ段32のDC動作電流を一定に保つことができ、ミキサ回路51全体としての低消費電力化を図ることができるとともに、ミキサの性能を安定させることができる。
【0041】
また、前記スイッチ段32のトランジスタM1,M2を飽和領域で動作させるために、オーバードライブ電圧が必要となる電流源を備えていなくても、該スイッチ段のDC動作電流を一定に保つことができ、ローカル振幅変動によるDC動作電流の変動を回避しつつも、スイッチ段トランジスタの動作マージンを最大限に利用することができる。
【0042】
【発明の効果】
本発明のミキサ回路は、以上のように、スーパーヘテロダイン方式の受信装置などに用いられ、電源ライン間に、差動対を構成する一対のトランジスタから成るスイッチ段と、それぞれのトランジスタのコレクタ(ドレイン)に接続される出力負荷とが直列に接続され、前記トランジスタのエミッタ(ソース)にはバランを介して第1の信号(RF信号)が入力され、ベース(ゲート)には第2の信号(LO信号)が入力され、前記第1および第2の信号を混合した出力(IF信号)を対を成す前記トランジスタのコレクタ(ドレイン)から出力するようにしたシングルバランス型のミキサ回路において、フィードバック回路を設け、該フィードバック回路は、前記混合出力の平均電圧によって前記トランジスタのベース(ゲート)に与える制御電圧を変化し、前記スイッチ段のDC動作電流を一定に保持させる。
【0043】
それゆえ、スイッチ段のターゲット電流が一定となるように、出力をモニタしたフィードバックループによって該スイッチ段のベース(ゲート)バイアスにフィードバックがかかり、前記ローカル振幅変動の影響を受けず、該スイッチ段のDC動作電流を一定に保つことができ、ミキサ回路全体としての低消費電力化を図ることができるとともに、ミキサの利得・線形性性能を安定させることができる。また、前記スイッチ段のトランジスタを飽和領域で動作させるために、オーバードライブ電圧が必要となる電流源を備えていなくても、該スイッチ段のDC動作電流を一定に保つことができ、ローカル振幅変動によるDC動作電流の変動を回避しつつも、スイッチ段トランジスタの動作マージンを最大限に利用することができる。
【0044】
また、本発明のミキサ回路は、以上のように、スーパーヘテロダイン方式の受信装置などに用いられ、電源ライン間に、それぞれ差動対を構成する2対のトランジスタが交差接続されて成り、該2対のトランジスタのエミッタ(ソース)には各対毎にバランを介して第1の信号(RF信号)が入力され、交差接続されたベース(ゲート)には第2の信号(LO信号)が入力されるスイッチ段と、前記交差接続されたトランジスタのコレクタ(ドレイン)に接続される出力負荷とが直列に接続され、前記第1および第2の信号を混合した出力(IF信号)を対を成す前記交差接続されたトランジスタのコレクタ(ドレイン)から出力するようにしたダブルバランス型のミキサ回路において、フィードバック回路を設け、該フィードバック回路は、前記混合出力の信号の平均電圧によって前記トランジスタのベース(ゲート)に与える制御電圧を変化し、前記スイッチ段のDC動作電流を一定に保持させる。
【0045】
それゆえ、スイッチ段のターゲット電流が一定となるように、出力をモニタしたフィードバックループによって該スイッチ段のベース(ゲート)バイアスにフィードバックがかかり、前記第2の信号(LO信号)の振幅変動の影響を受けず、該スイッチ段のDC動作電流を一定に保つことができ、ミキサ回路全体としての低消費電力化を図ることができるとともに、ミキサの性能を安定させることができる。また、前記スイッチ段のトランジスタを飽和領域で動作させるために、オーバードライブ電圧が必要となる電流源を備えていなくても、該スイッチ段のDC動作電流を一定に保つことができ、第2の信号(LO信号)の振幅変動によるDC動作電流のばらつきを回避しつつも、スイッチ段トランジスタの動作マージンを最大限に利用することができる。
【0046】
また、本発明のミキサ回路は、以上のように、相互に等しい抵抗値に形成され、バランス出力である前記混合出力がそれぞれの一端から入力され、他端が相互に接続されることで、前記混合出力の平均値を求める2つの抵抗を有する。
【0047】
それゆえ、相互に等しい2つの抵抗のそれぞれ一端にバランス出力である混合出力を与えることで、LPF動作によってDC成分のみが抽出され、フィードバックを行うにあたって、一定に保持すべき前記DC動作電流の情報を容易に抽出することができる。
【0048】
さらにまた、本発明のミキサ回路は、以上のように、前記制御電圧を、相互に等しい抵抗値に形成される2つの抵抗の一端に入力し、前記抵抗の他端から、対を成す各トランジスタのベース(ゲート)にそれぞれ与える。
【0049】
それゆえ、前記制御電圧を、大きさの等しい抵抗を直列接続した中点に与えることで、スイッチ段トランジスタのベース(ゲート)に等しい電圧を供給することができる。また、ローカル信号のAC成分は、DC設定用(制御電圧用)の抵抗を通過せず、トランジスタのベース(ゲート)に直接与えられる。
【0050】
また、本発明のミキサ回路は、以上のように、前記フィードバック回路を、2入力1出力のオペアンプと、1つのキャパシタとを用いた積分器から構成する。
【0051】
それゆえ、前記抵抗からなるローパスフィルタ(LPF)によるDC平均電圧と所望のDC動作電流動作を設定する参照電圧との差が無くなるまで積分機能が働き、回路にフィードバックをかけることで安定した動作を実現することができる。また、オーバードライブ電圧を必要とする電流源を用いないので、スイッチ段の動作マージンを拡大することが可能である。さらにまた、ローカル振幅変動に対して、安定した利得・線形性を実現できる。
【0052】
さらにまた、本発明のミキサ回路は、以上のように、前記オペアンプが、スイッチ段のDC動作電流を該スイッチ段のバランス出力端子から正の入力端子で受け、所望のDC動作電流時における参照電圧を負入力端子で受けることで、正負入力電圧が略等しくなるように積分動作が働き、前記スイッチ段のDC動作電流を制御する。
【0053】
それゆえ、正負入力端子間の差が無くなるまで出力信号を生成する積分器の性質を容易に利用することができる。
【0054】
また、本発明のミキサ回路は、以上のように、前記参照電圧を、前記出力負荷のレプリカ抵抗と電流源とで作成する。
【0055】
それゆえ、前記積分器の性質を利用することで、参照電圧を容易に設定可能となる。また、参照電圧を設定する回路構成は、ミキサ回路と完全に独立しており、ミキサ動作に影響を与えない。
【図面の簡単な説明】
【図1】本発明の実施の第1の形態のミキサ回路の概略的構成を示すブロック図である。
【図2】図1で示すミキサ回路の電気的構成を示すブロック図である。
【図3】前記図2で示すミキサ回路におけるフィードバック回路の具体的構成を示す電気回路図である。
【図4】図2で示すミキサ回路において、ローカル振幅が変動した際の、全電流の変化を示す図である。
【図5】ローカル振幅が変化した際の、フィードバック無しにおける利得(Gain)および線形性(IIP3)の特性を示す図である。
【図6】ローカル振幅が変化した際の、フィードバック有りにおける利得(Gain)および線形性(IIP3)の特性を示す図である。
【図7】本発明の実施の第2の形態のミキサ回路の電気的構成を示すブロック図である。
【図8】従来技術のミキサ回路の回路構成図である。
【符号の説明】
11,31 ミキサ回路
12,32 スイッチ段
13;13a,13b 出力負荷
14;14a,14b 出力端子
15 フィードバック回路
16a,16b 入力端子
17,37 バラン
18;18a,18b 入力端子
21 平均値回路
22 レプリカ抵抗
23 電流源
C1 積分用のキャパシタ
M1〜M4 スイッチ段NMOSトランジスタ
Op1 オペアンプ
R1,R2 抵抗
R3,R4 抵抗

