JP6853402B2 - How to handle the secondary battery - Google Patents

How to handle the secondary battery Download PDF

Info

Publication number
JP6853402B2
JP6853402B2 JP2020088555A JP2020088555A JP6853402B2 JP 6853402 B2 JP6853402 B2 JP 6853402B2 JP 2020088555 A JP2020088555 A JP 2020088555A JP 2020088555 A JP2020088555 A JP 2020088555A JP 6853402 B2 JP6853402 B2 JP 6853402B2
Authority
JP
Japan
Prior art keywords
secondary battery
battery
space region
heat treatment
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020088555A
Other languages
Japanese (ja)
Other versions
JP2020140965A (en
Inventor
博文 前田
博文 前田
肇 下田代
肇 下田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Magnetic Dressing Co
Original Assignee
Nippon Magnetic Dressing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Magnetic Dressing Co filed Critical Nippon Magnetic Dressing Co
Priority to JP2020088555A priority Critical patent/JP6853402B2/en
Publication of JP2020140965A publication Critical patent/JP2020140965A/en
Application granted granted Critical
Publication of JP6853402B2 publication Critical patent/JP6853402B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、二次電池の処理方法、詳しくは、リチウムイオン電池等の二次電池から有価物を回収する二次電池の処理方法に関する。 The present invention relates to a method for treating a secondary battery, specifically, a method for treating a secondary battery that recovers valuable resources from a secondary battery such as a lithium ion battery.

リチウムイオン電池はエネルギー密度が高く、比較的高い電圧を得ることができるという特徴を有している。このため、リチウムイオン電池は、ノートパソコン、ビデオカメラ、デジタルカメラ、タブレット型端末、携帯電話等の電子機器や車載用バッテリとして多用されている。
リチウムイオン電池は、筐体(ケース)及び正極、負極、電解液、セパレータ等を封入した金属ケース等によって構成されている。ケースにはアルミニウムや樹脂が使用されることが多い。金属ケースには鉄やアルミニウムが使用されることが多い。正極はアルミニウム箔でできた正極集電体とその表面にバインダを介して接着されたLiCoO、LiNiOおよびLiMnといったリチウム複合酸化物を材料とする正極活物質とで構成される。負極は典型的には銅製の負極集電体とその表面に接着されたグラファイトなどの炭素材料からなる負極活物質から構成される。電解液はたとえばエチレンカーボネート、プロピレンカーボネートなどの非水溶液にリチウム塩を溶解させたものが一般的である。セパレータにはポリエチレン、ポリプロピレンなどが使用されるのが一般的である。
The lithium ion battery has a feature that the energy density is high and a relatively high voltage can be obtained. For this reason, lithium-ion batteries are widely used as electronic devices such as notebook computers, video cameras, digital cameras, tablet terminals, mobile phones, and in-vehicle batteries.
The lithium ion battery is composed of a housing (case) and a metal case or the like in which a positive electrode, a negative electrode, an electrolytic solution, a separator and the like are enclosed. Aluminum or resin is often used for the case. Iron and aluminum are often used for metal cases. The positive electrode is composed of a positive electrode current collector made of aluminum foil and a positive electrode active material made of a lithium composite oxide such as LiCoO 2 , LiNiO 2 and LiMn 2 O 4 bonded to the surface thereof via a binder. The negative electrode is typically composed of a copper negative electrode current collector and a negative electrode active material made of a carbon material such as graphite adhered to the surface thereof. The electrolytic solution is generally a solution in which a lithium salt is dissolved in a non-aqueous solution such as ethylene carbonate or propylene carbonate. Generally, polyethylene, polypropylene, or the like is used for the separator.

近年、リチウムイオン電池などの二次電池の使用量の増加および使用範囲の拡大に伴い、電池の製品寿命や製造過程での不良により廃棄される量が増大している。かかる状況の下では、大量に廃棄される二次電池からニッケルやコバルト等の有価金属を再利用すべく比較的低コストで容易に回収することが望まれる。
ところで、二次電池には、放充電・電圧制御等で使用されている基板が搭載されている。しかしながら、その中に含まれる金の回収についてはほとんど着目されておらず、研究があまり進められていない。
In recent years, as the amount of secondary batteries used such as lithium-ion batteries has increased and the range of use has expanded, the amount of batteries discarded due to product life or defects in the manufacturing process has increased. Under such circumstances, it is desired to easily recover valuable metals such as nickel and cobalt from a large amount of discarded secondary batteries at a relatively low cost.
By the way, the secondary battery is equipped with a substrate used for discharging and charging, voltage control, and the like. However, little attention has been paid to the recovery of gold contained therein, and much research has not been carried out.

このような状況の中、特許文献1に記載のように、焙焼・破砕・篩分けされたリチウムイオン電池をさらに、篩分け、磁力選別、渦電流選別等を行うことで金を回収する技術が提案されている。 Under such circumstances, as described in Patent Document 1, a technique for recovering gold by further sieving, magnetically sorting, eddy current sorting, etc., for a lithium ion battery that has been roasted, crushed, and screened. Has been proposed.

特開2014−199774号公報Japanese Unexamined Patent Publication No. 2014-199774

しかしながら、特許文献1に記載の技術によれば、金を回収するまでに破砕・篩分け・磁力選別・渦電流選別等の多数の工程を経る必要があり、回収に至るまでのプロセスが非常に複雑であった。
また、手解体にて二次電池を解体して基板を回収する方法も考えられるが、人件費がかさむうえ、感電の危険を伴うため安全面に問題が生じる。
However, according to the technique described in Patent Document 1, it is necessary to go through a number of steps such as crushing, sieving, magnetic force sorting, and eddy current sorting before recovering gold, and the process leading up to recovery is very large. It was complicated.
Further, a method of disassembling the secondary battery by hand to collect the substrate is also conceivable, but the labor cost is high and there is a risk of electric shock, which causes a safety problem.

