JP2004353399A - Water-retaining pavement structure and method of constructing the same - Google Patents

Water-retaining pavement structure and method of constructing the same Download PDF

Info

Publication number
JP2004353399A
JP2004353399A JP2003154986A JP2003154986A JP2004353399A JP 2004353399 A JP2004353399 A JP 2004353399A JP 2003154986 A JP2003154986 A JP 2003154986A JP 2003154986 A JP2003154986 A JP 2003154986A JP 2004353399 A JP2004353399 A JP 2004353399A
Authority
JP
Japan
Prior art keywords
water
layer
grout
mixture layer
retentive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003154986A
Other languages
Japanese (ja)
Other versions
JP4133594B2 (en
Inventor
Takeshi Tsujii
豪 辻井
Hiroshi Fujita
広志 藤田
Hideyuki Kobayashi
秀行 小林
Naoyuki Oguri
直幸 小栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Rotec Corp
Original Assignee
Taisei Rotec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Rotec Corp filed Critical Taisei Rotec Corp
Priority to JP2003154986A priority Critical patent/JP4133594B2/en
Publication of JP2004353399A publication Critical patent/JP2004353399A/en
Application granted granted Critical
Publication of JP4133594B2 publication Critical patent/JP4133594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-retaining pavement structure which suitably maintains its water retaining function, and to provide a method of constructing the water-retaining pavement structure. <P>SOLUTION: The water-retaining pavement structure 1 is formed of: an open-graded asphalt mixture layer 5 (open-grain mixture layer) having intercommunicating porosities therein; water retaining grout 7 having water retentivity and filled in an upper portion of the intercommunicating porosities in the form of a layer; dry mortar 8 (water supply means) having water retentivity and permeability, and filled at least in part of a lower portion of the intercommunicating porosities in a manner being continuously arranged below the water-retaining grout 7; and water supply pipes 15 (water supply means) for supplying water to the dry mortar 8. In this manner the water-retaining grout 7 can be supplied with water via the dry mortar 8. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、保水性舗装構造及びその施工方法に関するものである。
【0002】
真夏の炎天下におけるアスファルト舗装の路面温度は、アスファルトの色調が黒であるため太陽光を吸収しやすく、60℃以上に上昇することもある。特に舗装比率の高い市街地では、このような路面温度の上昇に起因して、市街地全体が高温となるヒートアイランド現象が問題となっている。
【0003】
そこで、降雨時における雨水を保水する保水機能を有し、晴天時に保水された水が蒸発することにより路面温度の上昇を抑制する種々の保水性舗装が提案されている。例えば、本願出願人による「シルト系充填材を充填した路面温度の上昇抑制機能を備える舗装体の有孔表層」(特許文献1参照)が挙げられる。
【0004】
【特許文献1】
特許第3156151号公報(第3−14頁、第1−3図)
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1に開示された技術は、保水性を有するシルト系充填材(保水性グラウト)が充填された有孔表層の下部に、砕石路盤材料や透水性アスファルト混合物からなる水分貯溜層を設け、さらにこの水分貯留層に水を給水する給水用配管を配設した技術であるが、晴天時等の温度上昇時に、水分貯留層からシルト系充填材に水を好適に供給できにくく保水性を持続できないという問題があった。
【0006】
そこで、本発明は、保水機能を好適に持続可能な保水性舗装構造及びその施工方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
前記課題を解決するための手段として請求項1に係る発明は、内部に連続空隙を有する開粒度混合物層と、前記連続空隙の上部に層状で充填された保水性を有する保水性グラウトと、当該保水性グラウトの下方に連続した状態で、前記連続空隙の下部の少なくとも一部に充填された保水性及び透水性を有する給水材料と、前記給水材料に水を供給する給水手段を備え、前記給水材料を介して前記保水性グラウトに水が供給可能であることを特徴とする保水性舗装構造である。
【0008】
ここで、開粒度混合物層は、内部に連続空隙を有すれば、混合物の種類、態様は特に限定されず、例えば、開粒度アスファルト混合物層、開粒度コンクリート混合物層、開粒度樹脂混合物層等が挙げられる。
また、開粒度混合物層が、開粒度アスファルト混合物層である場合、骨材、アスファルトバインダ量等の配合比、空隙率、密度等はどのようであってもよい。また、開粒度アスファルト混合物層は、一回で施工されたものであってよいし、複数回で施工されたものであってもよい。さらに、複数回で施工された開粒度アスファルト混合物層の場合、この開粒度アスファルト混合物層を形成する各開粒度アスファルト混合物の種類は異なってもよい。
【0009】
このような保水性舗装構造によれば、給水手段から給水材料に水を適宜供給することにより、水は給水材料に吸水されると共に、給水材料の内部を通水し保水される。給水材料は、保水性グラウトに連続して充填されていることにより、蒸発により保水性グラウトに保水された水が減少した場合には、給水材料に保水された水が、保水性グラウトに移動する。したがって、保水性グラウトには水が連続的に保水され、保水機能は好適に持続可能となり、保水性グラウトに保水された水が蒸発するときに奏する温度上昇抑制効果を持続させることができる。
【0010】
請求項2に係る発明は、内部に連続空隙を有する開粒度混合物層の表面から、乾燥状態の給水材料を充填させる給水材料充填工程を備えたことを特徴とする保水性舗装構造の施工方法である。
【0011】
このような保水性舗装構造の施工方法によれば、乾燥状態の給水材料を開粒度混合物層の表面から充填させるため、開粒度混合物層の連続空隙の下部から、給水材料を充填させることができる。
【0012】
【発明の実施の形態】
以下、本発明の一実施形態について、図面を適宜参照して、詳細に説明する。
参照する図面において、図1は、本実施形態に係る保水性舗装構造を模式的に示す側断面図である。図2は、本実施形態に係る保水性舗装構造における水の移動状況を模式的に示す側断面図である。図3は、本実施形態に係る保水性舗装構造について、時間と路面温度の関係を示したグラフである。図4は、本実施形態に係る保水性舗装構造を基層と表層に分けて施工する施工方法を示す側断面図である。
【0013】
図1に示すように、保水性舗装構造1は、路盤51の上に積層した密粒度アスファルト混合物からなる遮水層52の上に構築されており、母体となる開粒度アスファルト混合物層5(開粒度混合物層)と、開粒度アスファルト混合物層5の連続空隙6(図4参照)の上部に層状に充填され固化した固化状態の保水性グラウト7と、保水性グラウト7の直下に連続すると共に連続空隙6の下部に層状で充填され固化した固化状態のドライモルタル8(給水材料)と、ドライモルタル8に水を供給する給水パイプ15(給水手段)を備えて構成されており、給水パイプ15が接続された給水池等の給水設備(図示しない)から、ドライモルタル8を介して保水性グラウト7に、水を適宜供給可能となっている。
【0014】
ここで、本実施形態に係る開粒度アスファルト混合物層5は、後記するように、基層と表層の2回に分けて施工されたものであり(図4参照)、基層開粒度アスファルト混合物層5aと表層開粒度アスファルト混合物層5bとが、界面に散布されたアスファルト乳剤により一体化して形成されたものである。したがって、連続空隙6は、基層開粒度アスファルト混合物層5aの連続空隙6aと、表層開粒度アスファルト混合物層5bの連続空隙6bとの和で形成されることとなる。なお、基層開粒度アスファルト混合物層5a及び表層開粒度アスファルト混合物層5bの厚さは、施工箇所に応じて適宜変更してよい。
【0015】
また、ドライモルタル8は、本実施形態では、連続空隙6aの下方より、基層開粒度アスファルト混合物層5aの施工厚さの略中間高さ位置まで充填されている。この層状のドライモルタル8の上面に連続して、すなわち、ドライモルタル8が充填されていない連続空隙6aの部分と連続空隙6bに保水性グラウト7は充填されている。よって、図1に示すように、本実施形態に係る保水性舗装構造1は、見かけ上、保水性グラウト7が充填された保水層とその直下でドライモルタル8が充填された給水層とを備えた二層式構造となっている。なお、保水性グラウト7及びドライモルタル8充填高さは、施工箇所の横断・縦断勾配、開粒度アスファルト混合物層5の施工厚さ、気候などに応じて適宜変更してよい。
以下、各構成要素について詳細に説明する。
【0016】
開粒度アスファルト混合物層5は、骨格となる粗骨材、細骨材及び石粉(以下、「骨材」とする)と、これらを結合したアスファルトバインダを含んで形成されている。骨材の配合及び合成粒度、アスファルトバインダの添加量は、締め固め後の開粒度アスファルト混合物層5が、内部に連続する連続空隙6及び施工箇所に応じた耐流動性等を有すれば、どのような配合であってもよい。
【0017】
骨材の合成粒度は、例えば、使用する骨材の最大粒径が13mm(つまり、使用する最大粒径の骨材が6号砕石)の場合、表1に示す粒度範囲であると設定空隙率が15〜35%となり、保水性グラウト7及びドライモルタル8を十分に充填可能となるので好ましい。
【0018】
【表1】

