JP2021085712A - Current detector - Google Patents

Current detector Download PDF

Info

Publication number
JP2021085712A
JP2021085712A JP2019213361A JP2019213361A JP2021085712A JP 2021085712 A JP2021085712 A JP 2021085712A JP 2019213361 A JP2019213361 A JP 2019213361A JP 2019213361 A JP2019213361 A JP 2019213361A JP 2021085712 A JP2021085712 A JP 2021085712A
Authority
JP
Japan
Prior art keywords
wiring
magnetic field
axis direction
path portion
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019213361A
Other languages
Japanese (ja)
Inventor
竜哉 眞野
Tatsuya Mano
竜哉 眞野
博之 網永
Hiroyuki Aminaga
博之 網永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2019213361A priority Critical patent/JP2021085712A/en
Publication of JP2021085712A publication Critical patent/JP2021085712A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

To provide a current detector which is of a low loss type, and with which it is possible to improve the S/N ratio of a detection signal even when the amount of current to be detected is small.SOLUTION: A substrate 2 includes first wiring 2A of the same layer, the first wiring 2A including a plurality of outward paths 21A-21C extending in a second direction (y axis direction) and arrayed in a first direction (x axis direction) and a plurality of homeward paths 22A-22C extending in the second direction and arrayed in the first direction, the plurality of homeward paths 22A-22C being arranged on one side in the first direction relative to the plurality of outward paths 21A-21C. A first magnetic field detection part 11 is, in a plan view of a plane that includes the first and second directions, arranged in a first second-direction area which the plurality of outward paths 21A-21C overlap as seen in the first direction, and a second magnetic field detection part 12 is, in the plan view, arranged in a second second-direction area which the plurality of homeward paths 22A-22C overlap as seen in the first direction.SELECTED DRAWING: Figure 8

Description

本発明は、電流検出装置に関する。 The present invention relates to a current detector.

従来、1次導体に流れる電流を測定する電流センサとして、例えばホール素子を用いるもの(ホール型)や磁気抵抗効果素子を用いるもの(MR型)が知られている(例えば、特許文献1を参照)。 Conventionally, as a current sensor for measuring the current flowing through the primary conductor, for example, one using a Hall element (Hall type) and one using a magnetoresistive effect element (MR type) are known (see, for example, Patent Document 1). ).

特開2011−39021号公報Japanese Unexamined Patent Publication No. 2011-39021

しかしながら、特にホール型の電流センサは、一般的に感度が低いので、1次導体とホール素子とを近付ける必要があり、電流センサのICパッケージ内部に1次導体を設ける必要があった。すなわち、ICパッケージ内部に電流を引き込む引き込み型の電流センサとする必要があった。引き込み型の電流センサでは、1次導体の抵抗値が大きくなり、損失が大きくなる虞があった。 However, since the sensitivity of a Hall-type current sensor is generally low, it is necessary to bring the primary conductor and the Hall element close to each other, and it is necessary to provide the primary conductor inside the IC package of the current sensor. That is, it is necessary to use a retractable current sensor that draws a current inside the IC package. In the retractable current sensor, the resistance value of the primary conductor becomes large, and there is a possibility that the loss becomes large.

上記状況に鑑み、本発明は、低損失であり、且つ、検出対象電流量が小さい場合でも検出信号のS/N比を向上できる電流検出装置を提供することを目的とする。 In view of the above situation, it is an object of the present invention to provide a current detection device having low loss and capable of improving the S / N ratio of the detection signal even when the amount of current to be detected is small.

上記目的を達成するために本発明に係る電流検出装置は、
第1方向、第2方向および第3方向は互いに直交するとして、
前記第1方向および前記第2方向を含む平面状に拡がり、前記第3方向に厚みを有する基板と、
前記基板の前記第3方向一方側表面に配置される磁界センサと、
を備え、
前記磁界センサは、第1磁界検出部と、第2磁界検出部と、を有し、
前記基板は、同一層の第1配線を有し、
前記第1配線は、前記第2方向に延びて前記第1方向に配列される複数の往路部と、前記第2方向に延びて前記第1方向に配列される複数の復路部と、を含み、
前記複数の復路部は、前記複数の往路部に対して前記第1方向一方側に配置され、
前記第1磁界検出部は、前記第1方向および前記第2方向を含む平面の平面視において、前記第1方向に視て前記複数の往路部が重なる第1の第2方向領域に配置され、
前記第2磁界検出部は、前記平面視において、前記第1方向に視て前記複数の復路部が重なる第2の第2方向領域に配置される構成としている(第1の構成)。
The current detection device according to the present invention in order to achieve the above object
Assuming that the first direction, the second direction, and the third direction are orthogonal to each other,
A substrate that spreads in a plane including the first direction and the second direction and has a thickness in the third direction.
A magnetic field sensor arranged on the surface of the substrate on one side in the third direction,
With
The magnetic field sensor has a first magnetic field detection unit and a second magnetic field detection unit.
The substrate has the first wiring of the same layer and has.
The first wiring includes a plurality of outward paths extending in the second direction and arranged in the first direction, and a plurality of return paths extending in the second direction and arranged in the first direction. ,
The plurality of return paths are arranged on one side of the first direction with respect to the plurality of outward paths.
The first magnetic field detection unit is arranged in a first second direction region in which the plurality of outward path portions overlap when viewed in the first direction in a plan view of a plane including the first direction and the second direction.
The second magnetic field detection unit is configured to be arranged in a second second direction region in which the plurality of return path portions overlap when viewed in the first direction in the plan view (first configuration).

また、上記第1の構成において、前記複数の往路部を第m往路部(m=1〜n)とし、前記複数の復路部を第m復路部(m=1〜n)(n:3以上の整数)とすると、
第1往路部から第n往路部は、順に前記第1方向一方側に配列され、
第1復路部から第n復路部は、順に前記第1方向他方側に配列され、
mを2以上として、第m往路部の前記第2方向一方側端と、第m復路部の前記第2方向一方側端とは、前記第1方向に連結され、
mを2以上として、第m復路部の前記第2方向他方側端と、第(m+1)往路部の前記第2方向他方側端とは、前記第1方向に連結されることとしてもよい(第2の構成)。
Further, in the first configuration, the plurality of outward paths are defined as m first outward paths (m = 1 to n), and the plurality of return paths are designated as m third return paths (m = 1 to n) (n: 3 or more). Integer)
The first outbound route portion to the nth outbound route portion are arranged in order on one side in the first direction.
The first return path section to the nth return path section are arranged in order on the other side in the first direction.
With m being 2 or more, the one-sided end in the second direction of the m-outward route portion and the one-sided end in the second direction of the m-return route portion are connected in the first direction.
When m is 2 or more, the other end in the second direction of the m return path portion and the other end in the second direction of the (m + 1) outward path portion may be connected in the first direction (m). Second configuration).

また、上記第2の構成において、前記基板は、前記平面視において、第1〜第(n−1)復路部を前記第2方向へ横切る出力配線と、第n復路部の前記第2方向他方側端と前記出力配線とを電気的に接続して前記第3方向に延びるスルーホールと、を有することとしてもよい(第3の構成)。 Further, in the second configuration, the substrate has an output wiring that crosses the first to first (n-1) return paths in the second direction and the second direction of the nth return path in the plan view. It may have a through hole extending in the third direction by electrically connecting the side end and the output wiring (third configuration).

また、上記第1から第3のいずれかの構成において、前記基板は、前記第1配線よりも前記第3方向他方側に配置されて同一層の第2配線をさらに有し、
前記第1配線の一端部と前記第2配線の一端部とは、電気的に接続され、
前記第1配線の他端部と前記第2配線の他端部とは、電気的に接続され、
前記第2配線は、前記第2方向に延びて前記第1方向に配列される複数の下側往路部と、前記第2方向に延びて前記第1方向に配列される複数の下側復路部と、を含み、
前記複数の下側復路部は、前記複数の下側往路部に対して前記第1方向一方側に配置され、
前記第1磁界検出部は、前記平面視において、前記第1方向に視て前記複数の下側往路部が重なる第3の第2方向領域に配置され、
前記第2磁界検出部は、前記平面視において、前記第1方向に視て前記複数の下側復路部が重なる第4の第2方向領域に配置されることとしてもよい(第4の構成)。
Further, in any of the first to third configurations, the substrate is arranged on the other side of the third direction from the first wiring and further has a second wiring of the same layer.
One end of the first wiring and one end of the second wiring are electrically connected to each other.
The other end of the first wiring and the other end of the second wiring are electrically connected.
The second wiring includes a plurality of lower outward paths extending in the second direction and arranged in the first direction, and a plurality of lower return paths extending in the second direction and arranged in the first direction. And, including
The plurality of lower return paths are arranged on one side of the first direction with respect to the plurality of lower outward paths.
The first magnetic field detection unit is arranged in a third second direction region in which the plurality of lower outward path portions overlap when viewed in the first direction in the plan view.
The second magnetic field detection unit may be arranged in a fourth second direction region in which the plurality of lower return paths overlap in the first direction in the plan view (fourth configuration). ..

また、上記第4の構成において、前記複数の下側往路部を第m下側往路部(m=1〜l)とし、前記複数の下側復路部を第m下側復路部(m=1〜l)(l:3以上の整数)とすると、
第1下側往路部から第l下側往路部は、順に前記第1方向一方側に配列され、
第1下側復路部から第l下側復路部は、順に前記第1方向他方側に配列され、
mを2以上として、第m下側往路部の前記第2方向一方側端と、第m下側復路部の前記第2方向一方側端とは、前記第1方向に連結され、
mを2以上として、第m下側復路部の前記第2方向他方側端と、第(m+1)下側往路部の前記第2方向他方側端とは、前記第1方向に連結されることとしてもよい(第5の構成)。
Further, in the fourth configuration, the plurality of lower outward paths are defined as m lower outward paths (m = 1 to 1), and the plurality of lower return sections are designated as m lower return sections (m = 1). ~ L) (l: an integer of 3 or more)
The first lower outbound route portion to the l lower outbound route portion are arranged in order on one side in the first direction.
The first lower return section to the first lower return section are arranged in order on the other side in the first direction.
With m being 2 or more, the one-sided end in the second direction of the lower m lower outbound route and the one-sided end in the second direction of the lower m lower inbound route are connected in the first direction.
When m is 2 or more, the other end in the second direction of the lower return path portion of m and the other end in the second direction of the (m + 1) lower outward path portion are connected in the first direction. (Fifth configuration).

また、上記第5の構成において、前記基板は、前記平面視において、第1〜第(n−1)下側復路部を前記第2方向へ横切る出力配線と、第n下側復路部の前記第2方向他方側端と前記出力配線とを電気的に接続して前記第3方向に延びるスルーホールと、を有することとしてもよい(第6の構成)。 Further, in the fifth configuration, the substrate has an output wiring that crosses the first to first (n-1) lower return paths in the second direction in the plan view, and the nth lower return path section. It may have a through hole extending in the third direction by electrically connecting the other end in the second direction and the output wiring (sixth configuration).

