JP2004354106A - Current detector - Google Patents

Current detector Download PDF

Info

Publication number
JP2004354106A
JP2004354106A JP2003149716A JP2003149716A JP2004354106A JP 2004354106 A JP2004354106 A JP 2004354106A JP 2003149716 A JP2003149716 A JP 2003149716A JP 2003149716 A JP2003149716 A JP 2003149716A JP 2004354106 A JP2004354106 A JP 2004354106A
Authority
JP
Japan
Prior art keywords
current
current path
layer
substrate
electric circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003149716A
Other languages
Japanese (ja)
Inventor
Yukio Fukushima
行雄 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003149716A priority Critical patent/JP2004354106A/en
Publication of JP2004354106A publication Critical patent/JP2004354106A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stable and accurate current detector only requiring a minimum space with minimized component costs and assembly man-hours. <P>SOLUTION: In this current detector, an electric circuit and an electric current path 14 connected to the electric circuit are formed on a substrate 12 while the detector is adapted to detect a current flowing through the current path 14. The current path 14 is disposed in such a shape as to surround a prescribed position 16 on the substrate 12 and provided with a magnetism detection element 17 in the prescribed position 16 or in the vicinity thereof for converting magnetic flux generated correspondent to the size of current into a voltage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、モータ電流等の電流検出装置、特に電動パワーステアリング装置等の車載用電装品における非接触型電流検出装置に関するものである。
【0002】
【従来の技術】
従来のこの種電流検出装置は、被検出電流の経路となるバスバーがC字型の磁気コアを貫通する構成とされ、バスバーに流れる被検出電流によって発生される磁界をC字型の磁気コアによって集磁すると共に、磁気コアのギャップ部位に設置したホール素子によって電圧に変換し、増幅回路にて所定の増幅を行なって電流検出出力(被検出電流に比例した電圧値)を得るようにしていた。
また、磁気コアを用いない方式として、被検出電流経路である導体板金をU字状あるいはコ字状に湾曲させ、その中央部にホール素子を配置して被検出電流に比例した電圧値を得るようにした装置もある。(例えば特許文献1及び2参照)。
【0003】
【特許文献1】
特開2001−174486号公報(段落0016、図1、図5)
【特許文献2】
特開2003−4771号公報(段落0011、図7)
【0004】
【発明が解決しようとする課題】
従来の非接触型電流検出装置は以上のように構成されていたため、次に示すような問題点があった。即ち、C字型の磁気コアを用いるものにおいては、磁気コアの形状が大きくなり、小型の制御装置、特に車載用制御装置においてはその搭載性に問題を生じる場合があった。また、部品点数及び組み立て工数も大きくコスト的にも不利となるものであった。更に、磁気コアの持つヒステリシス特性の影響により電流検出精度や検出の安定性に悪影響を及ぼす場合があった。
更にまた、磁気コアを用いない方式においては、実用的な検出感度を得るためには、磁気検出素子近傍での被検出電流密度を大きくする必要があり、そのため、被検出電流経路である導体の幅をある程度細くする必要があった。しかし、そのため、モータ電流等の数十アンペア以上の電流を検出する必要がある場合には、被検出電流経路導体の磁気検出素子近傍においての熱集中が懸念され、また、通常は被検出電流経路導体と磁気検出素子とを樹脂モールド等により固定及びパッケージする必要があるため、放熱の問題や容積の増加の問題あるいはコスト増加の問題がある。更に、電流検出部は電流検出を必要とする制御回路基板とは別体構成であるため、電流検出部の取り付けや制御回路基板との接続配線が必要である等の問題点があった。
【0005】
この発明は、上記のような問題点を解消するためになされたものであり、部品コスト及び組み立て工数を極力削減し、かつ最小のスペースにて、安定で精度の高い電流検出装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る電流検出装置は、基板上に電気回路と、この電気回路に接続された電流経路とが形成されると共に、上記電流経路に流れる電流を検出するようにした電流検出装置において、上記電流経路は、上記基板上の所定個所を取り囲むような形状に配設され、上記所定個所またはその近傍に電流の大きさに応じて発生する磁束を電圧に変換する磁気検出素子を設けたものである。
電流検出を必要とするモータ駆動回路や電源回路等の動力または電力制御回路においては多くの場合、それを構成する電力制御用半導体素子から発生する熱を効率よく放熱するための放熱手段(ヒートシンク)をもともと有している。
この発明は、モータ電流等の被検出電流を電流経路パターンに流した時に生ずる熱を上記放熱手段を共有することで有効に放熱し、少ないスペースで安定に電流の検出を可能とするものである。特に、電力制御用半導体素子を金属基板(アルミ基板)やセラミック基板上に配置した構成の場合に有効な手段である。
【0007】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。図1は、実施の形態1の構成を示す概略図であり、(A)は平面図、(B)は側面図である。
この図に示されるように、実施の形態1の電流検出装置1は、電流検出を必要とするモータ駆動回路等の制御回路を形成し、放熱用のヒートシンク11を有するアルミ基板12上に配設され、70μm程度のフィラー入りエポキシ膜等の絶縁層13を介して形成される上記モータ駆動回路等の電流検出を行なうものである。上記電気回路の電流検出経路として、アルミ基板12上に被検出電流経路パターン14が形成される。この被検出電流経路パターン14は、例えば厚み80μm程度の銅箔により形成され、この銅箔に0.2mm幅程度の切り込み(スリット)15が図示のような形状で設けられる。即ち、電流経路が図1(A)に矢印で示すように、所定個所16を中心とした円弧状となるように、スリット15を形成する。
【0008】
この結果、所定個所16には、被検出電流の大きさに比例した数の磁束が発生するため、所定個所16またはその近傍に磁束密度を電圧に変換する磁気検出素子、例えばホール素子17を設けることにより、被検出電流に比例した電圧出力を得ることができる。18はホール素子17に動作電圧を印加する電圧源、19はホール素子17の電圧出力を取り出すリード線であり、アルミ基板12に接続するためのパッド20に接続されている。ホール素子17の電圧出力は増幅回路21によって必要な程度に増幅され、被検出電流に対応した電流検出出力22として外部に取り出されるものである。
【0009】