そこで、発明者は、二次電池の構造と材質とに着目し、熱分解(250℃〜550℃)によって、電解液、プラスチック類、樹脂類をガス化させ、さらに金属が圧着されている部分については熱によって金属を膨張させることにより金属ケースから基板・リードフレーム材などを分離することができることを知見し、本発明を完成させた。 Therefore, the inventor paid attention to the structure and material of the secondary battery, gasified the electrolytic solution, plastics, and resins by thermal decomposition (250 ° C to 550 ° C), and further crimped the metal. We have found that the substrate, lead frame material, etc. can be separated from the metal case by expanding the metal with heat, and completed the present invention.

本発明は、二次電池の熱処理において、二次電池中に含まれる基板・リードフレーム材を分離して、有価金属を回収する二次電池の処理方法を提供することを目的とする。 An object of the present invention is to provide a method for treating a secondary battery in which a substrate and a lead frame material contained in the secondary battery are separated to recover valuable metals in the heat treatment of the secondary battery.

請求項1に記載の発明は、非金属類により接合された金属部品または金属圧着によって固定された金属部品を含む二次電池から貴金属を回収する二次電池の処理方法であって、二次電池を加熱炉に投入し、この二次電池を250〜400℃の環境下で加熱して、この二次電池から電池ガスを流出させる電池ガス流出工程と、この電池ガス流出工程の終了後、この加熱炉内にて連続してこの二次電池を400℃〜550℃の環境下で加熱して、貴金属を含む前記金属部品を剥離する剥離工程と、その後、篩分けにより前記貴金属を回収する篩選別工程と、を有し、前記加熱炉は、その内部を加熱空間領域と熱処理空間領域とに区分されるとともに、この熱処理空間領域にのみ過熱蒸気が噴霧され、前記電池ガス流出工程は、前記加熱空間領域にて行われ、前記剥離工程は、前記熱処理空間領域にて行われる二次電池の処理方法である。 The invention according to claim 1 is a method for treating a secondary battery, which recovers a noble metal from a secondary battery including a metal part joined by non-metals or a metal part fixed by metal pressure treatment. Is put into a heating furnace, the secondary battery is heated in an environment of 250 to 400 ° C., and the battery gas outflow step of causing the battery gas to flow out from the secondary battery, and after the completion of the battery gas outflow step, this The secondary battery is continuously heated in an environment of 400 ° C. to 550 ° C. in a heating furnace to peel off the metal part containing the noble metal, and then a sieve selection for recovering the noble metal by sieving. The heating furnace has a separate step, and the inside of the heating furnace is divided into a heating space region and a heat treatment space region, and superheated steam is sprayed only on this heat treatment space region. The peeling step is a method for treating a secondary battery, which is performed in the heating space region and is performed in the heat treatment space region.

請求項2に記載の発明は、前記加熱炉は、前記二次電池が投入口から前記加熱空間領域に投入され、前記熱処理空間領域を経て排出口に排出されるものであり、前記加熱炉の前記熱処理空間領域には、前記過熱蒸気を噴霧する複数の噴射ノズルが設けられ、前記噴射ノズルは、炉壁の内壁面に対して垂直に設けられ、前記排出口に近いほど、噴射ノズルの長さが長くなるように配置する請求項1に記載の二次電池の処理方法である。 According to the second aspect of the present invention, in the heating furnace, the secondary battery is charged into the heating space region from the charging port and discharged to the discharge port through the heat treatment space region. A plurality of injection nozzles for spraying the superheated steam are provided in the heat treatment space region, and the injection nozzles are provided perpendicular to the inner wall surface of the furnace wall. The method for processing a secondary battery according to claim 1, wherein the secondary batteries are arranged so as to be long.

請求項3に記載の発明は、前記二次電池はリチウムイオン電池である請求項1または請求項2に記載の二次電池の処理方法である。 The invention according to claim 3 is the method for processing a secondary battery according to claim 1 or 2, wherein the secondary battery is a lithium ion battery.

本発明によれば、250℃〜550℃の環境下に二次電池を置くことで、電解液、プラスチック類、樹脂類がガス化される。また、金属ケース(二次電池本体)の外側に金属圧着、プラスチック類で固定されている基板、リードフレーム材等が熱によって膨脹し、衝撃等により金属ケースから剥離しやすい状態となる。そして、二次電池本体と基板・リードフレーム材等の金属部品を、二次電池本体が通過しない程度の篩目で篩分けをする。この2つの工程を経るだけで、基板やリードフレーム材等の金属部品中に含まれる金・銀・銅を篩下として回収することができる。 According to the present invention, the electrolytic solution, plastics, and resins are gasified by placing the secondary battery in an environment of 250 ° C. to 550 ° C. Further, the metal crimping on the outside of the metal case (secondary battery body), the substrate fixed with plastics, the lead frame material, etc. expand due to heat, and the metal case is easily peeled off due to impact or the like. Then, the secondary battery body and metal parts such as the substrate and lead frame material are sieved by a mesh that does not allow the secondary battery body to pass through. Gold, silver, and copper contained in metal parts such as substrates and lead frame materials can be recovered as a sieve only by going through these two steps.

