JP2004351821A - Method for producing glass fiber-reinforced resin composition and the composition - Google Patents

Method for producing glass fiber-reinforced resin composition and the composition Download PDF

Info

Publication number
JP2004351821A
JP2004351821A JP2003153865A JP2003153865A JP2004351821A JP 2004351821 A JP2004351821 A JP 2004351821A JP 2003153865 A JP2003153865 A JP 2003153865A JP 2003153865 A JP2003153865 A JP 2003153865A JP 2004351821 A JP2004351821 A JP 2004351821A
Authority
JP
Japan
Prior art keywords
glass fiber
polyamide resin
resin composition
screw
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003153865A
Other languages
Japanese (ja)
Inventor
Hiroshi Sarukawa
浩史 猿川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003153865A priority Critical patent/JP2004351821A/en
Publication of JP2004351821A publication Critical patent/JP2004351821A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a glass fiber-reinforced polyamide resin composition high in productivity and excellent in strength and rigidity, especially when the composition is exposed to high temperatures and the composition. <P>SOLUTION: In the method for producing the polyamide resin composition which is produced by melt-kneading the polyamide resin and roving of continuous glass fibers by a twin-screw extruder, the length of the glass fibers in the composition is controlled under specified melt-kneading conditions. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、連続したガラス繊維を押出機で溶融混練することにより得られるガラス繊維強化ポリアミド樹脂組成物の製造方法に関する。更に詳しくは生産性が高く、強度・剛性、特に高温時の強度・剛性に優れたガラス繊維強化ポリアミド樹脂組成物の製造方法およびその組成物に関する。
【0002】
【従来の技術】
ガラス繊維強化ポリアミド樹脂は機械的特性および耐熱性に優れるという特徴を活かして様々な産業分野で利用されている。ポリアミド樹脂の強度を更に向上させる手段としてガラス繊維等の繊維状強化材を配合することが知られており、一般には、ポリアミド樹脂とチョップドストランド等の短繊維を押出機で混練する繊維強化ポリアミド樹脂の製造が行われている。しかしながら、この方法では押出機での混練中に繊維の折損が避けられないため、高温時の強度・剛性に優れた機械的強度等の要求に応えることはできないばかりか、射出成形時の流動性が高く、成形機のノズルからの樹脂漏れが多くなるという課題がある。
【0003】
これに対し近年、配合される繊維状強化材が本来有する性能を充分に引き出すための方法として、ポリアミド樹脂の強化繊維を長くすることが検討されている。このような長繊維強化ポリアミド樹脂は、例えば、連続した強化繊維のロービングからストランドを引抜きながら樹脂を含浸するプルトルージョン法により、得られるものであり、上記短繊維強化ポリアミド樹脂と比較して高温下での機械的特性に優れているばかりでなく、成形時の成形機のノズルからの樹脂漏れも非常に少ない(例えば特許文献1参照。)。
【0004】
しかしながら、このようなプルトルージョン法では、樹脂に含浸させながら連続した強化繊維のストランドを引抜いてペレタイジングするため、ペレット中の繊維長は長いが、生産性が悪く、かつ低粘度の樹脂でなければ繊維に十分含浸させることができないという欠点があるばかりか、成形品中の繊維の分散も不均一である。
また、開繊度合を制御して強化繊維を均一に分散させると共に、重量平均繊維長を長く保ったまま、混練作用によって特定の繊維長分布にする事によって、生産性、流動性、機械的性質や表面平滑性等を改善することが提案されている。しかし、この方法では、押出機のスクリュー及び/またはシリンダの内壁の一部に特殊な加工が必要であるため通常の押出機では製造が困難であるという問題点がある(例えば特許文献2参照。)。
【0005】
【特許文献1】
特公昭52−3985号公報
【特許文献2】
特開平07−80834号公報
【0006】
【発明が解決しようとする課題】
本発明は、生産性が高く、強度・剛性、特に高温時の強度・剛性に優れたガラス繊維強化ポリアミド樹脂組成物の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、ポリアミド樹脂と連続したガラス繊維からなるロービングを二軸のスクリュー式押出機により溶融混練することにより製造されるポリアミド樹脂組成物の製造方法であって、特定の溶融混練条件下で、該組成物中のガラス繊維長を制御することで、生産性が高く、強度・剛性、特に高温時の強度・剛性に優れたガラス繊維強化ポリアミド樹脂組成物を得ることが可能であることを見出し、本発明を完成させるに至った。
【0008】
【発明の実施の形態】
以下に本発明を詳しく説明する。本発明に用いる押出機は、ポリアミド樹脂が溶融状態で、ガラス繊維を供給するという観点から、全バレル長Lとバレル径Dの比が(L/D)が30以上、120以下である。更に好ましくは、30以上、70以下である。ここで言うポリアミド樹脂が溶融状態に到達した時点とは、当該ポリアミド樹脂をDSC(示差走査熱量計)を用いて昇温速度20℃/分で測定したときの吸熱ピーク温度(融点)プラス20℃の温度以上に溶融ポリアミド樹脂の温度が到達した時点を言う。なお、複数の混合ポリアミド樹脂を用いる場合は融点の最も高いポリアミド樹脂の融点プラス20℃の温度以上に到達した時点を当該混合ポリアミド樹脂が溶融状態に到達したものとする。ポリアミド樹脂の溶融状態を達成できる方法に特に制限はないが、ポリアミド樹脂の劣化の影響が出ない範囲で、ガラス繊維の供給位置より上流側でのヒーター温度を高める方法や、ニーディングブロックにより剪断発熱させ溶融温度を高める方法が例示できる。
【0009】
本発明に用いる押出機は、スクリュー構成の容易性、ガラス繊維の折損防止の観点から、二軸押出機を用いる。
本発明の連続したガラス繊維の供給位置は、ガラス繊維の折損を防止し、良好な機械的性質を得るという観点から、ポリアミド樹脂が溶融状態であり、かつバレル全長の0.5を含む下流側に設けた供給口より供給する必要がある。
さらにガラス繊維の供給位置は、ガラス繊維の折損を防止し、良好な機械的性質を得るという観点から押出機全長の0.50〜0.85の位置(最上流を0、最下流を1と定義する。)が好ましく、より好ましくは0.50〜0.75の位置であり、さらに好ましくは、0.50〜0.70の位置である。
【0010】
本発明のガラス繊維を供給する方法は、連続したガラス繊維のロービングを、ガラス繊維供給管を通じて、スクリューフライトとシリンダ間のせん断力によって押出機に巻き込むものである。なお、ガラス繊維供給管とはガラス繊維のストランドを円滑に押出機内に供給するための管であって、押出機内に供給される前に複数のストランドが絡み合うのを防ぐことを目的とするものである。特に管の材質は限定されるものではない。
【0011】
本発明の押出機のスクリュー構成において、連続したガラス繊維を開繊し、当該樹脂組成物中のガラス繊維を分散させ、良好な機械的性質を得るという観点から、ガラス繊維供給位置より下流側に連続したガラス繊維を切断し、ガラス繊維長を制御するスクリューパーツを少なくとも1ヶ所以上有することが必要である。ここでガラス繊維長を制御するスクリューパーツとは、具体的には押出機中に巻き込まれて、スクリューに巻き付きながら前進してきた連続したガラス繊維をスクリューパーツ同士が噛み合う事によって、スクリューの回転数に応じて一定間隔でガラス繊維を切断し、当該組成物中の繊維長を制御することを特徴とする。
【0012】
ガラス繊維長を制御するスクリューのブロック長L1とスクリュー径D1の比(L1/D1)は連続したガラス繊維を開繊し、当該樹脂組成物中のガラス繊維を分散させるという観点から、0.3以上であり、過大なガラス繊維の折損を防止するという観点から、1.5以下である。ここでスクリューのブロック長L1とはガラス繊維長を制御するスクリューパーツ長の総計を意味し、L1/D1が0.3〜1.5の範囲であれば、ガラス繊維長を制御するスクリューは全てを1ヶ所に設けても良いし、2ヶ所以上の分かれた位置に設けても良い。また、ガラス繊維長を制御するスクリューパーツの位置は、ガラス繊維の供給口を超えて下流であれば、その位置に特に制限はないが、ガラス繊維を組成物中に均一に分散させるという観点からガラス繊維の供給位置より下流側0.05〜0.15の位置に少なくとも1ヶ所以上配置することが好ましく、0.05〜0.10の位置に少なくとも1ヶ所以上配置することがより好ましい。
【0013】
ガラス繊維の供給位置より下流側のガラス繊維長を制御するスクリュー以外のスクリュー構成に関しては、特に制限はないが、過大な剪断力がガラス繊維に加わり、ガラス繊維長を制御するスクリュー以外の部分でのガラス繊維の折損が過大とならないよう配慮することが好ましい。また、ガラス繊維供給位置より上流側のスクリュー構成に関しては、ポリアミド樹脂を可塑化するのに充分な剪断力が与えられれば、特に制限はないが、通常ガラス繊維供給位置より上流側に、1ヶ所以上の逆方向ネジスクリューを設ける方法が好ましい。
【0014】
本発明において押出機内に供給される連続したガラス繊維は下記式(1)および式(2)を満たすことが必要である。
5≦N/V≦100 式(1)
V=π×D×R 式(2)
ここでNは押出機内に供給される連続したガラス繊維のモノフィラメントの数(本)、Vは押出機のスクリュー周速(cm/min)、Dはスクリュー径(cm)、Rはスクリュー回転数(rpm)を意味する。)
式(1)の値は生産性とガラス繊維の折損の観点から5以上であり、ガラス繊維長を制御するスクリューの効果と樹脂と繊維の界面の接着性の観点から100以下であり、更に20以上80以下が好ましい。
【0015】
本発明に係わるポリアミド樹脂は特に限定されるものではないが、例えば、ε−カプロラクタム、アジピン酸、セバシン酸、ドデカン二酸、イソフタル酸、テレフタル酸、ヘキサメチレンジアミン、テトラメチレンジアミン、2−メチルペンタメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、メタキシリレンジアミン、ビス(3−メチル−4−アミノシクロヘキシル)メタン等のナイロン形成性モノマーを適宜組み合わせて得られるホモポリマー単独、共重合体単独、ホモポリマー同士の混合物、共重合体同士の混合物、共重合体とホモポリマーの混合物等を用いることができる。
【0016】
このようなポリアミド樹脂の具体例としては、例えば、ナイロン6、ナイロン66、ナイロン46、ナイロン610、ナイロン612、ナイロン11、ナイロン12、ナイロンMXD6、ヘキサメチレンジアミンとイソフタル酸を重合してなるナイロン(ナイロン6I)、イソフタル酸とビス(3−メチル−4−アミノシクロヘキシル)メタンを重合してなるナイロン(ナイロンPACMI)などのホモポリマー、アジピン酸とイソフタル酸とへキサメチレンジアミンを重合してなるナイロン(ナイロン66/6I共重合体)、アジピン酸とイソフタル酸とへキサメチレンジアミン、ε−カプロラクタムを重合してなるナイロン(ナイロン66/6I/6共重合体)アジピン酸とテレフタル酸とヘキサメチレンジアミンを重合してなるナイロン(ナイロン66/6T共重合体)が挙げられる。
【0017】
また、イソフタル酸とテレフタル酸とヘキサメチレンジアミンを重合してなるナイロン(ナイロン6I/6T共重合体)、テレフタル酸と2,2,4−トリメチルヘキサメチレンジアミンと2,4,4−トリメチルヘキサメチレンジアミンを重合してなるナイロン(ナイロンTMDT共重合体)、イソフタル酸とテレフタル酸とヘキサメチレンジアミンとビス(3−メチル−4−アミノシクロヘキシル)メタンを重合してなる共重合ナイロン、およびイソフタル酸とテレフタル酸とヘキサメチレンジアミンとビス(3−メチル−4−アミノシクロヘキシル)メタンを重合してなる共重合ナイロンとナイロン6の混合物、MXD6ナイロンとナイロン66の混合物等が挙げられる。
【0018】
該ポリアミド樹脂には、必要に応じ本発明の目的を損なわない範囲に於いて通常のポリアミド樹脂に添加される酸化防止剤、紫外線吸収剤、熱安定剤、光劣化防止剤、可塑剤、滑剤、離型剤、核剤、難燃剤、着色顔料、染料等を添加することもできるし、他の熱可塑性樹脂をブレンドしても良い。
本発明のガラス繊維強化ポリアミド樹脂組成物におけるガラス繊維の配合量はポリアミド樹脂100重量部に対して、ガラス繊維は機械的性質の面から10重量部以上、繊維の折損等の点から170重量部以下が好ましく、20〜150重量部がより好ましい。
また、本発明に用いるガラス繊維はポリアミド樹脂の補強剤として用いる連続した単繊維を集束したロービングであれば特に限定されるものではない。
【0019】
ガラス繊維はポリアミド樹脂用の集束剤(これはいわゆるサイジングを目的とした集束成分とポリアミド樹脂との接着性を目的とした表面処理成分を含む)で表面処理されているものを用いることができる。集束剤の構成成分は特に限定されるものではないが、無水マレイン酸と不飽和単量体との共重合体とアミノ基含有シランカップリング剤を主たる構成成分とするものが機械的特性向上の観点から最も好ましい。ここで集束剤はガラスを繊維状に加工する工程、あるいは加工された後の工程でガラス繊維表面に付着させて用いるが、これを乾燥させると、上記共重合体とカップリング剤からなる被膜がガラス繊維表面に形成される。この時の集束剤の乾燥後の最終付着量はガラス繊維100重量部当たりガラス繊維の集束性の点から0.1重量部以上であり、ガラス繊維の操作性の点から2.0重量部の範囲にあることが好ましい。より好ましい集束剤の付着量はガラス繊維100重量部当たり0.2〜1.0重量部の範囲である。ここで、集束剤付着量とはガラス繊維の60分間の灼熱後の強熱減量として計測されるものでありJIS R3420に準拠して求められる。
【0020】
また、ガラス繊維の平均繊維直径は特に限定されるものではなく、集束性の観点から5μm以上で、機械的性質の向上の観点から20μm以下が好ましく、更に平均繊維直径8〜17μmが組成物の機械的性質向上の観点から好ましい。ガラス繊維の集束本数においても特に限定されるものではないが、繊維モノフィラメントを1000〜10000本集束したストランドがハンドリングの点から好ましい。また、ポリアミド中に含有されるガラス繊維の直径はポリアミドと混合する以前の状態のガラス繊維原料の直径とほぼ等しい。
【0021】
【実施例】
以下の実施例により本発明を更に詳しく説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例及び比較例に用いた原材料及び測定方法を以下に示す。
〔原材料〕
[1]ポリアミド樹脂
PA−1:ポリアミド66、旭化成(株)製 レオナ1300−001
[2]ガラス繊維
GF−1:日本電気硝子(株)製、ガラス繊維束(ロービング)、ガラス繊維平均直径13μm、1ロービング当たりの繊維モノフィラメント数4000本、集束剤主要成分[スチレン−無水マレイン酸共重合体、γ−アミノプロピルトリエトキシシラン]、集束剤付着量0.6重量%
GF−2:日本電気硝子(株)製、チョップドストランド、ガラス繊維平均直径13μm、ガラス繊維平均長さ6mm、集束剤主要成分[スチレン−無水マレイン酸共重合体、γ−アミノプロピルトリエトキシシラン]、集束剤付着量0.6重量
【0022】
GF−3:日本電気硝子(株)製、ガラス繊維束(ロービング)、ガラス繊維平均繊維直径10μm、1ロービング当たりの繊維モノフィラメント数4000本、集束剤主要成分[ブタジエン−無水マレイン酸共重合体、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン]、集束剤付着量0.4重量%
GF−4:日本電気硝子(株)製、チョップドストランド、ガラス繊維平均繊維直径10μm、ガラス繊維平均長さ3mm、集束剤主要成分[ブタジエン−無水マレイン酸共重合体、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン]、集束剤付着量0.4重量%
【0023】
〔試験片の作成〕
曲げ試験片の作成
射出成形機(日精樹脂工業(株)社製:FN3000)を用い、金型温度80℃で、ISO 3167に準じた多目的試験片A形を成形し、曲げ試験片に機械加工した。
【0024】
[測定方法]
(1)曲げ弾性率、曲げ強度
23℃における曲げ試験は、ISO 178に準じて、試験片をオートグラフ((株)島津製作所社製:AG−5000D形)で、周囲温度23℃、クロスヘッドスピード5mm/min、スパン64mmの条件下で測定を行った。
150℃における曲げ試験は、ISO 178に準じて、試験片をオートグラフ((株)島津製作所社製:AG−5000D形)で、周囲温度150℃、クロスヘッドスピード5mm/min、スパン64mmの条件下で測定を行った。
【0025】
【実施例1】
押出機として、2軸押出機ZSK40MC(WERNER&PFLEIDERER製)(L/D=48)を用いた。ポリアミド樹脂PA−1を最上流供給口より定重量式フィーダーを用い40kg/hrで供給し、ロービング数20ケの連続したガラス繊維GF−1を、ガラス繊維供給管を通じて、押出機全長の0.60の位置(最上流を0、最下流を1としたとき)より、20kg/hrで溶融したポリアミド樹脂中に供給し、紡口より押し出されたストランドを冷却後、長さ8mm、直径5mmのペレット状に切断、乾燥して、ガラス繊維強化ポリアミド樹脂組成物を得た。なお、バレル温度は295℃、スクリュー回転数150rpm、吐出量は60kg/hrである。また、スクリュー構成は、ポリアミド樹脂の可塑化のため、ガラス繊維供給位置より上流にL1/D1=0.45の逆方向ネジを設け、押出機全長の0.70の位置にL1/D1=0.45のガラス繊維長を制御するスクリューパーツを1ヶ所設けた他は、順ネジのみで構成した。得られた樹脂組成物を上述の方法でシリンダ温度290℃の条件で成形し、諸特性を評価した。その結果を表1に示す。比較例1、2に比べ、23℃及び150℃の曲げ強度、曲げ弾性率に優れる。
【0026】
【実施例2】
連続したガラス繊維をGF−3とし、スクリュー回転数を200rpmとした以外は、実施例1と同様の方法で、ガラス繊維強化ポリアミド樹脂組成物を得て、諸特性を評価した。その結果を表1に示す。比較例3に比べ、23℃及び150℃の曲げ強度、曲げ弾性率に優れる。
【0027】
【実施例3】
L1/D1=0.90であるガラス繊維長を制御するスクリューパーツを押出機全長の0.70、0.90の2ヶ所に設けた以外は、実施例1と同様の方法で、ガラス繊維強化ポリアミド樹脂組成物を得て、諸特性を評価した。その結果を表2に示す。実施例1に比べ、機械的特性がやや劣位にあるが、概ね良好な組成物が得られた。
【0028】
【実施例4】
連続したガラス繊維をGF−3、ロービング数を40ケ、スクリュー回転数を200rpmとした以外は、実施例1と同様の方法で、ガラス繊維強化ポリアミド樹脂組成物を得て、諸特性を評価した。その結果を表3に示す。実施例2に比べても、機械的特性がやや良好な組成物が得られた。
【0029】
【比較例1】
押出機として、2軸押出機TEM35BS(東芝機械(株)製)(L/D=47)を用いた。ポリアミド樹脂PA−1を最上流供給口より定重量式フィーダーを用い34kg/hrで供給し、ガラス繊維GF−2は、押出機全長の0.60の位置(最上流を0、最下流を1としたとき)より、定重量式フィーダーを用い17kg/hrで溶融したポリアミド樹脂中にサイドフィードした。紡口より押し出されたストランドを冷却後、長さ3mm、直径2mmのペレット状に切断、乾燥して、ガラス繊維強化ポリアミド樹脂組成物を得た。なお、バレル温度は295℃、スクリュー回転数300rpm、吐出量は51kg/hrである。また、スクリュー構成は、ポリアミド樹脂の可塑化のため、ガラス繊維供給位置より上流にL1/D1=0.80の逆方向ネジを設け、ガラス繊維分散のため、ガラス繊維供給位置より下流にL1/D1=0.80の逆方向ネジを1ヶ所設けた他は、順ネジのみで構成した。得られた樹脂組成物を上述の方法でシリンダ温度290℃の条件で成形し、評価した。その結果を表1に示す。実施例1に比べ、得られた樹脂組成物中のガラス繊維の重量平均長さが短く、23℃及び150℃の曲げ強度、曲げ弾性率が低い。
【0030】
【比較例2】
ポリアミド樹脂PA−1とロービング数2ケの連続したガラス繊維GF−1を用いて、295℃のポリアミド樹脂コーティングダイを通過させることで、プルトルージョン法によりガラス繊維量60重量%で、長さ8mm、直径3mmのペレット状のガラス繊維強化ポリアミド樹脂組成物を得た。なお、プルトルージョン法による生産量は10kg/hrであった。得られた樹脂組成物は表1の組成になるようにポリアミド樹脂ペレットPA−1で希釈した後、上述の方法でシリンダ温度290℃の条件で成形し、諸特性を評価した。その結果を表1に示す。実施例1に比べ、得られた樹脂組成物中のガラス繊維の重量平均長さが長いにもかかわらず、生産性が著しく低く、23℃の曲げ強度、曲げ弾性率が低い。
【0031】
【比較例3】
連続したガラス繊維をGF−4とした以外は、比較例1と同様の方法で、ガラス繊維強化ポリアミド樹脂組成物を得て、諸特性を評価した。その結果を表1に示す。実施例2に比べ、得られた樹脂組成物中のガラス繊維の重量平均長さが短く、機械的特性が低い。
【0032】
【比較例4】
連続したガラス繊維の供給位置を押出機全長の0.40の位置(最上流を0、最下流を1としたとき)とした以外は、実施例1と同様の方法で、ガラス繊維強化ポリアミド樹脂組成物を得て、諸特性を評価した。その結果を表2に示す。実施例1または3に比べ、得られた樹脂組成物中のガラス繊維の重量平均長さが短く、機械的特性が低い。
【0033】
【比較例5】
ガラス繊維供給位置より下流に設けるガラス繊維長を制御するスクリューパーツを取り除いた以外は、実施例1と同様の方法で製造を行ったが、ガラス繊維が充分切断されず、ダイ詰まりが発生して、樹脂組成物を得ることができなかった。結果を表2に示す。
【0034】
【比較例6】
L1/D1=1.80であるガラス繊維長を制御するスクリューパーツを押出機全長の0.70、0.75、0.85、0.90の4ヶ所に設けた以外は、実施例1と同様の方法で、ガラス繊維強化ポリアミド樹脂組成物を得て、諸特性を評価した。その結果を表2に示す。実施例1または3に比べ、得られた樹脂組成物中のガラス繊維の重量平均長さが短く、機械的特性が低い。
【0035】
【比較例7】
ポリアミド樹脂を26kg/hr、連続したガラス繊維を13kg/hrで供給し、ロービング数を5ケ、スクリュー回転数を400rpmとした以外は、実施例2と同様の方法で、ガラス繊維強化ポリアミド樹脂組成物を得て、諸特性を評価した。その結果を表3に示す。実施例2または4に比べ、得られた樹脂組成物中のガラス繊維の重量平均長さが短く、機械的特性が低い。
【0036】
【比較例8】
ロービング数を40ケ、スクリュー回転数を100rpmとした以外は、実施例2と同様の方法で、ガラス繊維強化ポリアミド樹脂組成物を得て、諸特性を評価した。その結果を表3に示す。実施例2または4に比べ、得られた樹脂組成物中のガラス繊維の分散性が目視で観察できるほど著しく悪いため、樹脂組成物中のガラス繊維の重量平均長さが長いにもかかわらず、23℃の曲げ強度、曲げ弾性率が低い。
【0037】
【表1】

Figure 2004351821
【0038】
【表2】
Figure 2004351821
【0039】
【表3】
Figure 2004351821
【0040】
【発明の効果】
本発明のガラス繊維強化ポリアミド樹脂組成物の製造方法は、特定の溶融混練条件下で、該組成物中のガラス繊維長を制御させることによって、高い生産性で、強度・剛性、特に高温時の強度・剛性に優れたガラス繊維強化ポリアミド樹脂組成物を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a glass fiber reinforced polyamide resin composition obtained by melt-kneading continuous glass fibers with an extruder. More specifically, the present invention relates to a method for producing a glass fiber reinforced polyamide resin composition having high productivity and excellent strength and rigidity, particularly excellent strength and rigidity at high temperatures, and a composition thereof.
[0002]
[Prior art]
Glass fiber reinforced polyamide resins have been used in various industrial fields, taking advantage of their excellent mechanical properties and heat resistance. It is known to compound a fibrous reinforcing material such as glass fiber as a means for further improving the strength of the polyamide resin. Generally, a fiber-reinforced polyamide resin in which a polyamide resin and short fibers such as chopped strands are kneaded by an extruder. Is being manufactured. However, in this method, fiber breakage during kneading in the extruder is inevitable, so it is not possible to meet the demands of mechanical strength, such as high strength and rigidity at high temperature, as well as fluidity during injection molding. And the resin leakage from the nozzle of the molding machine increases.
[0003]
On the other hand, in recent years, as a method for sufficiently bringing out the inherent properties of the fibrous reinforcing material to be blended, it has been studied to lengthen the reinforcing fibers of the polyamide resin. Such a long fiber reinforced polyamide resin is obtained, for example, by a pultrusion method of impregnating the resin while pulling a strand from a roving of continuous reinforcing fibers, and is obtained at a higher temperature than the short fiber reinforced polyamide resin. In addition to excellent mechanical properties, resin leakage from a nozzle of a molding machine during molding is very small (for example, see Patent Document 1).
[0004]
However, in such a pultrusion method, since the strands of the continuous reinforcing fibers are pulled out and pelletized while impregnating the resin, the fiber length in the pellet is long, but the productivity is poor, and the resin must be a resin having a low viscosity. In addition to the drawback that the fibers cannot be sufficiently impregnated, the dispersion of the fibers in the molded article is also non-uniform.
In addition, by controlling the degree of fiber opening to uniformly disperse the reinforcing fibers and maintaining a long weight-average fiber length, a specific fiber length distribution is achieved by kneading to improve productivity, fluidity and mechanical properties. And improving surface smoothness and the like. However, this method has a problem that it is difficult to manufacture with a normal extruder because special processing is required for a part of the inner wall of the screw and / or the cylinder of the extruder (for example, see Patent Document 2). ).
[0005]
[Patent Document 1]
Japanese Patent Publication No. 52-3985 [Patent Document 2]
JP-A-07-80834
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a glass fiber reinforced polyamide resin composition having high productivity and excellent strength and rigidity, particularly excellent strength and rigidity at high temperatures.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above problems, and as a result, a polyamide resin composition produced by melt-kneading a roving made of a polyamide resin and a continuous glass fiber with a twin screw extruder. A method for producing a product, under specific melt-kneading conditions, by controlling the glass fiber length in the composition, the productivity is high, and the strength and rigidity, especially the glass excellent in strength and rigidity at high temperature The inventors have found that a fiber-reinforced polyamide resin composition can be obtained, and have completed the present invention.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. In the extruder used in the present invention, the ratio (L / D) of the total barrel length L to the barrel diameter D is 30 or more and 120 or less from the viewpoint of supplying the glass fibers in a molten state of the polyamide resin. More preferably, it is 30 or more and 70 or less. The point in time at which the polyamide resin reaches the molten state is defined as an endothermic peak temperature (melting point) plus 20 ° C. when the polyamide resin is measured at a heating rate of 20 ° C./min using a DSC (differential scanning calorimeter). Refers to the point in time when the temperature of the molten polyamide resin reaches or exceeds the temperature. When a plurality of mixed polyamide resins are used, it is assumed that the mixed polyamide resin has reached a molten state when the temperature reaches a temperature equal to or higher than the melting point of the polyamide resin having the highest melting point plus 20 ° C. or more. There is no particular limitation on the method by which the molten state of the polyamide resin can be achieved.However, as long as the effect of the degradation of the polyamide resin does not occur, a method of increasing the heater temperature upstream of the glass fiber supply position or shearing by a kneading block is used. A method of increasing the melting temperature by generating heat can be exemplified.
[0009]
As the extruder used in the present invention, a twin-screw extruder is used from the viewpoint of easy screw configuration and prevention of breakage of glass fiber.
The continuous glass fiber supply position of the present invention prevents the glass fiber from being broken, and from the viewpoint of obtaining good mechanical properties, the polyamide resin is in a molten state, and the downstream side including 0.5 of the entire barrel length. It is necessary to supply from the supply port provided in.
Furthermore, the supply position of the glass fiber is set at a position of 0.50 to 0.85 of the entire length of the extruder (0 at the uppermost stream and 1 at the lowermost stream) from the viewpoint of preventing breakage of the glass fiber and obtaining good mechanical properties. Is preferred, more preferably 0.50 to 0.75, and further preferably 0.50 to 0.70.
[0010]
In the method for supplying glass fiber of the present invention, continuous roving of glass fiber is wound into an extruder by a shear force between a screw flight and a cylinder through a glass fiber supply pipe. The glass fiber supply pipe is a pipe for smoothly supplying glass fiber strands to the extruder, and is intended to prevent a plurality of strands from being entangled before being supplied to the extruder. is there. In particular, the material of the pipe is not limited.
[0011]
In the screw configuration of the extruder of the present invention, continuous glass fibers are spread, glass fibers in the resin composition are dispersed, and from the viewpoint of obtaining good mechanical properties, from the viewpoint of downstream from the glass fiber supply position. It is necessary to cut a continuous glass fiber and to have at least one or more screw parts for controlling the glass fiber length. Here, the screw part that controls the glass fiber length is, specifically, the continuous glass fiber that has been rolled into the extruder and advancing while being wound around the screw, by meshing the screw parts with each other. The method is characterized in that glass fibers are cut at regular intervals according to the requirements, and the fiber length in the composition is controlled.
[0012]
The ratio (L1 / D1) of the screw block length L1 to the screw diameter D1 for controlling the glass fiber length (L1 / D1) is 0.3 from the viewpoint of opening continuous glass fibers and dispersing the glass fibers in the resin composition. From the viewpoint of preventing breakage of excessive glass fiber, it is 1.5 or less. Here, the block length L1 of the screw means the total length of the screw parts for controlling the glass fiber length, and if L1 / D1 is in the range of 0.3 to 1.5, all the screws for controlling the glass fiber length are provided. May be provided at one location or at two or more separate locations. Further, the position of the screw part for controlling the glass fiber length is not particularly limited as long as it is downstream beyond the glass fiber supply port, but from the viewpoint of uniformly dispersing the glass fiber in the composition. It is preferable to arrange at least one location at a position of 0.05 to 0.15 downstream of the glass fiber supply position, and more preferably at least one location at a position of 0.05 to 0.10.
[0013]
With respect to the screw configuration other than the screw that controls the glass fiber length downstream from the glass fiber supply position, there is no particular limitation, but excessive shear force is applied to the glass fiber, and the parts other than the screw that controls the glass fiber length It is preferable to take care not to break the glass fiber excessively. The screw configuration upstream of the glass fiber supply position is not particularly limited as long as a sufficient shearing force is applied to plasticize the polyamide resin. The method of providing the above reverse screw is preferable.
[0014]
In the present invention, the continuous glass fiber supplied into the extruder needs to satisfy the following formulas (1) and (2).
5 ≦ N / V ≦ 100 Formula (1)
V = π × D × R Equation (2)
Here, N is the number (number) of continuous glass fiber monofilaments supplied into the extruder, V is the screw peripheral speed (cm / min) of the extruder, D is the screw diameter (cm), and R is the screw rotation speed ( rpm). )
The value of the formula (1) is 5 or more from the viewpoint of productivity and breakage of the glass fiber, and is 100 or less from the viewpoint of the effect of the screw for controlling the glass fiber length and the adhesiveness of the interface between the resin and the fiber. It is preferably at least 80 and at most 80.
[0015]
Although the polyamide resin according to the present invention is not particularly limited, for example, ε-caprolactam, adipic acid, sebacic acid, dodecandioic acid, isophthalic acid, terephthalic acid, hexamethylenediamine, tetramethylenediamine, 2-methylpentane Nylon-forming monomers such as methylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, metaxylylenediamine, and bis (3-methyl-4-aminocyclohexyl) methane are appropriately used. A homopolymer alone, a copolymer alone, a mixture of homopolymers, a mixture of copolymers, a mixture of a copolymer and a homopolymer, or the like obtained in combination can be used.
[0016]
Specific examples of such a polyamide resin include, for example, nylon 6, nylon 66, nylon 46, nylon 610, nylon 612, nylon 11, nylon 12, nylon MXD6, and nylon obtained by polymerizing hexamethylenediamine and isophthalic acid. Nylon 6I), homopolymers such as nylon (nylon PACMI) obtained by polymerizing isophthalic acid and bis (3-methyl-4-aminocyclohexyl) methane, and nylon obtained by polymerizing adipic acid, isophthalic acid and hexamethylenediamine (Nylon 66 / 6I copolymer), nylon (nylon 66 / 6I / 6 copolymer) formed by polymerizing adipic acid, isophthalic acid, hexamethylene diamine, and ε-caprolactam, adipic acid, terephthalic acid, and hexamethylene diamine Niro made by polymerizing (Nylon 66 / 6T copolymer).
