JP2004354093A - Deterioration diagnostic method of power cable - Google Patents

Deterioration diagnostic method of power cable Download PDF

Info

Publication number
JP2004354093A
JP2004354093A JP2003149464A JP2003149464A JP2004354093A JP 2004354093 A JP2004354093 A JP 2004354093A JP 2003149464 A JP2003149464 A JP 2003149464A JP 2003149464 A JP2003149464 A JP 2003149464A JP 2004354093 A JP2004354093 A JP 2004354093A
Authority
JP
Japan
Prior art keywords
voltage
harmonic
power cable
loss current
harmonic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003149464A
Other languages
Japanese (ja)
Other versions
JP4092645B2 (en
Inventor
Yukihiro Yagi
幸弘 八木
Noboru Ishii
登 石井
Tomiyuki Tsujimoto
富幸 辻本
Masahiko Nakade
雅彦 中出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Furukawa Electric Co Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tokyo Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP2003149464A priority Critical patent/JP4092645B2/en
Publication of JP2004354093A publication Critical patent/JP2004354093A/en
Application granted granted Critical
Publication of JP4092645B2 publication Critical patent/JP4092645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a deterioration diagnostic method of power cable, capable of performing a precise deterioration diagnosis of a power cable by deriving and removing a third harmonic component in a loss current which appears by the influence of a third harmonic voltage included in an AC voltage applied to the power cable. <P>SOLUTION: This deterioration diagnostic method of the power cable comprises applying the AC voltage to the power cable to extract the loss current from the current carried in an insulator, and performing the deterioration of diagnosis of the power cable by use of the third harmonic component included in the loss current. In this method, paying attention, as the AC voltage to be applied to the power cable, to a first voltage V1 having a main frequency f and a superposed voltage V3 in which a second voltage V2 having a frequency 3f three times the frequency f is superposed on the first voltage V1, a third harmonic component I<SB>3n</SB>included in the loss current, which appears by the influence of the third harmonic voltage V<SB>3n</SB>included in the first voltage V1, and a third harmonic component I<SB>3m0</SB>included in the loss current is corrected, whereby the deterioration diagnosis of the power cable is performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電力ケーブルの劣化診断方法に関するものである。
【0002】
【従来の技術】
現在、最も普及している電力ケーブルである架橋ポリエチレン絶縁ケーブル(以下ケーブルと称する)の主たる劣化形態は水トリー劣化である。水トリーとはケーブル絶縁体中に存在する水分と電界の作用により発生する絶縁体中の変質部分であり、これが時間の経過と共に増大していき、ケーブルの絶縁性能を低下させる。この水トリー劣化の状態を効率よく診断することを目標として、種々の劣化診断技術が検討されている。
【0003】
従来技術の一つとして、ケーブルに交流電圧(試験電圧)を印加し、絶縁体を流れる電流中より前記交流電圧と同位相の損失電流を抽出し、その損失電流中に含まれる高調波成分を用いてケーブルの劣化を診断する方法がある。この方法で劣化信号として用いられる損失電流中の高調波成分は、水トリーの非線形電気伝導特性の影響により現れるもので、その高調波成分の発生状況を評価することでケーブルの水トリー劣化の状態を診断することができる。具体的には、ケーブル及びそれと並列に接続された無損失の標準コンデンサに交流電圧を印加し、標準コンデンサに流れる電流を用いて、ケーブルに流れる電流中から印加電圧に対して90°進み位相の成分(容量性電流)を除去して損失電流を抽出し、その中の第3高調波成分の発生状況を決定づける値である高調波成分の振幅(大きさ)や重畳位相(基本波成分に対する位相差)の値をデータと比較することでケーブルの劣化程度を評価するというものである(例えば、特許文献1、2参照)。
【0004】
【特許文献1】
特開平7−151815号公報(発明の詳細な説明の段落0003、段落0030乃至段落0035及び図2)
【特許文献2】
特開2002−196030号公報(発明の詳細な説明の段落0003、段落0005及び図2)
【0005】
【発明が解決しようとする課題】
従来の劣化診断技術では、劣化信号として用いる損失電流中の第3高調波成分と同じ周波数のノイズが存在すると、そのノイズ信号と水トリー劣化の状態を反映した真の劣化信号とを分別できないため、精度の高い劣化診断を行うことができない。
【0006】
このノイズの主たる発生源はケーブルに印加する交流電圧中に含まれる第3高調波電圧である。その交流電圧として、仮に第3高調波電圧を全く含まないものを用いることができれば、損失電流中に含まれる第3高調波成分をそのまま水トリー劣化信号として評価することができ、正確な劣化診断を行うことが可能である。
【0007】
しかしながら、交流電圧にはその基本波電圧以外に基本波成分の整数倍の周波数の高調波電圧がレベルの差こそあれ含まれていることが常であり、全く高調波電圧を含まない交流電圧というものを実現することは事実上不可能である。
【0008】
交流電圧を発生させる装置は大別して変圧器、可変リアクトル、及び、それらに電力を供給する電源からなる。診断現場において使用する電源としては、現場に常設されている配電盤設備がある場合は、そこから商用電源を、また、その様な設備がない場合は、移動式発動発電機を現場に持ち込んで、そこからの電源を用いることになるが、このような電源には、元々高調波成分が含まれている。変圧器や可変リアクトルはどちらも内部の鉄心中の磁気特性を利用した電力機器であり、鉄心中の磁気特性は一般的に非線形な特性を有しているため、その特性によっても交流電圧中に高調波電圧が発生する。
【0009】
従来の劣化診断技術においては、交流電圧中の高調波電圧による測定結果への影響を軽減すべく、電源中の高調波成分を低減させるフィルタを利用したり、変圧器や可変リアクトルに用いる鉄心として非線形な特性が現れにくいような磁気特性に余裕のあるものを使用するといった対応で、交流電圧中に発生する高調波電圧を最大限抑制するよう注意が払われている。しかしながら、このような対応では、交流電圧中の高調波電圧の低減はなされても、完全になくすことはできないので、根本的な解決には至っていない。また、交流電圧中の高調波成分は変圧器出力に接続される負荷、即ち、診断対象となるケーブルの静電容量に応じて変化するものであり、ケーブルの静電容量によって診断精度が変化してしまうといった好ましくない状況をもたらすこととなる。
【0010】
本発明は上記課題を解決するためになされたものであって、その目的は、電力ケーブルに印加する交流電圧に元々含まれる第3高調波電圧の影響により現れる損失電流中に含まれる第3高調波成分(劣化信号ではないノイズ)を定量的に評価して、その影響分を補正することにより、水トリーから発せられる真の第3高調波成分(劣化信号)を抽出し、精度の高い電力ケーブルの劣化診断を行えるようにした電力ケーブルの劣化診断方法を提供するものである。
【0011】
【課題を解決するための手段】