その際に、二次電池本体が破裂すると、電池内部に封入された正極材、負極材が混入することにより、回収された金・銀・銅の純度が低下するとともに、その後の処理により回収されるニッケル・コバルト等の回収率が低下する。それを防ぐため、250℃〜400℃にて、二次電池本体から電池ガスを流出させた後、400〜550℃にて金属部品を剥離する方が好ましい。
なお、この場合、二次電池からの電池ガスの流出と、金属部品の剥離を一の装置で行うことも可能である。その場合には、二次電池の処理方法を単純化することができ、二次電池の処理に係るコスト面で有利である。
その際に、加熱炉の内部が加熱空間領域と、熱処理空間領域と、に区分され、複数の噴射ノズルによって450℃〜750℃の過熱蒸気を加熱空間領域に存在する二次電池に過熱蒸気が接触しないように熱処理空間領域にのみ噴霧することで、加熱空間領域に存在する二次電池の温度を250℃程度に抑えることができるため、特に有用である。
二次電池の加熱による破裂の原因は、主に、二次電池が非常に高い温度に置かれることにより、二次電池に封入されている電解液(揮発性有機溶剤やアルカリ溶液)等が気化して電池ガスが発生し、その電池ガスの体積が急激に増える(膨張する)からである。この電解液の沸点は、電解液が高沸点溶剤であったとしても260℃程度であり、通常は200℃以下である。二次電池の温度を250℃程度に抑えることにより、電解液の温度が高温となることを防ぐことができ、電解液は気化して電池ガスは発生するものの、電池ガスの体積が急激に増えることはない。このため、二次電池の熱処理において、二次電池の筐体が破裂し、アルミニウム等が脆化して微細化することを防止することができる。
電池ガスは、二次電池を加熱することにより、二次電池の金属ケース内に発生し、外部へ放出されるガスをいい、本発明では二次電池に封入されている電解液(揮発性有機溶剤やアルカリ溶液(例えば水酸化カリウム等))が気化したものが主である。
At that time, if the main body of the secondary battery bursts, the positive electrode material and the negative electrode material enclosed inside the battery are mixed, so that the purity of the recovered gold, silver, and copper is lowered, and the recovered gold, silver, and copper are recovered by the subsequent treatment. The recovery rate of nickel, cobalt, etc. decreases. In order to prevent this, it is preferable to let the battery gas flow out from the secondary battery body at 250 ° C. to 400 ° C. and then peel off the metal parts at 400 to 550 ° C.
In this case, it is also possible to perform the outflow of the battery gas from the secondary battery and the peeling of the metal parts with one device. In that case, the processing method of the secondary battery can be simplified, which is advantageous in terms of cost related to the processing of the secondary battery.
At that time, the inside of the heating furnace is divided into a heating space region and a heat treatment space region, and superheated steam of 450 ° C. to 750 ° C. is sent to the secondary battery existing in the heating space region by a plurality of injection nozzles. By spraying only on the heat treatment space region so as not to come into contact with each other, the temperature of the secondary battery existing in the heating space region can be suppressed to about 250 ° C., which is particularly useful.
The main cause of the explosion due to heating of the secondary battery is that the secondary battery is placed at a very high temperature, and the electrolytic solution (volatile organic solvent or alkaline solution) enclosed in the secondary battery is a concern. This is because the battery gas is generated and the volume of the battery gas rapidly increases (expands). The boiling point of this electrolytic solution is about 260 ° C. even if the electrolytic solution is a high boiling point solvent, and is usually 200 ° C. or lower. By suppressing the temperature of the secondary battery to about 250 ° C., it is possible to prevent the temperature of the electrolytic solution from becoming high, and although the electrolytic solution is vaporized to generate battery gas, the volume of the battery gas increases rapidly. There is no such thing. Therefore, in the heat treatment of the secondary battery, it is possible to prevent the housing of the secondary battery from bursting and the aluminum or the like from becoming brittle and becoming finer.
The battery gas refers to a gas generated in the metal case of the secondary battery and released to the outside by heating the secondary battery. In the present invention, the electrolytic solution (volatile organic) sealed in the secondary battery is used. Most of them are vaporized solvents or alkaline solutions (such as potassium hydroxide).

本発明における二次電池は、リチウムイオン二次電池以外にも、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、携帯電話その他の種々の電子機器等で使用され得る二次電池が挙げられる。特に、電池製品の寿命や製造不良またはその他の理由によって廃棄された、二次電池スクラップを対象とすることが、資源の有効活用の点から好ましい。 Examples of the secondary battery in the present invention include a nickel-hydrogen storage battery, a nickel-cadmium storage battery, a mobile phone and other secondary batteries that can be used in various electronic devices, in addition to the lithium-ion secondary battery. In particular, it is preferable to target secondary battery scrap that has been discarded due to the life of the battery product, manufacturing defects, or other reasons, from the viewpoint of effective use of resources.

加熱空間領域は、炉壁によって構成された加熱炉の内部のうち、投入口とブロワが設けられている領域(区画)をいう。加熱空間領域では、二次電池を、二次電池が260℃程度の温度となるように加熱して、二次電池の筐体内から電池ガスが流出する加熱流出処理が行われる。
加熱空間領域に存在する二次電池には、過熱蒸気(熱源、熱媒体)が直接接触しない。二次電池の加熱は、熱処理空間領域での熱処理の余熱で行われるため、二次電池の加熱温度は約250℃前後となる。
The heating space region refers to a region (section) in which an inlet and a blower are provided in the inside of the heating furnace composed of the furnace wall. In the heating space region, the secondary battery is heated so that the temperature of the secondary battery reaches about 260 ° C., and a heating outflow treatment is performed in which the battery gas flows out from the inside of the housing of the secondary battery.
Superheated steam (heat source, heat medium) does not come into direct contact with the secondary battery existing in the heating space region. Since the secondary battery is heated by the residual heat of the heat treatment in the heat treatment space region, the heating temperature of the secondary battery is about 250 ° C.

熱処理空間領域は、炉壁によって構成された加熱炉の内部のうち、排出口と複数の噴射ノズルが設けられている領域(区画)をいう。熱処理空間領域では、電池ガスの流出後の二次電池を、450℃〜750℃の過熱蒸気にて熱処理が行われる。熱処理は、二次電池の内部の電解液を除去して気化させるとともに、非金属類によって接合又は金属圧着によって固定された金属部品を剥離することを目的として行われる。
噴射ノズルの断面形状、直径、長さは、それぞれ任意であり、同じ断面形状、同じ直径、同じ長さであってもよく、また、異なる断面形状、異なる直径、異なる長さであってもよい。ただし、蒸気の流れの制御を容易にし、二次電池の加熱処理の効率化を図る点から、噴射ノズルは、炉壁の内壁面に対して垂直に設けられるとともに、排出口に近いほど、噴射ノズルの長さが長くなるように配置するほうが好ましい。
The heat treatment space region refers to a region (section) in which a discharge port and a plurality of injection nozzles are provided in the inside of a heating furnace composed of a furnace wall. In the heat treatment space region, the secondary battery after the outflow of the battery gas is heat-treated with superheated steam at 450 ° C. to 750 ° C. The heat treatment is performed for the purpose of removing and vaporizing the electrolytic solution inside the secondary battery and peeling off the metal parts fixed by joining or crimping with non-metals.
The cross-sectional shape, diameter, and length of the injection nozzle are arbitrary and may be the same cross-sectional shape, the same diameter, and the same length, or may be different cross-sectional shapes, different diameters, and different lengths. .. However, from the viewpoint of facilitating the control of the steam flow and improving the efficiency of the heat treatment of the secondary battery, the injection nozzle is provided perpendicular to the inner wall surface of the furnace wall, and the closer it is to the discharge port, the more the injection nozzle is injected. It is preferable to arrange the nozzles so that the length of the nozzles is long.

本発明によれば、250℃〜550℃の環境下に二次電池を置くことで、電解液、プラスチック類、樹脂類がガス化され、金属ケースの外側に金属圧着、プラスチック類で固定されている基板、リードフレーム材等が熱によって膨脹する。そして、金属ケースと基板・リードフレーム材を、金属ケースが通過しない程度の篩目で篩分けをする。この2つの工程を経るだけで、金・銀・銅を回収することができる。 According to the present invention, by placing the secondary battery in an environment of 250 ° C. to 550 ° C., the electrolytic solution, plastics, and resins are gasified, and the metal case is fixed to the outside with metal crimping and plastics. The substrate, lead frame material, etc. are expanded by heat. Then, the metal case and the substrate / lead frame material are sieved by a mesh that does not allow the metal case to pass through. Gold, silver, and copper can be recovered simply by going through these two steps.

特に、請求項2に記載の発明によれば、噴射ノズルは、炉壁の内壁面に対して垂直に設けられるとともに、排出口に近いほど、噴射ノズルの長さが長くなるように配置することにより、蒸気の流れの制御を容易にし、二次電池の加熱処理の効率化を図ることができる。 In particular, according to the invention of claim 2, the injection nozzle is provided perpendicular to the inner wall surface of the furnace wall, and is arranged so that the closer to the discharge port, the longer the length of the injection nozzle. As a result, it is possible to easily control the flow of steam and improve the efficiency of the heat treatment of the secondary battery.

請求項3に記載の発明では、二次電池をリチウムイオン電池に限定したのは、二次電池のうち、技術的に特に取り扱いが難しい電解液(揮発性有機溶剤)を含むリチウムイオン電池であっても、問題なく処理が出来ることからである。 In the invention according to claim 3, the secondary battery is limited to the lithium ion battery, which is a lithium ion battery containing an electrolytic solution (volatile organic solvent), which is technically particularly difficult to handle. However, it can be processed without any problem.

本発明の実施例に係る二次電池の処理の流れを示すフローチャートである。It is a flowchart which shows the processing flow of the secondary battery which concerns on embodiment of this invention. 本発明の変形例に係る二次電池の処理方法おける二次電池加熱処理装置を示す断面図である。It is sectional drawing which shows the secondary battery heat treatment apparatus in the processing method of the secondary battery which concerns on the modification of this invention.

以下、本発明の実施例について詳細に説明する。 Hereinafter, examples of the present invention will be described in detail.

(温度領域による電解液の挙動確認試験)
35mm×35mm×0.5mm携帯電話用リチウムイオン電池を炉内温度200℃、250℃、300℃、350℃、400℃の小型電気炉にてアルゴン雰囲気中にて熱処理を行った。熱処理時間は、10分、20分、30分とした。
使用したリチウムイオン電池の組成は、リチウムイオン電池本体16.90g、封入されている電解液の量は2.09gであった。
熱処理後のリチウムイオン電池について、重量を測定し、電解液の揮発率を求めた。その結果を表1に示す。
(Test of behavior confirmation of electrolyte in temperature range)
A 35 mm × 35 mm × 0.5 mm lithium ion battery for a mobile phone was heat-treated in an argon atmosphere in a small electric furnace having a furnace temperature of 200 ° C., 250 ° C., 300 ° C., 350 ° C., and 400 ° C. The heat treatment time was 10 minutes, 20 minutes, and 30 minutes.
The composition of the lithium ion battery used was 16.90 g of the lithium ion battery body, and the amount of the enclosed electrolytic solution was 2.09 g.
The weight of the lithium-ion battery after the heat treatment was measured, and the volatilization rate of the electrolytic solution was determined. The results are shown in Table 1.