Claims (7)

  1. 電源ライン間に、差動対を構成する一対のトランジスタから成るスイッチ段と、それぞれのトランジスタのコレクタ(ドレイン)に接続される出力負荷とが直列に接続され、前記トランジスタのエミッタ(ソース)にはバランを介して第1の信号が入力され、ベース(ゲート)には第2の信号が入力され、前記第1および第2の信号を混合した出力を対を成す前記トランジスタのコレクタ(ドレイン)から出力するようにしたミキサ回路において、
    前記混合出力を入力とし、前記スイッチ段のDC動作電流を一定に保持する制御電圧を前記対を成すトランジスタのベース(ゲート)に与えるフィードバック回路を有することを特徴とするミキサ回路。
  2. 電源ライン間に、それぞれ差動対を構成する2対のトランジスタが交差接続されて成り、該2対のトランジスタのエミッタ(ソース)には各対毎にバランを介して第1の信号が入力され、交差接続されたベース(ゲート)には第2の信号が入力されるスイッチ段と、前記交差接続されたトランジスタのコレクタ(ドレイン)に接続される出力負荷とが直列に接続され、前記第1および第2の信号を混合した出力を対を成す前記交差接続されたトランジスタのコレクタ(ドレイン)から出力するようにしたミキサ回路において、
    前記混合出力を入力とし、前記スイッチ段のDC動作電流を一定に保持する制御電圧を前記2対のトランジスタのベース(ゲート)に与えるフィードバック回路を有することを特徴とするミキサ回路。
  3. 前記フィードバック回路は、相互に等しい抵抗値に形成され、バランス出力である前記混合出力がそれぞれの一端から入力され、他端が相互に接続されることで、前記混合出力の平均値を求める2つの抵抗を有することを特徴とする請求項1または2記載のミキサ回路。
  4. 前記フィードバック回路は、前記制御電圧を、相互に等しい抵抗値に形成される2つの抵抗の一端に入力し、前記抵抗の他端から、対を成す各トランジスタのベース(ゲート)にそれぞれ与えることを特徴とする請求項1または2記載のミキサ回路。
  5. 前記フィードバック回路は、2入力1出力のオペアンプと、1つのキャパシタとを用いた積分器から構成されることを特徴とする請求項3記載のミキサ回路。
  6. 前記オペアンプは、スイッチ段のDC動作電流を該スイッチ段のバランス出力端子から正の入力端子で受け、所望のDC動作電流時における参照電圧を負入力端子で受けることで、正負入力電圧が略等しくなるように積分機能が働き、前記スイッチ段のDC動作電流を制御することを特徴とする請求項5記載のミキサ回路。
  7. 前記参照電圧を、前記出力負荷のレプリカ抵抗と電流源とで作成することを特徴とする請求項6記載のミキサ回路。
JP2003149732A 2003-05-27 2003-05-27 ミキサ回路 Expired - Fee Related JP4219736B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149732A JP4219736B2 (ja) 2003-05-27 2003-05-27 ミキサ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003149732A JP4219736B2 (ja) 2003-05-27 2003-05-27 ミキサ回路