本発明では、電力ケーブルに交流電圧を印加し、絶縁体を流れる電流中より前記交流電圧と同位相の損失電流を抽出し、その損失電流中に含まれる第3高調波成分を用いて電力ケーブルの劣化診断を行う電力ケーブルの劣化診断方法において、電力ケーブルに印加する交流電圧として、主の周波数fを持つ第1の電圧V1と、その第1の電圧V1にその周波数fの3倍の周波数3fを持つ第2の電圧V2を重畳した重畳電圧V3とに着目して、第1の電圧V1中に含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3nを導出し、これにより前記第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0を補正することにより電力ケーブルの劣化診断を行う方法である。
【0012】
そして、前記第1の電圧V1中に含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3nを導出する具体的な手段としては、前記第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0及び第1の電圧V1中に含まれる第3高調波電圧V3nと、前記重畳電圧V3を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m1及び重畳電圧V3中に含まれる第3高調波電圧V3m1とを測定し、前記第3高調波電圧V3m1及び第3高調波電圧V3nにより、前記第1の電圧V1に重畳された第2の電圧V2である第3高調波電圧V3s1を導出し、前記第3高調波成分I3m1及び第3高調波成分I3m0により、前記第3高調波電圧V3s1の影響により現れる損失電流中に含まれる第3高調波成分I3s1を導出し、前記第3高調波電圧V3s1と第3高調波成分I3s1との対応関係を調べて、前記第1の電圧V1中に含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3nを導出する。
【0013】
これにより、電力ケーブルに印加する第1の電圧V1(交流電圧)に含まれる第3高調波電圧V3nにより発生する損失電流中の第3高調波成分I3n(劣化信号ではないノイズ)を定量的に評価することが可能になる。従って、前記第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0を補正して、前記第3高調波成分I3nによる影響分を取り除き、電力ケーブルの絶縁体中に生じた水トリーから発せられる真の劣化信号である第3高調波成分I3rを抽出することが可能になり、精度の高い電力ケーブルの劣化診断を行うことができる。
【0014】
【発明の実施の形態】
次に、本発明の実施形態を図面に基づいて説明する。図1は本発明を実施するための測定回路の一例を示す図である。先ず、第1のステップとして、波形発生器3により主の周波数f、例えば、商用周波数50Hzの信号を発生させ、その信号を電力増幅器5及びリアクトル6を介して変圧器7の1次側へ入力することにより、その変圧器7から交流電圧(試験電圧)として、主の周波数50Hzを持つ第1の電圧V1を出力する。
【0015】
次に、その第1の電圧V1を診断対象の電力ケーブル1とこれに並列に接続された無損失の標準コンデンサ9に印加し、電力ケーブル1と変圧器7間に挿入された変流器11により検出される電力ケーブル1の絶縁体を流れる電流と標準コンデンサ9を流れる電流を損失電流測定ブリッジ13に入力し、損失電流測定ブリッジ13で、電力ケーブル1の絶縁体を流れる電流中より、印加される第1の電圧V1に対して90°進み位相の成分(容量性電流)を除去して、第1の電圧V1と同位相の損失電流を抽出する。
【0016】
次に、損失電流測定ブリッジ13から出力される損失電流の波形をデジタルオシロスコープ15で離散数値データとして取り込み、これを波形解析コンピュータ17にてFFT解析することにより、前記第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0の振幅(大きさ)及び重畳位相(基本波成分に対する位相差)を測定する。また、同時に、電圧波形を前記オシロスコープ15にて離散数値データとして取り込み、波形解析コンピュータ17により、第1の電圧V1中に含まれる第3高調波電圧V3nの振幅及び重畳位相を測定する。第3高調波電圧V3nのベクトル図を図2(a)に、また、第3高調波成分I3m0のベクトル図を図2(b)に示す。ここで抽出された第3高調波成分I3m0は、図2(b)から明らかなように、電力ケーブル1の絶縁体中に生じた水トリーから発せられる真の劣化信号である第3高調波成分I3rに加え、前記第1の電圧V1中に含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3nも含まれている。
【0017】
次に、第2のステップとして、波形発生器3により周波数f、即ち、商用周波数50Hzの信号に、その3倍の周波数3f、即ち、周波数150Hzの信号を加えた信号を発生させ、変圧器7により、前記第1の電圧V1に周波数150Hzを持つ第2の電圧V2を意図的に重畳した重畳電圧V3を出力し、その重畳電圧V3を電力ケーブル1とこれに並列に接続された無損失の標準コンデンサ9に印加し、前記と同様にして抽出される損失電流中に含まれる第3高調波成分I3m1の振幅及び重畳位相と重畳電圧V3中に含まれる第3高調波電圧V3m1の振幅及び重畳位相を波形解析コンピュータ17により測定する。
【0018】
第3高調波電圧V3m1のベクトル図を図3(a)に、また、第3高調波成分I3m1のベクトル図を図3(b)に示す。ここで抽出された第3高調波成分I3m1は、図3(b)から明らかなように、電力ケーブル1の絶縁体中に生じた水トリーから発せられる真の劣化信号である第3高調波成分I3r、前記第1の電圧V1中に含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3n、更に、前記第1の電圧V1に重畳された第2の電圧V2である第3高調波電圧V3s1の影響により現れる損失電流中に含まれる第3高調波成分I3s1も含まれる。
【0019】
第1のステップで得られた第1の電圧V1中に含まれる第3高調波電圧V3nと第2のステップで得られた重畳電圧V3中に含まれる第3高調波電圧V3m1とを用いれば、第1の電圧V1に意図的に重畳された第2の電圧V2である第3高調波電圧V3s1がどのようなものであるかを特定することができる。具体的に説明すると、前記第3高調波電圧V3m1から第3高調波電圧V3nを、それぞれ振幅及び重畳位相を加味した上で、波形解析コンピュータ17によりベクトル減算することにより、意図的に重畳された第2の電圧V2である第3高調波電圧V3s1を導出することができる(図3(a)参照)。
【0020】
一方、第1のステップで得られた前記第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0と第2のステップで得られた重畳電圧V3を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m1とを用いれば、前記第1の電圧V1に意図的に重畳された第2の電圧V2である第3高調波電圧V3s1の影響により現れる損失電流中に含まれる第3高調波成分I3s1がどのようなものであるかを特定することができる。この場合も、前記第3高調波成分I3m1から第3高調波成分I3m0を、それぞれ振幅及び重畳位相を加味した上で、波形解析コンピュータ17によりベクトル減算することにより、意図的に重畳された第2の電圧V2である第3高調波電圧V3s1の影響により現れる損失電流中に含まれる第3高調波成分I3s1を導出することができる(図3(b)参照)。
【0021】
このようにして、第1の電圧V1に意図的に重畳された第2の電圧V2である第3高調波電圧V3s1と第3高調波電圧V3s1の影響により現れる損失電流中に含まれる第3高調波成分I3s1とを導出して、これら第3高調波電圧V3s1と第3高調波成分I3s1との対応関係を調べて評価することにより、前記第1の電圧V1中に元々含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3nを波形解析コンピュータ17による解析により導出することができる。
【0022】
そうすると、図2(b)から明らかなように、第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0(水トリーによる劣化信号と電源等によるノイズの合成)から第1の電圧V1中に含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3nを、それぞれ振幅及び重畳位相を加味した上で、波形解析コンピュータ17によりベクトル減算することにより、第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0を補正して、前記第3高調波成分I3nによる影響分を取り除き、電力ケーブル1の絶縁体中に生じた水トリーから発せられる真の劣化信号である第3高調波成分I3rだけを確実に抽出することが可能になり、精度の高い電力ケーブルの劣化診断を行うことができる。
【0023】
更に、前記第1の電圧V1に重畳される第2の電圧V2(第3高調波電圧V3s1)の重畳位相を2種類以上とすることにより、それぞれの重畳位相について、前記したような重畳される第2の電圧V2(第3高調波電圧V3s1)とこれの影響により現れる損失電流中に含まれる第3高調波成分I3s1との対応関係を調べて評価することができる。これら複数の対応関係を評価することにより、第1の電圧V1中に含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3nを導出するばらつきが低減されて、第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0を補正する確度を向上させることができる。
【0024】
なお、上記実施形態では、電力ケーブル1に交流電圧を印加する場合、先に第1の電圧V1を損失電流中に含まれる第3高調波成分I3m0等を測定し、次いで第1の電圧V1に第2の電圧V2である第3高調波電圧V3s1を重畳した重畳電圧V3を印加し、損失電流中に含まれる第3高調波成分I3m1等を測定したが、第1の電圧V1を印加した場合の測定と重畳電圧V3を印加した場合の測定は互いに独立した測定行為であり、一方の測定行為が他方の測定行為に影響を及ぼすことがない。従って、交流電圧の印加順序を逆にして、先に重畳電圧V3を印加して測定をした後、第1の電圧V1を印加して測定を行うようにしてもよい。
【0025】
【実施例】