Figure 0006853402
Figure 0006853402

上記試験結果によれば、200℃では熱処理時間が30分経過しても電解液の揮発量は1.0%と低い数値となっており、電解液はほとんど揮発していないことがわかる。250℃では熱処理時間が20分経過で81.9%、30分経過で96.2%と時間の経過とともに電解液の揮発が進み、400℃では熱処理時間が10分経過で電解液の揮発量は99.5%と高い数値となった。
なお、400℃の熱処理において試験開始3分ほどでリチウムイオン電池のガスケット(ガス抜け穴)の開放音が確認され、これ以上の温度で熱処理するとリチウムイオン電池が破裂してしまうおそれがあるため、400℃を超える試験は実施しなかった。
According to the above test results, at 200 ° C., the amount of volatilization of the electrolytic solution is as low as 1.0% even after the heat treatment time has passed for 30 minutes, and it can be seen that the electrolytic solution is hardly volatilized. At 250 ° C., the heat treatment time was 81.9% after 20 minutes and 96.2% after 30 minutes, and the volatilization of the electrolytic solution progressed with the passage of time. Was a high value of 99.5%.
In the heat treatment at 400 ° C., the opening sound of the gasket (gas vent) of the lithium ion battery was confirmed about 3 minutes after the start of the test, and if the heat treatment was performed at a temperature higher than this, the lithium ion battery might explode. No tests above ° C were performed.

(携帯電話用リチウムイオン電池の金属部品剥離)
35mm×35mm×0.5mm携帯電話用リチウムイオン電池を炉内温度400℃、450℃、500℃の小型電気炉にてアルゴン雰囲気中にて熱処理を行った。熱処理時間は、30分、45分、60分とした。
使用したリチウムイオン電池の組成は、リチウムイオン電池本体16.90g(89.0wt%)、プラスチック1.22g(6.4wt%)、対象基板0.53g(2.8wt%)、ステンレス0.34g(1.8wt%)、であり、総重量は18.99gであった。
熱処理後のリチウムイオン電池について、重量を測定し、揮発率を求めた。その結果を表2に示す。
(Peeling metal parts of lithium-ion batteries for mobile phones)
A 35 mm × 35 mm × 0.5 mm lithium ion battery for a mobile phone was heat-treated in an argon atmosphere in a small electric furnace having a furnace temperature of 400 ° C., 450 ° C., and 500 ° C. The heat treatment time was 30 minutes, 45 minutes, and 60 minutes.
The composition of the lithium-ion battery used was 16.90 g (89.0 wt%) of the lithium-ion battery body, 1.22 g (6.4 wt%) of plastic, 0.53 g (2.8 wt%) of the target substrate, and 0.34 g of stainless steel. (1.8 wt%), and the total weight was 18.99 g.
The weight of the lithium-ion battery after the heat treatment was measured, and the volatility was determined. The results are shown in Table 2.

Figure 0006853402
Figure 0006853402

なお、450℃、45分以上の熱処理後のリチウムイオン電池は、炉内から取り出しを行う際の軽い衝撃で崩壊し、基板に搭載されているICチップや銅等がガラス繊維のベース基板(熱処理により基板を構成する樹脂が除去されている。)から剥離した。 The lithium-ion battery after heat treatment at 450 ° C. for 45 minutes or more collapses due to a light impact when it is taken out from the furnace, and the IC chip, copper, etc. mounted on the substrate are a glass fiber base substrate (heat treatment). The resin constituting the substrate was removed by the above method.)

(携帯電話用リチウムイオン電池からの貴金属の回収)
図1に示すように、前述のリチウムイオン電池5個(94.14g)を原料として用い、これを熱分解後に篩分けを行った。
(熱分解処理)
小型電気炉にて、アルゴン雰囲気中にて熱分解処理を行った。熱分解温度と時間については、まず、400℃にて20分間加熱し、その後、450℃で40分間熱処理を行った。
(篩分け工程)
篩分けについては、篩目10mmにて一次篩分けを行い、その後、篩目1mmにて二次篩分けを行った。なお、今回の実施例では2回の篩分けを行ったが、1回以上であればよく、回数については何ら制限するものではない。
(Recovery of precious metals from lithium-ion batteries for mobile phones)
As shown in FIG. 1, five lithium-ion batteries (94.14 g) described above were used as raw materials, which were subjected to thermal decomposition and then sieved.
(Pyrolysis treatment)
Pyrolysis treatment was performed in an argon atmosphere in a small electric furnace. Regarding the thermal decomposition temperature and time, first, heating was performed at 400 ° C. for 20 minutes, and then heat treatment was performed at 450 ° C. for 40 minutes.
(Sieving process)
As for sieving, primary sieving was performed with a sieving mesh of 10 mm, and then secondary sieving was performed with a sieving mesh of 1 mm. In this example, sieving was performed twice, but the number of times of sieving may be one or more, and the number of times is not limited at all.