なお、被検出電流経路パターン14の所定個所16の周りに流れる電流によって所定個所16に生じる磁束密度は、電流の大きさが同じとすると円弧状線路の半径が小さいほど大きくなる。したがって被検出電流経路パターン14の周回径を小さく、また被検出電流経路パターン14の幅を細くした方が検出感度を大きくすることができる。しかしながら、電流経路の周回径を小さくし、経路幅を細くすると、大きな電流が電流経路に流れた場合に、その部位での発熱が過大となる。そこで、被検出電流経路パターン14にスリット15を適所に入れることにより、実際に電流が流れる経路を円弧の内周側に集中させながら、熱的には外側の導体パターンとの十分な接続を持たせて放熱性を確保している。この結果、ホール素子17の検出点近傍での被検出電流の電流密度を大きくして検出感度を十分に高めることができる。
【0010】
実施の形態2.
次に、この発明の実施の形態2を図にもとづいて説明する。図2は、実施の形態2の構成を示す側面図である。平面図は図1(A)と同じであるため省略する。
また、図2において、図1と同一または相当部分には同一符号を付して説明を省略する。図1と異なる点は、アルミ基板12に代えて多層セラミック基板30(図2は4層の場合を例示している)とし、この多層セラミック基板30の第1層30a上に図1(A)に示す電流検出回路を配置し、第2層30b〜第4層30dの各層にも同形状の被検出電流経路パターン14を形成すると共に、可能な限り多くのバイア(層間接続導体)31を設けて各層に形成された被検出電流経路パターン14間を電気的及び熱的に結合し、被検出電流経路パターン14の電気抵抗及び熱抵抗を低減させる構成とした点である。なお、32は多層セラミック基板30とヒートシンク11とを結合する高熱伝導性絶縁接着層である。
このような構成とすることにより、許容可能な被測定電流値を大きくすることができる。
【0011】
実施の形態3.
次に、この発明の実施の形態3を図にもとづいて説明する。図3は、実施の形態3の構成を示す概略図で、実施の形態2と同様に、多層セラミック基板30を用いるものである(図3は5層の場合を例示している)。図3において、図1(A)及び図2と同一または相当部分には同一符号を付して説明を省略する。図2と異なる点は、比較的小さな(10アンペア程度までの)電流を精度良く低コストにて検出することを可能とする構成としたものであり、多層セラミック基板30の各層30a〜30eにそれぞれ形成される被検出電流経路パターンの所定個所16を囲む円弧状電流経路14a〜14eのうち、第1層の円弧状電流経路14aの終端部aeと第2層の円弧状電流経路14bの始端部bsとをバイア(層間接続導体)31で接続し、第2層の円弧状電流経路14bの終端部beと第3層の円弧状電流経路14cの始端部csとをバイア(層間接続導体)で接続し、以下同様に上層の円弧状電流経路の終端部と、その下層の円弧状電流経路の始端部とをバイアで接続することにより各層の電流経路を直列接続し、全体として複数巻きコイル状に形成する点である。
【0012】
このように構成された被検出電流経路に電流を流した場合、コイル状の電流経路の中心における磁束密度の大きさはコイルの巻き数に比例する。つまり、図3の如く多層構造の被検出電流経路パターン14a〜14eを複数巻きコイル形状にすることにより、磁気コア等を用いることなく低コストにて電流検出感度を上げることができ、低電流域での検出精度を高めることが可能となる。
なお、図1〜図3に示した被検出電流経路パターン14やスリット15の形状は一例であり、取り扱う電流値や基板の熱抵抗等の特性や被検出電流経路パターンを形成する金属の物性や膜厚やホール素子の感度等にもとづく磁気的及び熱的シミュレーションにより最適な形状が決定されることは云うまでもない。
【0013】
また、以上の説明においては磁気検出素子としてホール素子を例示したが、他の磁気検出素子を用いても同様な効果を期待することができる。また、ホール素子の樹脂モールド内に増幅回路を内蔵した、いわゆるホールICを用いても同様に構成することができる。
【0014】
【発明の効果】
この発明に係る電流検出装置は、基板上に電気回路と、この電気回路に接続された電流経路とが形成されると共に、上記電流経路に流れる電流を検出するようにした電流検出装置において、上記電流経路は、上記基板上の所定個所を取り囲むような形状に配設され、上記所定個所またはその近傍に電流の大きさに応じて発生する磁束を電圧に変換する磁気検出素子を設けたものであるため、部品コスト及び組み立て工数を極力削減して、かつ最小のスペースにて、安定で精度の高い非接触型電流検出装置を得ることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1の構成を示す概略図で、(A)は平面図、(B)は側面図である。
【図2】この発明の実施の形態2の構成を示す側面図である。
【図3】この発明の実施の形態3の構成を示す概略図である。
【符号の説明】
1 電流検出装置、 11 ヒートシンク、 12 アルミ基板、
13 絶縁層、 14 被検出電流経路パターン、
15 スリット、 16 所定個所、 17 ホール素子、
18 電圧源、 19 リード線、 20 パッド、
21 増幅回路、 22 電流検出出力、
30 多層セラミック基板、 31 バイア、
32 高熱伝導性絶縁接着層。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a current detecting device for detecting a motor current or the like, and more particularly to a non-contact current detecting device for a vehicle-mounted electric component such as an electric power steering device.
[0002]
[Prior art]
This type of conventional current detection device has a configuration in which a bus bar serving as a path of a detected current penetrates a C-shaped magnetic core, and a magnetic field generated by the detected current flowing through the bus bar is detected by the C-shaped magnetic core. At the same time as the magnetic flux is collected, the voltage is converted into a voltage by a Hall element installed in a gap portion of the magnetic core, and a predetermined amplification is performed by an amplifier circuit to obtain a current detection output (a voltage value proportional to the current to be detected). .
In addition, as a method that does not use a magnetic core, a conductive metal plate serving as a current path to be detected is curved in a U-shape or a U-shape, and a Hall element is arranged at the center thereof to obtain a voltage value proportional to the current to be detected. There are also devices that do so. (See, for example, Patent Documents 1 and 2).
[0003]
[Patent Document 1]
JP 2001-174486 A (paragraph 0016, FIGS. 1 and 5)
[Patent Document 2]
JP-A-2003-4771 (paragraph 0011, FIG. 7)
[0004]
[Problems to be solved by the invention]