また、上記第4から第6のいずれかの構成において、前記往路部の幅および前記復路部の幅は、同じ第1幅であり、前記下側往路部の幅および前記下側復路部の幅は、同じ第2幅であり、前記第1幅と前記第2幅と、は異なっていることとしてもよい(第7の構成)。 Further, in any of the fourth to sixth configurations, the width of the outward path portion and the width of the return path portion are the same first width, and the width of the lower outward path portion and the width of the lower return path portion. Is the same second width, and the first width and the second width may be different (seventh configuration).

また、上記第4から第7のいずれかの構成において、前記第1方向一方側端に配置される前記往路部と前記第1方向他方側端に配置される前記復路部との間の前記第1方向距離と、前記第1方向一方側端に配置される前記下側往路部と前記第1方向他方側端に配置される前記下側復路部との間の前記第1方向距離と、は異なっていることとしてもよい(第8の構成)。 Further, in any of the fourth to seventh configurations, the first path portion between the outward path portion arranged at one side end in the first direction and the return path portion arranged at the other side end in the first direction. The one-way distance and the first-way distance between the lower outward path portion arranged at the one-side end in the first direction and the lower return path portion arranged at the other end in the first direction are: It may be different (eighth configuration).

また、上記第4から第8のいずれかの構成において、前記第1配線および前記第2配線のそれぞれの幅、厚み、経路長、および材質の少なくともいずれかは異なっていることとしてもよい(第9の構成)。 Further, in any of the fourth to eighth configurations, at least one of the width, thickness, path length, and material of the first wiring and the second wiring may be different (the first). 9 configuration).

また、上記第4から第9のいずれかの構成において、前記下側往路部と前記下側復路部とは、負荷を介した連結部により連結されることとしてもよい(第10の構成)。 Further, in any of the fourth to ninth configurations, the lower outward path portion and the lower return path portion may be connected by a connecting portion via a load (tenth configuration).

また、上記第1から第10のいずれかの構成において、前記往路部と前記復路部とは、負荷を介した連結部により連結されることとしてもよい(第11の構成)。 Further, in any of the first to tenth configurations, the outward path portion and the return path portion may be connected by a connecting portion via a load (11th configuration).

また、上記第1から第11のいずれかの構成において、前記第1磁界検出部および前記第2磁界検出部は、MI(磁気インピーダンス)効果素子を用いて磁界を検出することとしてもよい(第12の構成)。 Further, in any of the first to eleventh configurations, the first magnetic field detection unit and the second magnetic field detection unit may detect a magnetic field using an MI (magnetic impedance) effect element (first). 12 configurations).

本発明の電流検出装置によれば、低損失であり、且つ、検出対象電流量が小さい場合でも検出信号のS/N比を向上できる。 According to the current detection device of the present invention, the S / N ratio of the detection signal can be improved even when the loss is low and the amount of current to be detected is small.

磁界センサのICパッケージをz軸方向一方側から視た平面図である。It is a top view which looked at the IC package of a magnetic field sensor from one side in the z-axis direction. 磁界センサのブロック構成図である。It is a block block diagram of a magnetic field sensor. 駆動電流とピックアップコイルに生じる誘起電圧の一例を示す波形図である。It is a waveform figure which shows an example of the drive current and the induced voltage generated in a pickup coil. 比較例に係る電流検出装置のz軸方向一方側から視た平面図である。It is a top view seen from one side in the z-axis direction of the current detection apparatus which concerns on a comparative example. 図4におけるA−A断面図である。FIG. 5 is a sectional view taken along the line AA in FIG. 図4におけるy軸方向領域を示すための平面図である。It is a top view for showing the y-axis direction region in FIG. 往路部の幅および復路部の幅と、電流検出感度との相関関係の一例を示す図である。It is a figure which shows an example of the correlation between the width of the outward path portion and the width of a return path portion, and the current detection sensitivity. 磁界センサと配線との間のz軸方向の距離と、電流検出感度との相関関係の一例を示す図である。It is a figure which shows an example of the correlation between the distance in the z-axis direction between a magnetic field sensor and a wiring, and a current detection sensitivity. 往路部と復路部との間のx軸方向の距離と、電流検出感度との相関関係の一例を示す図である。It is a figure which shows an example of the correlation between the distance in the x-axis direction between an outward path part and a return path part, and a current detection sensitivity. 第1実施形態に係る電流検出装置のz軸方向一方側から視た平面図である。It is a top view seen from one side in the z-axis direction of the current detection apparatus which concerns on 1st Embodiment. 図8におけるA−A断面図である。FIG. 8 is a cross-sectional view taken along the line AA in FIG. 第1実施形態におけるy軸方向領域を示すための平面図である。It is a top view for showing the y-axis direction region in 1st Embodiment. 第2実施形態に係る電流検出装置のz軸方向一方側から視た平面図である。It is a top view seen from one side in the z-axis direction of the current detection apparatus which concerns on 2nd Embodiment. 図11におけるA−A断面図である。11 is a cross-sectional view taken along the line AA in FIG. 図11におけるB−B断面図である。FIG. 11 is a cross-sectional view taken along the line BB in FIG. 第2実施形態におけるy軸方向領域を示すための平面図である。It is a top view for showing the y-axis direction region in 2nd Embodiment. 第1実施例に係る測定対象システムの模式図である。It is a schematic diagram of the measurement target system which concerns on 1st Example. 第2実施例に係る測定対象システムの模式図である。It is a schematic diagram of the measurement target system which concerns on 2nd Example.

以下に本発明の一実施形態について図面を参照して説明する。なお、図面において、互いに直交するx軸方向(第1方向)、y軸方向(第2方向)、およびz軸方向(第3方向)を示す場合がある。この場合、矢印の指し示す側を一方側、その反対側を他方側と称する。 An embodiment of the present invention will be described below with reference to the drawings. In the drawings, the x-axis direction (first direction), the y-axis direction (second direction), and the z-axis direction (third direction) that are orthogonal to each other may be shown. In this case, the side pointed by the arrow is referred to as one side, and the opposite side is referred to as the other side.

<1.磁界センサの構成>
まず、本発明の実施形態に係る電流検出装置に用いられる磁界センサの構成について説明する。図1は、磁界センサ1のICパッケージをz軸方向一方側から視た平面図である。図1では、ICパッケージ内部に設けられる第1磁界検出部11および第2磁界検出部12の位置を示している。なお、図1において、ICパッケージの紙面右上端部に示す黒丸は、ICパッケージの隅の位置を特定するために便宜上図示しており、他の図面で磁界センサ1を図示する場合も黒丸を表記している。
<1. Magnetic field sensor configuration>
First, the configuration of the magnetic field sensor used in the current detection device according to the embodiment of the present invention will be described. FIG. 1 is a plan view of the IC package of the magnetic field sensor 1 as viewed from one side in the z-axis direction. FIG. 1 shows the positions of the first magnetic field detection unit 11 and the second magnetic field detection unit 12 provided inside the IC package. In FIG. 1, the black circle shown at the upper right end of the paper surface of the IC package is shown for convenience in order to specify the position of the corner of the IC package, and the black circle is also shown when the magnetic field sensor 1 is shown in other drawings. doing.

図1に示すように、磁界センサ1のICパッケージは、平面視(x軸方向およびy軸方向を含む平面)において、x軸方向に延びる辺およびy軸方向に延びる辺を有する矩形状である。 As shown in FIG. 1, the IC package of the magnetic field sensor 1 has a rectangular shape having a side extending in the x-axis direction and a side extending in the y-axis direction in a plan view (a plane including the x-axis direction and the y-axis direction). ..

第1磁界検出部11のx軸方向中心位置は、ICパッケージのx軸方向中心位置x0よりx軸方向他方側に距離DX1だけ離れている。第2磁界検出部12のx軸方向中心位置は、x軸方向中心位置x0よりx軸方向一方側に距離DX2だけ離れている。そして、DX1=DX2である。 The center position of the first magnetic field detection unit 11 in the x-axis direction is separated from the center position x0 in the x-axis direction of the IC package by a distance DX1 on the other side in the x-axis direction. The center position of the second magnetic field detection unit 12 in the x-axis direction is separated from the center position x0 in the x-axis direction by a distance DX2 on one side in the x-axis direction. Then, DX1 = DX2.

また、第1磁界検出部11のy軸方向中心位置および第2磁界検出部12のy軸方向中心位置は、ともにICパッケージのY軸方向他方側端よりy軸方向一方側に距離DYだけ離れている。 Further, the center position in the y-axis direction of the first magnetic field detection unit 11 and the center position in the y-axis direction of the second magnetic field detection unit 12 are both separated from the other end in the Y-axis direction of the IC package by a distance DY on one side in the y-axis direction. ing.

図2は、磁界センサ1のブロック構成図である。磁界センサ1は、第1磁界検出部11と、第2磁界検出部12と、第1サンプル/ホールド部141と、第2サンプル/ホールド部142と、第1アンプ部151と、第2アンプ部152と、減算部16と、発振部17と、パルス駆動部18と、を有しており、これらの構成要素は、一つのICチップに集積化される。 FIG. 2 is a block configuration diagram of the magnetic field sensor 1. The magnetic field sensor 1 includes a first magnetic field detection unit 11, a second magnetic field detection unit 12, a first sample / hold unit 141, a second sample / hold unit 142, a first amplifier unit 151, and a second amplifier unit. It has 152, a subtraction unit 16, an oscillation unit 17, and a pulse drive unit 18, and these components are integrated into one IC chip.

第1磁界検出部11および第2磁界検出部12のそれぞれは、共有の磁気インピーダンス効果素子(MI効果素子)13と、これに巻回されたコイルL1、L2を含み、コイルL1、L2のそれぞれの両端間に生じる誘起電圧をセンサ信号S11、S12として出力する。MI効果素子13は、例えば、アモルファスワイヤとして構成される。 Each of the first magnetic field detection unit 11 and the second magnetic field detection unit 12 includes a shared magnetic impedance effect element (MI effect element) 13 and coils L1 and L2 wound around the common magnetic impedance effect element (MI effect element) 13, and each of the coils L1 and L2. The induced voltage generated between both ends of is output as sensor signals S11 and S12. The MI effect element 13 is configured as, for example, an amorphous wire.

第1サンプル/ホールド部141および第2サンプル/ホールド部142は、それぞれ、クロック信号CLKに同期して所定の位相におけるセンサ信号S11、S12の信号値(例えばピーク値)をサンプル/ホールドすることにより、サンプル/ホールド信号S21、S22を生成する。 The first sample / hold unit 141 and the second sample / hold unit 142 sample / hold the signal values (for example, peak values) of the sensor signals S11 and S12 in a predetermined phase in synchronization with the clock signal CLK, respectively. , Sample / hold signals S21 and S22 are generated.

第1アンプ部151および第2アンプ部152のそれぞれは、サンプル/ホールド信号S21、S22をそれぞれ所定のゲインで増幅することにより、増幅信号S31、S32を生成する。減算部16は、増幅信号S31から増幅信号S32を減算して出力信号S40を生成する。 Each of the first amplifier unit 151 and the second amplifier unit 152 generates amplification signals S31 and S32 by amplifying the sample / hold signals S21 and S22 with predetermined gains, respectively. The subtraction unit 16 subtracts the amplification signal S32 from the amplification signal S31 to generate the output signal S40.