篩分け工程を行ったところ、一次篩分けでリチウムイオン電池本体(篩上)とそれ以外の物(篩下)とに分離された。そして、二次篩分けにより、リードフレーム(端子)及び基板(篩上)とそれ以外の物(残留炭素)(篩下)とに分離することができた。
二次篩分けにおいて篩上に存在するリードフレーム(端子)及び基板について、金、銀、銅を分析したところ、金は2930ppm(回収率99.7%)、銀は2020ppm(回収率89.4%)含まれていた。なお、リードフレームや基板上に形成されている配線の材料である銅については、17.6%であった。
そして、二次篩分けにおいて篩下に存在する残留炭素について、金、銀、銅を分析したところ、金は20ppm(回収率0.3%)、銀は517ppm(回収率10.6%)含まれていた。
このことから、二次篩分けにおいて篩上に存在するリードフレーム(端子)及び基板を回収することにより、貴金属である金、銀を高い収率で回収できた。
When the sieving step was performed, the lithium ion battery body (above the sieving) and other substances (below the sieving) were separated by the primary sieving. Then, by the secondary sieving, the lead frame (terminal) and the substrate (on the sieving) and other substances (residual carbon) (under the sieving) could be separated.
When gold, silver, and copper were analyzed for the lead frame (terminal) and substrate existing on the sieve in the secondary sieving, gold was 2930 ppm (recovery rate 99.7%) and silver was 2020 ppm (recovery rate 89.4). %) Was included. The percentage of copper, which is a material for wiring formed on the lead frame and the substrate, was 17.6%.
Then, when gold, silver, and copper were analyzed for the residual carbon existing under the sieve in the secondary sieving, gold contained 20 ppm (recovery rate 0.3%) and silver contained 517 ppm (recovery rate 10.6%). It was.
From this, by recovering the lead frame (terminal) and the substrate existing on the sieve in the secondary sieving, the precious metals gold and silver could be recovered in high yield.

(携帯電話用リチウムイオン電池からの貴金属の回収の変形例)
実施例1においては、小型電気炉にて熱分解処理を行ったが、変形例として、図2に示すような二次電池加熱処理装置を用いることが可能である。
(Modified example of recovery of precious metals from lithium-ion batteries for mobile phones)
In the first embodiment, the thermal decomposition treatment was performed in a small electric furnace, but as a modification, a secondary battery heat treatment apparatus as shown in FIG. 2 can be used.

この発明の変形例に係る二次電池加熱処理装置10は、回転する筒状の炉壁を備えた加熱装置本体11と、この加熱装置本体11の内部に配置され、炉壁の回転に応じて回転することがない、炉壁の長さの3/4の長さの過熱蒸気配管12と、過熱蒸気配管から等間隔に突出した複数の噴射ノズル13と、加熱装置本体11に固定された吸引ダクト14を備えている。また、この二次電池加熱装置10は、加熱装置本体11に二次電池を投入する原料供給フィーダ15を備えた原料供給部16と、熱分解後の二次電池を排出する排出部17とを備えている。 The secondary battery heat treatment device 10 according to the modified example of the present invention is arranged inside the heating device main body 11 having a rotating tubular furnace wall and the heating device main body 11, and is arranged according to the rotation of the furnace wall. A superheated steam pipe 12 having a length of 3/4 of the length of the furnace wall that does not rotate, a plurality of injection nozzles 13 protruding from the superheated steam pipe at equal intervals, and suction fixed to the heating device main body 11. It is provided with a duct 14. Further, the secondary battery heating device 10 includes a raw material supply unit 16 provided with a raw material supply feeder 15 for charging the secondary battery into the heating device main body 11, and a discharge unit 17 for discharging the secondary battery after thermal decomposition. I have.

上記加熱装置本体11は、キャスタブルコンクリートで円筒状に構成され、両端にキャスタブルコンクリート製の側壁が設けられた炉壁を備えている。つまり、側面断面視して円形の密閉内部空間を加熱装置本体11に有している。そして、炉壁の外壁面には、鉄製の表面被覆材が設けられている。
この加熱装置本体11の2つの側壁のうちの一方側に原料供給部16、他方側に排出部17が固定されている。
原料供給部16には、二次電池を、加熱装置本体11の内部に供給するための供給口が形成され、機械的または電磁的に供給口を開閉するための供給蓋が取り付けられている。この供給蓋は供給口を物理的(機械的)または電磁的に開閉するものである。原料供給部16には、供給口を介して上記加熱装置本体11の内部に二次電池を供給する原料を供給する原料供給フィーダ15が備えられている。原料供給フィーダ15には振動器を有し、原料供給フィーダ15が振動することで、二次電池が振動しながら加熱装置本体11の内部へ移動する。
排出部17には、熱処理された二次電池を加熱装置本体11の外部に排出するための排出口が設けられ、機械的にまたは電磁的にこの排出口を開閉するための排出蓋が取り付けられている。
The heating device main body 11 is formed of castable concrete in a cylindrical shape, and includes a furnace wall provided with side walls made of castable concrete at both ends. That is, the heating device main body 11 has a circular closed internal space when viewed in a side cross section. An iron surface covering material is provided on the outer wall surface of the furnace wall.
The raw material supply unit 16 is fixed to one side of the two side walls of the heating device main body 11, and the discharge unit 17 is fixed to the other side.
The raw material supply unit 16 is formed with a supply port for supplying the secondary battery to the inside of the heating device main body 11, and is attached with a supply lid for opening and closing the supply port mechanically or electromagnetically. This supply lid opens and closes the supply port physically (mechanically) or electromagnetically. The raw material supply unit 16 is provided with a raw material supply feeder 15 that supplies raw materials for supplying a secondary battery to the inside of the heating device main body 11 via a supply port. The raw material supply feeder 15 has a vibrator, and when the raw material supply feeder 15 vibrates, the secondary battery moves to the inside of the heating device main body 11 while vibrating.
The discharge unit 17 is provided with a discharge port for discharging the heat-treated secondary battery to the outside of the heating device main body 11, and a discharge lid for opening and closing the discharge port mechanically or electromagnetically is attached. ing.