Publications (2)

Publication Number Publication Date
JP2004356763A true JP2004356763A (ja) 2004-12-16
JP4219736B2 JP4219736B2 (ja) 2009-02-04

Family

ID=34045750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149732A Expired - Fee Related JP4219736B2 (ja) 2003-05-27 2003-05-27 ミキサ回路

Country Status (1)

Country Link
JP (1) JP4219736B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033840A (ja) * 2004-07-14 2006-02-02 Sst Communications Corp 適応バイアス型ミクサ
JP2007006493A (ja) * 2005-06-21 2007-01-11 Infineon Technologies Ag 混合器構造、その使用、および周波数変換方法
JP2009206890A (ja) * 2008-02-28 2009-09-10 Hitachi Ltd アクティブミキサ回路並びにそれを用いた受信回路及びミリ波通信端末

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6590229B1 (en) 1999-01-21 2003-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and process for production thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033840A (ja) * 2004-07-14 2006-02-02 Sst Communications Corp 適応バイアス型ミクサ
JP4657839B2 (ja) * 2004-07-14 2011-03-23 エスエスティー コミュニケイションズ コーポレイション 適応バイアス型ミクサ
JP2007006493A (ja) * 2005-06-21 2007-01-11 Infineon Technologies Ag 混合器構造、その使用、および周波数変換方法
JP4512566B2 (ja) * 2005-06-21 2010-07-28 インフィネオン テクノロジーズ アクチエンゲゼルシャフト 混合器構造、その使用、および周波数変換方法
US7831234B2 (en) 2005-06-21 2010-11-09 Infineon Technologies Ag Mixer arrangement, use of the mixer arrangement and method for frequency conversion
JP2009206890A (ja) * 2008-02-28 2009-09-10 Hitachi Ltd アクティブミキサ回路並びにそれを用いた受信回路及びミリ波通信端末
JP4559498B2 (ja) * 2008-02-28 2010-10-06 株式会社日立製作所 アクティブミキサ回路並びにそれを用いた受信回路及びミリ波通信端末

Also Published As

Publication number Publication date
JP4219736B2 (ja) 2009-02-04

Similar Documents

Publication Publication Date Title
EP0909479B1 (en) Differential pair gain control stage
TWI360941B (en) Adaptive-biased mixer
US6639447B2 (en) High linearity Gilbert I Q dual mixer
US7769361B2 (en) Systems, methods, and apparatus for frequency conversion
US7880546B2 (en) Amplifier and the method thereof
US6807406B1 (en) Variable gain mixer circuit
US7973587B2 (en) Transconductor having high linearity and programmable gain and mixer using the same
US7949367B2 (en) Baseband signal input current splitter
US8064868B2 (en) Dynamic current steering mixer
KR100672030B1 (ko) 신호발생장치, 주파수변환장치, 및 수신기
GB2379814A (en) Image-reject mixer circuit arrangement
US8963612B1 (en) Multiple mode RF circuit
US7570099B2 (en) Conversion mixer with high impedance circuit
JP2002076805A (ja) Agc増幅回路及びそれを用いた受信装置
US6429721B1 (en) Mixer with stepped gain and constant common mode DC output bias voltage
EP1537651B1 (en) System and method for establishing a bias current using a feedback loop
JPH11308054A (ja) 二重平衡変調器及び直交変調器
US8816750B2 (en) High frequency mixer with tunable dynamic range
EP1406380A1 (en) Mixer circuit
JP2004104515A (ja) ミキサ回路
JP4219736B2 (ja) ミキサ回路
US6744308B1 (en) System and method for establishing the input impedance of an amplifier in a stacked configuration
US7642867B2 (en) Simple technique for reduction of gain in a voltage controlled oscillator
US20080242253A1 (en) Frequency converter and radio receiver using the same
US20070229140A1 (en) Mixer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A131 Notification of reasons for refusal

Effective date: 20080520

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080707

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080707

A131 Notification of reasons for refusal

Effective date: 20080826

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111121

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees