JP2004300278A - Reinforced polyamide resin composition and molded article therefrom - Google Patents

Reinforced polyamide resin composition and molded article therefrom Download PDF

Info

Publication number
JP2004300278A
JP2004300278A JP2003094571A JP2003094571A JP2004300278A JP 2004300278 A JP2004300278 A JP 2004300278A JP 2003094571 A JP2003094571 A JP 2003094571A JP 2003094571 A JP2003094571 A JP 2003094571A JP 2004300278 A JP2004300278 A JP 2004300278A
Authority
JP
Japan
Prior art keywords
glass fiber
polyamide
polyamide resin
resin composition
sizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003094571A
Other languages
Japanese (ja)
Other versions
JP4472264B2 (en
Inventor
Hiroshi Sarukawa
浩史 猿川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003094571A priority Critical patent/JP4472264B2/en
Publication of JP2004300278A publication Critical patent/JP2004300278A/en
Application granted granted Critical
Publication of JP4472264B2 publication Critical patent/JP4472264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass fiber-reinforced polyamide resin composition and molded article therefrom having excellent strength/rigidity, especially those at a high temperature. <P>SOLUTION: This glass fiber-reinforced polyamide resin composition is manufactured by melting and kneading with a single- or multi-screw extruder, using a continuous glass fiber roving that is surface-treated with a specific sizing agent, to form a grafted polyamide layer at the interface of a polyamide resin and glass fiber. Molded resin articles are formed from the composition. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、連続したガラス繊維を押出機で溶融混練することにより得られるガラス繊維強化ポリアミド樹脂組成物及びその成形品に関する。更に詳しくは生産性が高く、強度・剛性、特に高温時の強度・剛性に優れたガラス繊維強化ポリアミド樹脂組成物及びその成形品に関する。
【0002】
【従来の技術】
ガラス繊維強化ポリアミド樹脂は機械的特性および耐熱性に優れるという特徴を活かして様々な産業分野で利用されている。ポリアミド樹脂の強度を更に向上させる手段としてガラス繊維等の繊維状強化材を配合することが知られており、一般には、ポリアミド樹脂とチョップドストランド等の短繊維を押出機で混練する繊維強化ポリアミド樹脂の製造が行われている。例えば、更に機械的特性や振動疲労特性を改善する目的で、ポリアミドとガラス繊維界面に存在するグラフト化ポリアミドの量を高める提案がなされている(例えば、特許文献1参照)。しかしながら、この方法では押出機での混練中に繊維の折損が避けられないため、高温時の強度・剛性に優れた機械的強度等の要求に応えることはできないばかりか、射出成形時の流動性が高く、成形機のノズルからの樹脂漏れが多くなるという課題がある。
【0003】
これに対し近年、配合される繊維状強化材が本来有する性能を充分に引き出すための方法として、ポリアミド樹脂の強化繊維を長くすることが検討されている。このような長繊維強化ポリアミド樹脂は、連続した強化繊維のロービングからストランドを引抜きながら樹脂を含浸するプルトルージョン法により、得られるものであり、上記短繊維強化ポリアミド樹脂と比較して高温下での機械的特性に優れているばかりでなく、成形時の成形機のノズルからの樹脂漏れも非常に少ない(例えば、特許文献2参照)。
【0004】
しかしながら、このようなプルトルージョン法では、樹脂に含浸させながら連続した強化繊維のストランドを引抜いてペレタイジングするため、ペレット中の繊維長は一定であるが、生産性が悪く、かつ低粘度の樹脂でなければ繊維に十分含浸させることができないという欠点があるばかりか、成形品中の繊維の分散も不均一であるという課題がある。
また、開繊度合を制御して強化繊維を均一に分散させると共に、重量平均繊維長を長く保ったまま、混練作用によって特定の繊維長分布にする事によって、生産性、流動性、機械的性質や表面平滑性等を改善することが提案されている(例えば、特許文献3参照)。しかしながら、この特許文献3には、ガラス繊維の集束剤に関して、シランカップリング剤等の表面処理という記載しかなく、本発明のような無水マレイン酸と不飽和単量体との共重合体については何ら示されていない。また、製造方法も押出機のスクリュー及び/またはシリンダの内壁の一部に特殊な加工が必要であるため通常の押出機では製造が困難である。
【0005】
【特許文献1】
特開平11−226949号公報
【特許文献2】
特公昭52−3985号公報
【特許文献3】
特開2001−192466号公報
【0006】
【発明が解決しようとする課題】
本発明は、生産性が高く、強度・剛性、特に高温時の強度・剛性に優れたガラス繊維強化ポリアミド樹脂組成物及びその成形品を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、特定の集束剤によって表面処理を施された連続したガラス繊維からなるロービングを用いて、単軸または多軸のスクリュー式押出機により溶融混練された組成物が、ポリアミド樹脂とガラス繊維の界面にグラフトしたポリアミド層を形成せしめることで、生産性が高く、強度・剛性、特に高温時の強度・剛性に優れたガラス繊維強化ポリアミド樹脂組成物及びその成形品を得ることが可能であることを見出し、本発明を完成させるに至った。
【0008】
すなわち、本発明は次のとおりである。
1.ポリアミド樹脂と、表面が集束剤で処理された平均直径5〜20μmのガラスロービングを溶融混練してなり、ポリアミド樹脂(A)成分100重量部に対し、該ガラス繊維(B)成分10〜170重量部からなる樹脂組成物であって、(A)成分と(B)成分との界面にグラフトしたポリアミドが(B)成分の0.1〜2.0重量%存在し、かつ樹脂組成物中のガラス繊維のアスペクト比が50〜2000であることを特徴とするガラス繊維ポリアミド樹脂組成物。
2.集束剤が、無水マレイン酸と不飽和単量体との共重合体およびアミノシラン系カップリング剤とを主成分とすることを特徴とする請求項1に記載のガラス繊維ポリアミド樹脂組成物。
【0009】
3.(A)成分と(B)成分との界面にグラフトしたポリアミドで被覆される割合が、50〜100%であることを特徴とする請求項1または2に記載のガラス繊維ポリアミド樹脂組成物。
4.(A)ポリアミド樹脂が、ポリアミド66、ポリアミド6、ポリアミド46、ポリアミド610、ポリアミド612及びポリヘキサメチレンイソフタルアミド(ポリアミド6I)から選ばれる少なくとも1種及び/またはこれらの共重合体もしくはブレンド物であることを特徴とする請求項1に記載のガラス繊維強化ポリアミド樹脂組成物。
【0010】
5.(B)連続したガラス繊維が、集束剤をガラス繊維に対し0.1〜2重量%含有することを特徴とする請求項1〜3のいずれかに記載のガラス繊維強化ポリアミド樹脂組成物。
6.請求項1〜3のいずれかに記載のガラス繊維強化ポリアミド樹脂組成物をからなる樹脂成形品。
7.成形品が自動車用部品に用いられることを特徴とする請求項4に記載の樹脂成形品。
【0011】
以下に本発明を詳しく説明する。本発明に係わる(A)ポリアミド樹脂としては、一般のポリアミドを用いることができる。例えば、ジアミンとジカルボン酸との縮合重合で得られるポリアミド66、ポリアミド46、ポリアミド610、ポリアミド612、ポリアミド6T(ポリヘキサメチレンテレフタルアミド)、ポリアミド6I(ポリヘキサメチレンイソフタルアミド)、ラクタムの開環重合で得られるポリアミド6、ポリアミド12、ω−アミノカルボン酸の自己重縮合で得られるポリアミド11から選ばれた少なくとも1種、及び/またはこれらポリアミドの共重合体もしくはブレンド物などが挙げられる。上記ポリアミドの中で機械的特性、耐熱性、成形性および成形品外観の点でポリアミド66、ポリアミド46、ポリアミド6、ポリアミド610、ポリアミド612及びポリアミド6Iから選ばれる単独重合体、共重合体もしくはブレンド物が好ましい。
【0012】
本発明に用いる(B)ガラス繊維はポリアミド樹脂の補強剤として用いる連続した単繊維を集束したロービングであれば特に限定されるものではない。
また、ガラス繊維の平均繊維直径は、集束の点から5μm以上であり、機械的性質の点から20μm以下であり、好ましくは平均繊維直径8〜17μmが組成物の機械的性質の向上の観点から好ましい。この記載は不要です。繊維の集束本数は、繊維モノフィラメントを1000〜10000本集束したストランドがハンドリングの点から好ましい。
【0013】
また、ポリアミド樹脂中に含有するガラス繊維のアスペクト比は50より大きく2000以下であり、更に好ましくは60より大きいものである。
また、ここでいうガラス繊維のアスペクト比とはガラス繊維の重量平均長さを数平均繊維直径で除した値である。また、ポリアミド中に含有されるガラス繊維の直径はポリアミドと混合する以前の状態のガラス繊維原料の直径とほぼ等しい。ここで、ガラス繊維の重量平均長さとはガラス繊維強化ポリアミド樹脂組成物を650℃電気炉内でポリアミド樹脂のみ燃焼させた後、光学顕微鏡下で観察し、画像解析装置を用いて、無作為に選んだガラス繊維400本の長さを測定した値から求められる。
【0014】
更に、ガラス繊維はポリアミド樹脂用の集束剤(これはいわゆるサイジングを目的とした集束成分とポリアミド樹脂との接着性を目的とした表面処理成分を含む)で表面処理されている。ここで用いる集束剤としては、無水マレイン酸と不飽和単量体との共重合体及びシラン系カップリング剤及び/またはアクリル酸系共重合体及び/またはウレタン系ポリマーを主たる構成成分とするものであるが、特に無水マレイン酸と不飽和単量体との共重合体とアミノ基含有シランカップリング剤を主たる構成成分とするものが機械的特性向上の観点から最も好ましい。
【0015】
集束剤を構成する無水マレイン酸と不飽和単量体との共重合体として具体的には、スチレン、α−メチルスチレン、ブタジエン、イソプレン、クロロプレン、2,3−ジクロロブタジエン、1,3−ペンタジエン、シクロオクタジエン等の不飽和単量体と無水マレイン酸との共重合体が挙げられ、その中でもブタジエン、スチレンと無水マレイン酸との共重合体が特に好ましい。更にこれら単量体は2種以上併用してもよいし、例えば、無水マレイン酸とブタジエン共重合体と無水マレイン酸とスチレンの共重合体を混合して使用する等のブレンドによって使用してもかまわない。上記無水マレイン酸と不飽和単量体との共重合体は平均分子量2,000以上であることが好ましい。また、無水マレイン酸と不飽和単量体との割合は特に制限されない。更に無水マレイン酸共重合体に加えてアクリル酸系共重合体やウレタン系ポリマーを併用して用いても何ら差し支えない。
【0016】
本発明の集束剤を構成するもう一つの成分であるシラン系カップリング剤としては通常ガラス繊維の表面処理に用いられるシラン系カップリング剤がいずれも使用できる。具体的には、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)アミノプロピルトリメトキシシラン、N−β(アミノエチル)アミノプロピルトリエトキシシラン等のアミノシラン系カップリング剤、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン等のエポキシシラン系カップリング剤が挙げられる。
【0017】
また、γ−メタクリロキプロピルメチルジメトキシシラン、γ−メタクリロキプロピルトリメトキシシラン、γ−メタクリロキプロピルメチルジエトキシシラン、γ−メタクリロキプロピルトリエトキシシラン等のメタクロキシシラン系カップリング剤;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(βメトキシエトキシ)シラン等のビニルシラン系カップリング剤などが挙げられる。
【0018】
これらカップリング剤は2種以上併用して用いることもできる。これらの中で特にポリアミド樹脂との親和性からアミノシラン系カップリング剤が最も好ましく、その中でもγ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシランが最も好ましい。上記無水マレイン酸共重合体とシラン系カップリング剤との使用割合は比較的良好な物性バランスを与える前者100重量部に対して後者0.01〜20重量部の割合が好ましい。通常、無水マレイン酸共重合体とシラン系カップリング剤は水溶媒中で混和して集束剤として用いられるが、更に必要に応じて界面活性剤、滑剤、柔軟剤、帯電防止剤などを加えても良い。
【0019】
集束剤はガラスを繊維状に加工する工程、あるいは加工された後の工程でガラス繊維表面に付着させて用いるが、これを乾燥させると、上記共重合体とカップリング剤からなる被膜がガラス繊維表面に形成される。この時の集束剤の乾燥後の最終付着量はガラス繊維100重量部当たりガラス繊維の集束性の点から0.1重量部以上であり、ガラス繊維の操作性の点から2重量部の範囲にあることが好ましい。より好ましい集束剤の付着量はガラス繊維100重量部当たり0.2〜1重量部の範囲である。ここで、集束剤付着量とはガラス繊維の60分間の灼熱後の強熱減量として計測されるものでありJIS R3420に準拠して求められる。
【0020】
本発明のガラス繊維強化ポリアミド樹脂組成物におけるガラス繊維の配合量は(A)ポリアミド樹脂100重量部に対して(B)ガラス繊維は、機械的性質の面から10重量部以上であり、繊維の折損んなどの点から170重量部以下であり、好ましくは20〜150重量部である
本発明の(A)ポリアミド樹脂と(B)ガラス繊維の界面には集束剤で表面処理されたガラス繊維をポリアミド樹脂と溶融混練することによりグラフトしたポリアミドが形成される。このグラフトしたポリアミドは集束剤に含まれる酸無水物とポリアミドのアミノ末端基およびシランカップリング剤官能基とポリアミドのカルボニル末端基との反応による生成物と推定され、グラフトしたポリアミドが存在することによりポリアミド樹脂とガラス繊維の界面にせん断応力が加わった際の界面破壊を抑制するものと予想されるため機械的性質には重要な因子として挙げられる。
【0021】
本発明のポリアミド樹脂組成物中のポリアミドとガラス繊維の界面に存在するグラフトしたポリアミドとは、組成物をポリアミドの溶媒に浸しポリアミドを溶出させガラス繊維を析出させた際、溶媒中に溶出せずガラス繊維表面に残るポリアミドを主成分とする有機物層のことをいい、赤外吸収スペクトル、熱分解ガスクロマトグラフ分析からポリアミドの存在が確認できるものをいう。
具体的には、ガラス繊維強化ポリアミド66樹脂組成物を例に挙げて説明すると、まず、ガラス繊維強化ポリアミド66樹脂組成物中のガラス繊維とグラフトしていないポリアミド66を分離するためにフェノール中に溶解する。ポリアミド66−フェノール溶液部分を除去し、残ったガラス繊維部分を、ポリアミド66が溶出しなくなるまで数回フェノールで洗浄した後、フェノールを除去するためにエタノールで数回洗浄後、乾燥してエタノールを除去する。
【0022】
このようにして得られたものをここではグラフトガラス繊維と表し、グラフトガラス繊維を赤外吸収スペクトル、熱分解ガスクロマトグラフ/マススペクトル(以下、Py GC/MSという)で分析した結果から、主成分がポリアミド66であることを確認でき、これをグラフトしたポリアミドという。
本発明の組成物中のガラス繊維表面に存在するグラフトしたポリアミドの量は、上記具体例の様にして得られたガラス繊維をJIS R3420(強熱減量、Ig.Loss)に従って測定し、その重量減少量から求めることができる。
【0023】
また、グラフトしたポリアミドがガラス繊維全表面を被覆している割合は、グラフトガラス繊維をXPS(X線光電子分光:別名ESCA)にて表面元素の存在比を測定することにより求められる。
グラフトしたポリアミドの量は、ポリアミド中に含有されるガラス繊維を100重量部として0.1〜2重量部の範囲が好ましい。グラフトしたポリアミド量が0.1未満では機械的性質が改善されず、2重量部を越えると組成物の粘性が向上し成形加工性の悪化を招く。また、組成物中のグラフトしたポリアミドがガラス繊維の全表面を被覆する割合(以下被覆率と略す)は、機械的性質の面から50〜100%が好ましく、更に好ましい範囲は70〜100%である。
【0024】