発振部17は、所定周波数のクロック信号CLKを生成し、これをサンプル/ホールド部141、142とパルス駆動部18に供給する。パルス駆動部18は、クロック信号CLKに同期してパルス波状の駆動電流Ipを生成し、これをMI効果素子13に供給する。 The oscillation unit 17 generates a clock signal CLK having a predetermined frequency, and supplies the clock signal CLK to the sample / hold units 141 and 142 and the pulse drive unit 18. The pulse drive unit 18 generates a pulse wave-shaped drive current Ip in synchronization with the clock signal CLK, and supplies this to the MI effect element 13.

ここで、MI効果素子13を用いた磁界検出方法の原理について述べる。MI効果素子13に通電していないときは、MI効果素子13において電子スピンは周方向に向く。なお、周方向とは、MI効果素子13の軸方向周りの方向である。そして、通電していないMI効果素子13に外部磁界が印加されると、電子スピンは傾く。ここで、MI効果素子13に通電すると、電流により生じる周方向の磁界により電子スピンが回転し、周方向の一方向に揃う。この回転の際に生じるMI効果素子13の軸方向の磁気ベクトル変化の速度に比例した誘起電圧がピックアップコイル(コイルL11、L12)に発生する。その後、通電を解除すると、電子スピンは外部磁界に応じた傾いた状態に変化し、その際のMI効果素子13の軸方向の磁気ベクトル変化の速度に比例した誘起電圧がピックアップコイルに発生する。 Here, the principle of the magnetic field detection method using the MI effect element 13 will be described. When the MI effect element 13 is not energized, the electron spins in the MI effect element 13 are directed in the circumferential direction. The circumferential direction is a direction around the axial direction of the MI effect element 13. Then, when an external magnetic field is applied to the MI effect element 13 that is not energized, the electron spin is tilted. Here, when the MI effect element 13 is energized, the electron spins are rotated by the magnetic field in the circumferential direction generated by the electric current, and are aligned in one direction in the circumferential direction. An induced voltage generated in the pickup coils (coils L11 and L12) is generated in the pickup coils (L11, L12) in proportion to the speed of the magnetic vector change in the axial direction of the MI effect element 13 generated during this rotation. After that, when the energization is released, the electron spin changes to a tilted state according to the external magnetic field, and an induced voltage proportional to the speed of the axial magnetic vector change of the MI effect element 13 at that time is generated in the pickup coil.

従って、図3に示すように、MI効果素子13に通電されていない状態から駆動電流Ipにより通電されると(パルス波の立上り)、コイルL11、L12に外部磁界に応じた誘起電圧VHが発生し、センサ信号S11、S12として出力される。また、MI効果素子13が通電された状態から駆動電流Ipによる通電が停止されると(パルス波の立下り)、コイルL11、L12に先の誘起電圧とは逆極性の誘起電圧VLが発生し、センサ信号S11、S12として出力される。なお、外部磁界の向きが逆となると、発生する誘起電圧の極性も逆となる。 Therefore, as shown in FIG. 3, when the MI effect element 13 is energized by the drive current Ip from the state where it is not energized (rising of the pulse wave), the induced voltage VH corresponding to the external magnetic field is generated in the coils L11 and L12. Then, it is output as sensor signals S11 and S12. Further, when the energization by the drive current Ip is stopped from the state where the MI effect element 13 is energized (falling edge of the pulse wave), an induced voltage VL having a polarity opposite to the previous induced voltage is generated in the coils L11 and L12. , It is output as sensor signals S11 and S12. When the direction of the external magnetic field is reversed, the polarity of the generated induced voltage is also reversed.

すなわち、パルス波状の駆動電流Ipにより誘起電圧VH、VLが発生するので、サンプル/ホールド部141、142は、センサ信号S11、S12のピーク値を取得する場合は、誘起電圧VHのピーク値PHと誘起電圧VLのピーク値PLのうちいずれを取得してもよい。 That is, since the induced voltages VH and VL are generated by the pulse wave-shaped drive current Ip, the sample / hold units 141 and 142 are set to the peak value PH of the induced voltage VH when acquiring the peak values of the sensor signals S11 and S12. Any of the peak value PL of the induced voltage VL may be acquired.

<2.比較例>
ここで、本発明の実施形態の理解を助けるため、当該実施形態を説明する前に比較例に係る電流検出装置について説明する。
<2. Comparative example>
Here, in order to help the understanding of the embodiment of the present invention, the current detection device according to the comparative example will be described before the embodiment is described.

図4は、比較例に係る電流検出装置50のz軸方向一方側から視た平面図である。また、図5は、図4における磁界検出部11、12をx軸方向に横切るA−A切断線で切断した場合のA−A断面図である。 FIG. 4 is a plan view of the current detection device 50 according to the comparative example as viewed from one side in the z-axis direction. Further, FIG. 5 is a cross-sectional view taken along the line AA when the magnetic field detection units 11 and 12 in FIG. 4 are cut along the AA cutting line crossing the x-axis direction.

図4に示すように、比較例に係る電流検出装置50は、x軸方向およびy軸方向を含む平面状に拡がってz軸方向に厚みを有するプリント基板20と、磁界センサ1と、を含む。プリント基板20には、配線20Aが形成される。配線20Aは、例えば、銅箔により形成される。配線20Aは、測定対象電流Iが流れる経路である。 As shown in FIG. 4, the current detection device 50 according to the comparative example includes a printed circuit board 20 that extends in a plane including the x-axis direction and the y-axis direction and has a thickness in the z-axis direction, and a magnetic field sensor 1. .. Wiring 20A is formed on the printed circuit board 20. The wiring 20A is formed of, for example, copper foil. The wiring 20A is a path through which the measurement target current I flows.

配線20Aは、y軸方向に延びる往路部201と、y軸方向に延びる復路部202と、連結部203と、を含む。往路部201と復路部202は、x軸方向に配列される。連結部203は、往路部201のy軸方向一方側端と復路部202のy軸方向一方側端とをx軸方向に連結する。これにより、図4に示すように、往路部201、復路部202、および連結部203により、平面視でコの字状が形成される。なお、連結部203を湾曲させた形状とし、往路部201、復路部202、および連結部203によりU字状を形成してもよい。 The wiring 20A includes an outward path portion 201 extending in the y-axis direction, a return path portion 202 extending in the y-axis direction, and a connecting portion 203. The outward path portion 201 and the return path portion 202 are arranged in the x-axis direction. The connecting portion 203 connects the one-sided end in the y-axis direction of the outward path portion 201 and the one-sided end in the y-axis direction of the returning path portion 202 in the x-axis direction. As a result, as shown in FIG. 4, the outward path portion 201, the return path portion 202, and the connecting portion 203 form a U-shape in a plan view. The connecting portion 203 may have a curved shape, and the outward path portion 201, the returning path portion 202, and the connecting portion 203 may form a U shape.

図4に示すように、測定対象電流Iは、往路部201をy軸方向一方側へ流れ、連結部203を介して復路部202に流れ込み、復路部202をy軸方向他方側へ流れる。なお、測定対象電流Iは、復路部202をy軸方向一方側へ流れた場合は、連結部203を介して往路部201に流れ込み、往路部201をy軸方向他方側へ流れる。このように、往路部201と復路部202は、測定対象電流Iが互いに逆向きに流れるよう設けられる。 As shown in FIG. 4, the measurement target current I flows through the outward path portion 201 to one side in the y-axis direction, flows into the return path portion 202 via the connecting portion 203, and flows through the return path portion 202 to the other side in the y-axis direction. When the measurement target current I flows through the return path portion 202 to one side in the y-axis direction, it flows into the outward path portion 201 via the connecting portion 203, and flows through the outward path portion 201 to the other side in the y-axis direction. In this way, the outward path portion 201 and the return path portion 202 are provided so that the measurement target currents I flow in opposite directions to each other.

また、図5に示すように、磁界センサ1は、プリント基板20のz軸方向一方側表面20Sに配置される。図6に示すように、第1磁界検出部11は、平面視において、往路部201のy軸方向両端位置間のy軸方向領域R201に配置される。第2磁界検出部12は、平面視において、復路部202のy軸方向両端位置間のy軸方向領域R202に配置される。図6では、y軸方向領域R201,R202ともにx軸方向に延びる2つの破線にy軸方向に挟まれる領域である。 Further, as shown in FIG. 5, the magnetic field sensor 1 is arranged on the surface 20S on one side in the z-axis direction of the printed circuit board 20. As shown in FIG. 6, the first magnetic field detection unit 11 is arranged in the y-axis direction region R201 between the positions of both ends in the y-axis direction of the outward path unit 201 in a plan view. The second magnetic field detection unit 12 is arranged in the y-axis direction region R202 between the positions of both ends in the y-axis direction of the return path unit 202 in a plan view. In FIG. 6, both the y-axis direction regions R201 and R202 are regions sandwiched in the y-axis direction by two broken lines extending in the x-axis direction.

図5に示すように、往路部201のx軸方向の幅と、復路部202のx軸方向の幅とは、幅Wで同じである。そして、図4に示すように、平面視において、往路部201のx軸方向中心位置は、x軸方向中心位置x0よりx軸方向他方側に距離Dx11だけ離れており、復路部202のx軸方向中心位置は、x軸方向中心位置x0よりx軸方向一方側に距離Dx12だけ離れている。Dx11=Dx12とされている。 As shown in FIG. 5, the width of the outward path portion 201 in the x-axis direction and the width of the return path portion 202 in the x-axis direction are the same in width W. Then, as shown in FIG. 4, in the plan view, the center position in the x-axis direction of the outward path portion 201 is separated from the center position x0 in the x-axis direction by a distance Dx11 to the other side in the x-axis direction, and the x-axis of the return path portion 202. The direction center position is separated from the x-axis direction center position x0 by a distance Dx12 on one side in the x-axis direction. Dx11 = Dx12.

図5に示すように、往路部201をy軸方向一方側へ流れる測定対象電流Iによって、y軸方向一方側へ視て右回りに磁界M1が発生し、復路部202をy軸方向他方側へ流れる測定対象電流Iによって、y軸方向一方側へ視て左回りに磁界M2が発生する。これにより、第1磁界検出部11に対してx軸方向一方側に向かう測定対象磁界(+b)が印加され、第2磁界検出部12に対してx軸方向他方側に向かう測定対象磁界(−b’)が印加される。ここで、bとb’とはほぼ同一となる。すなわち、第1磁界検出部11および第2磁界検出部12に対してそれぞれ印加される測定対象磁界は、逆方向且つ絶対値が略同一となる。 As shown in FIG. 5, the measurement target current I flowing in the outward path portion 201 in the y-axis direction generates a magnetic field M1 clockwise when viewed in the y-axis direction on one side, and the return path portion 202 is generated in the y-axis direction on the other side. A magnetic field M2 is generated counterclockwise when viewed to one side in the y-axis direction due to the measurement target current I flowing to. As a result, the measurement target magnetic field (+ b) directed to one side in the x-axis direction is applied to the first magnetic field detection unit 11, and the measurement target magnetic field (-) toward the other side in the x-axis direction to the second magnetic field detection unit 12. b') is applied. Here, b and b'are almost the same. That is, the measurement target magnetic fields applied to the first magnetic field detection unit 11 and the second magnetic field detection unit 12, respectively, have substantially the same absolute value in the opposite direction.