診断対象の電力ケーブル1として、電圧階級が22kV、導体サイズが100mm、絶縁体の厚さが6mm、長さが50mの水トリー劣化ケーブルを用いた。また、印加すべき交流電圧の第1の電圧V1中に含まれる第3高調波電圧V3nの状況を種々変化させてその影響を確認するために、900nFのコンデンサ19を変圧器7の負荷として、変圧器7と標準コンデンサ9間に標準コンデンサ9と並列に接続した場合(図1参照)と、そうでない場合について、第1の電圧V1中に含まれる第3高調波電圧V3nが異なる状況を実現し、電力ケーブル1の損失電流測定を行った。なお、交流電圧の基本周波数fを50Hzとした。
【0026】
図1に示す測定回路は、波形発生器3の信号を電力増幅器5及びリアクトル6を介して変圧器7の1次側へ入力することにより交流電圧(試験電圧)の発生及び制御を行うことができるように構成されている。波形発生器3で周波数fに相当する50Hzの信号を発生させた場合には、主成分が50Hzの電圧中に僅かに150Hzの第3高調波電圧V3nを含む第1の電圧V1を得ることができ、50Hzに対し、その3倍の周波数3fである150Hzを加えた信号を発生させた場合には、第1の電圧V1に150Hzの第2の電圧V2を重畳した重畳電圧V3を得ることができる。波形発生器3では50Hzの信号と150Hzの信号の重畳位相を任意に設定することができるので、交流電圧として第1の電圧V1と第2の電圧V2の重畳位相を任意に設定することができる。本実施例の試験条件としては、第1の電圧V1の50Hz成分として実効値18kV、第2の電圧V2として実効値200V(150Hz)程度、第1の電圧V1と第2の電圧V2の重畳位相として6通りの値を設定した。
【0027】
また、前記900nFのコンデンサ19を変圧器7の負荷として接続しない場合(条件▲1▼)と、接続した場合(条件▲2▼)において、交流電圧(第1の電圧V1)中に含まれる第3高調波電圧V3nの測定結果と、従来技術における第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0の測定結果(ノイズ補正無)と、本発明における第1の電圧V1中に含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3n(ノイズ)の影響を補正して取り除いた第3高調波成分(劣化信号)I3rの導出結果(ノイズ補正有)を図4に示す。なお、ここで示した第3高調波成分I3m0、I3rの振幅及び重畳位相の値は、交流電圧(第1の電圧V1)の基本波を、V=Vsin{n(ωt+θvn)}、n=1,2,3,・・・、ただし、θv1=0と表記した場合、損失電流をI=Isin{n(ωt+θ)、n=1,2,3,・・・と表記することを定義した結果得られたn=3に対する振幅及び重畳位相である。
【0028】
図5(a)は前記条件▲1▼における測定において、交流電圧中に含まれる第3高調波電圧を、(b)は交流電圧を印加したときに抽出される損失電流中に含まれる第3高調波成分を示すベクトル図であり、図6(a)は前記条件▲2▼における測定において、交流電圧中に含まれる第3高調波電圧を、(b)は交流電圧を印加したときに抽出される損失電流中に含まれる第3高調波成分を示すベクトル図である。
【0029】
第1の電圧V1にその周波数f(50Hz)の3倍の周波数3f(150Hz)を持つ第2の電圧V2を重畳した重畳電圧V3中に含まれる第3高調波電圧V3m1乃至V3m の測定値(図5(a)、図6(a)の○印)は、第2の電圧V2が重畳される前における第1の電圧V1中に含まれる第3高調波電圧V3nの測定値(図5(a)、図6(a)の●印)を中心として平面上に円を描くようにして得られている。これは第1の電圧V1に重畳された第2の電圧V2(第3高調波電圧V3s1乃至V3s )の振幅(大きさ)を一定とし、重畳位相のみを変化させたためである。なお、V3s1乃至V3s は第3高調波電圧V3m1乃至V3m から第3高調波電圧V3nをベクトル減算することにより導出された第2の電圧V2(第3高調波電圧V3s1乃至V3s )のベクトルである。
【0030】
一方、損失電流中に含まれる第3高調波成分についても、前記重畳電圧V3を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m1乃至I3m の測定値(図5(b)、図6(b)の◇印)は、第2の電圧V2が重畳される前における第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0の測定値(図5(b)、図6(b)の◆印)を中心として平面上に円を描くようにして得られている。なお、I3s1乃至I3s は第3高調波成分I3m1乃至I3m から第3高調波成分I3m0をベクトル減算することにより導出された第3高調波電圧V3s1乃至V3s の影響により現れる損失電流中に含まれる第3高調波成分I3s1乃至I3s のベクトルである。
【0031】
図5(a)(b)、図6(a)(b)に示されたものから明確なように、第2の電圧V2(第3高調波電圧V3s1乃至V3s )とこれの影響により現れる損失電流中に含まれる第3高調波成分I3s1乃至I3s は独立して1対1の対応関係にある。従って、両者の対応関係を評価することによって、第1の電圧V1中に元々含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3n(ノイズ)がどのようなものであるかを導出することが可能になり、その結果を用いて、第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0を補正してノイズの影響を排除することにより、水トリーから発せられる真の劣化信号である第3高調波成分I3r(図5(b)、図6(b)の×印)だけを得ることができる。
【0032】
条件▲1▼は第1の電圧V1中に振幅が34.0Vで基本電圧(50Hz)に対して0.13%の第3高調波電圧V3nが含まれている条件であり、条件▲2▼は第1の電圧V1中に振幅が142.4Vで基本電圧(50Hz)に対して0.56%の第3高調波電圧V3nが含まれている条件である。第1の電圧V1中に含まれる第3高調波電圧V3nが損失電流中に含まれる第3高調波成分I3m0の測定に影響を及ぼすとすれば、条件▲2▼の方が条件▲1▼よりも損失電流中の第3高調波成分I3m0の測定において、第1の電圧V1中に含まれる第3高調波電圧V3nの影響による誤差が大きく現れることになる。
【0033】
図4に示した通り、条件▲1▼では、従来技術(ノイズ補正無)と本発明(ノイズ補正有)において、損失電流中に含まれる第3高調波成分I3m0、I3rの振幅と重畳位相の相違は小さいが、条件▲2▼では、従来技術(ノイズ補正無)と本発明(ノイズ補正有)における相違の大きいことが確認できる。損失電流中の第3高調波成分を用いた電力ケーブル1の劣化診断技術では、前記振幅が大きいほど、また、重畳位相の絶対値が小さいほど、ケーブル劣化が進んでいるものと判断する。本実施例の結果をこの観点から見ると、条件▲1▼と条件▲2▼で同一の電力ケーブル1を測定しているにも拘わらず、従来技術では条件▲1▼、▲2▼間で振幅と重畳位相の値の大きく異なるものが得られており、また、条件▲2▼では振幅が小さく、重畳位相の絶対値が大きくなる方向に、交流電圧(第1の電圧V1)中に含まれる第3高調波電圧V3nが影響を及ぼしており、劣化を過小評価してしまう危険性がある。これに対して、本発明では条件▲1▼、▲2▼間で振幅と重畳位相の値がほぼ同値であり、ノイズ補正が正しく行われて真の劣化信号のみを導出していることが分かる。
【0034】
【発明の効果】
以上説明したように、本発明の電力ケーブルの劣化診断方法によると、電力ケーブルに印加する交流電圧として、主の周波数fを持つ第1の電圧V1と、その第1の電圧V1にその周波数fの3倍の周波数3fを持つ第2の電圧V2を重畳した重畳電圧V3とに着目して、第1の電圧V1中に含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3nを導出し、これにより前記第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0を補正することにより電力ケーブルの劣化診断を行うので、電力ケーブルに印加する第1の電圧V1に含まれる第3高調波電圧V3nにより発生する損失電流中の第3高調波成分I3n(劣化信号ではないノイズ)を定量的に評価することが可能になる。従って、前記第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0を補正して、前記第3高調波成分I3nによる影響分を取り除き、電力ケーブルの絶縁体中に生じた水トリーから発せられる真の劣化信号である第3高調波成分I3rを抽出することが可能になり、精度の高い電力ケーブルの劣化診断を行うことができる。
【0035】
また、本発明を実施するために第1の電圧V1に重畳される第2の電圧(第3高調波電圧V3s1乃至V3s )は、第1の電圧V1の1%程度の小容量のものでよく、交流電圧(試験電圧)を発生させる装置を構成する変圧器等の機器の容量変更を必要とするものではないので、従来より使用している機器をそのまま転用することができる。更に、本発明による方法は試験装置が発生する高調波電圧のレベルに拘わらず、その影響を補正することが可能であるため、試験装置を構成する機器に対する特別な対策、即ち、高調波低減フィルタの付加や変圧器等に用いる鉄心として磁気特性に余裕のあるものを使用するといった対応が必要でなくなり、試験装置の費用を低減させることができる。
【0036】
更に、前記第1の電圧V1に重畳される第2の電圧V2(第3高調波電圧V3s1乃至V3s )の重畳位相を2種類以上とすることにより、それぞれの重畳位相について、第2の電圧V2(第3高調波電圧V3s1乃至V3s )とこれの影響により現れる損失電流中に含まれる第3高調波成分I3s1乃至I3s との対応関係を調べて評価することが可能になり、第1の電圧V1中に含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3nを導出するばらつきが低減されて、第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0を補正する確度を向上させることができるので好ましい。
【図面の簡単な説明】
【図1】本発明を実施するための測定回路の一例を示す図である。
【図2】(a)は電力ケーブルに印加される第1の電圧V1中に含まれる第3高調波電圧V3nを、(b)は第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0を示すベクトル図である。
【図3】(a)は電力ケーブルに印加される重畳電圧V3に含まれる第3高調波電圧V3m1を、(b)は重畳電圧V3を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m1を示すベクトル図である。
【図4】条件▲1▼及び条件▲2▼において、交流電圧(第1の電圧V1)中に含まれる第3高調波電圧V3nの測定結果、従来技術における損失電流中に含まれる第3高調波成分I3m0の測定結果及び本発明における損失電流中に含まれる第3高調波成分(劣化信号)I3rの導出結果を示す図である。
【図5】(a)は条件▲1▼における測定において、交流電圧中に含まれる第3高調波電圧を、(b)は交流電圧を印加したときに抽出される損失電流中に含まれる第3高調波成分を示すベクトル図である。
【図6】(a)は条件▲2▼における測定において、交流電圧中に含まれる第3高調波電圧を、(b)は交流電圧を印加したときに抽出される損失電流中に含まれる第3高調波成分を示すベクトル図である。
【符号の説明】
1 電力ケーブル
3 波形発生器
5 電力増幅器
6 リアクトル
7 変圧器
9 標準コンデンサ
11 変流器
13 損失電流測定ブリッジ
15 デジタルオシロスコープ
17 波形解析コンピュータ
19 コンデンサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for diagnosing deterioration of a power cable.
[0002]
[Prior art]
At present, the main form of deterioration of cross-linked polyethylene insulated cables (hereinafter referred to as cables), which is the most widespread power cable, is water tree deterioration. The water tree is a deteriorated portion in the insulator which is generated by the action of moisture and electric field existing in the cable insulator, and increases with the passage of time, thereby deteriorating the insulation performance of the cable. Various degradation diagnosis techniques have been studied with the aim of efficiently diagnosing the state of water tree degradation.
[0003]
As one of the prior arts, an AC voltage (test voltage) is applied to a cable, a loss current having the same phase as the AC voltage is extracted from a current flowing through an insulator, and a harmonic component included in the loss current is extracted. There is a method of diagnosing cable deterioration by using the method. Harmonic components in the loss current used as a degradation signal in this method appear due to the effect of the nonlinear electrical conduction characteristics of the water tree. Can be diagnosed. More specifically, an AC voltage is applied to the cable and a lossless standard capacitor connected in parallel with the cable, and the current flowing through the standard capacitor is used to apply a current flowing through the cable to the cable, leading the applied voltage by 90 ° with respect to the applied voltage. The loss current is extracted by removing the component (capacitive current), and the amplitude (magnitude) and the superimposed phase (order with respect to the fundamental wave component) of the harmonic component, which determine the generation state of the third harmonic component therein, are determined. The degree of deterioration of the cable is evaluated by comparing the value of (phase difference) with data (for example, see Patent Documents 1 and 2).
[0004]
[Patent Document 1]
JP-A-7-151815 (paragraph 0003, paragraph 0030 to paragraph 0035 and FIG. 2 of the detailed description of the invention)
[Patent Document 2]
JP 2002-196030 A (paragraph 0003, paragraph 0005 and FIG. 2 of the detailed description of the invention)
[0005]
[Problems to be solved by the invention]
In the conventional degradation diagnosis technology, if noise having the same frequency as the third harmonic component in the loss current used as the degradation signal is present, the noise signal cannot be distinguished from a true degradation signal reflecting the state of water tree degradation. , It is not possible to perform highly accurate deterioration diagnosis.
[0006]
The main source of this noise is the third harmonic voltage contained in the AC voltage applied to the cable. If a voltage that does not include the third harmonic voltage at all can be used as the AC voltage, the third harmonic component contained in the loss current can be directly evaluated as a water tree deterioration signal, and accurate deterioration diagnosis can be performed. It is possible to do.
[0007]
However, the AC voltage usually contains a harmonic voltage having a frequency that is an integral multiple of the fundamental component in addition to the fundamental voltage, regardless of the level difference, and is called an AC voltage that does not include any harmonic voltage. It is practically impossible to make things happen.
[0008]
The device for generating an AC voltage is roughly divided into a transformer, a variable reactor, and a power supply for supplying power thereto. As a power source used at the diagnostic site, if there is a switchboard equipment permanently installed at the site, bring commercial power from there, and if there is no such equipment, bring a mobile power generator to the site, A power supply from the power supply will be used, but such a power supply originally contains a harmonic component. Both transformers and variable reactors are power devices that use the magnetic properties of the internal core, and the magnetic properties of the core generally have nonlinear characteristics. Harmonic voltage is generated.
[0009]
Conventional degradation diagnosis technology uses filters that reduce harmonic components in the power supply to reduce the effect of harmonic voltages in the AC voltage on measurement results, or as cores used in transformers and variable reactors. Attention has been paid to maximally suppress harmonic voltages generated in an AC voltage by using a magnetic material having a margin in which a non-linear characteristic hardly appears. However, such measures cannot reduce the harmonic voltage in the AC voltage, but do not completely eliminate the harmonic voltage. The harmonic component in the AC voltage changes according to the load connected to the transformer output, that is, the capacitance of the cable to be diagnosed, and the diagnostic accuracy varies depending on the capacitance of the cable. This can lead to undesirable situations.
[0010]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a third harmonic included in a loss current appearing due to an influence of a third harmonic voltage originally included in an AC voltage applied to a power cable. By accurately evaluating the wave component (noise that is not a degraded signal) and correcting the influence, the true third harmonic component (degraded signal) emitted from the water tree is extracted, and high-precision power An object of the present invention is to provide a power cable deterioration diagnosis method capable of performing cable deterioration diagnosis.
[0011]
[Means for Solving the Problems]
According to the present invention, an AC voltage is applied to a power cable, a loss current having the same phase as the AC voltage is extracted from a current flowing through an insulator, and a third harmonic component included in the loss current is used for the power cable. In the method for diagnosing deterioration of a power cable, the first voltage V1 having a main frequency f is applied as an AC voltage applied to the power cable, and the first voltage V1 has a frequency three times the frequency f. Paying attention to a superimposed voltage V3 in which a second voltage V2 having 3f is superimposed, the third harmonic voltage V included in the first voltage V13nHarmonic component I contained in the loss current appearing due to the influence of3nFrom the third harmonic component I contained in the loss current extracted when the first voltage V1 is applied.3m0This is a method for performing a power cable deterioration diagnosis by correcting.
[0012]
Then, the third harmonic voltage V included in the first voltage V13nHarmonic component I contained in the loss current appearing due to the influence of3nAs a specific means for deriving the third harmonic component I included in the loss current extracted when the first voltage V1 is applied.3m0And the third harmonic voltage V included in the first voltage V13nAnd the third harmonic component I included in the loss current extracted when the superimposed voltage V3 is applied.3m1And the third harmonic voltage V included in the superimposed voltage V33m1And the third harmonic voltage V3m1And the third harmonic voltage V3nAs a result, the third harmonic voltage V which is the second voltage V2 superimposed on the first voltage V13s1And the third harmonic component I3m1And the third harmonic component I3m0The third harmonic voltage V3s1Harmonic component I contained in the loss current appearing due to the influence of3s1And the third harmonic voltage V3s1And the third harmonic component I3s1The third harmonic voltage V included in the first voltage V13nHarmonic component I contained in the loss current appearing due to the influence of3nIs derived.
[0013]
As a result, the third harmonic voltage V included in the first voltage V1 (AC voltage) applied to the power cable3nThird harmonic component I in the loss current generated by the3n(Noise that is not a degraded signal) can be quantitatively evaluated. Therefore, the third harmonic component I included in the loss current extracted when the first voltage V1 is applied.3m0To correct the third harmonic component I3nHarmonic component I, which is a true degradation signal generated from a water tree generated in the insulation of the power cable by removing the influence of the3rCan be extracted, and a highly accurate power cable deterioration diagnosis can be performed.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an example of a measuring circuit for implementing the present invention. First, as a first step, a signal having a main frequency f, for example, a commercial frequency of 50 Hz is generated by the waveform generator 3 and the signal is input to the primary side of the transformer 7 via the power amplifier 5 and the reactor 6. As a result, the transformer 7 outputs a first voltage V1 having a main frequency of 50 Hz as an AC voltage (test voltage).
[0015]
Next, the first voltage V1 is applied to the power cable 1 to be diagnosed and a lossless standard capacitor 9 connected in parallel to the power cable 1 to be diagnosed, and the current transformer 11 inserted between the power cable 1 and the transformer 7 is applied. The current flowing through the insulator of the power cable 1 and the current flowing through the standard capacitor 9 are input to the loss current measurement bridge 13, and the current flowing through the insulator of the power cable 1 is applied to the loss current measurement bridge 13. A component (capacitive current) having a phase leading by 90 ° with respect to the first voltage V1 is removed, and a loss current having the same phase as the first voltage V1 is extracted.
[0016]
Next, the waveform of the loss current output from the loss current measurement bridge 13 was fetched as discrete numerical data by the digital oscilloscope 15 and subjected to FFT analysis by the waveform analysis computer 17 to apply the first voltage V1. Third harmonic component I included in the loss current that is sometimes extracted3m0, The amplitude (magnitude) and the superimposed phase (the phase difference with respect to the fundamental wave component) are measured. At the same time, the oscilloscope 15 captures the voltage waveform as discrete numerical data, and the waveform analysis computer 17 uses the third harmonic voltage V1 included in the first voltage V1.3nThe amplitude and the superimposed phase are measured. Third harmonic voltage V3nFIG. 2 (a) shows a vector diagram of the third harmonic component I.3m0Is shown in FIG. 2 (b). Third harmonic component I extracted here3m02B is a third harmonic component I which is a true degradation signal generated from a water tree generated in the insulator of the power cable 1 as is clear from FIG.3rIn addition to the third harmonic voltage V included in the first voltage V1.3nHarmonic component I contained in the loss current appearing due to the influence of3nIs also included.
[0017]
Next, as a second step, the waveform generator 3 generates a signal obtained by adding a signal having a frequency 3f, that is, a signal having a frequency of 150 Hz to a signal having a frequency f, that is, a commercial frequency of 50 Hz. Outputs a superimposed voltage V3 in which the second voltage V2 having a frequency of 150 Hz is intentionally superimposed on the first voltage V1, and outputs the superimposed voltage V3 in parallel with the power cable 1 and a lossless connection. The third harmonic component I contained in the loss current applied to the standard capacitor 9 and extracted in the same manner as described above3m1, The superimposed phase, and the third harmonic voltage V included in the superimposed voltage V33m1Are measured by the waveform analysis computer 17.
[0018]
Third harmonic voltage V3m1FIG. 3 (a) shows a vector diagram of the third harmonic component I.3m1Is shown in FIG. 3 (b). Third harmonic component I extracted here3m13B is a third harmonic component I which is a true deterioration signal generated from a water tree generated in the insulator of the power cable 1 as is clear from FIG.3r, The third harmonic voltage V included in the first voltage V13nHarmonic component I contained in the loss current appearing due to the influence of3nAnd a third harmonic voltage V, which is a second voltage V2 superimposed on the first voltage V1.3s1Harmonic component I contained in the loss current appearing due to the influence of3s1Is also included.
[0019]
Third harmonic voltage V included in first voltage V1 obtained in the first step3nAnd the third harmonic voltage V included in the superimposed voltage V3 obtained in the second step.3m1Is used, the third harmonic voltage V2, which is the second voltage V2 intentionally superimposed on the first voltage V13s1Can be specified. More specifically, the third harmonic voltage V3m1From the third harmonic voltage V3nIs added to the third harmonic voltage V2, which is the second voltage V2 intentionally superimposed, by taking the amplitude and the superimposed phase into account and subtracting the vector by the waveform analysis computer 17.3s1Can be derived (see FIG. 3A).
[0020]
On the other hand, the third harmonic component I included in the loss current extracted when the first voltage V1 obtained in the first step is applied.3m0And the third harmonic component I included in the loss current extracted when the superimposed voltage V3 obtained in the second step is applied.3m1Is used, the third harmonic voltage V2 which is the second voltage V2 intentionally superimposed on the first voltage V13s1Harmonic component I contained in the loss current appearing due to the influence of3s1Can be specified. Also in this case, the third harmonic component I3m1From the third harmonic component I3m0Is added to the third harmonic voltage V2, which is the second voltage V2 intentionally superimposed, by taking the amplitude and the superimposed phase into account and subtracting the vector by the waveform analysis computer 17.3s1Harmonic component I contained in the loss current appearing due to the influence of3s1Can be derived (see FIG. 3B).
[0021]
Thus, the third harmonic voltage V, which is the second voltage V2 intentionally superimposed on the first voltage V1,3s1And the third harmonic voltage V3s1Harmonic component I contained in the loss current appearing due to the influence of3s1And the third harmonic voltage V3s1And the third harmonic component I3s1The third harmonic voltage V originally contained in the first voltage V1 is determined by examining and evaluating the correspondence between3nHarmonic component I contained in the loss current appearing due to the influence of3nCan be derived by analysis by the waveform analysis computer 17.
[0022]
Then, as is clear from FIG. 2B, the third harmonic component I included in the loss current extracted when the first voltage V1 is applied.3m0(Synthesis of the degradation signal due to the water tree and the noise due to the power supply) from the third harmonic voltage V included in the first voltage V13nHarmonic component I contained in the loss current appearing due to the influence of3nIs added to the amplitude and the superimposed phase, and the vector is subtracted by the waveform analysis computer 17 to obtain the third harmonic component I included in the loss current extracted when the first voltage V1 is applied.3m0To correct the third harmonic component I3nThe third harmonic component I, which is a true deterioration signal emitted from the water tree generated in the insulator of the power cable 1 by removing the influence of the3rCan be reliably extracted, and highly accurate power cable deterioration diagnosis can be performed.
[0023]
Further, a second voltage V2 (third harmonic voltage V3) superimposed on the first voltage V1.3s1) Are two or more, so that for each of the superimposed phases, the superimposed second voltage V2 (third harmonic voltage V3s1) And the third harmonic component I included in the loss current that appears due to this effect.3s1It can be evaluated by examining the corresponding relationship with. By evaluating these plural correspondences, the third harmonic voltage V included in the first voltage V1 is obtained.3nHarmonic component I contained in the loss current appearing due to the influence of3nIs reduced, and the third harmonic component I included in the loss current extracted when the first voltage V1 is applied is reduced.3m0Can be improved.
[0024]
In the above embodiment, when an AC voltage is applied to the power cable 1, the first voltage V1 is first applied to the third harmonic component I included in the loss current.3m0And then the third harmonic voltage V2, which is the second voltage V2, to the first voltage V1.3s1Is applied, and the third harmonic component I included in the loss current is applied.3m1The measurement when the first voltage V1 is applied and the measurement when the superimposed voltage V3 is applied are independent measurement actions, and one measurement action affects the other measurement action. There is no. Therefore, the order of applying the AC voltage may be reversed, and the measurement may be performed by applying the superimposed voltage V3 first and then applying the first voltage V1.
[0025]
【Example】
The power cable 1 to be diagnosed has a voltage class of 22 kV and a conductor size of 100 mm.2A water tree deteriorated cable having an insulator thickness of 6 mm and a length of 50 m was used. Also, the third harmonic voltage V included in the first voltage V1 of the AC voltage to be applied3nIn order to confirm the effect by changing the situation of (1), a capacitor 19 of 900 nF is connected to the transformer 7 in parallel with the standard capacitor 9 between the transformer 7 and the standard capacitor 9 as a load of the transformer 7 (see FIG. 1). And, if not, the third harmonic voltage V included in the first voltage V1.3nWere realized, and the loss current of the power cable 1 was measured. The basic frequency f of the AC voltage was set to 50 Hz.
[0026]
The measurement circuit shown in FIG. 1 can generate and control an AC voltage (test voltage) by inputting the signal of the waveform generator 3 to the primary side of the transformer 7 via the power amplifier 5 and the reactor 6. It is configured to be able to. When the waveform generator 3 generates a signal of 50 Hz corresponding to the frequency f, the third harmonic voltage V of only 150 Hz is included in the voltage of 50 Hz as the main component.3nCan be obtained, and when a signal is generated by adding 150 Hz which is a frequency 3f that is three times the frequency of 50 Hz to 50 Hz, a second voltage of 150 Hz is added to the first voltage V1. A superimposed voltage V3 obtained by superimposing V2 can be obtained. Since the waveform generator 3 can arbitrarily set the superposition phase of the 50 Hz signal and the 150 Hz signal, the superposition phase of the first voltage V1 and the second voltage V2 can be arbitrarily set as the AC voltage. . The test conditions of this embodiment are as follows: an effective value of 18 kV as a 50 Hz component of the first voltage V1, an effective value of about 200 V (150 Hz) as the second voltage V2, and a superposition phase of the first voltage V1 and the second voltage V2. , Six values were set.
[0027]
In addition, when the 900 nF capacitor 19 is not connected as a load of the transformer 7 (condition (1)) and when it is connected (condition (2)), the capacitor 19 included in the AC voltage (first voltage V1) is used. 3 harmonic voltage V3nAnd the third harmonic component I contained in the loss current extracted when the first voltage V1 in the prior art is applied.3m0(No noise correction) and the third harmonic voltage V included in the first voltage V1 in the present invention.3nHarmonic component I contained in the loss current appearing due to the influence of3nThird harmonic component (deteriorated signal) I that has been corrected for and removed the effect of (noise)3r4 (with noise correction) is shown in FIG. The third harmonic component I shown here3m0, I3rThe value of the amplitude and the superimposed phase of the fundamental wave of the AC voltage (first voltage V1) is expressed by V = Vnsin {n (ωt + θvn)}, N = 1, 2, 3,..., Where θv1= 0, the loss current is expressed as I = Insin {n (ωt + θn), N = 1, 2, 3,... Are the amplitudes and superimposed phases for n = 3 obtained as a result of defining.
[0028]
FIG. 5A shows the third harmonic voltage contained in the AC voltage in the measurement under the condition (1), and FIG. 5B shows the third harmonic voltage contained in the loss current extracted when the AC voltage is applied. FIG. 6A is a vector diagram showing a harmonic component. FIG. 6A shows the third harmonic voltage included in the AC voltage in the measurement under the condition (2), and FIG. 6B shows the third harmonic voltage when the AC voltage is applied. FIG. 7 is a vector diagram showing a third harmonic component included in a loss current to be performed.
[0029]
A third harmonic voltage V included in a superimposed voltage V3 obtained by superimposing a second voltage V2 having a frequency 3f (150 Hz) three times the frequency f (50 Hz) on the first voltage V1.3m1Or V3m 6(A circle in FIGS. 5A and 6A) indicates the third harmonic voltage V included in the first voltage V1 before the second voltage V2 is superimposed.3n(Circles in FIGS. 5A and 6A) are obtained by drawing a circle on a plane. This corresponds to a second voltage V2 (third harmonic voltage V3) superimposed on the first voltage V1.3s1Or V3s 6This is because the amplitude (magnitude) is fixed and only the superposition phase is changed. Note that V3s1Or V3s 6Is the third harmonic voltage V3m1Or V3m 6From the third harmonic voltage V3nOf the second voltage V2 (third harmonic voltage V3s1Or V3s 6).