過熱蒸気配管12は、加熱装置本体11の外部に設けられた蒸気発生装置において発生した450℃〜750℃の過熱蒸気を加熱装置本体11の内部に供給する固定された(回転しない)配管である。過熱蒸気配管12は、加熱装置本体11の排出部17に近い側壁から原料供給部16に近い側壁に向かって突出するように設けられている。過熱蒸気配管12の突出長は、加熱装置本体11の長手方向の長さ(つまり、2つの側壁の離間距離)の3/4の長さとする。この過熱蒸気配管12の末端は栓がされている。そして、過熱蒸気配管12の管壁には、等間隔に固定された噴射ノズルが複数設けられている。
噴射ノズル13は、過熱蒸気配管に対して垂直に、また、加熱装置本体11の炉壁の内壁面に対しても垂直となるように設けられている。複数の噴射ノズル13は、それぞれ同じ断面形状、同じ直径であるが、すべてが異なる長さで構成されている。そして、複数の噴射ノズルは、排出口に近いほど、噴射ノズルの長さが長くなるように配置されている。
The superheated steam pipe 12 is a fixed (non-rotating) pipe that supplies superheated steam at 450 ° C. to 750 ° C. generated in a steam generator provided outside the heating device main body 11 to the inside of the heating device main body 11. .. The superheated steam pipe 12 is provided so as to project from the side wall of the heating device main body 11 near the discharge portion 17 toward the side wall close to the raw material supply portion 16. The protruding length of the superheated steam pipe 12 is set to 3/4 of the length in the longitudinal direction of the heating device main body 11 (that is, the distance between the two side walls). The end of the superheated steam pipe 12 is plugged. A plurality of injection nozzles fixed at equal intervals are provided on the pipe wall of the superheated steam pipe 12.
The injection nozzle 13 is provided so as to be perpendicular to the superheated steam pipe and also perpendicular to the inner wall surface of the furnace wall of the heating device main body 11. The plurality of injection nozzles 13 have the same cross-sectional shape and the same diameter, but all have different lengths. The plurality of injection nozzles are arranged so that the closer to the discharge port, the longer the length of the injection nozzles.

以上のように構成することで、加熱装置本体11の内部は、噴射ノズル13から蒸気が噴射される熱処理空間領域と、それ以外の領域である加熱空間領域とに区分される。
そして、吸引ダクト14は、加熱装置本体11の加熱空間領域に設けられている。
この吸引ダクト14は、熱分解領域において、熱処理された二次電池が放出する熱処理ガスや蒸気等を熱分解ガスとして吸引するものである。吸引ダクト14の吸引出力については、過熱蒸気が加熱空間領域に存在する二次電池に接触しないように吸引できるように調整される。つまり、加熱空間領域内を通過する過熱蒸気は、略直線状に吸引ダクト14によって吸引される。
With the above configuration, the inside of the heating device main body 11 is divided into a heat treatment space region in which steam is injected from the injection nozzle 13 and a heating space region which is another region.
The suction duct 14 is provided in the heating space region of the heating device main body 11.
The suction duct 14 sucks the heat-treated gas, steam, or the like released by the heat-treated secondary battery as a pyrolysis gas in the pyrolysis region. The suction output of the suction duct 14 is adjusted so that the superheated steam can be sucked so as not to come into contact with the secondary battery existing in the heating space region. That is, the superheated steam passing through the heating space region is sucked by the suction duct 14 substantially linearly.

この加熱処理装置を用いて二次電池の熱処理した場合、250℃〜400℃にて、二次電池から電池ガスを流出させた後、400℃〜450℃にて金属部品を剥離するため、二次電池の破裂による、電池内部に封入された正極材、負極材が混入することによる回収された金・銀・銅の純度の低下と、その後の処理により回収されるニッケル・コバルト等の回収率の低下を防ぐことができる。 When the secondary battery is heat-treated using this heat treatment device, the battery gas is discharged from the secondary battery at 250 ° C to 400 ° C, and then the metal parts are peeled off at 400 ° C to 450 ° C. Deterioration of the purity of gold, silver, and copper recovered due to the mixing of the positive electrode material and negative electrode material enclosed inside the battery due to the rupture of the next battery, and the recovery rate of nickel, cobalt, etc. recovered by the subsequent treatment. Can be prevented from decreasing.

Claims (3)