Figure 2004353399
【0019】
アスファルトバインダは、水に対する剥離抵抗性等を考慮し、アミン等の剥離防止剤が添加された高粘度改質アスファルトバインダであることが好ましい。
【0020】
保水性グラウト7は、透水性及び保水性を有し、前記した本願出願人による特許第3156151号公報(特許文献1)に記載された「シルト系充填材」と同義である。すなわち、保水性グラウト7は、シルト系粉末、セメント系固化材、水、添加剤として減水剤または凝結遅延剤を所定配合で混合し、硬化・乾燥させたものであり、多数の保水可能な微細空隙(図示しない)を有している。
【0021】
ここで、シルト系粉末とは、岩石を集塵したものである。
また、セメント系固化材としては、超速硬性セメント、普通ポルトランドセメント、超早強セメント、早強セメント、高炉セメント等から、施工条件等を考慮し適宜選択して使用してよい。
さらに、添加剤について、減水剤としては、カルボン酸系またはメラニン系等の減水剤が適しており、凝結遅延剤としては、SBR系、アクリル系、酢酸ビニル系のポリマーエマルジョンが好適に使用可能である。
【0022】
固化状態のドライモルタル8は、天然砂、人工砂、珪砂等の砂と、粉末ポリマー、セメント系材料等の粉末状の結合材とが、所定配合で混合され、連続空隙6に充填後、固化、乾燥したものであり、多数の微細空隙及び微細隙間(図示しない)を有し、透水性と吸水性を具えている。したがって、給水パイプ15から供給された水は、ドライモルタル8に吸水され、保水されると共に、ドライモルタル8が充填された給水層内部を移動自在となっている。
また、固化状態のドライモルタル8は、砂が結合材により結合した骨格構造を具えると共に、開粒度アスファルト混合物層5に固着している。結合材の添加量は、砂の質量に対して、2〜10質量%であることが好ましい。このような結合材の添加量であると、固化したドライモルタル8は、開粒度アスファルト混合物層5に対して、十分な固着力を有することになり、給水パイプ15からの給水にともなう水流により、ドライモルタル8が保水性舗装構造1の外部に流出することを防止できる。
【0023】
給水パイプ15は、壁体に所定間隔で給水孔(図示しない)を有しており、開粒度アスファルト混合物層5中の底部に沿って所定位置に埋設されている。また、給水パイプ15は、流量調節バルブ等を介して、外部の給水池等の給水設備(図示しない)に接続しており、ドライモルタル8に水を適宜供給可能となっている。
給水パイプ15としては、有孔塩ビ管、多孔質パイプ、ビニールホース等から適宜選択して使用可能であり、さらにスパイラルドレンパイプ等を使用して、給水パイプ15を保護してもよい。
【0024】
次に、保水性舗装構造1における水の移動状況について、図2を参照して説明する。
外部の給水設備から給水パイプ15に水が供給されると、この水はドライモルタル8を含む給水層に吸水されるとともに、その内部全域に亘って通水する(図2に示す矢印A)。
そして、給水層の全域に亘った水は、保水性グラウト7内に十分に水が保水されていない場合、毛細管現象により、保水性グラウト7とドライモルタル8との界面を越えて、保水性グラウト7に吸水され(図2に示す矢印A)、保水層の全域に亘って保水される(図2に示す矢印A)。
そして、晴天等により外気温が上昇し、保水性舗装構造1が高温になると、表面から保水層に保水された水が蒸発する(図2に示す矢印A)とともに、水の気化潜熱が保水性舗装構造1及び外気中から奪われるため、保水性舗装構造1の路面温度の上昇は抑制される。
【0025】
したがって、図3に示すように、本実施形態に係る保水性舗装構造1(図3において「給水付保水性(給水・有)」と示す)によれば、外気温等を考慮し適宜な間隔で、ドライモルタル8に給水することにより、保水性を有しない密粒度舗装構造(「密粒度」)、散水しない保水性舗装構造(「保水性(散水・無)」)、適宜な間隔で路面に散水し水を供給する保水性舗装構造(「保水性(散水・有)」)に比して、路面温度の上昇を抑制することが可能である。特に、本実施形態に係る舗装構造1は、舗装構造の内部から水を供給するため、路面から散水する保水性舗装(「保水性(散水・有)」)と比して、路面温度の上昇を抑制可能である。
なお、図3に示すデータは、各舗装構造を0.9m×0.9mのブロックに分割して路面温度の経時変化を測定したものであり、そのうち、給水または散水する舗装構造については、前記ブロックに7、10、13及び16時に、5Lの水を供給してすること条件として得られたデータである。また、図3に示す「気温」は外気温、「土」は土を樹脂等で固化した土系の舗装構造を示す。
【0026】
(保水性舗装構造の施工方法)
続いて、保水性舗装構造1を基層と表層に分けて施工する施工方法について、図4を参照して説明する。
保水性舗装構造の施工方法は、基層開粒度アスファルト混合物層5aを構築する基層開粒度アスファルト混合物層構築工程と、基層開粒度アスファルト混合物層5aの表面から、連続空隙6へ乾燥状態のドライモルタル8(給水材料)を充填するドライモルタル充填工程(給水材料充填工程)と、基層開粒度アスファルト混合物層5aの表面にアスファルト乳剤を散布するアスファルト乳剤散布工程と、基層開粒度アスファルト混合物層5aの上に表層開粒度アスファルト混合物層5bを構築する表層開粒度アスファルト混合物層構築工程と、表層開粒度アスファルト混合物層5bの表面から流動性を有する液状の保水性グラウト7を注入する保水性グラウト注入工程を備えて構成されている。
【0027】
(基層開粒度アスファルト混合物層構築工程)
図4(a)に示すように、遮水層52上に、例えば路肩に沿って給水パイプ15を配置した後、その上からアスファルトフィニッシャ等を使用して、所定配合の基層開粒度アスファルト混合物を敷き均し、ロードローラ、振動ローラ、タイヤローラ、振動プレート、タンパ等(以下、「締め固め機械」と総称する)で締め固め、所定密度、所定厚さ、所定空隙率の基層開粒度アスファルト混合物層5aを構築する。
また、遮水層52及び路肩等の周囲部が十分な遮水性を有さない場合には、基層開粒度アスファルト混合物を敷き均す前に、高濃度のゴム入りアスファルト乳剤を散布する等の止水処理を施すことが好ましい。
【0028】
(ドライモルタル充填工程)
そして、図4(b)に示すように、基層開粒度アスファルト混合物層5aの表面から、ドライモルタル8を適宜な手段(例えば、角型スコップなど)で散布し、レーキ21で敷き均す。その後、振動プレート22、振動ローラ(図示しない)等の振動付与手段により、基層開粒度アスファルト混合物層5aに振動を与え、ドライモルタル8を、基層開粒度アスファルト混合物層5aの連続空隙6aに下部から充填する。
ドライモルタル8の充填量は、施工箇所の横断勾配、縦断勾配等に応じて、適宜変更してよい。ただし、ドライモルタル8の充填量は、連続空隙6aの容積よりやや少なく、充填後に基層の表面に基層開粒度アスファルト混合物層5aが露出し、凹凸が形成され、後記するアスファルト乳剤が基層開粒度アスファルト混合物層5aのみに付着するようにすることが好ましい。
このように基層開粒度アスファルト混合物層5aを構築した後、すなわち、表層開粒度アスファルト混合物層5bを構築する前に、乾燥状態のドライモルタル8を散布・充填することにより、基層開粒度アスファルト混合物層5aの連続空隙6aの下部からドライモルタル8を隙間なく充填しやすくなる。
【0029】
その後、乾燥状態のドライモルタル8が充填された基層開粒度アスファルト混合物層5aの表面に、所定量の水を散水し、この水を乾燥状態のドライモルタル8に吸水させる。乾燥状態のドライモルタル8が吸水すると、ドライモルタル8に含まれた結合材が硬化する。そうすると、ドライモルタル8は、主に砂からなる骨格構造が形成され固化して固化状態になると共に、基層開粒度アスファルト混合物層5aに固着する。したがって、給水パイプ15よりの給水に伴う水流により、基層開粒度アスファルト混合物層5aに固着したドライモルタル8が、流出することを防止することができる。
【0030】
(アスファルト乳剤散布工程)
その後、図4(c)に示すように、基層開粒度アスファルト混合物層5aの表面に乳剤を散布する。アスファルト乳剤を散布するとき、ローラ刷毛23を使用したり、その他ディストリビュータ(図示しない)の散布量を減少させ複数回で散布したり、エンジンスプレーヤ(図示しない)の噴霧ノズルの吐出口を霧状で噴霧可能に変更したりして、基層開粒度アスファルト混合物層5aの上部の連続空隙6aにアスファルト乳剤が侵入せず、基層開粒度アスファルト混合物層5aの表面の骨材のみにアスファルト乳剤が散布され、アスファルト被膜を形成することが好ましい。
このように基層開粒度アスファルト混合物層5aの連続空隙6aにアスファルト乳剤が侵入しないようにすると、先に充填したドライモルタル8の表面にアスファルト乳剤が付着してアスファルト被膜を形成しない。したがって、ドライモルタル8は、この後充填する保水性グラウト7と、アスファルト被膜等の不透水層を介さず連続的に接触可能となる。すなわち、ドライモルタル8と保水性グラウト7が連続的に接触すると、ドライモルタル8と保水性グラウト7の間で、水は移動自在となる。
【0031】
(表層開粒度アスファルト混合物層構築工程)
散布したアスファルト乳剤を所定時間養生した後、アスファルトフィニッシャ等で、所定配合の表層開粒度アスファルト混合物を敷き均し、基層開粒度アスファルト混合物層5aと同様に締め固め機械で、所定密度となるように締め固めて、表層開粒度アスファルト混合物層5bを構築する(図4(d)参照)。
【0032】
(保水性グラウト注入工程)
その後、図4(e)に示すように、表層開粒度アスファルト混合物層5bの表面から、基層開粒度アスファルト混合物層5a及び表層開粒度アスファルト混合物層5bの連続空隙6に、流動性を有する液状の保水性グラウト7を注入する。保水性グラウト7を注入する際には、保水性グラウト7が貯留されたグラウトタンク(図示しない)から保水性グラウト7が逐次供給されると共に、所定量の保水グラウト7を貯留しながら(例えば、注入ホッパ24内の保水性グラウト7の水頭高さを保持する)、下部の吐出孔(図示しない)から保水性グラウト7を吐出し、保水性グラウト7を注入する保水性グラウト注入ホッパ24(以下「注入ホッパ」と略称する)を使用する。このような注入ホッパ24を使用することにより、簡易な構成で、保水性グラウト7の注入速度が一定速度となり、良好に保水性グラウト7を注入可能となる。
また、保水性グラウト7を注入しながら、振動ローラ等で振動を開粒度アスファルト混合物層5に付与すると、連続空隙6に隙間を形成せずに保水性グラウト7は充填されるので好ましい。
【0033】
保水性グラウト7を注入後、所定時間養生した後、保水性グラウト7は固化状態となり、本実施形態に係る保水性舗装構造1が構築される(図4(f)参照)。
【0034】
以上、本発明の好適な実施形態について一例を説明したが、本発明は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。
【0035】
前記した実施形態では、母体となる開粒度アスファルト混合物層5を基層開粒度アスファルト混合物層5aと表層開粒度アスファルト混合物層5bに分けて、別々に敷き均し構築した後、一体化させ形成したが、その他に例えば、施工厚を確保できない現場等の場合には、別々に分けず、開粒度アスファルト混合物層を構築した後、その表面からドライモルタル8、保水性グラウト7の順に充填して、保水性舗装構造1を構築してもよい。
【0036】
前記した実施形態では、新規に開粒度アスファルト混合物層を構築した後、ドライモルタル8を充填するとしたが、既存の開粒度アスファルト混合物層について、連続空隙に堆積した埃・塵などを水、空気で清掃する空隙清掃処理等を適宜行った後に、ドライモルタル8、保水性グラウト7を充填して、保水性舗装構造1を構築してもよい。
【0037】
前記した実施形態では、給水手段として給水パイプ15を埋設したが、その他に例えば、遮水層15の表面に、通水可能な溝部を設けてもよい。
【0038】
前記した実施形態では、図1に示すように、保水性グラウト7の下方に、層状でドライモルタル8(吸水材料)が充填され、保水層と給水層とが二層状で形成された保水性保水性舗装構造1としたが、ドライモルタル8(給水材料)は層状でなく、保水性グラウトの下方で部分的に充填されていてもよい。すなわち、例えば、遮水層に15に溝部が形成されており、その溝部及び遮水層15の上面に、開粒度アスファルト混合物層が一体的に施工・構築されており、溝部にドライモルタルが充填されていてもよい。つまり、本発明における開粒度アスファルト混合物層(開粒度混合物層)は、このように下部に突出した部分を有していてもよい。
【0039】
前記した実施形態では、乾燥状態のドライモルタル8を充填後に散水し固化させるとしたが、散水を行わず、乾燥状態のドライモルタル8が、その後充填する液状の保水性グラウト7に含まれる水を吸収することにより固化するとしてもよい。
【0040】
前記した実施形態では、開粒度混合物層は、開粒度アスファルト混合物が締め固められた開粒度アスファルト混合物層としたが、その他に例えば、開粒度コンクリート混合物層(ポーラスコンクリート)や、エポキシ系樹脂、アクリル系樹脂をバインダとして形成された開粒度樹脂混合物層であってもよい。
【0041】
【発明の効果】
本発明によれば、保水機能を好適に持続可能な保水性舗装構造及びその施工方法を提供することができる。
【図面の簡単な説明】
【図1】本実施形態に係る保水性舗装構造を模式的に示す側断面図である。
【図2】本実施形態に係る保水性舗装構造における水の移動状況を模式的に示す側断面図である。
【図3】本実施形態に係る保水性舗装構造について、時間と路面温度の関係を示すグラフである。
【図4】(a)〜(f)ともに、本実施形態に係る保水性舗装構造を基層と表層に分けて施工する施工方法を模式的に示す側断面図である。
【符号の説明】
1 保水性舗装構造
5 開粒度アスファルト混合物層(開粒度混合物層)
5a 基層開粒度アスファルト混合物層
5b 表層開粒度アスファルト混合物層
6、6a、6b 連続空隙
7 保水性グラウト
8 ドライモルタル(給水材料)
15 給水パイプ(給水手段)
21 レーキ
22 振動プレート
23 ローラ刷毛
24 注入ホッパ[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a water-retentive pavement structure and a construction method thereof.
[0002]
The road surface temperature of the asphalt pavement under the hot summer sun easily absorbs sunlight because the color of the asphalt is black, and may rise to 60 ° C. or more. In particular, in an urban area with a high pavement ratio, a heat island phenomenon in which the entire urban area becomes high temperature due to such an increase in road surface temperature has become a problem.