[0030]
On the other hand, the third harmonic component I contained in the loss current extracted when the superimposed voltage V3 is applied is also included in the third harmonic component I contained in the loss current.3m1Or I3m 6(Indicated by Δ in FIGS. 5B and 6B) are included in the loss current extracted when the first voltage V1 is applied before the second voltage V2 is superimposed. Third harmonic component I3m0(FIG. 5 (b) and FIG. 6 (b)) are obtained by drawing a circle on a plane. Note that I3s1Or I3s 6Is the third harmonic component I3m1Or I3m 6From the third harmonic component I3m0Is the third harmonic voltage V derived by vector subtraction3s1Or V3s 6Harmonic component I contained in the loss current appearing due to the influence of3s1Or I3s 6Is a vector.
[0031]
As is clear from those shown in FIGS. 5A and 5B and FIGS. 6A and 6B, the second voltage V2 (the third harmonic voltage V3s1Or V3s 6) And the third harmonic component I included in the loss current that appears due to this effect.3s1Or I3s 6Are independently in a one-to-one correspondence. Therefore, by evaluating the correspondence between them, the third harmonic voltage V originally contained in the first voltage V1 is obtained.3nHarmonic component I contained in the loss current appearing due to the influence of3n(Noise) can be derived, and using the result, the third harmonic component included in the loss current extracted when the first voltage V1 is applied I3m0Is corrected to eliminate the influence of noise, so that the third harmonic component I, which is a true degraded signal emitted from the water tree, is corrected.3r(X marks in FIGS. 5B and 6B) can be obtained.
[0032]
Condition (1) is that the first harmonic voltage V1 has an amplitude of 34.0 V and a third harmonic voltage V of 0.13% of the basic voltage (50 Hz).3nThe condition (2) is that the third harmonic voltage V has an amplitude of 142.4 V in the first voltage V1 and is 0.56% of the basic voltage (50 Hz).3nIs included. Third harmonic voltage V included in first voltage V13nIs the third harmonic component I contained in the loss current3m0If the condition (2) is affected, the third harmonic component I in the loss current is larger in the condition (2) than in the condition (1).3m0Of the third harmonic voltage V included in the first voltage V13nA large error due to the influence of appears.
[0033]
As shown in FIG. 4, under the condition (1), the third harmonic component I included in the loss current in the prior art (without noise correction) and the present invention (with noise correction)3m0, I3rAlthough the difference between the amplitude and the superimposed phase is small, it can be confirmed under the condition (2) that the difference between the conventional technology (without noise correction) and the present invention (with noise correction) is large. In the technology for diagnosing deterioration of the power cable 1 using the third harmonic component in the loss current, it is determined that the larger the amplitude and the smaller the absolute value of the superimposed phase, the more the cable is deteriorated. From the viewpoint of the result of the present embodiment, from the viewpoint, although the same power cable 1 is measured under the condition (1) and the condition (2), in the prior art, the condition between the conditions (1) and (2) is not satisfied. A large difference between the amplitude and the value of the superimposed phase is obtained. In the condition (2), the amplitude is small and the absolute value of the superimposed phase is included in the AC voltage (first voltage V1). Third harmonic voltage V3nHas an effect, and there is a risk of underestimating the deterioration. On the other hand, in the present invention, the values of the amplitude and the superimposed phase are almost the same between the conditions (1) and (2), and it can be seen that the noise correction is correctly performed and only the true deteriorated signal is derived. .
[0034]
【The invention's effect】
As described above, according to the power cable deterioration diagnosis method of the present invention, as the AC voltage applied to the power cable, the first voltage V1 having the main frequency f, and the first voltage V1 having the frequency f Paying attention to a superimposed voltage V3 obtained by superimposing a second voltage V2 having a frequency 3f that is three times as large as the third harmonic voltage V3 included in the first voltage V1.3nHarmonic component I contained in the loss current appearing due to the influence of3nFrom the third harmonic component I contained in the loss current extracted when the first voltage V1 is applied.3m0To correct the power cable for deterioration diagnosis, the third harmonic voltage V included in the first voltage V1 applied to the power cable is corrected.3nThird harmonic component I in the loss current generated by the3n(Noise that is not a degraded signal) can be quantitatively evaluated. Therefore, the third harmonic component I included in the loss current extracted when the first voltage V1 is applied.3m0To correct the third harmonic component I3nHarmonic component I, which is a true degradation signal generated from a water tree generated in the insulation of the power cable by removing the influence of the3rCan be extracted, and a highly accurate power cable deterioration diagnosis can be performed.
[0035]
In addition, a second voltage (third harmonic voltage V) superimposed on the first voltage V1 to carry out the present invention.3s1Or V3s 6) May have a small capacity of about 1% of the first voltage V1 and does not require a capacity change of a device such as a transformer constituting a device for generating an AC voltage (test voltage). The equipment used conventionally can be diverted as it is. Further, the method according to the present invention can correct the influence of the harmonic voltage generated by the test apparatus regardless of the level of the harmonic voltage. It is not necessary to take measures such as adding an iron core or using an iron core having a sufficient magnetic characteristic as a transformer or the like, and the cost of the test apparatus can be reduced.
[0036]
Further, a second voltage V2 (third harmonic voltage V3) superimposed on the first voltage V1.3s1Or V3s 6) Are two or more, so that the second voltage V2 (the third harmonic voltage V3s1Or V3s 6) And the third harmonic component I included in the loss current that appears due to this effect.3s1Or I3s 6And the third harmonic voltage V included in the first voltage V1.3nHarmonic component I contained in the loss current appearing due to the influence of3nIs reduced, and the third harmonic component I included in the loss current extracted when the first voltage V1 is applied is reduced.3m0This is preferable because the accuracy of correcting is improved.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of a measurement circuit for implementing the present invention.
FIG. 2A shows a third harmonic voltage V included in a first voltage V1 applied to a power cable.3n(B) shows the third harmonic component I contained in the loss current extracted when the first voltage V1 is applied.3m0FIG.
FIG. 3A shows a third harmonic voltage V included in a superimposed voltage V3 applied to a power cable.3m1(B) shows the third harmonic component I included in the loss current extracted when the superimposed voltage V3 is applied.3m1FIG.
FIG. 4 shows a third harmonic voltage V included in an AC voltage (first voltage V1) under conditions (1) and (2).3nOf the third harmonic component I contained in the loss current in the prior art.3m0And the third harmonic component (deteriorated signal) I contained in the loss current in the present invention.3rIt is a figure showing the derivation result of.
5A is a diagram illustrating a third harmonic voltage included in an AC voltage in the measurement under the condition (1), and FIG. 5B is a diagram illustrating a third harmonic voltage included in a loss current extracted when the AC voltage is applied. FIG. 4 is a vector diagram showing three harmonic components.
FIG. 6 (a) shows the third harmonic voltage included in the AC voltage in the measurement under the condition (2), and FIG. 6 (b) shows the third harmonic voltage included in the loss current extracted when the AC voltage is applied. FIG. 4 is a vector diagram showing three harmonic components.