このとき、図2に示すように、第1磁界検出部11に対して測定対象磁界(+b)が印加され、第2磁界検出部12に対して測定対象磁界(−b’)が印加される。測定対象磁界(+b)に応じて生成されるセンサ信号S21は正値であり、測定対象磁界(−b)に応じて生成されるセンサ信号S22は負値であり、センサ信号S21とS22の絶対値は略同一となる。そして、第1アンプ部151および第2アンプ部152のゲイン値は、ゲイン値αで等しいとすると、センサ信号S21、S22をそれぞれα倍して増幅信号S31、S32が生成され、減算部16によって増幅信号S31からS32を減算され、出力信号S40が生成される。これにより、出力信号S40は、センサ信号S21をα倍した値をさらに2倍した正値となる。 At this time, as shown in FIG. 2, the measurement target magnetic field (+ b) is applied to the first magnetic field detection unit 11, and the measurement target magnetic field (−b ′) is applied to the second magnetic field detection unit 12. .. The sensor signal S21 generated in response to the measurement target magnetic field (+ b) has a positive value, the sensor signal S22 generated in response to the measurement target magnetic field (−b) has a negative value, and the sensor signals S21 and S22 are absolute. The values are approximately the same. Assuming that the gain values of the first amplifier unit 151 and the second amplifier unit 152 are equal at the gain value α, the sensor signals S21 and S22 are multiplied by α, respectively, and the amplification signals S31 and S32 are generated, and the subtraction unit 16 generates the amplification signals. S32 is subtracted from the amplified signal S31 to generate the output signal S40. As a result, the output signal S40 becomes a positive value obtained by further doubling the value obtained by multiplying the sensor signal S21 by α.

すなわち、図4および図5に示すように、測定対象電流Iが往路部201をy軸方向一方側へ流れる場合に、出力信号S40は正値となる。なお、測定対象電流Iが復路部202をy軸方向一方側へ流れる場合は、第1磁界検出部11に対して測定対象磁界(−b)が印加され、第2磁界検出部12に対して測定対象磁界(+b’)が印加されるため、センサ信号S21が負値、S22が正値となり、出力信号S40は負値となる。 That is, as shown in FIGS. 4 and 5, when the measurement target current I flows through the outward path portion 201 in the y-axis direction, the output signal S40 becomes a positive value. When the measurement target current I flows through the return path portion 202 to one side in the y-axis direction, the measurement target magnetic field (−b) is applied to the first magnetic field detection unit 11 and the measurement target magnetic field (−b) is applied to the second magnetic field detection unit 12. Since the measurement target magnetic field (+ b') is applied, the sensor signal S21 has a negative value, S22 has a positive value, and the output signal S40 has a negative value.

このように、電流検出装置50によれば、測定対象電流Iに応じた出力信号S40を生成することにより、測定対象電流Iを検出可能となる。特に、第1磁界検出部11および第2磁界検出部12はMI効果素子13を用いて磁界を検出するので、磁界検出の感度が高くなり、導体である往路部201および復路部202を第1磁界検出部11および第2磁界検出部12に近づける必要が無く、往路部201および復路部202を磁界センサ1とは別のプリント基板20に設けることができる。従って、従来のような引き込み型の電流センサよりも損失を抑えることができる。 In this way, according to the current detection device 50, the measurement target current I can be detected by generating the output signal S40 corresponding to the measurement target current I. In particular, since the first magnetic field detection unit 11 and the second magnetic field detection unit 12 detect the magnetic field using the MI effect element 13, the sensitivity of magnetic field detection becomes high, and the outward path unit 201 and the return path portion 202, which are conductors, are first. It is not necessary to bring the magnetic field detection unit 11 and the second magnetic field detection unit 12 close to each other, and the outward path unit 201 and the return path unit 202 can be provided on the printed circuit board 20 separate from the magnetic field sensor 1. Therefore, the loss can be suppressed as compared with the conventional retractable current sensor.

なお、第1磁界検出部11および第2磁界検出部12には、電流検出装置50の置かれた環境に依存して外乱となる環境磁界が印加されうる。この場合、第1磁界検出部11および第2磁界検出部12に対してそれぞれ印加される環境磁界は、互いに同相(+aまたは−a)となる。図2には、一例として同相(+a)が印加される場合を示すが、この場合、減算部16により増幅信号S31、S32がキャンセルされ、出力信号S40はゼロとなる。すなわち、環境磁界の影響がキャンセルされた出力信号S40を得ることができる。 An environmental magnetic field that becomes a disturbance may be applied to the first magnetic field detection unit 11 and the second magnetic field detection unit 12 depending on the environment in which the current detection device 50 is placed. In this case, the environmental magnetic fields applied to the first magnetic field detection unit 11 and the second magnetic field detection unit 12 are in phase (+ a or −a) with each other. FIG. 2 shows a case where the in-phase (+ a) is applied as an example. In this case, the amplification signals S31 and S32 are canceled by the subtraction unit 16, and the output signal S40 becomes zero. That is, the output signal S40 in which the influence of the environmental magnetic field is canceled can be obtained.

また、図5に示すプリント基板20における各パラメータを調整することで、第1磁界検出部11および第2磁界検出部12に印加する磁界を調整して、電流検出感度を調整することができる。ここで、電流検出感度とは、測定対象電流Iの1Aの変化に対する出力信号S40の変化を示す値である。 Further, by adjusting each parameter of the printed circuit board 20 shown in FIG. 5, the magnetic fields applied to the first magnetic field detection unit 11 and the second magnetic field detection unit 12 can be adjusted to adjust the current detection sensitivity. Here, the current detection sensitivity is a value indicating a change in the output signal S40 with respect to a change in 1A of the current to be measured I.

例えば、図5に示す往路部201および復路部202の幅Wと、電流検出感度との相関関係の一例を図7Aに示す。図7Aに示すように、幅Wを広くする程、電流検出感度は低くなる。また、図5に示す磁界センサ1(すなわちプリント基板20のz軸方向一方側表面20S)と配線20Aとの間のz軸方向の距離Dzと、電流検出感度との相関関係の一例を図7Bに示す。図7Bに示すように、距離Dzが長くなる程、電流検出感度は低くなる。また、図5に示す往路部201と復路部202との間のx軸方向の距離Sと、電流検出感度との相関関係の一例を図7Cに示す。図7Cに示すように、距離Sが長くなる程、電流検出感度は低くなる。 For example, FIG. 7A shows an example of the correlation between the width W of the outward path portion 201 and the return path portion 202 shown in FIG. 5 and the current detection sensitivity. As shown in FIG. 7A, the wider the width W, the lower the current detection sensitivity. Further, FIG. 7B is an example of the correlation between the distance Dz in the z-axis direction between the magnetic field sensor 1 (that is, the surface 20S on one side in the z-axis direction of the printed circuit board 20) and the wiring 20A shown in FIG. 5 and the current detection sensitivity. Shown in. As shown in FIG. 7B, the longer the distance Dz, the lower the current detection sensitivity. Further, FIG. 7C shows an example of the correlation between the distance S in the x-axis direction between the outward path portion 201 and the return path portion 202 shown in FIG. 5 and the current detection sensitivity. As shown in FIG. 7C, the longer the distance S, the lower the current detection sensitivity.

このように、電流検出装置50では、磁界センサ1は共通でプリント基板20のパラメータを調整することで電流検出感度を調整できるので、従来の引き込み型の電流センサのように電流検出感度ごとに製品を用意する必要が無い。また、引き込み型の電流センサでは、電流検出感度が製品ごととなるので、電流検出感度の細かい調整ができないが、電流検出装置50であれば、電流検出感度の細かい調整が可能となる。 In this way, in the current detection device 50, since the magnetic field sensor 1 can adjust the current detection sensitivity by adjusting the parameters of the printed substrate 20 in common, the product is manufactured for each current detection sensitivity like the conventional retractable current sensor. There is no need to prepare. Further, in the retractable current sensor, the current detection sensitivity is different for each product, so that the current detection sensitivity cannot be finely adjusted. However, in the current detection device 50, the current detection sensitivity can be finely adjusted.

しかしながら、電流検出装置50では、検出対象電流Iの電流量が小さい場合、発生する磁界M1,M2が小さくなり、第1磁界検出部11および第2磁界検出部12に印加される磁界が小さくなり、検出信号である出力信号S40とノイズとの比であるS/N比が小さくなる虞があった。このように電流検出装置50には、検出対象電流Iの電流量が小さい場合での改善の余地があった。 However, in the current detection device 50, when the current amount of the detection target current I is small, the generated magnetic fields M1 and M2 are small, and the magnetic fields applied to the first magnetic field detection unit 11 and the second magnetic field detection unit 12 are small. , There is a risk that the S / N ratio, which is the ratio of the output signal S40, which is the detection signal, to the noise, becomes small. As described above, the current detection device 50 has room for improvement when the amount of the current to be detected I is small.

<3.第1実施形態>
次に、本発明の第1実施形態に係る電流検出装置について説明する。図8は、第1実施形態に係る電流検出装置5のz軸方向一方側から視た平面図である。図9は、図8におけるA−A切断線で切断した場合のA−A断面図である。
<3. First Embodiment>
Next, the current detection device according to the first embodiment of the present invention will be described. FIG. 8 is a plan view of the current detection device 5 according to the first embodiment as viewed from one side in the z-axis direction. FIG. 9 is a cross-sectional view taken along the line AA in FIG.

電流検出装置5は、磁界センサ1と、x軸方向およびy軸方向を含む平面状に拡がってz軸方向に厚みを有するプリント基板2と、を有する。磁界センサ1は、プリント基板2のz軸方向一方側表面2Sに配置される。プリント基板2は、同一層の配線2Aと、スルーホール24と、配線2Aとは異なる層の出力配線25と、を含む。配線2Aおよび出力配線25は、例えば銅箔により形成される。 The current detection device 5 includes a magnetic field sensor 1 and a printed circuit board 2 that extends in a plane including the x-axis direction and the y-axis direction and has a thickness in the z-axis direction. The magnetic field sensor 1 is arranged on the surface 2S on one side of the printed circuit board 2 in the z-axis direction. The printed circuit board 2 includes a wiring 2A having the same layer, a through hole 24, and an output wiring 25 having a layer different from the wiring 2A. The wiring 2A and the output wiring 25 are formed of, for example, copper foil.

配線2Aは、往路部21A〜21Cと、復路部22A〜22Cと、連結部23A〜23Eと、を含む。往路部21A〜21Cは、順にx軸方向一方側へ向かって配列される。復路部22A〜22Cは、順にx軸方向他方側へ向かって配列される。連結部23A〜23Cは、順にy軸方向他方側へ向かって配列される。連結部23D,23Eは、順にy軸方向一方側へ向かって配列される。 The wiring 2A includes an outward route portion 21A to 21C, a return route portion 22A to 22C, and a connection portion 23A to 23E. The outward path portions 21A to 21C are arranged in order toward one side in the x-axis direction. The return paths 22A to 22C are arranged in order toward the other side in the x-axis direction. The connecting portions 23A to 23C are sequentially arranged toward the other side in the y-axis direction. The connecting portions 23D and 23E are arranged in order toward one side in the y-axis direction.

往路部21Aのy軸方向一方側端と、復路部22Aのy軸方向一方側端とは、連結部23Aによってx軸方向に連結される。復路部22Aのy軸方向他方側端と、往路部21Bのy軸方向他方側端とは、連結部23Dによってx軸方向に連結される。往路部21Bのy軸方向一方側端と、復路部22Bのy軸方向一方側端とは、連結部23Bによってx軸方向に連結される。復路部22Bのy軸方向他方側端と、往路部21Cのy軸方向他方側端とは、連結部23Eによってx軸方向に連結される。往路部21Cのy軸方向一方側端と、復路部22Cのy軸方向一方側端とは、連結部23Cによってx軸方向に連結される。 The one-sided end in the y-axis direction of the outward path portion 21A and the one-side end in the y-axis direction of the return path portion 22A are connected in the x-axis direction by the connecting portion 23A. The other end in the y-axis direction of the return path portion 22A and the other end in the y-axis direction of the outward path portion 21B are connected in the x-axis direction by the connecting portion 23D. The one-sided end in the y-axis direction of the outward path portion 21B and the one-side end in the y-axis direction of the return path portion 22B are connected in the x-axis direction by the connecting portion 23B. The other end in the y-axis direction of the return path portion 22B and the other end in the y-axis direction of the outward path portion 21C are connected in the x-axis direction by the connecting portion 23E. The one-sided end in the y-axis direction of the outward path portion 21C and the one-side end in the y-axis direction of the return path portion 22C are connected in the x-axis direction by the connecting portion 23C.

これにより、往路部21A〜21C、復路部22A〜22C、および連結部23A〜23Eによってz軸方向一方側から視て右回りに外側から内側へ向かって巻かれる渦巻き状の配線が形成される。渦巻き状の配線であれば、配線の開始点から終了点まで平面視で配線が重なることを回避できる。 As a result, the outward path portions 21A to 21C, the return path portions 22A to 22C, and the connecting portions 23A to 23E form a spiral wiring that is wound clockwise from one side in the z-axis direction from the outside to the inside. If the wiring is spiral, it is possible to avoid overlapping the wiring from the start point to the end point of the wiring in a plan view.

復路部22Cのy軸方向他方側端は、スルーホール24によって出力配線25のx軸方向他方側端と電気的に接続される。スルーホールとは、内部に導体が充填された、または内壁面に導体が形成された貫通孔である。出力配線25は、配線2Aよりもz軸方向一方側またはz軸方向他方側に配置される。スルーホール24は、z軸方向に延びる。出力配線25は、x軸方向に延び、z軸方向一方側から視て復路部22B、22Aをx軸方向に横切る。 The other end in the y-axis direction of the return path portion 22C is electrically connected to the other end in the x-axis direction of the output wiring 25 by the through hole 24. A through hole is a through hole in which a conductor is filled inside or a conductor is formed on an inner wall surface. The output wiring 25 is arranged on one side in the z-axis direction or the other side in the z-axis direction with respect to the wiring 2A. The through hole 24 extends in the z-axis direction. The output wiring 25 extends in the x-axis direction and crosses the return paths 22B and 22A in the x-axis direction when viewed from one side in the z-axis direction.

図8に示すように、往路部21Aのy軸方向他方側端に測定対象電流Iが流入する場合、往路部21A〜21Cには、y軸方向一方側へ向かって測定対象電流Iが流れ、復路部22A〜22Cには、y軸方向他方側へ向かって測定対象電流Iが流れる。そして、測定対象電流Iは、復路部22Cのy軸方向他方側端からスルーホール24を介して出力配線25へ流出する。 As shown in FIG. 8, when the measurement target current I flows into the other end of the outward path portion 21A in the y-axis direction, the measurement target current I flows through the outward path portions 21A to 21C toward one side in the y-axis direction. A current I to be measured flows through the return paths 22A to 22C toward the other side in the y-axis direction. Then, the measurement target current I flows out from the other end of the return path portion 22C in the y-axis direction to the output wiring 25 through the through hole 24.

これにより、図9に示すように、往路部21A〜21Cには、y軸方向一方側へ視て右回りの磁界M1A、M1B、M1Cが発生し、復路部22A〜22Cには、y軸方向一方側へ視て左回りの磁界M2A、M2B、M2Cが発生する。 As a result, as shown in FIG. 9, magnetic fields M1A, M1B, and M1C that are clockwise when viewed to one side in the y-axis direction are generated in the outward path portions 21A to 21C, and the y-axis direction is generated in the return path portions 22A to 22C. A counterclockwise magnetic field M2A, M2B, M2C is generated when viewed to one side.

ここで、図10に示すように、第1磁界検出部11は、平面視において、x軸方向に視て往路部21A〜21Cが重なるy軸方向領域R201に配置され、第2磁界検出部12は、平面視において、x軸方向に視て復路部22A〜22Cが重なるy軸方向領域R202に配置される。図10において、y軸方向領域R201は、x軸方向に延びる破線Ln1とLn2によってy軸方向に挟まれる領域であり、y軸方向領域R202は、x軸方向に延びる破線Ln1とLn3によってy軸方向に挟まれる領域である。 Here, as shown in FIG. 10, the first magnetic field detection unit 11 is arranged in the y-axis direction region R201 where the outward paths 21A to 21C overlap in the x-axis direction in a plan view, and the second magnetic field detection unit 12 Is arranged in the y-axis direction region R202 where the return paths 22A to 22C overlap when viewed in the x-axis direction in a plan view. In FIG. 10, the y-axis direction region R201 is a region sandwiched in the y-axis direction by the broken lines Ln1 and Ln2 extending in the x-axis direction, and the y-axis direction region R202 is a region sandwiched in the y-axis direction by the broken lines Ln1 and Ln3 extending in the x-axis direction. It is an area sandwiched in the direction.

これにより、図9に示すように、第1磁界検出部11に対してx軸方向一方側に向かう測定対象磁界(+B)が印加され、第2磁界検出部12に対してx軸方向他方側に向かう測定対象磁界(−B’)が印加される。ここで、BとB’とはほぼ同一となる。すなわち、第1磁界検出部11および第2磁界検出部12に対してそれぞれ印加される測定対象磁界は、逆方向且つ絶対値が略同一となる。 As a result, as shown in FIG. 9, a measurement target magnetic field (+ B) directed to one side in the x-axis direction is applied to the first magnetic field detection unit 11, and the other side in the x-axis direction is applied to the second magnetic field detection unit 12. The magnetic field to be measured (-B') toward is applied. Here, B and B'are almost the same. That is, the measurement target magnetic fields applied to the first magnetic field detection unit 11 and the second magnetic field detection unit 12, respectively, have substantially the same absolute value in the opposite direction.

このように本実施形態によれば、複数の往路部(21A〜21C)と、複数の復路部(22A〜22C)を形成することで、測定対象電流Iの電流量が小さい場合でも、第1磁界検出部11および第2磁界検出部12に印加させる磁界を増やすことが可能となる。従って、検出信号である出力信号S40(図2)のS/N比を大きくすることができる。 As described above, according to the present embodiment, by forming the plurality of outward path portions (21A to 21C) and the plurality of return path portions (22A to 22C), even when the current amount of the measurement target current I is small, the first It is possible to increase the magnetic field applied to the magnetic field detection unit 11 and the second magnetic field detection unit 12. Therefore, the S / N ratio of the output signal S40 (FIG. 2), which is a detection signal, can be increased.

なお、出力配線25に測定対象電流Iが流入した場合は、往路部21A〜21C、および復路部22A〜22Cに流れる測定対象電流Iの向きは先述と逆方向となる。 When the measurement target current I flows into the output wiring 25, the direction of the measurement target current I flowing through the outward path portions 21A to 21C and the return path portions 22A to 22C is opposite to that described above.

また、本実施形態において、往路部および復路部それぞれの数は3つに限らず、2つでもよいし、4つ以上であってもよい。 Further, in the present embodiment, the number of each of the outward path portion and the return path portion is not limited to three, and may be two or four or more.

<4.第2実施形態>
次に、本発明の第2実施形態に係る電流検出装置について説明する。図11は、第2実施形態に係る電流検出装置5のz軸方向一方側から視た平面図である。図12は、図11におけるA−A切断線で切断した場合のA−A断面図である。図13は、図11におけるB−B切断線で切断した場合のB−B断面図である。
<4. Second Embodiment>
Next, the current detection device according to the second embodiment of the present invention will be described. FIG. 11 is a plan view of the current detection device 5 according to the second embodiment as viewed from one side in the z-axis direction. FIG. 12 is a cross-sectional view taken along the line AA in FIG. 11 when cut along the AA cutting line. FIG. 13 is a sectional view taken along line BB in FIG. 11 when cut along the BB cutting line.

本実施形態では、プリント基板2は、同一層である第1配線2Aと、同一層である第2配線2Bと、を含む。第1配線2Bは、第1配線2Aよりもz軸方向他方側に配置される。すなわち、第1配線2Aと第2配線2Bとは、異なる層である。 In the present embodiment, the printed circuit board 2 includes the first wiring 2A which is the same layer and the second wiring 2B which is the same layer. The first wiring 2B is arranged on the other side in the z-axis direction with respect to the first wiring 2A. That is, the first wiring 2A and the second wiring 2B are different layers.

第1配線2Aは、往路部21A1〜21C1と、復路部22A1〜22C1と、連結部23A1〜23E1を含む。第1配線2Aにおける上記各部による配線構成は、先述した第1実施形態に係る配線2A(図8)と同様である。すなわち、第1配線2Aには、z軸方向一方側から視て右回りに外側から内側へ向かって巻かれる渦巻き状の配線が形成される。 The first wiring 2A includes an outward route portion 21A1 to 21C1, a return route portion 22A1 to 22C1, and a connecting portion 23A1 to 23E1. The wiring configuration of the first wiring 2A by each of the above parts is the same as that of the wiring 2A (FIG. 8) according to the first embodiment described above. That is, the first wiring 2A is formed with a spiral wiring that is wound clockwise from the outside to the inside when viewed from one side in the z-axis direction.

第1配線2Aの電流流入部2A1付近にz軸方向に延びるスルーホール26が形成される。第1配線2Aと第2配線2Bとは、スルーホール26により接続される。 A through hole 26 extending in the z-axis direction is formed in the vicinity of the current inflow portion 2A1 of the first wiring 2A. The first wiring 2A and the second wiring 2B are connected by a through hole 26.

第2配線2Bは、スルーホール26との接続箇所が配線の開始箇所である。第2配線2Bは、往路部(下側往路部)21A2〜21C2と、復路部(下側復路部)22A2〜22C2と、連結部(下側連結部)23A2〜23E2を含む。第2配線2Bにおける上記各部による配線構成は、先述した第1実施形態に係る配線2A(図8)と同様である。すなわち、第2配線2Bには、z軸方向一方側から視て右回りに外側から内側へ向かって巻かれる渦巻き状の配線が形成される。なお、図11において、第1配線2Aと第2配線2Bのそれぞれの渦巻き形状は、重なって図示される。 In the second wiring 2B, the connection point with the through hole 26 is the start point of the wiring. The second wiring 2B includes an outward path portion (lower outward path portion) 21A2 to 21C2, a return path portion (lower return path portion) 22A2 to 22C2, and a connecting portion (lower connecting portion) 23A2 to 23E2. The wiring configuration of the second wiring 2B by each of the above parts is the same as that of the wiring 2A (FIG. 8) according to the first embodiment described above. That is, the second wiring 2B is formed with a spiral wiring that is wound clockwise from the outside to the inside when viewed from one side in the z-axis direction. In FIG. 11, the spiral shapes of the first wiring 2A and the second wiring 2B are shown overlapping.

復路部22C1のy軸方向他方側端と、復路部22C2のy軸方向他方側端と、出力配線25のx軸方向他方側端とは、z軸方向に延びるスルーホール24によって電気的に接続される。出力配線25は、第1配線2Aよりもz軸方向一方側に配置されるか、または第2配線2Bよりもz軸方向他方側に配置されるか、またはz軸方向において第1配線2Aと第2配線2Bとの間に配置される。出力配線25は、x軸方向に延び、z軸方向一方側から視て、復路部22B1,22B2および復路部22A1,22A2をx軸方向に横切る。 The other end in the y-axis direction of the return path portion 22C1, the other end in the y-axis direction of the return path portion 22C2, and the other end in the x-axis direction of the output wiring 25 are electrically connected by a through hole 24 extending in the z-axis direction. Will be done. The output wiring 25 is arranged on one side in the z-axis direction with respect to the first wiring 2A, or is arranged on the other side in the z-axis direction with respect to the second wiring 2B, or is arranged with the first wiring 2A in the z-axis direction. It is arranged between the second wiring 2B and the second wiring 2B. The output wiring 25 extends in the x-axis direction and crosses the return paths 22B1, 22, B2 and the return paths 22A 1, 22, A2 in the x-axis direction when viewed from one side in the z-axis direction.

図11、図13に示すように、電流流入部2A1に測定対象電流Iが流入する場合、流入した測定対象電流Iは、第1配線2Aを流れる第1電流I1と、スルーホール26を介して第2配線2Bに流れ込む第2電流I2と、に分配される。 As shown in FIGS. 11 and 13, when the measurement target current I flows into the current inflow section 2A1, the inflowing measurement target current I passes through the first current I1 flowing through the first wiring 2A and the through hole 26. It is distributed to the second current I2 flowing into the second wiring 2B.

往路部21A1〜21C1には、y軸方向一方側へ向かって第1電流I1が流れ、復路部22A1〜22C1には、y軸方向他方側へ向かって第1電流I1が流れる。往路部21A2〜21C2には、y軸方向一方側へ向かって第2電流I2が流れ、復路部22A2〜22C2には、y軸方向他方側へ向かって第2電流I2が流れる。そして、第1電流I1と第2電流I2とが合成されて測定対象電流Iとなり、測定対象電流Iは、出力配線25へ流出する。 The first current I1 flows through the outward paths 21A1 to 21C1 toward one side in the y-axis direction, and the first current I1 flows through the return paths 22A1 to 22C1 toward the other side in the y-axis direction. A second current I2 flows in the outward path portions 21A2 to 21C2 toward one side in the y-axis direction, and a second current I2 flows in the return path portions 22A2 to 22C2 toward the other side in the y-axis direction. Then, the first current I1 and the second current I2 are combined to form the measurement target current I, and the measurement target current I flows out to the output wiring 25.

これにより、図12に示すように、往路部21A1〜21C1には、y軸方向一方側へ視て右回りの磁界M11A、M11B、M11Cが発生し、復路部22A1〜22C1には、y軸方向一方側へ視て左回りの磁界M21A、M21B、M21Cが発生する。また、往路部21A2〜21C2には、y軸方向一方側へ視て右回りの磁界M12A、M12B、M12Cが発生し、復路部22A2〜22C2には、y軸方向一方側へ視て左回りの磁界M22A、M22B、M22Cが発生する。 As a result, as shown in FIG. 12, magnetic fields M11A, M11B, and M11C that are clockwise when viewed to one side in the y-axis direction are generated in the outward path portions 21A1 to 21C1, and the y-axis direction is generated in the return path portions 22A1 to 22C1. A counterclockwise magnetic field M21A, M21B, M21C is generated when viewed to one side. Further, magnetic fields M12A, M12B, and M12C that rotate clockwise when viewed to one side in the y-axis direction are generated in the outward path portions 21A2 to 21C2, and magnetic fields M12A, M12B, and M12C that rotate clockwise when viewed to one side in the y-axis direction. Magnetic fields M22A, M22B, M22C are generated.

ここで、図14に示すように、第1磁界検出部11は、平面視において、x軸方向に視て往路部21A1〜21C1が重なるy軸方向領域R2011に配置され、且つ、x軸方向に視て往路部21A2〜21C2が重なるy軸方向領域R2012に配置される。第2磁界検出部12は、平面視において、x軸方向に視て復路部22A1〜22C1が重なるy軸方向領域R2021に配置され、且つ、x軸方向に視て復路部22A2〜22C2が重なるy軸方向領域R2022に配置される。図14において、y軸方向領域R2011、R2012は、x軸方向に延びる破線Ln11とLn12によってy軸方向に挟まれる領域であり、y軸方向領域R2021、R2022は、x軸方向に延びる破線Ln11とLn13によってy軸方向に挟まれる領域である。 Here, as shown in FIG. 14, the first magnetic field detection unit 11 is arranged in the y-axis direction region R2011 where the outward path portions 21A1 to 21C1 overlap in the x-axis direction in a plan view, and is arranged in the x-axis direction. It is arranged in the y-axis direction region R2012 where the outward path portions 21A2 to 21C2 overlap with each other. The second magnetic field detection unit 12 is arranged in the y-axis direction region R2021 where the return paths 22A1 to 22C1 overlap when viewed in the x-axis direction, and the return path portions 22A2 to 22C2 overlap when viewed in the x-axis direction. It is arranged in the axial region R2022. In FIG. 14, y-axis direction regions R2011 and R2012 are regions sandwiched in the y-axis direction by broken lines Ln11 and Ln12 extending in the x-axis direction, and y-axis direction regions R2021 and R2022 are broken lines Ln11 extending in the x-axis direction. This is a region sandwiched by Ln13 in the y-axis direction.

これにより、図12に示すように、磁界M11A〜M11Cによって第1磁界検出部11に対してx軸方向一方側に向かう測定対象磁界(+B1)が印加され、磁界M21A〜M21Cによって第2磁界検出部12に対してx軸方向他方側に向かう測定対象磁界(−B1’)が印加される。ここで、B1とB1’とはほぼ同一となる。さらに、磁界M12A〜M12Cによって第1磁界検出部11に対してx軸方向一方側に向かう測定対象磁界(+B2)が印加され、磁界M22A〜M22Cによって第2磁界検出部12に対してx軸方向他方側に向かう測定対象磁界(−B2’)が印加される。ここで、B2とB2’とはほぼ同一となる。 As a result, as shown in FIG. 12, the magnetic fields M11A to M11C apply the measurement target magnetic field (+ B1) toward the first magnetic field detection unit 11 on one side in the x-axis direction, and the magnetic fields M21A to M21C detect the second magnetic field. A magnetic field to be measured (−B1 ′) directed to the other side in the x-axis direction is applied to the unit 12. Here, B1 and B1'are almost the same. Further, the magnetic fields M12A to M12C apply a measurement target magnetic field (+ B2) toward one side in the x-axis direction with respect to the first magnetic field detection unit 11, and the magnetic fields M22A to M22C apply the measurement target magnetic field (+ B2) to the second magnetic field detection unit 12 in the x-axis direction. A magnetic field to be measured (-B2') toward the other side is applied. Here, B2 and B2'are almost the same.

このように本実施形態によれば、第1配線2Aにおいて複数の往路部(21A1〜21C1)と複数の復路部(22A1〜22C1)を形成するとともに、第2配線2Bにおいて複数の往路部(21A2〜21C2)と複数の復路部(22A2〜22C2)を形成する。これにより、測定対象電流Iの電流量が小さい場合でも、第1磁界検出部11および第2磁界検出部12に印加させる磁界を増やすことが可能となる。従って、検出信号である出力信号S40(図2)のS/N比を大きくすることができる。 As described above, according to the present embodiment, a plurality of outward path portions (21A1 to 21C1) and a plurality of return path portions (22A1 to 22C1) are formed in the first wiring 2A, and a plurality of outward path portions (21A2) are formed in the second wiring 2B. ~ 21C2) and a plurality of return paths (22A2 to 22C2) are formed. As a result, even when the amount of the current I to be measured is small, it is possible to increase the magnetic fields applied to the first magnetic field detection unit 11 and the second magnetic field detection unit 12. Therefore, the S / N ratio of the output signal S40 (FIG. 2), which is a detection signal, can be increased.

特に本実施形態では、第1配線2Aと第2配線2Bとの2層構造としていることで、測定対象電流Iを増加させる際に、同一層配線の幅を広げる場合よりもプリント基板2をコンパクト化できたり、同一層配線で厚みを厚くするよりもプリント基板2を安価にすることができる。 In particular, in the present embodiment, since the first wiring 2A and the second wiring 2B have a two-layer structure, the printed circuit board 2 is more compact than the case where the width of the same layer wiring is widened when the measurement target current I is increased. The printed circuit board 2 can be made cheaper than the case where the thickness is increased by wiring in the same layer.

また、図11および図12に示す構成例では、第1配線2Aの幅W2Aと第2配線2Bの幅W2Bは同一とし、第1配線2Aの厚みt2Aと第2配線2Bの厚みt2Bは同一としている。さらに、第1配線2Aにおけるスルーホール26との接続箇所からスルーホール24との接続箇所までの経路長L2Aは、第2配線2Bにおけるスルーホール26との接続箇所からスルーホール24との接続箇所までの経路長L2Bと同一としている。 Further, in the configuration examples shown in FIGS. 11 and 12, the width W2A of the first wiring 2A and the width W2B of the second wiring 2B are the same, and the thickness t2A of the first wiring 2A and the thickness t2B of the second wiring 2B are the same. There is. Further, the path length L2A from the connection point with the through hole 26 in the first wiring 2A to the connection point with the through hole 24 is from the connection point with the through hole 26 in the second wiring 2B to the connection point with the through hole 24. It is the same as the path length L2B of.

