JP2004355954A - Disposal method of waste battery - Google Patents

Disposal method of waste battery Download PDF

Info

Publication number
JP2004355954A
JP2004355954A JP2003152222A JP2003152222A JP2004355954A JP 2004355954 A JP2004355954 A JP 2004355954A JP 2003152222 A JP2003152222 A JP 2003152222A JP 2003152222 A JP2003152222 A JP 2003152222A JP 2004355954 A JP2004355954 A JP 2004355954A
Authority
JP
Japan
Prior art keywords
waste battery
pressure
conductive powder
waste
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003152222A
Other languages
Japanese (ja)
Inventor
Kenji Takeda
賢二 竹田
Kazumichi Yonesato
法道 米里
Koji Ando
孝治 安藤
Masaki Imamura
正樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003152222A priority Critical patent/JP2004355954A/en
Publication of JP2004355954A publication Critical patent/JP2004355954A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive, safe and simple disposal method of a waste battery in which a waste battery is made harmless and generation of heat or ignition can be prevented without requiring a troublesome individual disposal or large energy in the decomposition disposal of a waste battery such as a lithium ion secondary battery. <P>SOLUTION: The waste battery 1 having the electrode parts 1a, 1b exposed is embedded in a conductive granulated body 3 such as graphite and activated carbon filled in a discharge container 2 and is made to discharge applying a pressure on the conductive granulated body 3 as it is or by a movable lid 4. It is desirable that the electric resistance of the conductive granulated body 3 is 1 kΩ cm or less with the pressure of 10 kPa or more applied, and it is desirable that the pressure applied on the conductive granule is 10-1,000 kPa. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、使用済みのリチウムイオン2次電池などの廃電池をリサイクルするための処理方法に関する。
【0002】
【従来の技術】
現在、ポータブル機器の電源などとして、ニッケル−カドミウム電池、ニッケル−水素電池、リチウムイオン電池などの2次電池が一般に普及している。これらの2次電池には寿命があり、使用済みの2次電池から各種有価金属を回収することが望まれている。
【0003】
使用済みの2次電池などの廃電池から各種有価金属を回収する場合、一般的には廃電池を破砕解体し、選別して有価金属などを回収する。しかし、この破砕時に充電エネルギーによって破砕物が発熱し、電池内の可燃物が発火する可能性があった。このため、解体処理する際に発熱発火しないように、充電状態の廃電池をどのように無害化するかが大きな問題となっていた。
【0004】
特にリチウムイオン2次電池は電池内の蓄積エネルギーが高く、充電状態で解体を行うと、電解液である有機溶媒が充電エネルギーによって発熱発火し、危険な状態となる。このため、解体処理前に充電エネルギーを放電したり、解体処理時に低温に保持したりして、発火を防ぐことが行われていた。
【0005】
具体的な処理方法として、特開平10−241748号公報には、電池から電解液又はその溶媒を抜き取る方法が提案されている。また、特開平10−241748号公報、特開平11−167936号公報、再表00/019557号公報には、冷却状態で又は電解液の凍結低温下で電池を解体処理する方法が提案されている。更に、特開平10−330855号公報には、有価金属の回収率は下がるが、無害化の必要がない電池焙焼の方法が提案されている。
【0006】
しかしながら、電解液などを抜き取る方法では、電池を一つずつ細かい作業で処理しなければならず、非常に手間がかかるという問題があった。また、冷却や冷凍して解体する方法では、極低温を維持するために高価な液体窒素などを用いたり、低温冷凍設備を備えたりする必要があり、余分なエネルギーや設備コストがかかっていた。更に、電池を焙焼する方法においては、有価金属の回収率が下がるうえ、焙焼温度の維持のために多大なエネルギーを必要とし、大量の排ガスの処理も必要となるなどの問題があった。
【0007】
【特許文献1】
特開平10−241748号公報
【特許文献2】