[0003]
Therefore, various water-retentive pavements having a water-retaining function of retaining rainwater during rainfall and suppressing an increase in road surface temperature by evaporating water retained in fine weather have been proposed. For example, there is "a perforated surface layer of a pavement having a function of suppressing a rise in road surface temperature filled with a silt-based filler" (see Patent Document 1) by the present applicant.
[0004]
[Patent Document 1]
Japanese Patent No. 3156151 (page 3-14, FIG. 1-3)
[0005]
[Problems to be solved by the invention]
However, the technology disclosed in Patent Literature 1 discloses that a water storage layer made of a crushed stone roadbed material or a water-permeable asphalt mixture is provided below a perforated surface layer filled with a silt-based filler (water-retentive grout) having a water-retention property. This is a technology in which a water supply pipe is provided to supply water to the water storage layer.However, it is difficult to supply water to the silt-based filler from the water storage layer properly when the temperature rises in a fine weather or the like. There is a problem that can not be sustained.
[0006]
Therefore, an object of the present invention is to provide a water-retentive pavement structure having a suitable water-retaining function and a construction method thereof.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 as a means for solving the above-mentioned problem is characterized in that an open particle size mixture layer having continuous voids therein, and a water-retentive grout having water retention filled in a layer on the continuous voids, A water supply material having water retention and water permeability filled in at least a part of a lower portion of the continuous space in a state continuous below the water retention grout, and a water supply means for supplying water to the water supply material; A water-retentive pavement structure characterized in that water can be supplied to the water-retentive grout via a material.
[0008]
Here, as long as the open-grain mixture layer has continuous voids inside, the type and mode of the mixture are not particularly limited, and for example, an open-grain asphalt mixture layer, an open-grain concrete mixture layer, an open-grain resin mixture layer, and the like. No.
When the open particle size mixture layer is an open particle size asphalt mixture layer, the composition ratio of the aggregate, the amount of asphalt binder, the porosity, the density, etc. may be any. Further, the open-grain asphalt mixture layer may be applied once or may be applied multiple times. Further, in the case of an open-grain asphalt mixture layer applied a plurality of times, the type of each open-grain asphalt mixture forming the open-grain asphalt mixture layer may be different.
[0009]
According to such a water-retentive pavement structure, by appropriately supplying water to the water-supply material from the water-supply means, the water is absorbed by the water-supply material and passed through the water-supply material to be retained. Since the water-supplying material is continuously filled in the water-retentive grout, when the water retained in the water-retention grout decreases due to evaporation, the water retained in the water-supplying grout moves to the water-retention grout. . Therefore, water is continuously held in the water-retentive grout, and the water-retention function can be suitably maintained. Thus, the effect of suppressing a temperature rise that occurs when the water retained in the water-retentive grout evaporates can be maintained.
[0010]
The invention according to claim 2 is a method for constructing a water-retaining pavement structure, characterized by comprising a water supply material filling step of filling a water supply material in a dry state from the surface of the open particle size mixture layer having continuous voids therein. is there.
[0011]
According to such a construction method of the water-retentive pavement structure, the water supply material in a dry state is filled from the surface of the open particle size mixture layer, so that the water supply material can be filled from a lower portion of the continuous void of the open particle size mixture layer. .
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
In the drawings to be referred to, FIG. 1 is a side sectional view schematically showing a water-retentive pavement structure according to the present embodiment. FIG. 2 is a side cross-sectional view schematically illustrating the movement of water in the water-retentive pavement structure according to the present embodiment. FIG. 3 is a graph showing the relationship between time and road surface temperature for the water-retentive pavement structure according to the present embodiment. FIG. 4 is a side cross-sectional view showing a construction method of constructing the water-retentive pavement structure according to the present embodiment separately into a base layer and a surface layer.
[0013]
As shown in FIG. 1, the water-retentive pavement structure 1 is constructed on a water-blocking layer 52 made of a dense-grained asphalt mixture laminated on a roadbed 51, and has an open-grained asphalt mixture layer 5 (opened as a base). Water-retentive grout 7 in a solidified state filled and solidified above continuous voids 6 (see FIG. 4) of open-particle asphalt mixture layer 5, and continuous immediately below water-retentive grout 7 A dry mortar 8 (water supply material) in a solid state filled and solidified at a lower portion of the gap 6 and a water supply pipe 15 (water supply means) for supplying water to the dry mortar 8 are provided. Water can be appropriately supplied from a water supply facility (not shown) such as a connected water reservoir to a water-retentive grout 7 via a dry mortar 8.
[0014]
Here, as described later, the open-grain asphalt mixture layer 5 according to the present embodiment is constructed by dividing the base layer and the surface layer twice (see FIG. 4), and includes the base-layer open-grain asphalt mixture layer 5a. The surface open particle size asphalt mixture layer 5b is formed integrally with the asphalt emulsion sprayed on the interface. Therefore, the continuous gap 6 is formed by the sum of the continuous gap 6a of the base layer open grain asphalt mixture layer 5a and the continuous gap 6b of the surface layer open grain asphalt mixture layer 5b. In addition, the thickness of the base layer open particle size asphalt mixture layer 5a and the surface layer open particle size asphalt mixture layer 5b may be appropriately changed depending on the construction site.
[0015]