Since the conventional non-contact type current detecting device is configured as described above, there are the following problems. That is, in the case of using a C-shaped magnetic core, the shape of the magnetic core becomes large, which may cause a problem in the mountability of a small-sized control device, particularly a vehicle-mounted control device. Also, the number of parts and the number of assembling steps are large, which is disadvantageous in terms of cost. Furthermore, the influence of the hysteresis characteristic of the magnetic core may adversely affect current detection accuracy and detection stability.
Furthermore, in the method without using a magnetic core, in order to obtain a practical detection sensitivity, it is necessary to increase the detected current density in the vicinity of the magnetic detecting element. The width had to be reduced to some extent. However, for this reason, when it is necessary to detect a current of several tens of amperes or more, such as a motor current, there is a concern that heat is concentrated near the magnetic detection element of the current path conductor to be detected. Since it is necessary to fix and package the conductor and the magnetic detection element with a resin mold or the like, there is a problem of heat radiation, an increase in volume, or an increase in cost. Further, since the current detection unit is configured separately from the control circuit board that requires current detection, there is a problem that the current detection unit needs to be attached and connection wiring to the control circuit board is required.
[0005]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a stable and high-accuracy current detection device that minimizes the cost of parts and the number of assembling steps and minimizes space. With the goal.
[0006]
[Means for Solving the Problems]
The current detection device according to the present invention is a current detection device, wherein an electric circuit and a current path connected to the electric circuit are formed on a substrate, and the current detection device detects a current flowing through the current path. The current path is provided in a shape surrounding a predetermined location on the substrate, and a magnetic detection element that converts a magnetic flux generated according to the magnitude of current into a voltage at or near the predetermined location is provided. is there.
In a power or power control circuit such as a motor drive circuit or a power supply circuit that requires current detection, a heat radiating means (heat sink) for efficiently radiating heat generated from a power control semiconductor element constituting the power or power control circuit in many cases. Originally.
The present invention effectively dissipates heat generated when a detected current such as a motor current flows through a current path pattern by sharing the heat radiating means, and enables stable current detection in a small space. . In particular, this is an effective means when the power control semiconductor element is arranged on a metal substrate (aluminum substrate) or a ceramic substrate.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. 1A and 1B are schematic diagrams showing a configuration of the first embodiment, in which FIG. 1A is a plan view and FIG. 1B is a side view.
As shown in this figure, the current detection device 1 of the first embodiment forms a control circuit such as a motor drive circuit that requires current detection and is disposed on an aluminum substrate 12 having a heat sink 11 for heat radiation. Then, the current of the motor drive circuit and the like formed through an insulating layer 13 such as an epoxy film containing a filler of about 70 μm is detected. A detected current path pattern 14 is formed on the aluminum substrate 12 as a current detection path of the electric circuit. The detected current path pattern 14 is formed of, for example, a copper foil having a thickness of about 80 μm, and a notch (slit) 15 having a width of about 0.2 mm is provided in the copper foil in a shape as illustrated. That is, the slit 15 is formed such that the current path is formed in an arc shape centered on the predetermined location 16 as shown by an arrow in FIG.
[0008]
As a result, a magnetic flux of a number proportional to the magnitude of the current to be detected is generated at the predetermined location 16, so that a magnetic detection element for converting the magnetic flux density into a voltage, for example, a Hall element 17, is provided at or near the predetermined location 16. As a result, a voltage output proportional to the current to be detected can be obtained. Reference numeral 18 denotes a voltage source for applying an operating voltage to the Hall element 17, and 19 denotes a lead wire for extracting a voltage output of the Hall element 17, and is connected to a pad 20 for connecting to the aluminum substrate 12. The voltage output of the Hall element 17 is amplified to a necessary degree by the amplifier circuit 21 and is taken out as a current detection output 22 corresponding to the current to be detected.
[0009]
Note that the magnetic flux density generated at the predetermined location 16 by the current flowing around the predetermined location 16 of the detected current path pattern 14 increases as the radius of the arc-shaped line decreases, assuming that the current has the same magnitude. Therefore, the detection sensitivity can be increased by reducing the circumference of the detected current path pattern 14 and reducing the width of the detected current path pattern 14. However, when the circumference of the current path is reduced and the path width is reduced, when a large current flows through the current path, heat generation at that portion becomes excessive. Therefore, by inserting the slit 15 in the detected current path pattern 14 at an appropriate position, the path through which the current actually flows is concentrated on the inner peripheral side of the arc, and the connection with the thermally conductive outer side conductor pattern is sufficiently provided. To ensure heat dissipation. As a result, the detection density can be sufficiently increased by increasing the current density of the detected current in the vicinity of the detection point of the Hall element 17.
[0010]
Embodiment 2 FIG.
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a side view showing the configuration of the second embodiment. The plan view is the same as FIG.
In FIG. 2, the same or corresponding parts as those in FIG. The difference from FIG. 1 is that a multilayer ceramic substrate 30 (FIG. 2 exemplifies a case of four layers) is used instead of the aluminum substrate 12, and a first ceramic substrate 30 shown in FIG. Are formed, the detected current path pattern 14 having the same shape is formed in each of the second layer 30b to the fourth layer 30d, and as many vias (interlayer connection conductors) 31 as possible are provided. Thus, the detected current path patterns 14 formed in each layer are electrically and thermally coupled to each other to reduce the electric resistance and the thermal resistance of the detected current path patterns 14. Reference numeral 32 denotes a high thermal conductive insulating adhesive layer that couples the multilayer ceramic substrate 30 and the heat sink 11.
With such a configuration, an allowable measured current value can be increased.
[0011]
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 3 is a schematic diagram showing the configuration of the third embodiment, in which a multilayer ceramic substrate 30 is used as in the second embodiment (FIG. 3 illustrates the case of five layers). In FIG. 3, the same or corresponding parts as those in FIGS. 2 is different from FIG. 2 in that a relatively small current (up to about 10 amperes) can be accurately detected at low cost. Each of the layers 30a to 30e of the multilayer ceramic substrate 30 has a different structure. Of the arc-shaped current paths 14a to 14e surrounding the predetermined portion 16 of the detected current path pattern to be formed, the end part ae of the first layer arc-shaped current path 14a and the start end part of the second layer arc-shaped current path 14b bs is connected by a via (interlayer connection conductor) 31, and the end be of the arc current path 14 b of the second layer and the start end cs of the arc current path 14 c of the third layer are connected by a via (interlayer connection conductor). Then, the current path of each layer is connected in series by connecting the end of the arc-shaped current path in the upper layer and the start end of the arc-shaped current path in the lower layer in the same manner as described above. Is a point to be formed.
[0012]
When a current flows through the detected current path configured as described above, the magnitude of the magnetic flux density at the center of the coil-shaped current path is proportional to the number of turns of the coil. That is, as shown in FIG. 3, by forming the detected current path patterns 14a to 14e having a multi-layer structure into a multi-turn coil shape, the current detection sensitivity can be increased at a low cost without using a magnetic core or the like. , It is possible to improve the detection accuracy.
The shapes of the detected current path pattern 14 and the slits 15 shown in FIGS. 1 to 3 are merely examples, and the properties of the current value to be handled, the thermal resistance of the substrate, the properties of the metal forming the detected current path pattern, and the like. It goes without saying that the optimum shape is determined by magnetic and thermal simulations based on the film thickness and the sensitivity of the Hall element.
[0013]
In the above description, the Hall element is exemplified as the magnetic detection element. However, the same effect can be expected by using another magnetic detection element. Further, the same configuration can be obtained by using a so-called Hall IC in which an amplifier circuit is built in the resin mold of the Hall element.
[0014]
【The invention's effect】
The current detection device according to the present invention is a current detection device in which an electric circuit and a current path connected to the electric circuit are formed on a substrate, and the current detection device detects a current flowing through the current path. The current path is provided in such a shape as to surround a predetermined location on the substrate, and a magnetic detection element for converting a magnetic flux generated according to the magnitude of the current into a voltage at or near the predetermined location is provided. Therefore, it is possible to obtain a stable and accurate non-contact type current detection device with a minimum space while reducing the cost of parts and the number of assembling steps as much as possible.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a first embodiment of the present invention, wherein (A) is a plan view and (B) is a side view.
FIG. 2 is a side view showing a configuration of a second embodiment of the present invention.
FIG. 3 is a schematic diagram showing a configuration of a third embodiment of the present invention.
[Explanation of symbols]
1 current detection device, 11 heat sink, 12 aluminum substrate,
13 insulating layer, 14 current path pattern to be detected,
15 slit, 16 predetermined place, 17 Hall element,
18 voltage sources, 19 leads, 20 pads,
21 amplifier circuit, 22 current detection output,
30 multilayer ceramic substrate, 31 via,
32 High thermal conductive insulating adhesive layer.