特開平11−167936号公報
【特許文献3】
再表00/019557号公報
【特許文献4】
特開平10−330855号公報
【0008】
【発明が解決しようとする課題】
本発明は、このような従来の事情に鑑み、リチウムイオン2次電池に代表される使用済み廃電池の解体処理に際して、煩雑な個別処理を必要とせず、また多大なエネルギー及び設備コストを必要とせずに、廃電池を無害化して発熱発火を防ぐことができる、安価で、安全且つ簡便な廃電池の処理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する廃電池の処理方法は、廃電池を解体処理する前に、放電容器に充填した導電性粉粒体内に電極部を露出させた廃電池を埋め込み、そのまま又は該導電性粉粒体に圧力を加えながら放電させることを特徴とするものである。
【0010】
上記本発明の廃電池の処理方法においては、前記導電性粉粒体の電気抵抗が、圧力を加えない状態で10kΩ・cm以上であり、圧力を加えた状態で10kΩ・cm以下であることが好ましい。特に、前記導電性粉粒体の電気抵抗が、10kPa以上の圧力を加えた状態で1kΩ・cm以下であることが好ましい。
【0011】
上記本発明の廃電池の処理方法においては、前記導電性粉粒体は、黒鉛、活性炭、石炭、コークスから選ばれた少なくとも1種を主成分とする粉粒体であることが好ましい。また、前記導電性粉粒体に加える圧力を調節することにより、放電に要する時間を制御すること、あるいは該導電性粉粒体及び廃電池の温度を安全な範囲に制御することができる。
【0012】
更に、上記本発明の廃電池の処理方法においては、前記導電性粉粒体に加える圧力を10〜1000kPaとすることが好ましい。また、前記放電容器の開口部に可動蓋を設け、該可動蓋を移動させることにより、前記導電性粉粒体に加える圧力を調整することが好ましい。
【0013】
【発明の実施の形態】
リチウムイオン電池などの廃電池を解体処理する前に放電処理を行えば、廃電池を無害化して、解体の際に発熱発火などを防ぐことができる。放電処理のためには、廃電池のプラス極とマイナス極を導電性の物質で接続する必要があるが、導電性の高い物質で急激に接続すると電池や導電体が加熱したり、接続時に火花が散ったりして、可燃性溶媒を含む電池が危険な状態になる。
【0014】
そこで、本発明においては、適度な抵抗と導電性を有する活性炭などの導電性粉粒体を用い、その導電性粉粒体内に電極部を露出させた廃電池を埋め込むことにより、廃電池や粉粒体が加熱したり火花が散ったりすることなく、廃電池を安全に放電させることができる。従って、廃電池を安全に解体できる電圧まで放電させることができ、放電の終了した廃電池はその後安全に通常の解体処理を行うことができる。
【0015】
使用する導電性粉粒体は、活性炭などの炭素質の粉粒体や、鉄などの金属の粉粒体であって良い。金属粉粒体は、粉粒体を加圧しなくても、粉粒体中に廃電池を入れただけで放電が起りやすいが、粉粒体の表面状態によって電気特性が変化するため放電が安定しなかったり、急激に放電して発熱したりする恐れがある。一方、炭素質粉粒体は、電極部との接触抵抗が大いため、そのままでは放電反応が起こり難いが、粉粒体を加圧して電極部と圧着させることにより接触抵抗が下がり、廃電池から安全に放電できる利点がある。
【0016】
また、本発明では、導電性粉粒体にかける圧力を調節することにより、廃電池の電極部と粉粒体粒子の間及び粉粒体粒子間の抵抗が変化し、例えば圧力を高めると抵抗が下がって放電が進み、圧力を下げると抵抗が上がって放電が進み難くなる。この粉粒体に加える圧力と放電の関係を利用することにより、放電終了までの廃電池の放電時間を制御することが可能である。
【0017】
更に、廃電池が導電性粉粒体を通して放電する際には、粉粒体粒子間及び粉粒体粒子内部の抵抗によって抵抗熱が発生する。また、一般的に廃電池が放電するときには、電池内部でも発熱が起る。しかし、本発明では、導電性粉粒体にかける圧力を調節することにより、放電速度を調整できるため、放電時における導電性粉粒体の温度及び導電性粉粒体の温度から推定できる廃電池本体の温度をも、安全な範囲に制御することが可能である。
【0018】
導電性粉粒体としては、一般的に、電気抵抗が圧力を加えない状態で10kΩ・cm以上であり、圧力を加えた状態で10kΩ・cm以下である粉粒体が好ましく、特に10kPa以上の圧力を加えた状態で1kΩ・cm以下の電気抵抗を有するものが更に好ましい。このような特性を有する好ましい導電性粉粒体としては、黒鉛(グラファイト)、活性炭、石炭、コークスから選ばれた少なくとも1種を主成分とする炭素質の粉粒体を挙げることができる。
【0019】
導電性粉粒体にかける圧力の範囲は、その導電性によっても異なるが、一般に圧力が低すぎると十分な導電性が得られず、廃電池からの放電効率が悪くなるため、放電に要する時間が長くなる。しかし、導電性粉粒体にかける圧力が高すぎると、高圧を得るための加圧装置が必要となるだけでなく、導電性粉粒体を充填する容器も高圧対応のものが必要となるため好ましくない。
【0020】
特に炭素質の導電性粉粒体の場合、加える圧力が10kPa未満では放電曲線の傾きが緩やかで放電に長時間を要し、60kPa以上では十分に短い時間で且つ少ない温度上昇で放電を終了させることができる。逆に、500kPaを超える圧力をかけても放電時間はほとんど変化せず、1000kPaを超える過剰な圧力をかけることは、廃電池に無理な力がかかり液漏れなどのトラブルの原因となるばかりか、加圧装置の大型化による無駄も発生する。従って、炭素質の導電性粉粒体の場合、加える圧力は10〜1000kPaの範囲が好ましく、60〜500kPaの範囲が更に好ましい。
【0021】
本発明により廃電池を放電させる装置は、例えば図1に示すように、接地した放電容器2に導電性粉粒体3を充填したもので良い。この導電性粉粒体3内に廃電池1を埋め込み、そのまま又は容器開口部に設けた可動蓋4により導電性粉粒体3を加圧した状態で、露出させた電極部1a、1bから放電させることができる。従って、放電容器2内で廃電池1の形状や向きなどを揃えなくても、廃電池1の電極部1a、1bに確実に導電性粉粒体3を接触させるだけで放電させることができ、また放電容器2内に多数の廃電池1を埋め込んで同時に放電させることも可能である。
【0022】
【実施例】
(実施例1)
塩化ビニル製の放電容器(50×20×20mm)に、導電性粉粒体として、(1)市販の浄水用の椰子殻活性炭粒(粒度0.2〜2mm)、(2)市販の粉状黒鉛(粒度10〜50μm)、及び(3)鉄製の金属粒(直径3mm)を充填し、容器の長手方向の両内側面にそれぞれSUS製電極板を配置した。この容器の上部開口部に配置した可動蓋により各導電性粉粒体を加圧し、2枚の電極板間の電気抵抗を測定した。得られた結果を図2に示した。
【0023】
活性炭粒と粉状黒鉛は、加圧しない状態での電気抵抗がそれぞれ240kΩ・cm及び26kΩ・cmであったが、可動蓋の下降による圧力の増加に伴って電気抵抗が徐々に低下し、圧力10kPaでの電気抵抗は共に1kΩ・cm以下となった。一方、金属粒の場合は、20kPaの圧力で加圧しても電気抵抗が640kΩ・cmと高かったが、更に加圧力を増やすとショートして急激に電気抵抗が低下した。この金属粒の電気抵抗の変化は、表面の酸化皮膜によるものと考えられる。
【0024】
(実施例2)
実施例1の活性炭粒を充填した容器内に、使用済みのリチウムイオン電池(開放電圧3.0V)1個を埋め込み、上部開口部に配置した可動蓋により圧力をかけた。その際に、活性炭に加える圧力を30〜620kPaの範囲で変化させ、各圧力下における廃電池の開放電圧を経過時間ごとに測定し、得られた結果を図3に示した。
【0025】
この図3から、活性炭粒に加える圧力を大きくするに伴って廃電池から急速に放電され、特に60kPa以上の圧力では開放電圧が短時間で1V以下まで下がることが分る。例えば、活性炭粒に310kPaの圧力を加えた場合、廃電池の開放電圧は30分で3.0Vから0.7Vまで低下し、放電が十分行なわれていることが確認された。
【0026】
また、同時に廃電池周辺における最高温度を測定したところ、活性炭粒に加える圧力が30kPaでは22℃から23℃へ1℃の上昇のみであり、160kPaでは2℃の上昇、及び300kPaでは3℃の上昇であった。いずれの場合も発熱は無視できるほど小さく、火花なども観測されなかった。
【0027】
なお、上記の実施例では1個の廃電池で放電実験を行ったが、放電容器を大きくして複数の廃電池を導電性粉粒体に埋め込めば、複数の廃電池を同時に効率良く放電させることができる。
【0028】
【発明の効果】
本発明によれば、リチウムイオン2次電池に代表される使用済みの廃電池を解体処理する前に、多大なエネルギー及び設備コストを必要とせずに、余分な廃棄物やガスを出さず、火花や過度な温度上昇を伴うことなく、しかも効率良く、廃電池を放電して無害化することができ、従って安全で且つ安価に廃電池の解体処理を行うことができる。
【図面の簡単な説明】
【図1】本発明による廃電池の放電処理の一具体例を示す概略の断面図である。
【図2】各種導電性粉粒体における加圧力と電気抵抗の関係を示すグラフである。
【図3】活性炭粒に加えた各加圧力における廃電池の開放電圧と経過時間の関係を示すグラフである。
【符号の説明】
1 廃電池
2 放電容器
3 導電性粉粒体
4 可動蓋
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a processing method for recycling a waste battery such as a used lithium ion secondary battery.
[0002]
[Prior art]
At present, secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries, and lithium-ion batteries are widely used as power sources for portable devices. These secondary batteries have a limited life, and it is desired to recover various valuable metals from used secondary batteries.
[0003]
When recovering various valuable metals from waste batteries such as used secondary batteries, generally, the waste batteries are crushed and dismantled, and sorted to collect valuable metals. However, at the time of this crushing, the crushed material generates heat due to charging energy, and there is a possibility that combustible materials in the battery may ignite. For this reason, how to detoxify the charged waste battery so as not to generate heat and fire during the disassembly process has been a major problem.
[0004]
In particular, a lithium ion secondary battery has a high stored energy in the battery, and when disassembled in a charged state, the organic solvent as an electrolytic solution generates heat and is ignited by the charging energy, resulting in a dangerous state. For this reason, it has been practiced to discharge the charging energy before the dismantling process or to keep the temperature low during the dismantling process to prevent ignition.
[0005]
As a specific processing method, Japanese Patent Application Laid-Open No. Hei 10-241748 proposes a method of extracting an electrolytic solution or a solvent thereof from a battery. Also, JP-A-10-241748, JP-A-11-167936, and Table 00/019557 propose a method of disassembling a battery in a cooled state or under a low temperature of freezing of an electrolytic solution. . Further, Japanese Patent Application Laid-Open No. H10-330855 proposes a method for roasting a battery that does not require detoxification, although the recovery rate of valuable metals is reduced.
[0006]
However, in the method of extracting the electrolyte or the like, there is a problem that the batteries have to be processed one by one in a fine operation, which is very troublesome. In addition, in the method of disassembly by cooling or freezing, it is necessary to use expensive liquid nitrogen or the like in order to maintain extremely low temperature, or to provide a low-temperature refrigeration facility, which requires extra energy and equipment costs. Furthermore, in the method of roasting a battery, there are problems that the recovery rate of valuable metals decreases, a large amount of energy is required to maintain the roasting temperature, and a large amount of exhaust gas needs to be treated. .
[0007]
[Patent Document 1]
JP-A-10-241748 [Patent Document 2]
JP-A-11-167936 [Patent Document 3]
JP-A-00 / 019557 [Patent Document 4]
JP 10-330855 A
[Problems to be solved by the invention]
In view of such a conventional situation, the present invention does not require complicated individual processing, and requires a large amount of energy and equipment cost when dismantling a used waste battery represented by a lithium ion secondary battery. It is an object of the present invention to provide an inexpensive, safe and simple method of treating a waste battery, which can make the waste battery harmless and prevent heat and ignition.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a method for treating a waste battery provided by the present invention includes, before dismantling the waste battery, embedding the waste battery with the electrode portion exposed in the conductive particles filled in the discharge vessel, The discharge is performed as it is or while applying pressure to the conductive powder.
[0010]
In the method for treating a waste battery according to the present invention, the electric resistance of the conductive powder may be 10 kΩ · cm or more when no pressure is applied and 10 kΩ · cm or less when pressure is applied. preferable. In particular, the electric resistance of the conductive powder is preferably 1 kΩ · cm or less under a pressure of 10 kPa or more.
[0011]
In the method for treating a waste battery according to the present invention, it is preferable that the conductive powder is a powder mainly containing at least one selected from graphite, activated carbon, coal, and coke. Further, by adjusting the pressure applied to the conductive particles, the time required for discharging can be controlled, or the temperatures of the conductive particles and the waste battery can be controlled within a safe range.
[0012]
Further, in the method for treating a waste battery according to the present invention, it is preferable that the pressure applied to the conductive powder is 10 to 1000 kPa. It is preferable that a movable lid is provided at the opening of the discharge vessel, and the pressure applied to the conductive powder is adjusted by moving the movable lid.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
If discharge treatment is performed before dismantling a waste battery such as a lithium-ion battery, the waste battery can be rendered harmless and heat generation and ignition can be prevented during dismantling. For discharge treatment, it is necessary to connect the positive and negative poles of the waste battery with a conductive substance.However, if a sudden connection is made with a highly conductive substance, the battery or conductor will heat up or spark And the battery containing the flammable solvent may become dangerous.
[0014]
Therefore, in the present invention, by using a conductive powder such as activated carbon having an appropriate resistance and conductivity, and embedding a waste battery having an electrode portion exposed in the conductive powder, the waste battery and the powder are removed. The waste battery can be safely discharged without heating the particles or sparks. Therefore, the waste battery can be discharged to a voltage at which the waste battery can be safely dismantled, and the discharged waste battery can be safely subjected to normal dismantling processing thereafter.
[0015]
The conductive particles used may be carbonaceous particles such as activated carbon or metal particles such as iron. Metal powders can easily be discharged by inserting waste batteries into the powders without pressurizing the powders, but the electrical characteristics change depending on the surface condition of the powders, so the discharge is stable Or there is a risk that heat will be generated by rapid discharge. On the other hand, since the carbonaceous powder has a large contact resistance with the electrode portion, it is difficult for the discharge reaction to occur as it is, but the contact resistance is reduced by pressing the powder and the electrode to press the electrode portion, and the waste battery is discharged. It has the advantage of being able to discharge safely.
[0016]
Further, in the present invention, by adjusting the pressure applied to the conductive powder, the resistance between the electrode portion of the waste battery and the powder particles and between the powder particles changes, for example, when the pressure is increased, the resistance increases. When the pressure decreases, the resistance increases and the discharge becomes difficult. By utilizing the relationship between the pressure applied to the granular material and the discharge, it is possible to control the discharge time of the waste battery until the end of the discharge.
[0017]
Further, when the waste battery discharges through the conductive particles, resistance heat is generated due to resistance between the particles and inside the particles. Generally, when a waste battery is discharged, heat is generated inside the battery. However, in the present invention, since the discharge rate can be adjusted by adjusting the pressure applied to the conductive powder, the waste battery can be estimated from the temperature of the conductive powder at the time of discharge and the temperature of the conductive powder. The temperature of the main body can also be controlled within a safe range.
[0018]
As the conductive powder, in general, a powder having an electric resistance of 10 kΩ · cm or less when no pressure is applied and 10 kΩ · cm or less when a pressure is applied is preferable, and particularly an electric resistance of 10 kPa or more. Those having an electrical resistance of 1 kΩ · cm or less under pressure are more preferable. Preferred conductive particles having such properties include carbonaceous particles containing at least one selected from graphite (graphite), activated carbon, coal, and coke as a main component.
[0019]
The range of the pressure applied to the conductive powder varies depending on the conductivity. Generally, if the pressure is too low, sufficient conductivity cannot be obtained, and the discharge efficiency from the waste battery deteriorates. Becomes longer. However, if the pressure applied to the conductive powder is too high, not only a pressurizing device for obtaining a high pressure is required, but also a container for filling the conductive powder needs a high pressure-capable one. Not preferred.
[0020]
In particular, in the case of a carbonaceous conductive powder, if the pressure applied is less than 10 kPa, the slope of the discharge curve is gentle and a long time is required for the discharge. If it is 60 kPa or more, the discharge is completed in a sufficiently short time and with a small temperature rise. be able to. Conversely, even if a pressure exceeding 500 kPa is applied, the discharge time hardly changes, and applying an excessive pressure exceeding 1000 kPa not only causes an excessive force to the waste battery but also causes troubles such as liquid leakage, Waste due to the increase in the size of the pressurizing device also occurs. Therefore, in the case of carbonaceous conductive powder, the applied pressure is preferably in the range of 10 to 1000 kPa, more preferably in the range of 60 to 500 kPa.
[0021]
The apparatus for discharging a waste battery according to the present invention may be, for example, one in which a grounded discharge vessel 2 is filled with a conductive powder 3 as shown in FIG. The waste battery 1 is buried in the conductive powder 3 and discharged from the exposed electrode portions 1a and 1b as it is or in a state where the conductive powder 3 is pressurized by the movable lid 4 provided in the container opening. Can be done. Therefore, even if the shape and the direction of the waste battery 1 are not arranged in the discharge vessel 2, the discharge can be performed only by reliably bringing the conductive powder 3 into contact with the electrode portions 1 a and 1 b of the waste battery 1. It is also possible to embed a large number of waste batteries 1 in the discharge vessel 2 and discharge them simultaneously.
[0022]
【Example】
(Example 1)
In a discharge vessel (50 × 20 × 20 mm) made of vinyl chloride, (1) commercially available coconut shell activated carbon particles for water purification (particle size: 0.2 to 2 mm), (2) commercially available powder Graphite (particle size: 10 to 50 μm) and (3) iron metal particles (diameter: 3 mm) were filled, and SUS electrode plates were arranged on both inner side surfaces in the longitudinal direction of the container. Each conductive powder was pressed by a movable lid placed at the upper opening of the container, and the electric resistance between the two electrode plates was measured. The results obtained are shown in FIG.
[0023]
The activated carbon granules and the powdered graphite had an electric resistance of 240 kΩ · cm and 26 kΩ · cm, respectively, when not pressurized. However, the electric resistance gradually decreased with an increase in pressure due to the lowering of the movable lid, and the pressure was reduced. The electric resistance at 10 kPa was 1 kΩ · cm or less. On the other hand, in the case of metal particles, the electrical resistance was as high as 640 kΩ · cm even when pressurized at a pressure of 20 kPa. However, when the pressing force was further increased, short-circuit occurred and the electrical resistance decreased rapidly. This change in the electrical resistance of the metal particles is considered to be due to the oxide film on the surface.
[0024]
(Example 2)
One used lithium ion battery (open voltage: 3.0 V) was buried in the container filled with the activated carbon particles of Example 1, and pressure was applied by a movable lid arranged at an upper opening. At that time, the pressure applied to the activated carbon was changed in the range of 30 to 620 kPa, and the open voltage of the waste battery under each pressure was measured for each elapsed time, and the obtained results are shown in FIG.
[0025]
From FIG. 3, it can be seen that the discharge is rapidly discharged from the waste battery as the pressure applied to the activated carbon particles is increased. In particular, at a pressure of 60 kPa or more, the open-circuit voltage drops to 1 V or less in a short time. For example, when a pressure of 310 kPa was applied to the activated carbon particles, the open-circuit voltage of the waste battery dropped from 3.0 V to 0.7 V in 30 minutes, confirming that the discharge was sufficiently performed.
[0026]
At the same time, when the maximum temperature around the waste battery was measured, the pressure applied to the activated carbon particles was only 1 ° C. increase from 22 ° C. to 23 ° C. at 30 kPa, 2 ° C. increase at 160 kPa, and 3 ° C. increase at 300 kPa. Met. In each case, the heat generation was negligibly small and no sparks were observed.