Further, in the present embodiment, the dry mortar 8 is filled from below the continuous gap 6a to a position substantially at an intermediate height of the working thickness of the base layer open grain asphalt mixture layer 5a. The water-retentive grout 7 is filled continuously with the upper surface of the layered dry mortar 8, that is, the portion of the continuous space 6a where the dry mortar 8 is not filled and the continuous space 6b. Therefore, as shown in FIG. 1, the water-retentive pavement structure 1 according to the present embodiment apparently includes a water-retention layer filled with the water-retention grout 7 and a water-supply layer immediately below the water-retention layer filled with the dry mortar 8. It has a two-layer structure. The filling height of the water-retentive grout 7 and the dry mortar 8 may be appropriately changed according to the transverse / longitudinal gradient of the construction site, the construction thickness of the open-grain asphalt mixture layer 5, the weather, and the like.
Hereinafter, each component will be described in detail.
[0016]
The open-grain asphalt mixture layer 5 is formed including a coarse aggregate, a fine aggregate, and a stone powder (hereinafter, referred to as “aggregate”) serving as a skeleton, and an asphalt binder combining these. The composition of the aggregate, the synthetic particle size, and the amount of the asphalt binder to be added are determined as long as the open-grained asphalt mixture layer 5 after compaction has continuous voids 6 continuous inside and flow resistance according to the construction site. Such a composition may be used.
[0017]
For example, when the maximum particle size of the aggregate to be used is 13 mm (that is, the aggregate having the maximum particle size to be used is No. 6 crushed stone), the synthetic particle size of the aggregate is set to the particle size range shown in Table 1. Is 15 to 35%, so that the water-retaining grout 7 and the dry mortar 8 can be sufficiently filled.
[0018]
[Table 1]
Figure 2004353399
[0019]
The asphalt binder is preferably a high-viscosity modified asphalt binder to which a peeling inhibitor such as an amine is added in consideration of the peeling resistance to water and the like.
[0020]
The water-retentive grout 7 has water permeability and water-retentivity, and has the same meaning as the above-mentioned “silt-based filler” described in Japanese Patent No. 3156151 (Patent Document 1). That is, the water-retentive grout 7 is obtained by mixing a silt-based powder, a cement-based solidifying material, water, and a water-reducing agent or a setting retarder as an additive in a predetermined formulation, and curing and drying the same. It has a gap (not shown).
[0021]
Here, the silt-based powder is obtained by collecting rock.
The cement-based solidifying material may be appropriately selected from ultrafast-setting cement, ordinary Portland cement, ultra-high-strength cement, early-strength cement, blast-furnace cement, and the like, taking into account the working conditions and the like.
Further, as the additive, a carboxylic acid-based or melanin-based water-reducing agent is suitable as a water-reducing agent, and as a setting retarder, an SBR-based, acrylic, or vinyl acetate-based polymer emulsion can be suitably used. is there.
[0022]
In the solidified dry mortar 8, sand such as natural sand, artificial sand, silica sand and the like, and a powdery binder such as powdered polymer and cementitious material are mixed in a predetermined mixture, and after being filled in the continuous voids 6, solidified. It is dried, has many fine voids and fine voids (not shown), and has water permeability and water absorption. Therefore, the water supplied from the water supply pipe 15 is absorbed by the dry mortar 8 and retained, and is movable in the water supply layer filled with the dry mortar 8.
The solidified dry mortar 8 has a skeletal structure in which sand is bound by a binder, and is fixed to the open particle size asphalt mixture layer 5. The amount of the binder added is preferably 2 to 10% by mass based on the mass of the sand. With such an addition amount of the binder, the solidified dry mortar 8 has a sufficient fixing force to the open-grain asphalt mixture layer 5, and the water flow accompanying the water supply from the water supply pipe 15 causes It is possible to prevent the dry mortar 8 from flowing out of the water-retaining pavement structure 1.
[0023]
The water supply pipe 15 has water supply holes (not shown) at predetermined intervals in a wall body, and is buried at a predetermined position along the bottom in the open-grain asphalt mixture layer 5. In addition, the water supply pipe 15 is connected to a water supply facility (not shown) such as an external water reservoir through a flow control valve or the like, so that water can be appropriately supplied to the dry mortar 8.
As the water supply pipe 15, a perforated PVC pipe, a porous pipe, a vinyl hose, or the like can be appropriately selected and used, and the water supply pipe 15 may be protected by using a spiral drain pipe or the like.
[0024]
Next, the movement of water in the water-retentive pavement structure 1 will be described with reference to FIG.
When water is supplied to the water supply pipe 15 from an external water supply facility, the water is absorbed by the water supply layer including the dry mortar 8 and flows through the entire inside thereof (arrow A 1 shown in FIG. 2). .
When the water is not sufficiently retained in the water-retentive grout 7, the water over the entire area of the water supply layer passes through the interface between the water-retentive grout 7 and the dry mortar 8 due to the capillary phenomenon, and the water-retentive grout is removed. 7 (arrow A 2 shown in FIG. 2) and water is retained over the entire area of the water retaining layer (arrow A 3 shown in FIG. 2).
Then, when the outside temperature rises due to fine weather or the like and the water-retentive pavement structure 1 becomes high temperature, the water retained in the water-retaining layer evaporates from the surface (arrow A 4 shown in FIG. 2), and the latent heat of vaporization of the water is retained. Since the water-retentive pavement structure 1 is deprived of the pavement structure 1 and the outside air, an increase in the road surface temperature of the water-retentive pavement structure 1 is suppressed.
[0025]