[0017]
Nylon (nylon 6I / 6T copolymer) obtained by polymerizing isophthalic acid, terephthalic acid, and hexamethylenediamine; terephthalic acid, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylene Nylon (nylon TMDT copolymer) obtained by polymerizing diamine, copolymerized nylon obtained by polymerizing isophthalic acid, terephthalic acid, hexamethylenediamine and bis (3-methyl-4-aminocyclohexyl) methane, and isophthalic acid A mixture of nylon 6 and a copolymer of terephthalic acid, hexamethylenediamine, and bis (3-methyl-4-aminocyclohexyl) methane, and a mixture of nylon 6 and a mixture of nylon 6 and MXD6.
[0018]
In the polyamide resin, an antioxidant, an ultraviolet absorber, a heat stabilizer, a light deterioration inhibitor, a plasticizer, a lubricant, which are added to a normal polyamide resin as long as the object of the present invention is not impaired as necessary. A release agent, a nucleating agent, a flame retardant, a coloring pigment, a dye, and the like can be added, and another thermoplastic resin may be blended.
The amount of glass fiber in the glass fiber reinforced polyamide resin composition of the present invention is 10 parts by weight or more from the viewpoint of mechanical properties, and 170 parts by weight from the viewpoint of fiber breakage with respect to 100 parts by weight of the polyamide resin. The following is preferred, and 20 to 150 parts by weight is more preferred.
Further, the glass fiber used in the present invention is not particularly limited as long as it is a roving in which continuous single fibers used as a reinforcing agent for a polyamide resin are bundled.
[0019]
As the glass fiber, a fiber treated with a sizing agent for a polyamide resin (including a sizing component for so-called sizing and a surface treatment component for adhesion between the polyamide resin) can be used. Although the components of the sizing agent are not particularly limited, those having a copolymer of maleic anhydride and an unsaturated monomer and an amino group-containing silane coupling agent as main components improve mechanical properties. Most preferred from a viewpoint. Here, the sizing agent is used by attaching it to the glass fiber surface in the step of processing the glass into a fibrous form, or in the step after the processing, and when this is dried, a film composed of the copolymer and the coupling agent is formed. Formed on glass fiber surface. At this time, the final adhesion amount of the sizing agent after drying is 0.1 part by weight or more from the viewpoint of the sizing property of the glass fiber per 100 parts by weight of the glass fiber, and 2.0 parts by weight from the viewpoint of the operability of the glass fiber. It is preferably within the range. A more preferable amount of the sizing agent is in the range of 0.2 to 1.0 part by weight per 100 parts by weight of the glass fiber. Here, the sizing agent adhesion amount is measured as the ignition loss of the glass fiber after burning for 60 minutes, and is determined in accordance with JIS R3420.
[0020]
The average fiber diameter of the glass fibers is not particularly limited, and is preferably 5 μm or more from the viewpoint of convergence, and is preferably 20 μm or less from the viewpoint of improvement of mechanical properties, and more preferably 8 to 17 μm of the average fiber diameter of the composition. It is preferable from the viewpoint of improving mechanical properties. The number of glass fiber bundles is not particularly limited, but a strand in which 1,000 to 10,000 fiber monofilaments are bundled is preferable from the viewpoint of handling. Further, the diameter of the glass fiber contained in the polyamide is substantially equal to the diameter of the glass fiber raw material before being mixed with the polyamide.
[0021]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In addition, the raw materials and measuring methods used in the examples and comparative examples are shown below.
〔raw materials〕
[1] Polyamide resin PA-1: Polyamide 66, Leona 1300-001 manufactured by Asahi Kasei Corporation
[2] Glass fiber GF-1: Nippon Electric Glass Co., Ltd., glass fiber bundle (roving), glass fiber average diameter 13 μm, number of fiber monofilaments per roving 4000, sizing agent main component [styrene-maleic anhydride Copolymer, γ-aminopropyltriethoxysilane], sizing agent adhering amount 0.6% by weight
GF-2: Nippon Electric Glass Co., Ltd., chopped strand, glass fiber average diameter 13 μm, glass fiber average length 6 mm, sizing agent main component [styrene-maleic anhydride copolymer, γ-aminopropyltriethoxysilane] , Sizing agent adhesion amount 0.6 weight
GF-3: manufactured by Nippon Electric Glass Co., Ltd., glass fiber bundle (roving), glass fiber average fiber diameter 10 μm, number of fiber monofilaments per roving 4000, sizing agent main component [butadiene-maleic anhydride copolymer, N-β (aminoethyl) γ-aminopropyltriethoxysilane], sizing agent adhesion amount 0.4% by weight
GF-4: Nippon Electric Glass Co., Ltd., chopped strand, glass fiber average fiber diameter 10 μm, glass fiber average length 3 mm, sizing agent main component [butadiene-maleic anhydride copolymer, N-β (aminoethyl) γ-aminopropyltriethoxysilane], sizing agent adhering amount 0.4% by weight
[0023]
[Preparation of test piece]
Preparation of Bending Test Specimen Using an injection molding machine (manufactured by Nissei Plastic Industry Co., Ltd .: FN3000), a multi-purpose test specimen A shape conforming to ISO 3167 was molded at a mold temperature of 80 ° C. and machined into a bending specimen. did.
[0024]
[Measuring method]
(1) The bending test at a flexural modulus of elasticity and a flexural strength of 23 ° C. was performed using an autograph (manufactured by Shimadzu Corporation: AG-5000D type) according to ISO 178 at an ambient temperature of 23 ° C. and a crosshead The measurement was performed under the conditions of a speed of 5 mm / min and a span of 64 mm.
In the bending test at 150 ° C., according to ISO 178, the test piece was an autograph (manufactured by Shimadzu Corporation: AG-5000D type) at an ambient temperature of 150 ° C., a crosshead speed of 5 mm / min, and a span of 64 mm. The measurements were taken below.
[0025]
Embodiment 1
As an extruder, a twin-screw extruder ZSK40MC (manufactured by WERNER & PFLEIDERER) (L / D = 48) was used. The polyamide resin PA-1 is supplied from the uppermost stream supply port at a rate of 40 kg / hr using a constant weight feeder, and continuous glass fibers GF-1 having 20 rovings are passed through a glass fiber supply pipe to a length of 0. From the position 60 (when the uppermost stream is 0 and the lowermost stream is 1), the melt is fed into the polyamide resin melted at 20 kg / hr, and after the strand extruded from the spinneret is cooled, the length is 8 mm and the diameter is 5 mm. The resultant was cut into pellets and dried to obtain a glass fiber reinforced polyamide resin composition. The barrel temperature was 295 ° C., the screw rotation speed was 150 rpm, and the discharge rate was 60 kg / hr. The screw configuration is such that a reverse screw of L1 / D1 = 0.45 is provided upstream of the glass fiber supply position to plasticize the polyamide resin, and L1 / D1 = 0 at 0.70 of the entire length of the extruder. Except for providing one screw part for controlling the glass fiber length of .45, it was composed only of a forward thread. The obtained resin composition was molded at a cylinder temperature of 290 ° C. by the above-described method, and various characteristics were evaluated. Table 1 shows the results. The flexural strength and flexural modulus at 23 ° C. and 150 ° C. are superior to Comparative Examples 1 and 2.