Claims (4)

基板上に電気回路と、この電気回路に接続された電流経路とが形成されると共に、上記電流経路に流れる電流を検出するようにした電流検出装置において、上記電流経路は、上記基板上の所定個所を取り囲むような形状に配設され、上記所定個所またはその近傍に電流の大きさに応じて発生する磁束を電圧に変換する磁気検出素子を設けたことを特徴とする電流検出装置。An electric circuit and a current path connected to the electric circuit are formed on a substrate, and the current detecting device is configured to detect a current flowing through the current path. A current detection device, which is provided in a shape surrounding a location, and provided with a magnetic detection element for converting magnetic flux generated according to the magnitude of current into a voltage at or near the predetermined location. 上記基板を多層構造とし、各層にそれぞれ電流経路を形成すると共に、各層間に跨る複数個の層間接続導体を設けて各層の電流経路を接続したことを特徴とする請求項1記載の電流検出装置。2. The current detecting device according to claim 1, wherein the substrate has a multilayer structure, a current path is formed in each layer, and a plurality of interlayer connection conductors extending between the layers are provided to connect the current paths in each layer. . 多層構造の基板上に電気回路と、この電気回路に接続された電流経路とが形成されると共に、上記電流経路に流れる電流を検出するようにした電流検出装置において、上記電流経路は、上記基板上の所定個所または各層におけるその対応個所を取り囲むように各層に設けられ、上記所定個所または対応個所を取り囲む電流経路の終端部とその下層の電流経路の始端部とを層間接続導体で接続することにより、各層の電流経路を全体としてコイル状に形成すると共に、上記所定個所またはその近傍に電流の大きさに応じて発生する磁束を電圧に変換する磁気検出素子を設けたことを特徴とする電流検出装置。An electric circuit and a current path connected to the electric circuit are formed on a substrate having a multilayer structure, and the current detecting device is configured to detect a current flowing through the current path. A terminal provided on each layer so as to surround the corresponding place in the upper predetermined place or each layer, and connecting the terminal end of the current path surrounding the predetermined place or the corresponding place to the start end of the current path in the lower layer by an interlayer connection conductor. A current path of each layer is formed as a whole in the form of a coil, and a magnetic detection element for converting a magnetic flux generated in accordance with the magnitude of the current into a voltage at or near the predetermined location is provided. Detection device. 上記電流経路には、上記所定個所近傍の電流密度が大きくなるようにスリットを形成したことを特徴とする請求項1〜請求項3のいずれか1項記載の電流検出装置。The current detection device according to claim 1, wherein a slit is formed in the current path so that a current density near the predetermined location is increased.
JP2003149716A 2003-05-27 2003-05-27 Current detector Pending JP2004354106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149716A JP2004354106A (en) 2003-05-27 2003-05-27 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003149716A JP2004354106A (en) 2003-05-27 2003-05-27 Current detector