Therefore, as shown in FIG. 3, according to the water-retentive pavement structure 1 (shown as “water-retention with water supply (water-supply / presence)” in FIG. 3) according to the present embodiment, appropriate intervals are taken into consideration in consideration of the outside air temperature and the like. By supplying water to the dry mortar 8, a dense-grain pavement structure without water retention (“dense-grain size”), a water-retention pavement structure without water sprinkling (“water retention (water sprinkling / no water)”), road surfaces at appropriate intervals It is possible to suppress an increase in the road surface temperature as compared with the water-retentive pavement structure (“water retention (spraying / presence)”) that sprinkles water and supplies water. In particular, since the pavement structure 1 according to the present embodiment supplies water from the inside of the pavement structure, the temperature of the road surface increases as compared with the water-retentive pavement that sprays water from the road surface (“water retention (water spraying / presence)”). Can be suppressed.
The data shown in FIG. 3 is obtained by dividing the pavement structure into blocks each having a size of 0.9 m × 0.9 m and measuring the time-dependent change in the road surface temperature. It is the data obtained on condition that 5 L of water was supplied to the block at 7, 10, 13 and 16. In addition, “air temperature” shown in FIG. 3 indicates the outside air temperature, and “soil” indicates an earth-based pavement structure obtained by solidifying the soil with a resin or the like.
[0026]
(Construction method of water-retentive pavement structure)
Next, a construction method of constructing the water-retentive pavement structure 1 separately into a base layer and a surface layer will be described with reference to FIG.
The construction method of the water-retentive pavement structure includes a base-layer open-grain asphalt mixture layer construction step of constructing the base-layer open-grain asphalt mixture layer 5a, and a dry mortar 8 in a dry state from the surface of the base-layer open-grain asphalt mixture layer 5a to the continuous gap 6. (A water supply material) filling step, a dry mortar filling step (water supply material filling step), an asphalt emulsion spraying step of spraying an asphalt emulsion on the surface of the base layer open particle size asphalt mixture layer 5a, and a base layer open particle size asphalt mixture layer 5a. It comprises a surface layer open particle size asphalt mixture layer construction step of constructing the surface layer open particle size asphalt mixture layer 5b, and a water retention grout injecting step of injecting a liquid water retentivity grout 7 having fluidity from the surface of the surface layer open particle size asphalt mixture layer 5b. It is configured.
[0027]
(Base layer open particle size asphalt mixture layer construction process)
As shown in FIG. 4 (a), after a water supply pipe 15 is arranged on the impermeable layer 52, for example, along the road shoulder, a base layer open particle size asphalt mixture having a predetermined composition is formed thereon using an asphalt finisher or the like. Laying, loading roller, vibrating roller, tire roller, vibrating plate, tamper, etc. (hereinafter collectively referred to as "compacting machine"), compacted asphalt mixture with predetermined density, prescribed thickness, prescribed porosity Build layer 5a.
If the water-impervious layer 52 and the surrounding area such as the road shoulder do not have sufficient water-impermeability, before spreading the base layer open particle size asphalt mixture, spray a high-concentration rubber-containing asphalt emulsion or the like. Preferably, water treatment is performed.
[0028]
(Dry mortar filling process)
Then, as shown in FIG. 4 (b), dry mortar 8 is sprayed from the surface of the base layer open particle size asphalt mixture layer 5 a by an appropriate means (for example, a square scoop or the like) and spread by the rake 21. Thereafter, vibration is applied to the base open-grain asphalt mixture layer 5a by vibration applying means such as a vibration plate 22 and a vibrating roller (not shown), and the dry mortar 8 is moved from below into the continuous gap 6a of the base open-grain asphalt mixture layer 5a. Fill.
The filling amount of the dry mortar 8 may be appropriately changed according to the transverse gradient, vertical gradient, and the like of the construction site. However, the filling amount of the dry mortar 8 is slightly smaller than the volume of the continuous voids 6a, and after filling, the base layer open-grain asphalt mixture layer 5a is exposed on the surface of the base layer, and irregularities are formed. It is preferable to adhere only to the mixture layer 5a.
After constructing the base layer open particle size asphalt mixture layer 5a, that is, before constructing the surface layer open particle size asphalt mixture layer 5b, the dry mortar 8 in a dry state is sprayed and filled to thereby form the base layer open particle size asphalt mixture layer. Dry mortar 8 can be easily filled from the lower part of continuous void 6a of 5a without gap.
[0029]
Thereafter, a predetermined amount of water is sprinkled on the surface of the base layer open particle size asphalt mixture layer 5a filled with the dry mortar 8 in a dry state, and the water is absorbed by the dry mortar 8 in a dry state. When the dry mortar 8 in a dry state absorbs water, the binder contained in the dry mortar 8 hardens. Then, the dry mortar 8 forms a skeletal structure mainly composed of sand, solidifies to a solid state, and adheres to the base layer open particle size asphalt mixture layer 5a. Therefore, it is possible to prevent the dry mortar 8 adhered to the base layer open particle size asphalt mixture layer 5a from flowing out due to the water flow accompanying the water supply from the water supply pipe 15.
[0030]
(Asphalt emulsion spraying process)
Thereafter, as shown in FIG. 4C, the emulsion is sprayed on the surface of the base layer open particle size asphalt mixture layer 5a. When spraying the asphalt emulsion, a roller brush 23 is used, or the number of sprays of other distributors (not shown) is reduced and sprayed a plurality of times, or the spray nozzle of an engine sprayer (not shown) is sprayed. By changing to sprayable, the asphalt emulsion does not penetrate into the continuous voids 6a on the upper part of the base layer open grain asphalt mixture layer 5a, and the asphalt emulsion is sprayed only on the aggregate on the surface of the base layer open grain asphalt mixture layer 5a, It is preferable to form an asphalt coating.
When the asphalt emulsion is prevented from entering the continuous voids 6a of the base open particle asphalt mixture layer 5a in this manner, the asphalt emulsion adheres to the surface of the previously filled dry mortar 8 and does not form an asphalt film. Therefore, the dry mortar 8 can be continuously contacted with the water-retentive grout 7 to be filled later without passing through an impermeable layer such as an asphalt film. That is, when the dry mortar 8 and the water-retentive grout 7 are in continuous contact, water can move freely between the dry mortar 8 and the water-retentive grout 7.