[0026]
Embodiment 2
A glass fiber reinforced polyamide resin composition was obtained in the same manner as in Example 1 except that the continuous glass fiber was GF-3 and the screw rotation speed was 200 rpm, and various properties were evaluated. Table 1 shows the results. It is superior to Comparative Example 3 in flexural strength and flexural modulus at 23 ° C. and 150 ° C.
[0027]
Embodiment 3
Glass fiber reinforced by the same method as in Example 1 except that two screw parts for controlling the glass fiber length, L1 / D1 = 0.90, were provided at 0.70 and 0.90 of the entire length of the extruder. A polyamide resin composition was obtained and various properties were evaluated. Table 2 shows the results. Compared with Example 1, the mechanical properties were slightly inferior, but a generally good composition was obtained.
[0028]
Embodiment 4
A glass fiber reinforced polyamide resin composition was obtained in the same manner as in Example 1 except that the continuous glass fiber was GF-3, the number of rovings was 40, and the number of rotations of the screw was 200 rpm, and various properties were evaluated. . Table 3 shows the results. Compared with Example 2, a composition having slightly better mechanical properties was obtained.
[0029]
[Comparative Example 1]
As an extruder, a twin screw extruder TEM35BS (manufactured by Toshiba Machine Co., Ltd.) (L / D = 47) was used. The polyamide resin PA-1 was supplied from the uppermost stream supply port using a constant weight feeder at 34 kg / hr, and the glass fiber GF-2 was placed at 0.60 of the total length of the extruder (0 at the uppermost stream and 1 at the lowermost stream). ), Side-feed into the polyamide resin melted at 17 kg / hr using a constant weight feeder. After cooling the strand extruded from the spinneret, the strand was cut into a pellet having a length of 3 mm and a diameter of 2 mm, and dried to obtain a glass fiber reinforced polyamide resin composition. The barrel temperature was 295 ° C., the screw rotation speed was 300 rpm, and the discharge rate was 51 kg / hr. The screw configuration is such that a reverse screw of L1 / D1 = 0.80 is provided upstream of the glass fiber supply position for plasticizing the polyamide resin, and L1 / D1 is provided downstream of the glass fiber supply position for dispersion of the glass fiber. Except that one reverse screw with D1 = 0.80 was provided, only the forward screw was used. The obtained resin composition was molded under the conditions of a cylinder temperature of 290 ° C. by the above-described method and evaluated. Table 1 shows the results. Compared with Example 1, the weight average length of the glass fiber in the obtained resin composition was shorter, and the flexural strength and flexural modulus at 23 ° C and 150 ° C were lower.
[0030]
[Comparative Example 2]
Using a polyamide resin PA-1 and a continuous glass fiber GF-1 having two rovings and passing through a polyamide resin coating die at 295 ° C., a glass fiber amount of 60% by weight by a pultrusion method and a length of 8 mm Thus, a pellet-shaped glass fiber reinforced polyamide resin composition having a diameter of 3 mm was obtained. The production amount by the pultrusion method was 10 kg / hr. The obtained resin composition was diluted with polyamide resin pellet PA-1 so as to have the composition shown in Table 1, and then molded under the conditions of a cylinder temperature of 290 ° C. by the above-described method, and various characteristics were evaluated. Table 1 shows the results. Although the weight average length of the glass fiber in the obtained resin composition is longer than that of Example 1, the productivity is extremely low, and the flexural strength and flexural modulus at 23 ° C. are low.
[0031]
[Comparative Example 3]
A glass fiber reinforced polyamide resin composition was obtained in the same manner as in Comparative Example 1 except that GF-4 was used as the continuous glass fiber, and various properties were evaluated. Table 1 shows the results. Compared with Example 2, the weight average length of the glass fiber in the obtained resin composition was shorter and the mechanical properties were lower.
[0032]
[Comparative Example 4]
A glass fiber reinforced polyamide resin was produced in the same manner as in Example 1 except that the continuous glass fiber supply position was set at a position of 0.40 of the entire length of the extruder (when the uppermost stream was set to 0 and the lowermost stream was set to 1). The composition was obtained and various properties were evaluated. Table 2 shows the results. Compared with Example 1 or 3, the weight average length of the glass fibers in the obtained resin composition is shorter and the mechanical properties are lower.
[0033]
[Comparative Example 5]
Production was performed in the same manner as in Example 1, except that the screw part for controlling the glass fiber length provided downstream of the glass fiber supply position was removed. However, the glass fibers were not cut sufficiently, and the clogging of the die occurred. And a resin composition could not be obtained. Table 2 shows the results.
[0034]
[Comparative Example 6]
Example 1 was the same as Example 1 except that screw parts for controlling the glass fiber length with L1 / D1 = 1.80 were provided at four positions of 0.70, 0.75, 0.85, 0.90 of the total length of the extruder. In the same manner, a glass fiber reinforced polyamide resin composition was obtained and various properties were evaluated. Table 2 shows the results. Compared with Example 1 or 3, the weight average length of the glass fibers in the obtained resin composition is shorter and the mechanical properties are lower.
[0035]
[Comparative Example 7]
A glass fiber reinforced polyamide resin composition was prepared in the same manner as in Example 2 except that the polyamide resin was supplied at 26 kg / hr, continuous glass fiber was supplied at 13 kg / hr, the number of rovings was 5, and the screw rotation speed was 400 rpm. The product was obtained and various characteristics were evaluated. Table 3 shows the results. Compared with Example 2 or 4, the weight average length of the glass fiber in the obtained resin composition was shorter and the mechanical properties were lower.
[0036]
[Comparative Example 8]
A glass fiber reinforced polyamide resin composition was obtained in the same manner as in Example 2 except that the number of rovings was set to 40 and the number of rotations of the screw was set to 100 rpm, and various properties were evaluated. Table 3 shows the results. Compared with Example 2 or 4, since the dispersibility of the glass fibers in the obtained resin composition is so bad that it can be visually observed, the weight average length of the glass fibers in the resin composition is long. Low flexural strength and flexural modulus at 23 ° C.
[0037]
[Table 1]
Figure 2004351821
[0038]
[Table 2]
Figure 2004351821
[0039]
[Table 3]
Figure 2004351821
[0040]
【The invention's effect】
The method for producing the glass fiber reinforced polyamide resin composition of the present invention is characterized by controlling the glass fiber length in the composition under specific melt-kneading conditions, thereby achieving high productivity, strength and rigidity, particularly at high temperatures. A glass fiber reinforced polyamide resin composition having excellent strength and rigidity can be obtained.