本発明のガラス繊維強化樹脂組成物は、単軸または多軸のスクリュー式の押出機によって製造されるものであって、その内部に繊維の開繊度合や繊維長の制御機構部を含む押出機をいう。押出機としては、特に、最も一般的な二軸押出機が好ましく、同方向、異方向、噛み合い型、非噛み合い型、どのタイプでも良い。また、スクリューとしても、深溝や浅溝、1条、2条、3条ネジ等が利用できる。特に、スクリューの回転数によってガラス繊維の長さを一定に制御できるようなガラス繊維切断スクリューを用いるのが好ましい。
【0025】
例えば、二軸押出機を用いて、トップフィードより、所定量のポリアミド樹脂を供給し、当該ポリアミド樹脂が溶融状態に到達した時点で、連続したガラス繊維のロービングを、ガラス繊維供給管を通じて、スクリューフライトとシリンダ間のせん断力によって押出機に巻き込み、ガラス繊維切断スクリューを通過し、押出機先端に取り付けられた紡口でストランド上に成形した後、冷却し切断することで得られる。ここで言うポリアミド樹脂が溶融状態に到達した時点とは、当該ポリアミド樹脂をDSC(示差走査熱量計)を用いて昇温速度20℃/分で測定したときの吸熱ピーク温度(融点)プラス20℃の温度以上に溶融ポリアミド樹脂の温度が到達した時点を言う。なお、複数の混合ポリアミド樹脂を用いる場合は融点の最も高いポリアミド樹脂の融点プラス20℃の温度以上に到達した時点を当該混合ポリアミド樹脂が溶融状態に到達したものとする。また、ガラス繊維供給管とはガラス繊維のストランドを円滑に押出機内に供給するための管であって、押出機内に供給される前に複数のストランドが絡み合うのを防ぐことを目的とする。なお、特に管の材質は限定されるものではない。
【0026】
本発明のガラス繊維強化ポリアミド樹脂組成物は、例えば、射出成形、押出成形、ブロー成形、プレス成形等公知の成形加工に用いることができる。成形の際は、強化繊維の破損を押さえるため、ノズルやゲート形状を大きくし、深溝の成形機スクリューを使用することが好ましい。
また、本発明の目的を損なわない範囲で、本発明の樹脂組成物には所望に応じて種々の添加剤、例えば銅化合物及びリン化合物等のポリアミド用熱安定剤、ヒンダードフェノール及びヒンダードアミン等の酸化劣化防止剤、マンガン化合物等の光安定剤、タルク、ボロンナイトライド等の核剤、炭酸カルシウム、ウオラストナイト、カオリン、焼成カオリン及びマイカ等のミネラルフィラー、カーボンブラック、酸化チタン、アジン系染料及びフタロシアニン系染料等の着色剤や、可塑剤、帯電防止剤、他の熱可塑性樹脂等を組成物製造の様々な工程で配合できる。
【0027】
本発明の成形品の用途としては、強度・剛性、特に高温時の強度・剛性が求められる自動車用部品が挙げられる。具体的にはシリンダーヘッドカバー、ラジエータータンク、タイヤ圧センサー、カーヒータータンク、ウォーターバルブ、ラジエーターパイプ、インテークマニホールド、エンジンマウント、フロントエンドモジュール、ドアモジュール、ペダル等に好適に使用される。
【0028】
【発明の実施の形態】
以下の実施例により本発明をさらに詳しく説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例及び比較例に用いた原材料及び測定方法を以下に示す。
〔原材料〕
[1]ポリアミド樹脂
PA−1:ポリアミド66、旭化成製 レオナ1300−001
【0029】
[2]ガラス繊維
GF−1:ガラス繊維平均繊維直径10μm、ガラス繊維束(ロービング)、集束剤主要成分[ブタジエン−無水マレイン酸共重合体、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン]、集束剤付着量0.4重量%
GF−2:ガラス繊維平均直径13μm、ガラス繊維束(ロービング)、集束剤主要成分[スチレン−無水マレイン酸共重合体、γ−アミノプロピルトリエトキシシラン]、集束剤付着量0.6重量%
GF−3:ガラス繊維平均直径10μm、ガラス繊維束(ロービング)、集束剤なし。
GF−4:ガラス繊維平均繊維直径10μm、チョップドストランド、ガラス繊維平均長さ3mm、集束剤主要成分[ブタジエン−無水マレイン酸共重合体、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン]、集束剤付着量0.4重量%
【0030】
GF−5:ガラス繊維平均直径13μm、チョップドストランド、ガラス繊維平均長さ6mm、集束剤主要成分[スチレン−無水マレイン酸共重合体、γ−アミノプロピルトリエトキシシラン]、集束剤付着量0.6重量