[0031]
(Surface open particle size asphalt mixture layer construction process)
After the sprayed asphalt emulsion is cured for a predetermined time, a surface layer open particle size asphalt mixture having a predetermined composition is spread and spread with an asphalt finisher or the like, and is compacted with a compacting machine in the same manner as the base layer open particle size asphalt mixture layer 5a so as to have a predetermined density. By compacting, a surface layer of asphalt mixture layer 5b is constructed (see FIG. 4 (d)).
[0032]
(Water retention grout injection step)
Thereafter, as shown in FIG. 4 (e), a liquid liquid having fluidity is formed from the surface of the surface open particle size asphalt mixture layer 5b to the continuous voids 6 of the base layer open particle size asphalt mixture layer 5a and the surface open particle size asphalt mixture layer 5b. Water retentive grout 7 is injected. When pouring the water-retentive grout 7, the water-retentive grout 7 is sequentially supplied from a grout tank (not shown) in which the water-retentive grout 7 is stored, and a predetermined amount of the water-retentive grout 7 is stored (for example, A water retention grout injection hopper 24 (hereinafter referred to as a water retention grout injection hopper 24) that discharges the water retention grout 7 from a lower discharge hole (not shown) and injects the water retention grout 7 (the head height of the water retention grout 7 in the injection hopper 24 is maintained). "Injection hopper"). By using such an injection hopper 24, the injection rate of the water-retentive grout 7 becomes constant with a simple configuration, and the water-retention grout 7 can be injected well.
Further, it is preferable that vibration is applied to the open-grain asphalt mixture layer 5 with a vibrating roller or the like while pouring the water-retentive grout 7 so that the water-retentive grout 7 is filled without forming a gap in the continuous space 6.
[0033]
After the water-retentive grout 7 is injected and cured for a predetermined time, the water-retentive grout 7 is in a solidified state, and the water-retentive pavement structure 1 according to the present embodiment is constructed (see FIG. 4F).
[0034]
As described above, an example of the preferred embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
[0035]
In the above-described embodiment, the base open particle size asphalt mixture layer 5 serving as the base is divided into the base layer open particle size asphalt mixture layer 5a and the surface layer open particle size asphalt mixture layer 5b. In addition, for example, in the case of a construction site where the construction thickness cannot be secured, without separately dividing, assembling an open-grain asphalt mixture layer, filling the surface with dry mortar 8 and water-retentive grout 7 in that order to retain water. The pavement structure 1 may be constructed.
[0036]
In the above-described embodiment, the dry mortar 8 is filled after a new open-grain asphalt mixture layer is constructed.However, with respect to the existing open-grain asphalt mixture layer, dust and dust accumulated in the continuous voids are exposed to water and air. After appropriately performing a clearance cleaning process or the like for cleaning, the dry mortar 8 and the water retaining grout 7 may be filled to construct the water retaining pavement structure 1.
[0037]
In the above-described embodiment, the water supply pipe 15 is buried as the water supply means. However, for example, a groove through which water can pass may be provided on the surface of the water shielding layer 15.
[0038]
In the above-described embodiment, as shown in FIG. 1, a layer of dry mortar 8 (water-absorbing material) is filled below the water-retentive grout 7 to form a two-layer water-retention layer and a water-supply layer. Although the dry pavement structure 1 is used, the dry mortar 8 (water supply material) is not layered and may be partially filled below the water-retentive grout. That is, for example, a groove is formed in the water-blocking layer 15, and an open-grain asphalt mixture layer is integrally constructed and constructed on the groove and the upper surface of the water-blocking layer 15, and the groove is filled with dry mortar. It may be. That is, the open-grain asphalt mixture layer (open-grain mixture layer) in the present invention may have a portion projecting downward as described above.
[0039]
In the above-described embodiment, although the dry mortar 8 in the dry state is sprayed and solidified after filling, the water is not sprayed, and the dry mortar 8 in the dry state removes water contained in the liquid water-retentive grout 7 to be subsequently filled. It may be solidified by absorption.
[0040]
In the above-described embodiment, the open particle size mixture layer is the open particle size asphalt mixture layer in which the open particle size asphalt mixture is compacted. However, for example, an open particle size concrete mixture layer (porous concrete), an epoxy resin, an acrylic resin, An open particle size resin mixture layer formed using a base resin as a binder may be used.
[0041]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, it is possible to provide a water-retentive pavement structure having a suitable water-retention function and a construction method thereof.
[Brief description of the drawings]
FIG. 1 is a side sectional view schematically showing a water-retentive pavement structure according to the present embodiment.
FIG. 2 is a side sectional view schematically showing a state of movement of water in the water-retentive pavement structure according to the embodiment.
FIG. 3 is a graph showing the relationship between time and road surface temperature for the water-retentive pavement structure according to the present embodiment.
FIGS. 4A to 4F are side sectional views schematically showing a construction method of constructing the water-retentive pavement structure according to the present embodiment separately into a base layer and a surface layer.
[Explanation of symbols]
1 Water-retentive pavement structure 5 Open-grain asphalt mixture layer (open-grain mixture layer)
5a Base layer open particle asphalt mixture layer 5b Surface layer open particle asphalt mixture layer 6, 6a, 6b Continuous voids 7 Water retention grout 8 Dry mortar (water supply material)
15 Water supply pipe (water supply means)
21 rake 22 vibrating plate 23 roller brush 24 injection hopper