[Explanation of symbols]
1 Power cable
3 Waveform generator
5 Power amplifier
6 reactor
7 Transformer
9 Standard capacitors
11 Current transformer
13 Loss current measurement bridge
15 Digital oscilloscope
17 Waveform analysis computer
19 Capacitor

Claims (3)

電力ケーブルに交流電圧を印加し、絶縁体を流れる電流中より前記交流電圧と同位相の損失電流を抽出し、その損失電流中に含まれる第3高調波成分を用いて電力ケーブルの劣化診断を行う電力ケーブルの劣化診断方法において、電力ケーブルに印加する交流電圧として、主の周波数fを持つ第1の電圧V1と、その第1の電圧V1にその周波数fの3倍の周波数3fを持つ第2の電圧V2を重畳した重畳電圧V3とに着目して、第1の電圧V1中に含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3nを導出し、これにより前記第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0を補正することにより電力ケーブルの劣化診断を行うことを特徴とする電力ケーブルの劣化診断方法。An AC voltage is applied to the power cable, a loss current having the same phase as the AC voltage is extracted from a current flowing through the insulator, and a deterioration diagnosis of the power cable is performed using a third harmonic component included in the loss current. In the method of diagnosing deterioration of a power cable to be performed, as an AC voltage applied to the power cable, a first voltage V1 having a main frequency f and a first voltage V1 having a frequency 3f which is three times the frequency f are used as the first voltage V1. Focusing on the superimposed voltage V3 on which the second voltage V2 is superimposed, the third harmonic component I 3n included in the loss current caused by the influence of the third harmonic voltage V 3n included in the first voltage V1 is calculated . derived, thereby characterized in that the deterioration diagnosis of the power cable by correcting the third harmonic component I 3M0 contained in loss current is extracted when applying the first voltage V1 power Deterioration diagnosis method of Buru. 前記第1の電圧V1を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m0及び第1の電圧V1中に含まれる第3高調波電圧V3nと、前記重畳電圧V3を印加したときに抽出される損失電流中に含まれる第3高調波成分I3m1及び重畳電圧V3中に含まれる第3高調波電圧V3m1とを測定し、前記第3高調波電圧V3m1及び第3高調波電圧V3nにより、前記第1の電圧V1に重畳された第2の電圧V2である第3高調波電圧V3s1を導出し、前記第3高調波成分I3m1及び第3高調波成分I3m0により、前記第3高調波電圧V3s1の影響により現れる損失電流中に含まれる第3高調波成分I3s1を導出し、前記第3高調波電圧V3s1と第3高調波成分I3s1との対応関係を調べて、前記第1の電圧V1中に含まれる第3高調波電圧V3nの影響により現れる損失電流中に含まれる第3高調波成分I3nを導出することを特徴とする請求項1記載の電力ケーブルの劣化診断方法。A third harmonic component I 3m0 included in the loss current extracted when the first voltage V1 is applied, a third harmonic voltage V 3n included in the first voltage V1, and the superimposed voltage V3. Is measured when the third harmonic component I 3m1 included in the loss current extracted when the voltage is applied and the third harmonic voltage V 3m1 included in the superimposed voltage V3, and the third harmonic voltage V 3m1 and the by third harmonic voltage V 3n, we derive a third harmonic voltage V 3S1 is a second voltage superimposed V2 to the first voltage V1, the third harmonic component I 3m1 and third harmonic The component I 3m0 derives a third harmonic component I 3s1 included in the loss current appearing under the influence of the third harmonic voltage V 3s1, and obtains the third harmonic voltage V 3s1 and the third harmonic component I 3s1. Check the correspondence with 2. The deterioration of the power cable according to claim 1, wherein a third harmonic component I3n included in a loss current appearing under the influence of a third harmonic voltage V3n included in the first voltage V1 is derived. Diagnostic method. 前記第1の電圧V1に重畳される第2の電圧V2の重畳位相が2種類以上であることを特徴とする請求項1又は2記載の電力ケーブルの劣化診断方法。3. The method for diagnosing deterioration of a power cable according to claim 1, wherein the superimposed phases of the second voltage V2 superimposed on the first voltage V1 are two or more types.
JP2003149464A 2003-05-27 2003-05-27 Degradation diagnosis method for power cables Expired - Lifetime JP4092645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149464A JP4092645B2 (en) 2003-05-27 2003-05-27 Degradation diagnosis method for power cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003149464A JP4092645B2 (en) 2003-05-27 2003-05-27 Degradation diagnosis method for power cables

Publications (2)

Publication Number Publication Date
JP2004354093A true JP2004354093A (en) 2004-12-16
JP4092645B2 JP4092645B2 (en) 2008-05-28

Family

ID=34045565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149464A Expired - Lifetime JP4092645B2 (en) 2003-05-27 2003-05-27 Degradation diagnosis method for power cables

Country Status (1)

Country Link
JP (1) JP4092645B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139718A (en) * 2005-11-22 2007-06-07 Institute Of National Colleges Of Technology Japan Water tree deterioration diagnostic method for power cable
JP2009300273A (en) * 2008-06-13 2009-12-24 Jfe Steel Corp Diagnosis method of power cable when power cable is repaired
JP2009300275A (en) * 2008-06-13 2009-12-24 Jfe Steel Corp Diagnosis method of power cable when power cable is repaired
JP2013029450A (en) * 2011-07-29 2013-02-07 Viscas Corp Deterioration diagnosis method for cv cable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675751A (en) * 2013-11-28 2014-03-26 国家电网公司 Three-phase voltage and current analog power source for site metering device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139718A (en) * 2005-11-22 2007-06-07 Institute Of National Colleges Of Technology Japan Water tree deterioration diagnostic method for power cable
JP2009300273A (en) * 2008-06-13 2009-12-24 Jfe Steel Corp Diagnosis method of power cable when power cable is repaired
JP2009300275A (en) * 2008-06-13 2009-12-24 Jfe Steel Corp Diagnosis method of power cable when power cable is repaired
JP2013029450A (en) * 2011-07-29 2013-02-07 Viscas Corp Deterioration diagnosis method for cv cable

Also Published As

Publication number Publication date
JP4092645B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
Crotti et al. Frequency response of MV voltage transformer under actual waveforms
JP6616193B2 (en) Lightning arrester leakage current detection method, lightning arrester leakage current detection device, and lightning arrester leakage current monitoring device
JP4267713B2 (en) Degradation diagnosis method for power cables
Kostić et al. Enhanced grounding system impedance measurements for high‐voltage substations
JP2022505739A (en) State analysis of electrical operating means
JP4092645B2 (en) Degradation diagnosis method for power cables
US20130043894A1 (en) Method and arrangement for determining impedance values
JP3869283B2 (en) Method for removing inductive noise in power cable deterioration diagnosis and power cable test apparatus
RU2666757C1 (en) Differential protection method and differential protection device for transformer
JP6128921B2 (en) Non-interruptible insulation diagnosis device and non-interruptible insulation diagnosis method
KR20200123523A (en) Apparatus for checking the ratio of Current Transformer and Potential Transformer for measurement
JP5559638B2 (en) Degradation judgment method for power cables
CN106610464A (en) System and method for judging frequency selection filtering performance of transformer winding deformation tester
CN109617017B (en) Generator stator grounding protection system, method and device
JP5679480B2 (en) Indirect AC megger measuring instrument and insulation resistance measuring method
Crotti et al. Frequency calibration of voltage transformers by digital capacitance bridge
Crotti et al. Frequency calibration of MV voltage transformer under actual waveforms
Reddy et al. Coherence function method of detection of fault in a power transformer during impulse test
KR20110066693A (en) Static monitoring device for high voltage motor
JP4100536B2 (en) High frequency noise removal method in power quality diagnosis
Radler et al. Electrical interferences in SFRA measurements–How to overcome undesirable effects
JP6320077B2 (en) Measurement method of partial pressure error
JP2007256023A (en) Method and circuit for measuring loss current by displacement current bypass method
JP7482058B2 (en) Partial discharge measurement system and partial discharge measurement method
RU2791982C2 (en) Analysis of the state of the electric measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4092645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term