GF−6:ガラス繊維平均直径10μm、チョップドストランド、ガラス繊維平均長さ3mm、集束剤主要成分[ウレタン、γ−アミノプロピルトリエトキシシラン]、集束剤付着量0.4重量
GF−7:ガラス繊維平均直径10μm、チョップドストランド、ガラス繊維平均長さ3mm、集束剤主要成分[ウレタン、γ−アミノプロピルトリエトキシシラン]、集束剤付着量0.05重量
【0031】
〔試験片の作成〕
曲げ試験片の作成
射出成形機(日精樹脂製:FN3000)を用い、金型温度80℃で、ISO3167に準じた多目的試験片A形を成形し、曲げ試験片に機械加工した。
【0032】
[測定方法]
(1)グラフトしたポリアミドの量及び被覆率
ガラス繊維強化ポリアミド樹脂組成物5gを90%フェノール100mlと混合する(40℃、2時間撹拌)。静置することでガラス繊維部分を沈殿させ、上澄みのポリアミド−フェノール溶液を除去する。残ったガラス繊維部分に90%フェノール100mlを加えて更にガラス繊維部分を洗浄する(40℃、2時間撹拌)。これを静置しガラス繊維部分を沈殿させ上澄みの溶液を除去する。この操作を3回繰り返した後、99.5%エタノール100mlを加えてフェノールを取り除く(40℃、2時間撹拌)。これを静置しガラス繊維部分を沈殿させ上澄みの溶液を除去する。この操作を3回繰り返した後、エタノールを除去するために窒素フロー乾燥機で80℃、2昼夜乾燥する。このようにして得られたものをここではグラフトしたガラス繊維という。
【0033】
この様にして得られたグラフトしたガラス繊維を、JIS R3420に準じ、グラフトしたポリアミド量を以下のようにして求めた。グラフトしたガラス繊維を1g以上採りその質量を測定する。次に110±5℃で1時間以上乾燥した後、デシケーターに入れて室温まで放冷してその質量を測定する(m1)。これを625±20℃に保った電気炉で恒量になるまで(15分間)加熱した後、取り出し、デシケーターに入れて室温まで放冷してその質量を測定する(m2)。式1に従って強熱減量(重量部)を算出し、グラフトした量(W0重量部)を求める。
W0={(m1−m2)/m1}×100 式1
【0034】
(2)グラフトしたポリアミドの被覆率
上記(1)と同様の処理をして得られたグラフトしたガラス繊維を、以下の条件により測定した。XPS装置:VG社製 ESCALAB 200−X
励起源:MgKα 14kV×20mA
取込領域:1100〜0eV(Wide Scan)
取込領域:C1S、N1S、Si2P、O1S,Al2P,Ca2P(Narrow Scan)
Pass Energy:100eV(Wide Scan)
Pass Energy:20eV(Narrow Scan)
表面元素組成比の定量は、得られたNarrow Scanスペクトルの面積強度と装置ライブラリー中の相対感度係数(C1S:1.00、N1S:1.77、Si2P:0.87、O1S:2.85,Al2P:0.57,Ca2P:5.10)から、元素の存在比(atomic %)として求められる。
【0035】
上記(1)と同様の方法で得られたグラフトしたガラス繊維を用いて、XPS装置で測定される表面元素存在比から、次のようにして被覆率を求めた。XPS装置の試料台に、このグラフトしたガラス繊維を両面テープで固定して、上記条件で測定し、表面の各種元素の存在比を求めた。グラフトしたポリアミドのないガラス繊維(無垢のガラス繊維)では、アルミニウム(Al)の存在比が最大:Almax=6.9(atomic %)となる。
また、グラフトしたポリアミドで被覆されたガラス繊維(実施例及び比較例のガラス繊維)では、表面のアルミニウムの存在比:Al(atomic %)が減少する。この結果から、式2を用いて被覆率(%)を算出した。

Figure 2004300278
【0036】
(3)ガラス繊維の重量平均長さ
ガラス繊維強化ポリアミド樹脂組成物1g以上を650℃電気炉内でポリアミド樹脂のみ燃焼させた後、光学顕微鏡下で観察し、画像解析装置を用いて、無作為に選んだガラス繊維400本の長さを測定した値からガラス繊維の重量平均長さを求めた。
(4)曲げ弾性率、曲げ強度
23℃における曲げ試験は、ISO 178に準じて、試験片をオートグラフ(島津製作所製:AG−5000D形)で、周囲温度23℃、クロスヘッドスピード5mm/min、スパン64mmの条件下で測定を行った。
150℃における曲げ試験は、ISO 178に準じて、試験片をオートグラフ(島津製作所製:AG−5000D形)で、周囲温度150℃、クロスヘッドスピード5mm/min、スパン64mmの条件下で測定を行った。
【0037】
【実施例】
本発明を実施例に基づいて説明する。
【0038】
【実施例1〜4】