Claims (2)

内部に連続空隙を有する開粒度混合物層と、
前記連続空隙の上部に層状で充填された保水性を有する保水性グラウトと、
当該保水性グラウトの下方に連続した状態で、前記連続空隙の下部の少なくとも一部に充填された保水性及び透水性を有する給水材料と、
前記給水材料に水を供給する給水手段を備え、
前記給水材料を介して前記保水性グラウトに水が供給可能であることを特徴とする保水性舗装構造。
An open particle size mixture layer having continuous voids therein,
Water-retentive grout having water-retentivity filled in a layer on top of the continuous voids,
In a state continuous below the water retention grout, a water supply material having water retention and water permeability filled in at least a part of the lower part of the continuous void,
Water supply means for supplying water to the water supply material,
A water-retentive pavement structure, wherein water can be supplied to the water-retentive grout via the water supply material.
内部に連続空隙を有する開粒度混合物層の表面から、乾燥状態の給水材料を充填させる給水材料充填工程を備えたことを特徴とする保水性舗装構造の施工方法。A method for constructing a water-retentive pavement structure, comprising a step of filling a water supply material in a dry state from a surface of an open particle size mixture layer having continuous voids therein.
JP2003154986A 2003-05-30 2003-05-30 Water-retaining pavement structure and construction method Expired - Lifetime JP4133594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154986A JP4133594B2 (en) 2003-05-30 2003-05-30 Water-retaining pavement structure and construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154986A JP4133594B2 (en) 2003-05-30 2003-05-30 Water-retaining pavement structure and construction method