Publications (1)

Publication Number Publication Date
JP2004354106A true JP2004354106A (en) 2004-12-16

Family

ID=34045742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149716A Pending JP2004354106A (en) 2003-05-27 2003-05-27 Current detector

Country Status (1)

Country Link
JP (1) JP2004354106A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020402A (en) * 2006-07-14 2008-01-31 Asahi Kasei Electronics Co Ltd Electric current detection mechanism
JP2015052471A (en) * 2013-09-05 2015-03-19 ルネサスエレクトロニクス株式会社 Sensor device
JPWO2015156260A1 (en) * 2014-04-07 2017-04-13 アルプス電気株式会社 Current detector
JP2021085711A (en) * 2019-11-26 2021-06-03 ローム株式会社 Current detector
JP2021085712A (en) * 2019-11-26 2021-06-03 ローム株式会社 Current detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008020402A (en) * 2006-07-14 2008-01-31 Asahi Kasei Electronics Co Ltd Electric current detection mechanism
JP2015052471A (en) * 2013-09-05 2015-03-19 ルネサスエレクトロニクス株式会社 Sensor device
JPWO2015156260A1 (en) * 2014-04-07 2017-04-13 アルプス電気株式会社 Current detector
JP2021085711A (en) * 2019-11-26 2021-06-03 ローム株式会社 Current detector
JP2021085712A (en) * 2019-11-26 2021-06-03 ローム株式会社 Current detector

Similar Documents

Publication Publication Date Title
JP3453115B2 (en) Power assembly for current sensing
US9983238B2 (en) Magnetic field current sensors having enhanced current density regions
CN105026946B (en) Sense the electric current in conductor
JP2011080970A (en) Detection device of multiphase current
US8878531B2 (en) Current sensor
JP2004152789A (en) Current detecting device
JPH10267965A (en) Current sensor
JP2006242946A (en) Surface-mount integrated current sensor
JP2012154831A (en) Current sensor
JP6650045B2 (en) Current sensor
JP5234459B2 (en) Current sensor
JP4731418B2 (en) Semiconductor module
JP2011145273A (en) Current sensor
JP6286157B2 (en) Sensor device
JP2000171491A (en) Power semiconductor module
US9103853B2 (en) Current sensor
JP5630633B2 (en) Multiphase current detector
JP2004354106A (en) Current detector
JP2011135725A (en) Power converter
JP5057245B2 (en) Current sensor
JP2005201898A (en) Displacement detector
JP5458319B2 (en) Current sensor
JP5500536B2 (en) Power semiconductor module and power converter using the power semiconductor module
Alvi et al. SiC Power Module Design for High Bandwidth Integrated Current Sensing using a Magnetoresistive Point Field Detector
US11150276B2 (en) Current detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630