Claims (6)

ポリアミド樹脂と連続したガラス繊維を二軸押出機で溶融混練することにより製造されるポリアミド樹脂組成物の製造方法であって、該押出機中のポリアミド樹脂が溶融状態であり、かつ、バレル全長の0.5を含む下流の位置からガラス繊維を供給し、該ガラス繊維供給位置を超えて下流側に連続したガラス繊維を切断し、ガラス繊維長を制御するスクリューパーツを少なくとも1ヶ所以上有することを特徴とするガラス繊維強化ポリアミド樹脂組成物の製造方法。A method for producing a polyamide resin composition, which is produced by melt-kneading a polyamide resin and continuous glass fiber with a twin-screw extruder, wherein the polyamide resin in the extruder is in a molten state, and the entire length of the barrel. Supplying glass fiber from a downstream position including 0.5, cutting the glass fiber continuous to the downstream side beyond the glass fiber supply position, and having at least one screw part for controlling the glass fiber length. A method for producing a glass fiber reinforced polyamide resin composition, which is characterized in that: 該ガラス繊維供給位置を、押出機全長の0.50〜0.85の位置とし、該スクリューパーツを該ガラス繊維供給位置より下流側0.05〜0.15の位置に少なくとも1ヶ所以上配置することを特徴とする請求項1に記載のガラス繊維強化ポリアミド樹脂組成物の製造方法。The glass fiber supply position is set to a position of 0.50 to 0.85 of the entire length of the extruder, and the screw part is arranged at at least one position at a position of 0.05 to 0.15 downstream of the glass fiber supply position. The method for producing a glass fiber reinforced polyamide resin composition according to claim 1, wherein: 該ガラス繊維長を制御するスクリューのブロック長L1とスクリュー径D1の比(L1/D1)が0.3〜1.5であることを特徴とする請求項1または2に記載のガラス繊維強化ポリアミド樹脂組成物の製造方法。The glass fiber reinforced polyamide according to claim 1 or 2, wherein a ratio (L1 / D1) of a block length L1 and a screw diameter D1 of the screw for controlling the glass fiber length is 0.3 to 1.5. A method for producing a resin composition. 押出機内に供給される連続したガラス繊維が下記式(1)および(2)を満たすことを特徴とする請求項1〜3のいずれかに記載のガラス繊維強化ポリアミド樹脂組成物の製造方法。
Figure 2004351821
The method for producing a glass fiber reinforced polyamide resin composition according to any one of claims 1 to 3, wherein continuous glass fibers supplied into the extruder satisfy the following formulas (1) and (2).
Figure 2004351821
該ポリアミド樹脂100重量部に対して、該連続したガラス繊維を10〜170重量部添加することを特徴とする請求項1〜4のいずれかに記載のガラス繊維強化ポリアミド樹脂組成物の製造方法。The method for producing a glass fiber reinforced polyamide resin composition according to any one of claims 1 to 4, wherein 10 to 170 parts by weight of the continuous glass fiber is added to 100 parts by weight of the polyamide resin. 請求項1〜5のいずれかに記載の方法によって得られたガラス繊維強化ポリアミド樹脂組成物。A glass fiber reinforced polyamide resin composition obtained by the method according to claim 1.
JP2003153865A 2003-05-30 2003-05-30 Method for producing glass fiber-reinforced resin composition and the composition Pending JP2004351821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153865A JP2004351821A (en) 2003-05-30 2003-05-30 Method for producing glass fiber-reinforced resin composition and the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153865A JP2004351821A (en) 2003-05-30 2003-05-30 Method for producing glass fiber-reinforced resin composition and the composition

Publications (1)

Publication Number Publication Date
JP2004351821A true JP2004351821A (en) 2004-12-16

Family

ID=34048677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153865A Pending JP2004351821A (en) 2003-05-30 2003-05-30 Method for producing glass fiber-reinforced resin composition and the composition

Country Status (1)

Country Link
JP (1) JP2004351821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160050762A (en) * 2014-10-31 2016-05-11 한국생산기술연구원 Forming Device of Long Fiber Reinforced Thermoplastic Composite Material and Preparation Method Thereof
WO2019045032A1 (en) * 2017-08-31 2019-03-07 ポリプラスチックス株式会社 Resin composition, molded article, and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160050762A (en) * 2014-10-31 2016-05-11 한국생산기술연구원 Forming Device of Long Fiber Reinforced Thermoplastic Composite Material and Preparation Method Thereof
KR101702998B1 (en) * 2014-10-31 2017-02-08 한국생산기술연구원 Forming Device of Long Fiber Reinforced Thermoplastic Composite Material and Preparation Method Thereof
WO2019045032A1 (en) * 2017-08-31 2019-03-07 ポリプラスチックス株式会社 Resin composition, molded article, and method for producing same
JPWO2019045032A1 (en) * 2017-08-31 2019-11-07 ポリプラスチックス株式会社 Resin composition, molded article and method for producing the same
CN111051436A (en) * 2017-08-31 2020-04-21 宝理塑料株式会社 Resin composition, molded article, and method for producing same

Similar Documents

Publication Publication Date Title
US8993670B2 (en) Glass-fiber reinforced thermoplastic resin composition and molded article thereof
JP6034463B2 (en) Reinforced polyamide resin pellets
JP2008088377A (en) Polyamide resin composition for breaker box body and breaker box body
WO2007105497A1 (en) Process for production of glass fiber-reinforced polyamide resin composition
JPH10138244A (en) Long and short fiber-reinforced polyolefin composite structure and molding formed thereof
JPH11129246A (en) Glass fiber reinforced thermoplastic resin pellet
JP5570703B2 (en) Long glass fiber reinforced polyamide resin composition, resin pellets, and molded articles thereof
JP5156124B2 (en) Polycarbonate composition, method for producing the same, and article containing the same
JPH0583044B2 (en)
JP2009242616A (en) Resin injection-molded article and its molding method
JP2004351821A (en) Method for producing glass fiber-reinforced resin composition and the composition
KR100730421B1 (en) Polyolefin resin composition and method of producing the same
JPH0365311A (en) Carbon fiber chop
US20220371225A1 (en) Pellet production method
JP6353691B2 (en) Glass wool composite thermoplastic resin composition, method for producing the same, and molded product.
US20210031418A1 (en) Method for producing injection molded articles from highly-filled fiber-reinforced resin composition
JP2002103327A (en) Method for manufacturing glass fiber reinforced polyamide resin
JP2006016463A (en) Filament-reinforced polyamide resin molding material and method for producing the same
JP2004300278A (en) Reinforced polyamide resin composition and molded article therefrom
JP2003285323A (en) Fiber reinforced thermoplastic resin pellets, plastication method for pellets and manufacturing method for molded object
JP4514531B2 (en) A composition for molding a long fiber reinforced polyamide resin and a method for producing a molded body.
JP3303074B2 (en) Molded article of long fiber reinforced polyamide resin composition
JP4467326B2 (en) Production method
WO2014185243A1 (en) Fiber-reinforced resin composition
JPH02203901A (en) Production of bundled reinforcing fibers or staple fiber chips