Publications (2)

Publication Number Publication Date
JP2004353399A true JP2004353399A (en) 2004-12-16
JP4133594B2 JP4133594B2 (en) 2008-08-13

Family

ID=34049490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154986A Expired - Lifetime JP4133594B2 (en) 2003-05-30 2003-05-30 Water-retaining pavement structure and construction method

Country Status (1)

Country Link
JP (1) JP4133594B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299727A (en) * 2005-04-25 2006-11-02 Nippo Corporation:Kk Water retentive pavement and its pavement method
JP2007126865A (en) * 2005-11-02 2007-05-24 Taisei Rotec Corp Water retentive paving body and construction method of water retentive paving body
JP2008031679A (en) * 2006-07-27 2008-02-14 Yahagi Doro Kk Asphalt pavement body having road surface temperature rise restraining function, asphalt pavement road surface structure and forming method of asphalt pavement body
JP2008127800A (en) * 2006-11-17 2008-06-05 Kawamoto Pump Mfg Co Ltd Control unit of sprinkler system
JP2012102530A (en) * 2010-11-10 2012-05-31 Taisei Corp Water retaining block and water retaining structure
JP2012117254A (en) * 2010-11-30 2012-06-21 Takenaka Komuten Co Ltd Water-retentive pavement and manufacturing method thereof
CN117049836A (en) * 2023-10-11 2023-11-14 湖南云中再生科技股份有限公司 Permeable construction waste pavement base material, preparation method and application

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105755921A (en) * 2016-04-07 2016-07-13 广州市高速公路有限公司 Novel asphalt pavement structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046513A (en) * 1996-08-05 1998-02-17 Taisei Rotetsuku Kk Perforated surface of paving body furnished with road surface temperature rise restraining function filled with silt filler
JP2001146706A (en) * 1999-11-19 2001-05-29 Nippon Shokubai Co Ltd Civil engineering construction structure body and its manufacturing method
JP2003147717A (en) * 2001-11-09 2003-05-21 Yahagi Construction Co Ltd Asphalt pavement body provided with rising suppressing function for road surface temperature, asphalt road surface structure and forming method for asphalt pavement body
JP2003147716A (en) * 2001-11-13 2003-05-21 Kawasaki Steel Corp Pavement provided with water permeability, water draining capability and water retentivity and its construction method
JP2003155703A (en) * 2001-11-22 2003-05-30 Kawasaki Steel Corp Pavement provided with both water permeability/water draining capability and water retentivity and its construction method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046513A (en) * 1996-08-05 1998-02-17 Taisei Rotetsuku Kk Perforated surface of paving body furnished with road surface temperature rise restraining function filled with silt filler
JP2001146706A (en) * 1999-11-19 2001-05-29 Nippon Shokubai Co Ltd Civil engineering construction structure body and its manufacturing method
JP2003147717A (en) * 2001-11-09 2003-05-21 Yahagi Construction Co Ltd Asphalt pavement body provided with rising suppressing function for road surface temperature, asphalt road surface structure and forming method for asphalt pavement body
JP2003147716A (en) * 2001-11-13 2003-05-21 Kawasaki Steel Corp Pavement provided with water permeability, water draining capability and water retentivity and its construction method
JP2003155703A (en) * 2001-11-22 2003-05-30 Kawasaki Steel Corp Pavement provided with both water permeability/water draining capability and water retentivity and its construction method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299727A (en) * 2005-04-25 2006-11-02 Nippo Corporation:Kk Water retentive pavement and its pavement method
JP4699081B2 (en) * 2005-04-25 2011-06-08 株式会社Nippo Water retentive pavement and its pavement method
JP2007126865A (en) * 2005-11-02 2007-05-24 Taisei Rotec Corp Water retentive paving body and construction method of water retentive paving body
JP4681423B2 (en) * 2005-11-02 2011-05-11 大成ロテック株式会社 Water retentive pavement and construction method of water retentive pavement
JP2008031679A (en) * 2006-07-27 2008-02-14 Yahagi Doro Kk Asphalt pavement body having road surface temperature rise restraining function, asphalt pavement road surface structure and forming method of asphalt pavement body
JP2008127800A (en) * 2006-11-17 2008-06-05 Kawamoto Pump Mfg Co Ltd Control unit of sprinkler system
JP4709123B2 (en) * 2006-11-17 2011-06-22 株式会社川本製作所 Sprinkler control device
JP2012102530A (en) * 2010-11-10 2012-05-31 Taisei Corp Water retaining block and water retaining structure
JP2012117254A (en) * 2010-11-30 2012-06-21 Takenaka Komuten Co Ltd Water-retentive pavement and manufacturing method thereof
CN117049836A (en) * 2023-10-11 2023-11-14 湖南云中再生科技股份有限公司 Permeable construction waste pavement base material, preparation method and application
CN117049836B (en) * 2023-10-11 2024-01-02 湖南云中再生科技股份有限公司 Permeable construction waste pavement base material, preparation method and application

Also Published As

Publication number Publication date
JP4133594B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
JP2007284974A (en) Soil block
JP2004353399A (en) Water-retaining pavement structure and method of constructing the same
KR100961967B1 (en) Structure of loess paving layer and construction method using thereof
JP2007138486A (en) Construction method of block pavement
CN107447617B (en) A kind of dust-proof curing process of temporary construction road
JP4147154B2 (en) Water-retaining pavement and its construction method
JP4589700B2 (en) Construction method of water retentive pavement structure
JP4517357B2 (en) Water supply type water retaining pavement structure and its construction method
JP4217133B2 (en) Water retention pavement structure
JP4699081B2 (en) Water retentive pavement and its pavement method
JP4052564B2 (en) Pumped pavement
KR20110100805A (en) Pavement road including a plurality of water-permeable layers and water-bearing layers and pavement method of the road
JP5302694B2 (en) Fragrance supply device and pavement structure
JP2003147716A (en) Pavement provided with water permeability, water draining capability and water retentivity and its construction method
JP4246940B2 (en) Paving method
CN208844383U (en) A kind of colorful water-permeable pavement structure
JP2006037437A (en) Grass prevention and ground protection method for creating coloring solidified layer
JP2007277990A (en) Paving material and paved body using it
JP4681423B2 (en) Water retentive pavement and construction method of water retentive pavement
JP2004257002A (en) Road surface temperature rise restraining pavement body and its construction method
JP2003160906A (en) Pavement with both permeable/drainable and water retentive functions, and method for its work execution
JPH02123188A (en) Hardenable soil composition and hardening of soil
JP2011137375A (en) Method of regenerating surface body
JP5711781B2 (en) Permeable pavement and its construction method
JP2002309503A (en) Block pavement and construction method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4133594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term