非金属類により接合された金属部品または金属圧着によって固定された金属部品を含む二次電池から貴金属を回収する二次電池の処理方法であって、
二次電池を加熱炉に投入し、この二次電池を250〜400℃の環境下で加熱して、この二次電池から電池ガスを流出させる電池ガス流出工程と、
この電池ガス流出工程の終了後、この加熱炉内にて連続してこの二次電池を400℃〜550℃の環境下で加熱して、貴金属を含む前記金属部品を剥離する剥離工程と、
その後、篩分けにより前記貴金属を回収する篩選別工程と、を有し、
前記加熱炉は、その内部を加熱空間領域と熱処理空間領域とに区分されるとともに、この熱処理空間領域にのみ過熱蒸気が噴霧され、
前記電池ガス流出工程は、前記加熱空間領域にて行われ、
前記剥離工程は、前記熱処理空間領域にて行われる二次電池の処理方法。
A method for processing a secondary battery that recovers precious metals from a secondary battery that includes metal parts joined by non-metals or metal parts fixed by metal crimping.
A battery gas outflow process in which a secondary battery is put into a heating furnace, the secondary battery is heated in an environment of 250 to 400 ° C., and the battery gas is discharged from the secondary battery.
After the completion of the battery gas outflow step, the secondary battery is continuously heated in the heating furnace in an environment of 400 ° C. to 550 ° C. to peel off the metal parts containing the precious metal, and a peeling step.
Then, it has a sieving sorting step of recovering the noble metal by sieving.
The inside of the heating furnace is divided into a heating space region and a heat treatment space region, and superheated steam is sprayed only on this heat treatment space region.
The battery gas outflow step is performed in the heating space region, and the battery gas outflow step is performed.
The peeling step is a method for processing a secondary battery performed in the heat treatment space region.
前記加熱炉は、前記二次電池が投入口から前記加熱空間領域に投入され、前記熱処理空間領域を経て排出口に排出されるものであり、
前記加熱炉の前記熱処理空間領域には、前記過熱蒸気を噴霧する複数の噴射ノズルが設けられ、
前記噴射ノズルは、炉壁の内壁面に対して垂直に設けられ、前記排出口に近いほど、噴射ノズルの長さが長くなるように配置する請求項1に記載の二次電池の処理方法。
In the heating furnace, the secondary battery is charged into the heating space region from the inlet, and discharged to the discharge port through the heat treatment space region.
A plurality of injection nozzles for spraying the superheated steam are provided in the heat treatment space region of the heating furnace.
The method for processing a secondary battery according to claim 1, wherein the injection nozzle is provided perpendicular to the inner wall surface of the furnace wall, and is arranged so that the length of the injection nozzle becomes longer as it is closer to the discharge port.
前記二次電池はリチウムイオン電池である請求項1または請求項2に記載の二次電池の処理方法。 The method for processing a secondary battery according to claim 1 or 2, wherein the secondary battery is a lithium ion battery.
JP2020088555A 2018-04-09 2020-05-21 How to handle the secondary battery Active JP6853402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020088555A JP6853402B2 (en) 2018-04-09 2020-05-21 How to handle the secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018074619A JP2019186000A (en) 2018-04-09 2018-04-09 Secondary battery treatment method
JP2020088555A JP6853402B2 (en) 2018-04-09 2020-05-21 How to handle the secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018074619A Division JP2019186000A (en) 2018-04-09 2018-04-09 Secondary battery treatment method

Publications (2)

Publication Number Publication Date
JP2020140965A JP2020140965A (en) 2020-09-03
JP6853402B2 true JP6853402B2 (en) 2021-03-31

Family

ID=68341703

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018074619A Pending JP2019186000A (en) 2018-04-09 2018-04-09 Secondary battery treatment method
JP2020088555A Active JP6853402B2 (en) 2018-04-09 2020-05-21 How to handle the secondary battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018074619A Pending JP2019186000A (en) 2018-04-09 2018-04-09 Secondary battery treatment method

Country Status (1)

Country Link
JP (2) JP2019186000A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111934041B (en) * 2020-07-06 2021-09-21 界首市南都华宇电源有限公司 Method for recycling and reusing electrolyte of waste lithium ion battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009161845A (en) * 2008-01-10 2009-07-23 Nippon Steel Corp Method for pretreatment of scrap
JP5139167B2 (en) * 2008-06-19 2013-02-06 トヨタ自動車株式会社 Battery pack recycling method and battery pack recycling apparatus
JP5651462B2 (en) * 2010-12-27 2015-01-14 Dowaエコシステム株式会社 Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
JP5360135B2 (en) * 2011-06-03 2013-12-04 住友金属鉱山株式会社 Valuable metal recovery method
JP5843289B2 (en) * 2012-04-27 2016-01-13 株式会社アステック入江 Printed circuit board processing method
JP2016204676A (en) * 2015-04-15 2016-12-08 Jx金属株式会社 Processing method of lithium ion batteries
JP6469547B2 (en) * 2015-08-13 2019-02-13 Jx金属株式会社 Lithium-ion battery processing method
JP2019034254A (en) * 2017-08-10 2019-03-07 太平洋セメント株式会社 Apparatus and method for treating waste lithium ion battery

Also Published As

Publication number Publication date
JP2019186000A (en) 2019-10-24
JP2020140965A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
WO2012169073A1 (en) Method for recovering valuable metals from waste lithium-ion secondary batteries
US8734972B2 (en) Battery pack processing apparatus and processing method
JP5011659B2 (en) Battery recycling method
US9359659B2 (en) Method for recovering valuable material from lithium-ion secondary battery, and recovered material containing valuable material
JP6396600B2 (en) Waste heat treatment system using continuous heat treatment method and method for recovering valuable metals from lithium batteries using the same
JP6692196B2 (en) How to recover valuables from lithium-ion secondary batteries
JPH10255861A (en) Disposal method for waste
WO2011079409A1 (en) Method of recycling and reusing spent lithium iron phosphate power battery
WO2013051305A1 (en) Method for recovering valuable materials from lithium ion secondary cells
KR102173990B1 (en) Lithium ion battery treatment method
JP2012195073A (en) Method for producing recycled material
CN101692510B (en) Recycling separation process of electrode component materials of used lithium batteries
KR20120126946A (en) Pretreatment method for recycling of lithium ion batteries
JP5594167B2 (en) Battery pack processing apparatus and processing method
JP2016117009A (en) Crushing method and crushing apparatus for battery
JP6853402B2 (en) How to handle the secondary battery
JP2021150282A (en) Lithium recovery method and lithium ion secondary battery processing method
JP2004355954A (en) Disposal method of waste battery
JP6616443B2 (en) Lithium ion battery heat treatment apparatus and lithium ion battery treatment method
US20210359351A1 (en) Lithium-ion battery cell recycling process
JP6469547B2 (en) Lithium-ion battery processing method
JP2012033345A (en) Battery pack
KR101197439B1 (en) Separation Method of Active Cathodic Material from Scrap of Positive Plate in Lithium Rechargeable Battery
JP7191245B2 (en) Equipment for recovering valuables
JP2024011559A (en) Treatment method for lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210311

R150 Certificate of patent or registration of utility model

Ref document number: 6853402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250