これにより、第1配線2Aと第2配線2Bを同一の導電性材により形成した場合、第1配線2Aのスルーホール26、24との接続箇所間の抵抗値(以下、第1抵抗値)は、第2配線2Bのスルーホール26、24との接続箇所間の抵抗値(以下、第2抵抗値)とほぼ同一となる。従って、測定対象電流Iは、第1電流I1と第2電流I2とに等分配される。 As a result, when the first wiring 2A and the second wiring 2B are formed of the same conductive material, the resistance value (hereinafter referred to as the first resistance value) between the connection points of the first wiring 2A with the through holes 26 and 24 becomes. , The resistance value between the connection points of the second wiring 2B with the through holes 26 and 24 (hereinafter referred to as the second resistance value) is substantially the same. Therefore, the measurement target current I is equally distributed to the first current I1 and the second current I2.

しかしながら、これに限らず、幅W2AとW2Bを異ならせてもよいし、厚みt2Aとt2Bとを異ならせてもよいし、経路長L2AとL2Bとを異ならせてもよいし、第1配線2Aと第2配線2Bとで材質を異ならせてもよい。このようにすれば、第1抵抗値と第2抵抗値を調整することで、第1電流I1と第2電流I2との分配率を調整できる。 However, the present invention is not limited to this, the widths W2A and W2B may be different, the thicknesses t2A and t2B may be different, the path lengths L2A and L2B may be different, and the first wiring 2A may be different. And the second wiring 2B may be made of different materials. By doing so, the distribution ratio between the first current I1 and the second current I2 can be adjusted by adjusting the first resistance value and the second resistance value.

また、上記のように幅W2AとW2Bとを異ならせることで、電流検出感度を調整できる。また、図12に示す第1配線2Aにおける往路部21C1と復路部22C1との間のx軸方向距離S1と、第2配線2Bにおける往路部21C2と復路部22C2との間のx軸方向距離S2と、を異ならせることでも、電流検出感度を調整できる。さらに、図12に示す磁界センサ1(すなわちプリント基板2のz軸方向一方側表面2S)と第1配線2Aとの間のz軸方向距離Dz1と、磁界センサ1と第2配線2Bとの間のz軸方向距離Dz2と、を調整することにより、電流検出感度を調整できる。 Further, the current detection sensitivity can be adjusted by making the widths W2A and W2B different as described above. Further, the x-axis direction distance S1 between the outward path portion 21C1 and the return path portion 22C1 in the first wiring 2A shown in FIG. 12 and the x-axis direction distance S2 between the outward path portion 21C2 and the return path portion 22C2 in the second wiring 2B. The current detection sensitivity can also be adjusted by making them different. Further, between the z-axis direction distance Dz1 between the magnetic field sensor 1 (that is, the surface 2S on one side in the z-axis direction of the printed substrate 2) and the first wiring 2A shown in FIG. 12, and between the magnetic field sensor 1 and the second wiring 2B. The current detection sensitivity can be adjusted by adjusting the z-axis direction distance Dz2.

なお、本実施形態において、第1配線2Aにおける往路部および復路部のそれぞれの数(第1個数)、および第2配線2Bにおける往路部および復路部のそれぞれの数(第2個数)は、3つに限らず、2つでもよいし、4つ以上であってもよい。また、上記第1個数と上記第2個数は、必ずしも同じでなくてよい。 In the present embodiment, the number of the outward path portion and the return path portion (first number) in the first wiring 2A and the number of the outward path portion and the return path portion (second number) in the second wiring 2B are 3 respectively. The number is not limited to one, and may be two or four or more. Further, the first number and the second number do not necessarily have to be the same.

また、本実施形態のプリント基板2において、例えば第2配線2Bと同様な3層目以降の配線を追加してもよい。 Further, in the printed circuit board 2 of the present embodiment, for example, the same wiring as the second wiring 2B may be added to the third and subsequent layers.

<5.測定対象システム>
次に、先述した電流検出装置5を含めた測定対象システムの各種実施例について説明する。
<5. Measurement target system>
Next, various examples of the measurement target system including the above-mentioned current detection device 5 will be described.

図15は、第1実施例に係る測定対象システム1001の模式図である。図15に示す測定対象システム1001は、第1実施形態に係る電流検出装置5を含む。電源Eの正極端と負荷Zとの間の経路上に電流検出装置5を設ける。電流検出装置5は、電源Eの正極端から負荷Zへ流れる測定対象電流Iを検出する。 FIG. 15 is a schematic view of the measurement target system 1001 according to the first embodiment. The measurement target system 1001 shown in FIG. 15 includes the current detection device 5 according to the first embodiment. A current detection device 5 is provided on the path between the positive end of the power supply E and the load Z. The current detection device 5 detects the measurement target current I flowing from the positive end of the power source E to the load Z.

図16は、第2実施例に係る測定対象システム1002の模式図である。測定対象システム1002は、測定対象システム1001(図16)の変形例である。具体的には、図16では、往路部21Aのy軸方向一方側端と復路部22Aのy軸方向一方側端との間は連結部23A(図15)により直接的に接続するのではなく、負荷Z2を介した連結部27で連結させる。これにより、測定対象電流Iは、往路部21Aから負荷Z2を介して復路部22Aへ流れ込む。 FIG. 16 is a schematic view of the measurement target system 1002 according to the second embodiment. The measurement target system 1002 is a modification of the measurement target system 1001 (FIG. 16). Specifically, in FIG. 16, the one end in the y-axis direction of the outward path portion 21A and the one-side end in the y-axis direction of the return path portion 22A are not directly connected by the connecting portion 23A (FIG. 15). , Connected by the connecting portion 27 via the load Z2. As a result, the measurement target current I flows from the outward path portion 21A to the return path portion 22A via the load Z2.

なお、上記第2実施例の一変形例として、復路部22Aのy軸方向他方側端と往路部21Bのy軸方向他方側端との間を負荷を介した連結部によって連結してもよい。 As a modification of the second embodiment, the return path portion 22A may be connected to the other end in the y-axis direction and the outward path portion 21B to be connected to the other end in the y-axis direction by a connecting portion via a load. ..

また、上記第2実施形態に係る電流検出装置5(図11)における往路部21A1のy軸方向一方側端と復路部22A1のy軸方向一方側端との間、または往路部21A2のy軸方向一方側端と復路部22A2のy軸方向一方側端との間を負荷を介した連結部により連結してもよい。または、上記第2実施形態に係る電流検出装置5における復路部22A1のy軸方向他方側端と往路部21B1のy軸方向他方側端との間、または復路部22A2のy軸方向他方側端と往路部21B2のy軸方向他方側端との間を負荷を介した連結部により連結してもよい。 Further, in the current detection device 5 (FIG. 11) according to the second embodiment, between one end of the outward path portion 21A1 in the y-axis direction and one end of the return path portion 22A1 in the y-axis direction, or the y-axis of the outward path portion 21A2. The one-sided end in the direction and the one-sided end in the y-axis direction of the return path portion 22A2 may be connected by a connecting portion via a load. Alternatively, between the other end in the y-axis direction of the return path portion 22A1 and the other end in the y-axis direction of the outward path portion 21B1 in the current detection device 5 according to the second embodiment, or the other end in the y-axis direction of the return path portion 22A2. And the other end of the outward path portion 21B2 in the y-axis direction may be connected by a connecting portion via a load.

<6.その他>
以上、本発明の実施形態について説明したが、本発明の趣旨の範囲内であれば、実施形態は種々の変更が可能である。
<6. Others>
Although the embodiments of the present invention have been described above, the embodiments can be changed in various ways within the scope of the gist of the present invention.

本発明は、例えば、産業機器用の電流検出装置に利用することができる。 The present invention can be used, for example, in a current detection device for industrial equipment.

1 磁界センサ
11 第1磁界検出部
12 第2磁界検出部
13 MI(磁気インピーダンス)効果素子
141 第1サンプル/ホールド部
142 第2サンプル/ホールド部
151 第1アンプ部
152 第2アンプ部
16 減算部
17 発振部
18 パルス駆動部
2 プリント基板
2A 配線(第1配線)
2B 第2配線
21A〜21C、21A1〜21C1、21A2〜21C2 往路部
22A〜22C、22A1〜22C1、22A2〜22C2 復路部
23A〜23E、23A1〜23E1、23A2〜23E2 連結部
24 スルーホール
25 出力配線
26 スルーホール
27 連結部
5 電流検出装置
1001、1002 測定対象システム
E 電源
Z、Z1、Z2 負荷
1 Magnetic field sensor 11 1st magnetic field detector 12 2nd magnetic field detector 13 MI (magnetic impedance) effect element 141 1st sample / hold part 142 2nd sample / hold part 151 1st amplifier part 152 2nd amplifier part 16 Subtraction part 17 Oscillator 18 Pulse drive 2 Printed circuit board 2A wiring (first wiring)
2B 2nd wiring 21A to 21C, 21A1 to 21C1, 21A2 to 21C2 Outward route 22A to 22C, 22A1 to 22C1, 22A2 to 22C2 Return route 23A to 23E, 23A1 to 23E1, 23A2 to 23E2 Connection part 24 Through hole 25 Output wiring 26 Through hole 27 Connection part 5 Current detector 1001, 1002 Measurement target system E Power supply Z, Z1, Z2 Load

Claims (12)