[0027]
In the above embodiment, the discharge experiment was performed with one waste battery. However, if the discharge vessel is enlarged and a plurality of waste batteries are embedded in the conductive powder, the plurality of waste batteries can be efficiently discharged simultaneously. be able to.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, before dismantling a used waste battery represented by a lithium ion secondary battery, it does not require a large amount of energy and equipment costs, generates no extra waste or gas, and generates a spark. The waste battery can be discharged and rendered harmless with high efficiency and without an excessive rise in temperature, so that the waste battery can be disassembled safely and at low cost.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a specific example of a discharge process of a waste battery according to the present invention.
FIG. 2 is a graph showing a relationship between a pressing force and electric resistance in various conductive powders.
FIG. 3 is a graph showing a relationship between an open voltage of a waste battery and an elapsed time at each pressing force applied to activated carbon particles.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 waste battery 2 discharge vessel 3 conductive powder 4 movable lid

Claims (9)

廃電池を解体処理する前に、放電容器に充填した導電性粉粒体内に電極部を露出させた廃電池を埋め込み、そのまま又は該導電性粉粒体に圧力を加えながら放電させることを特徴とする廃電池の処理方法。Before dismantling the waste battery, the waste battery with the exposed electrode portion is embedded in the conductive powder filled in the discharge vessel, and the discharge is performed as it is or while applying pressure to the conductive powder. Waste battery treatment method. 前記導電性粉粒体の電気抵抗が、圧力を加えない状態で10kΩ・cm以上であり、圧力を加えた状態で10kΩ・cm以下であることを特徴とする、請求項1に記載の廃電池の処理方法。2. The waste battery according to claim 1, wherein the electrical resistance of the conductive particles is 10 kΩ · cm or more when no pressure is applied, and 10 kΩ · cm or less when pressure is applied. 3. Processing method. 前記導電性粉粒体の電気抵抗が、10kPa以上の圧力を加えた状態で1kΩ・cm以下であることを特徴とする、請求項2に記載の廃電池の処理方法。The method for treating a waste battery according to claim 2, wherein the electric resistance of the conductive powder is 1 kΩ · cm or less when a pressure of 10 kPa or more is applied. 前記導電性粉粒体が、黒鉛、活性炭、石炭、コークスから選ばれた少なくとも1種を主成分とする粉粒体であることを特徴とする、請求項1〜3のいずれかに記載の廃電池の処理方法。The waste according to any one of claims 1 to 3, wherein the conductive powder is a powder mainly containing at least one selected from graphite, activated carbon, coal, and coke. Battery treatment method. 前記導電性粉粒体に加える圧力を調節することにより、放電に要する時間を制御することを特徴とする、請求項1〜4のいずれかに記載の廃電池の処理方法。The method for treating a waste battery according to any one of claims 1 to 4, wherein a time required for discharging is controlled by adjusting a pressure applied to the conductive powder. 前記導電性粉粒体に加える圧力を調節することにより、該導電性粉粒体及び廃電池の温度を安全な範囲に制御することを特徴とする、請求項1〜5のいずれかに記載の廃電池の処理方法。The temperature of the conductive powder and the waste battery is controlled within a safe range by adjusting a pressure applied to the conductive powder, wherein the temperature is controlled in a safe range. Waste battery treatment method. 前記導電性粉粒体に加える圧力を10〜1000kPaとすることを特徴とする、請求項1〜6のいずれかに記載の廃電池の処理方法。The method for treating a waste battery according to any one of claims 1 to 6, wherein a pressure applied to the conductive powder is 10 to 1000 kPa. 前記放電容器の開口部に可動蓋を設け、該可動蓋を移動させることにより、前記導電性粉粒体に加える圧力を調整することを特徴とする、請求項1〜7のいずれかに記載の廃電池の処理方法。A movable lid is provided at an opening of the discharge vessel, and the pressure applied to the conductive powder is adjusted by moving the movable lid. The method according to claim 1, wherein: Waste battery treatment method. 前記廃電池がリチウムイオン2次電池であることを特徴とする、請求項1〜8のいずれかに記載の廃電池の処理方法。The method for treating a waste battery according to any one of claims 1 to 8, wherein the waste battery is a lithium ion secondary battery.
JP2003152222A 2003-05-29 2003-05-29 Disposal method of waste battery Pending JP2004355954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152222A JP2004355954A (en) 2003-05-29 2003-05-29 Disposal method of waste battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152222A JP2004355954A (en) 2003-05-29 2003-05-29 Disposal method of waste battery

Publications (1)

Publication Number Publication Date
JP2004355954A true JP2004355954A (en) 2004-12-16

Family

ID=34047494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152222A Pending JP2004355954A (en) 2003-05-29 2003-05-29 Disposal method of waste battery

Country Status (1)

Country Link
JP (1) JP2004355954A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017085A1 (en) * 2012-07-25 2014-01-30 三洋電機株式会社 Battery-pack processing device
WO2014017086A1 (en) * 2012-07-25 2014-01-30 三洋電機株式会社 Battery-pack processing method
US9413044B2 (en) 2012-06-04 2016-08-09 Empire Technology Development Llc Battery assembly, unit cell and cut-off device
CN107492691A (en) * 2017-06-21 2017-12-19 南京万舟发机电科技有限公司 A kind of anhydrous charging method of battery
CN110176644A (en) * 2019-05-16 2019-08-27 河南小威环境科技有限公司 A kind of waste lithium cell charging method and equipment
CN111370793A (en) * 2020-03-19 2020-07-03 河南小威环境科技有限公司 Lithium ion battery electric quantity releasing equipment and operation method thereof
CN111370794A (en) * 2020-03-19 2020-07-03 河南小威环境科技有限公司 Method for releasing electric quantity of lithium ion battery
CN111829715A (en) * 2019-04-22 2020-10-27 王久钰 Pressure sensor based on electric bridge, pressure measuring system and pressure measuring method
CN112382801A (en) * 2020-10-29 2021-02-19 银隆新能源股份有限公司 Method for pre-treating waste battery
CN112864486A (en) * 2021-01-13 2021-05-28 陈妹妹 Safe discharge method of waste lithium ion battery
WO2021137880A1 (en) * 2019-12-31 2021-07-08 Omega Harvested Metallurgical, Inc Coke powder as a discharging agent for waste battery recycling and method thereof
CN115084700A (en) * 2022-06-27 2022-09-20 中南大学 Thermosensitive discharge particles and safe discharge method of waste lithium ion battery
WO2023005407A1 (en) * 2021-07-30 2023-02-02 广东邦普循环科技有限公司 Disassembling and discharging device for battery recycling
CN116435627A (en) * 2023-06-08 2023-07-14 深圳赛贝尔自动化设备有限公司 Automatic discharging equipment and discharging method of waste batteries
CN116742170A (en) * 2023-08-16 2023-09-12 深圳市杰成镍钴新能源科技有限公司 Retired battery rapid discharge control method based on discharge particles and related equipment
CN116885329A (en) * 2023-09-07 2023-10-13 深圳市杰成镍钴新能源科技有限公司 Battery discharging device and battery discharging control method
CN116914294A (en) * 2023-09-14 2023-10-20 深圳市杰成镍钴新能源科技有限公司 Method and device for rapidly discharging retired battery based on conductive particles and related equipment
CN118040118A (en) * 2024-04-10 2024-05-14 深圳市杰成镍钴新能源科技有限公司 Efficient and convenient discharging method for waste cylindrical lithium ion battery

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9413044B2 (en) 2012-06-04 2016-08-09 Empire Technology Development Llc Battery assembly, unit cell and cut-off device
WO2014017086A1 (en) * 2012-07-25 2014-01-30 三洋電機株式会社 Battery-pack processing method
JPWO2014017086A1 (en) * 2012-07-25 2016-07-07 三洋電機株式会社 Battery treatment method
WO2014017085A1 (en) * 2012-07-25 2014-01-30 三洋電機株式会社 Battery-pack processing device
CN107492691A (en) * 2017-06-21 2017-12-19 南京万舟发机电科技有限公司 A kind of anhydrous charging method of battery
CN112886080A (en) * 2017-06-21 2021-06-01 南京万舟发机电科技有限公司 Battery anhydrous discharging method and device
CN111829715A (en) * 2019-04-22 2020-10-27 王久钰 Pressure sensor based on electric bridge, pressure measuring system and pressure measuring method
CN110176644A (en) * 2019-05-16 2019-08-27 河南小威环境科技有限公司 A kind of waste lithium cell charging method and equipment
GB2606108A (en) * 2019-12-31 2022-10-26 Omega Harvested Metallurgical Inc Coke powder as a discharging agent for waste battery recycling and method thereof
JP2023502147A (en) * 2019-12-31 2023-01-20 オメガ ハーベスド メトラーギカル,アイエヌシー Coke dust as static neutralizer for waste battery recycling and waste battery recycling method
EP4082066A4 (en) * 2019-12-31 2023-09-13 Omega Harvested Metallurgical, Inc. Coke powder as a discharging agent for waste battery recycling and method thereof
JP7295596B2 (en) 2019-12-31 2023-06-21 オメガ ハーベスド メトラーギカル,アイエヌシー Coke dust as static neutralizer for waste battery recycling and waste battery recycling method
WO2021137880A1 (en) * 2019-12-31 2021-07-08 Omega Harvested Metallurgical, Inc Coke powder as a discharging agent for waste battery recycling and method thereof
TWI753719B (en) * 2019-12-31 2022-01-21 美商歐美加應用材料有限公司 Coke powder as a discharging agent for waste battery recycling and method thereof