第1方向、第2方向および第3方向は互いに直交するとして、
前記第1方向および前記第2方向を含む平面状に拡がり、前記第3方向に厚みを有する基板と、
前記基板の前記第3方向一方側表面に配置される磁界センサと、
を備え、
前記磁界センサは、第1磁界検出部と、第2磁界検出部と、を有し、
前記基板は、同一層の第1配線を有し、
前記第1配線は、前記第2方向に延びて前記第1方向に配列される複数の往路部と、前記第2方向に延びて前記第1方向に配列される複数の復路部と、を含み、
前記複数の復路部は、前記複数の往路部に対して前記第1方向一方側に配置され、
前記第1磁界検出部は、前記第1方向および前記第2方向を含む平面の平面視において、前記第1方向に視て前記複数の往路部が重なる第1の第2方向領域に配置され、
前記第2磁界検出部は、前記平面視において、前記第1方向に視て前記複数の復路部が重なる第2の第2方向領域に配置される、
電流検出装置。
Assuming that the first direction, the second direction, and the third direction are orthogonal to each other,
A substrate that spreads in a plane including the first direction and the second direction and has a thickness in the third direction.
A magnetic field sensor arranged on the surface of the substrate on one side in the third direction,
With
The magnetic field sensor has a first magnetic field detection unit and a second magnetic field detection unit.
The substrate has the first wiring of the same layer and has.
The first wiring includes a plurality of outward paths extending in the second direction and arranged in the first direction, and a plurality of return paths extending in the second direction and arranged in the first direction. ,
The plurality of return paths are arranged on one side of the first direction with respect to the plurality of outward paths.
The first magnetic field detection unit is arranged in a first second direction region in which the plurality of outward path portions overlap when viewed in the first direction in a plan view of a plane including the first direction and the second direction.
The second magnetic field detection unit is arranged in a second second direction region in which the plurality of return paths overlap in the first direction in the plan view.
Current detector.
前記複数の往路部を第m往路部(m=1〜n)とし、前記複数の復路部を第m復路部(m=1〜n)(n:3以上の整数)とすると、
第1往路部から第n往路部は、順に前記第1方向一方側に配列され、
第1復路部から第n復路部は、順に前記第1方向他方側に配列され、
mを2以上として、第m往路部の前記第2方向一方側端と、第m復路部の前記第2方向一方側端とは、前記第1方向に連結され、
mを2以上として、第m復路部の前記第2方向他方側端と、第(m+1)往路部の前記第2方向他方側端とは、前記第1方向に連結される、請求項1に記載の電流検出装置。
Assuming that the plurality of outward paths are the mth outward path (m = 1 to n) and the plurality of return paths are the m return paths (m = 1 to n) (n: an integer of 3 or more).
The first outbound route portion to the nth outbound route portion are arranged in order on one side in the first direction.
The first return path section to the nth return path section are arranged in order on the other side in the first direction.
With m being 2 or more, the one-sided end in the second direction of the m-outward route portion and the one-sided end in the second direction of the m-return route portion are connected in the first direction.
According to claim 1, where m is 2 or more, the other end in the second direction of the m return path portion and the other end in the second direction of the (m + 1) outward path portion are connected in the first direction. The current detector described.
前記基板は、
前記平面視において、第1〜第(n−1)復路部を前記第2方向へ横切る出力配線と、
第n復路部の前記第2方向他方側端と前記出力配線とを電気的に接続して前記第3方向に延びるスルーホールと、を有する、請求項2に記載の電流検出装置。
The substrate is
In the plan view, the output wiring that crosses the first to first (n-1) return paths in the second direction and
The current detection device according to claim 2, further comprising a through hole extending in the third direction by electrically connecting the other end of the n-th return path portion in the second direction and the output wiring.
前記基板は、前記第1配線よりも前記第3方向他方側に配置されて同一層の第2配線をさらに有し、
前記第1配線の一端部と前記第2配線の一端部とは、電気的に接続され、
前記第1配線の他端部と前記第2配線の他端部とは、電気的に接続され、
前記第2配線は、前記第2方向に延びて前記第1方向に配列される複数の下側往路部と、前記第2方向に延びて前記第1方向に配列される複数の下側復路部と、を含み、
前記複数の下側復路部は、前記複数の下側往路部に対して前記第1方向一方側に配置され、
前記第1磁界検出部は、前記平面視において、前記第1方向に視て前記複数の下側往路部が重なる第3の第2方向領域に配置され、
前記第2磁界検出部は、前記平面視において、前記第1方向に視て前記複数の下側復路部が重なる第4の第2方向領域に配置される、請求項1から請求項3のいずれか1項に記載の電流検出装置。
The substrate is arranged on the other side of the third direction from the first wiring and further has a second wiring of the same layer.
One end of the first wiring and one end of the second wiring are electrically connected to each other.
The other end of the first wiring and the other end of the second wiring are electrically connected.
The second wiring includes a plurality of lower outward paths extending in the second direction and arranged in the first direction, and a plurality of lower return paths extending in the second direction and arranged in the first direction. And, including
The plurality of lower return paths are arranged on one side of the first direction with respect to the plurality of lower outward paths.
The first magnetic field detection unit is arranged in a third second direction region in which the plurality of lower outward path portions overlap when viewed in the first direction in the plan view.
Any of claims 1 to 3, wherein the second magnetic field detection unit is arranged in a fourth second direction region in which the plurality of lower return paths overlap when viewed in the first direction in the plan view. The current detection device according to item 1.
前記複数の下側往路部を第m下側往路部(m=1〜l)とし、前記複数の下側復路部を第m下側復路部(m=1〜l)(l:3以上の整数)とすると、
第1下側往路部から第l下側往路部は、順に前記第1方向一方側に配列され、
第1下側復路部から第l下側復路部は、順に前記第1方向他方側に配列され、
mを2以上として、第m下側往路部の前記第2方向一方側端と、第m下側復路部の前記第2方向一方側端とは、前記第1方向に連結され、
mを2以上として、第m下側復路部の前記第2方向他方側端と、第(m+1)下側往路部の前記第2方向他方側端とは、前記第1方向に連結される、請求項4に記載の電流検出装置。
The plurality of lower outward paths are defined as the m lower outward path (m = 1 to l), and the plurality of lower return sections are designated as the m lower return path (m = 1 to l) (l: 3 or more). Integer)
The first lower outbound route portion to the l lower outbound route portion are arranged in order on one side in the first direction.
The first lower return section to the first lower return section are arranged in order on the other side in the first direction.
With m being 2 or more, the one-sided end in the second direction of the lower m lower outbound route and the one-sided end in the second direction of the lower m lower inbound route are connected in the first direction.
When m is 2 or more, the other end in the second direction of the lower return path portion of m and the other end in the second direction of the (m + 1) lower outward path portion are connected in the first direction. The current detection device according to claim 4.
前記基板は、
前記平面視において、第1〜第(n−1)下側復路部を前記第2方向へ横切る出力配線と、
第n下側復路部の前記第2方向他方側端と前記出力配線とを電気的に接続して前記第3方向に延びるスルーホールと、を有する、請求項5に記載の電流検出装置。
電流検出装置。
The substrate is
In the plan view, the output wiring that crosses the first to first (n-1) lower return paths in the second direction, and
The current detection device according to claim 5, further comprising a through hole extending in the third direction by electrically connecting the other end of the second lower return path portion in the second direction and the output wiring.
Current detector.
前記往路部の幅および前記復路部の幅は、同じ第1幅であり、
前記下側往路部の幅および前記下側復路部の幅は、同じ第2幅であり、
前記第1幅と前記第2幅と、は異なっている、請求項4から請求項6のいずれか1項に記載の電流検出装置。
The width of the outward path portion and the width of the return path portion are the same first width.
The width of the lower outward path portion and the width of the lower return path portion are the same second width.
The current detection device according to any one of claims 4 to 6, wherein the first width and the second width are different.
前記第1方向一方側端に配置される前記往路部と前記第1方向他方側端に配置される前記復路部との間の前記第1方向距離と、
前記第1方向一方側端に配置される前記下側往路部と前記第1方向他方側端に配置される前記下側復路部との間の前記第1方向距離と、は異なっている、請求項4から請求項7のいずれか1項に記載の電流検出装置。
The first-direction distance between the outward path portion arranged at one side end in the first direction and the return path portion arranged at the other end in the first direction.
The first direction distance between the lower outward path portion arranged at one side end of the first direction and the lower return path portion arranged at the other side end of the first direction is different from the claim. The current detection device according to any one of claims 4 to 7.
前記第1配線および前記第2配線のそれぞれの幅、厚み、経路長、および材質の少なくともいずれかは異なっている、請求項4から請求項8のいずれか1項に記載の電流検出装置。 The current detection device according to any one of claims 4 to 8, wherein at least one of the width, thickness, path length, and material of the first wiring and the second wiring is different. 前記下側往路部と前記下側復路部とは、負荷を介した連結部により連結される、請求項4から請求項9のいずれか1項に記載の電流検出装置。 The current detection device according to any one of claims 4 to 9, wherein the lower outward path portion and the lower return path portion are connected by a connecting portion via a load. 前記往路部と前記復路部とは、負荷を介した連結部により連結される、請求項1から請求項10のいずれか1項に記載の電流検出装置。 The current detection device according to any one of claims 1 to 10, wherein the outward path portion and the return path portion are connected by a connecting portion via a load. 前記第1磁界検出部および前記第2磁界検出部は、MI(磁気インピーダンス)効果素子を用いて磁界を検出する、請求項1から請求項11のいずれか1項に記載の電流検出装置。 The current detection device according to any one of claims 1 to 11, wherein the first magnetic field detection unit and the second magnetic field detection unit detect a magnetic field using an MI (magnetic impedance) effect element.
JP2019213361A 2019-11-26 2019-11-26 Current detector Pending JP2021085712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019213361A JP2021085712A (en) 2019-11-26 2019-11-26 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019213361A JP2021085712A (en) 2019-11-26 2019-11-26 Current detector

Publications (1)

Publication Number Publication Date
JP2021085712A true JP2021085712A (en) 2021-06-03

Family

ID=76087352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019213361A Pending JP2021085712A (en) 2019-11-26 2019-11-26 Current detector

Country Status (1)

Country Link
JP (1) JP2021085712A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354106A (en) * 2003-05-27 2004-12-16 Mitsubishi Electric Corp Current detector
JP2011145273A (en) * 2010-01-15 2011-07-28 Kohshin Electric Corp Current sensor
JP2012052912A (en) * 2010-09-01 2012-03-15 Alps Green Devices Co Ltd Current sensor
US20170010309A1 (en) * 2014-02-05 2017-01-12 Ams Ag Integrated current sensor system and method for producing an integrated current sensor system
JP2017129455A (en) * 2016-01-20 2017-07-27 ローム株式会社 Current sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004354106A (en) * 2003-05-27 2004-12-16 Mitsubishi Electric Corp Current detector
JP2011145273A (en) * 2010-01-15 2011-07-28 Kohshin Electric Corp Current sensor
JP2012052912A (en) * 2010-09-01 2012-03-15 Alps Green Devices Co Ltd Current sensor
US20170010309A1 (en) * 2014-02-05 2017-01-12 Ams Ag Integrated current sensor system and method for producing an integrated current sensor system
JP2017129455A (en) * 2016-01-20 2017-07-27 ローム株式会社 Current sensor

Similar Documents

Publication Publication Date Title
EP2634592B1 (en) Circuits and methods for generating a diagnostic mode of operation in a magnetic field sensor
JP6508163B2 (en) Current measurement device
JP5518661B2 (en) Semiconductor integrated circuit, magnetic detector, electronic compass
JP4529783B2 (en) Magnet impedance sensor element
JP2009276159A (en) Magnetic sensor
JP6269479B2 (en) Magnetic sensor device
JP2008216230A (en) Current sensor
JP6460372B2 (en) Magnetic sensor, method for manufacturing the same, and measuring instrument using the same
JP2007298509A (en) Fluxgate-type micromagnetometer with improved field coil
JPWO2003091657A1 (en) Magnetic probe
JP2000228323A (en) Rogowskii coil
JP5990963B2 (en) Magnetic sensor device and current sensor circuit
JP2010286415A (en) Current sensor unit
JP2021085712A (en) Current detector
JP2009186433A (en) Eddy-current type sample measuring method, eddy-current sensor and eddy-current type sample measurement system
JP5783361B2 (en) Current measuring device
JP6457192B2 (en) Hall electromotive force signal processing apparatus, current sensor, and hall electromotive force signal processing method
JP2021085711A (en) Current detector
JP6390709B2 (en) Current detection device and current detection method
JP6597081B2 (en) Flaw detection probe and flaw detection method
JP2004212141A (en) Eddy current flaw detector
US20230358523A1 (en) Scanning element and inductive position measuring device having this scanning element
JP2020091131A (en) Magnetism detection device and moving body detection device
JP2020067304A (en) Current sensor and method of manufacturing bus bar used for the same
JP2007085810A (en) Electrical conversion apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231031