KR20220103815A (en) * 2019-12-31 2022-07-22 오메가 하베스티드 메털러지컬 아이엔씨 Coke powder and method therefor as discharge agent for waste battery recycling
GB2606108B (en) * 2019-12-31 2023-06-07 Omega Harvested Metallurgical Inc Method of Recycling Waste Battery
KR102510249B1 (en) * 2019-12-31 2023-03-14 오메가 하베스티드 메털러지컬 아이엔씨 Coke powder as a discharge agent for recycling waste batteries and its method
CN111370793A (en) * 2020-03-19 2020-07-03 河南小威环境科技有限公司 Lithium ion battery electric quantity releasing equipment and operation method thereof
CN111370794A (en) * 2020-03-19 2020-07-03 河南小威环境科技有限公司 Method for releasing electric quantity of lithium ion battery
CN112382801A (en) * 2020-10-29 2021-02-19 银隆新能源股份有限公司 Method for pre-treating waste battery
US11967687B2 (en) 2021-01-13 2024-04-23 Shenzhen Jiecheng nickel cobalt New Energy Technology Co., Ltd. Safe discharge method for waste lithium ion batteries
CN112864486A (en) * 2021-01-13 2021-05-28 陈妹妹 Safe discharge method of waste lithium ion battery
ES2956394A1 (en) * 2021-07-30 2023-12-20 Guangdong Brunp Recycling Technology Co Ltd Disassembling and discharging device for battery recycling
WO2023005407A1 (en) * 2021-07-30 2023-02-02 广东邦普循环科技有限公司 Disassembling and discharging device for battery recycling
GB2623019A (en) * 2021-07-30 2024-04-03 Guangdong Brunp Recycling Technology Co Ltd Disassembling and discharging device for battery recycling
CN115084700A (en) * 2022-06-27 2022-09-20 中南大学 Thermosensitive discharge particles and safe discharge method of waste lithium ion battery
CN115084700B (en) * 2022-06-27 2024-06-04 中南大学 Safety discharge method for thermosensitive discharge particles and waste lithium ion batteries
CN116435627A (en) * 2023-06-08 2023-07-14 深圳赛贝尔自动化设备有限公司 Automatic discharging equipment and discharging method of waste batteries
CN116742170B (en) * 2023-08-16 2023-12-15 深圳市杰成镍钴新能源科技有限公司 Retired battery rapid discharge control method based on discharge particles and related equipment
CN116742170A (en) * 2023-08-16 2023-09-12 深圳市杰成镍钴新能源科技有限公司 Retired battery rapid discharge control method based on discharge particles and related equipment
CN116885329A (en) * 2023-09-07 2023-10-13 深圳市杰成镍钴新能源科技有限公司 Battery discharging device and battery discharging control method
CN116885329B (en) * 2023-09-07 2023-12-29 深圳市杰成镍钴新能源科技有限公司 Battery discharging device and battery discharging control method
CN116914294A (en) * 2023-09-14 2023-10-20 深圳市杰成镍钴新能源科技有限公司 Method and device for rapidly discharging retired battery based on conductive particles and related equipment
CN116914294B (en) * 2023-09-14 2023-12-29 深圳市杰成镍钴新能源科技有限公司 Method and device for rapidly discharging retired battery based on conductive particles and related equipment
CN118040118A (en) * 2024-04-10 2024-05-14 深圳市杰成镍钴新能源科技有限公司 Efficient and convenient discharging method for waste cylindrical lithium ion battery

Similar Documents

Publication Publication Date Title
JP2004355954A (en) Disposal method of waste battery
Xiao et al. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy
WO2012169073A1 (en) Method for recovering valuable metals from waste lithium-ion secondary batteries
US6524737B1 (en) Method for crushing cell
KR102510249B1 (en) Coke powder as a discharge agent for recycling waste batteries and its method
JP7402733B2 (en) Heat treatment method for battery waste and lithium recovery method
EP1020944A3 (en) Lithium secondary battery, and process for producing the same
US3428493A (en) Electrical energy storage device comprising aluminum-lithium electrode and mechanical screen surrounding the electrode
CA2269388A1 (en) Graphite powders suited for negative electrode material of lithium ion secondary battery
JPH10255861A (en) Disposal method for waste
JP2012128952A5 (en)
JP2016117009A (en) Crushing method and crushing apparatus for battery
WO2023070801A1 (en) Recovery method for valuable components of waste lithium-ion batteries
JP2019039028A (en) Recovery method of valuables from used lithium ion batteries
JP3722998B2 (en) Battery disposal method
KR102430803B1 (en) A treatment method of used electric vehicle battery module and a resource recycling system using therefor
JP6116999B2 (en) Waste lithium battery roasting apparatus and roasting method
US11316214B2 (en) Waste lithium battery recovery system
JP2012160269A (en) Device and method for processing battery pack
JP6616443B2 (en) Lithium ion battery heat treatment apparatus and lithium ion battery treatment method
WO2022209421A1 (en) Method for treating battery waste
JP7109702B1 (en) How to dispose of battery waste
EP4119245A1 (en) Method for recovering lithium and method for processing lithium ion secondary battery
JP6853402B2 (en) How to handle the secondary battery
CN211182443U (en) Water ion cracking lithium battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081202