2軸押出機ZSK40MC(WERNER&PFLEIDERER製)を用いてシリンダ温度295℃でトップフィード口にポリアミド樹脂を供給、連続したガラス繊維を表1に示す組成で、ガラス繊維供給管を通じて、ガラス繊維投入口から溶融したポリアミド樹脂中に供給し、紡口より押し出されたストランドを冷却後、長さ8mm、直径5mmのペレット状に切断、乾燥して、ガラス繊維強化ポリアミド樹脂組成物を得た。得られた樹脂組成物を上述の方法でシリンダ温度290℃の条件で成形し、評価した。その結果を表1に示す。
【0039】
【比較例1〜4】
2軸押出機TEM35BS(東芝機械(株)製)を用いてシリンダ温度295℃でトップフィード口にポリアミド樹脂を供給、サイドフィード口からチョップドストランドガラス繊維を表2に示す組成で、溶融したポリアミド樹脂中に供給し、紡口より押し出されたストランドを冷却後、長さ3mm、直径2mmのペレット状に切断、乾燥して、ガラス繊維強化ポリアミド樹脂組成物を得た。得られた樹脂組成物は実施例と同様の方法で成形し、評価した。その結果を表2に示す。
【0040】
【比較例5】
ガラス繊維をGF−3とした以外は、実施例1〜4と同様の方法でガラス繊維強化ポリアミド樹脂組成物を得て、諸特性を評価した。その結果を表2に示す。
【0041】
【表1】
Figure 2004300278
【0042】
【表2】
Figure 2004300278
【0043】
【発明の効果】
本発明のガラス繊維強化ポリアミド樹脂組成物を成形して得られる成形品は、強度・剛性、特に高温時の強度・剛性に優れているため、高温時の機械的特性が要求されるシリンダーヘッドカバー、ラジエータータンク、タイヤ圧センサー、カーヒータータンク、ウォーターバルブ、ラジエーターパイプ、インテークマニホールド、エンジンマウント、フロントエンドモジュール、ドアモジュール、ペダル等の自動車用部品に好適に用いることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a glass fiber reinforced polyamide resin composition obtained by melt-kneading continuous glass fibers with an extruder and a molded product thereof. More specifically, the present invention relates to a glass fiber reinforced polyamide resin composition having high productivity and excellent strength and rigidity, particularly excellent strength and rigidity at high temperatures, and a molded product thereof.
[0002]
[Prior art]
Glass fiber reinforced polyamide resins have been used in various industrial fields, taking advantage of their excellent mechanical properties and heat resistance. It is known to compound a fibrous reinforcing material such as glass fiber as a means for further improving the strength of the polyamide resin. Generally, a fiber-reinforced polyamide resin in which a polyamide resin and short fibers such as chopped strands are kneaded by an extruder. Is being manufactured. For example, for the purpose of further improving mechanical properties and vibration fatigue properties, a proposal has been made to increase the amount of grafted polyamide existing at the interface between polyamide and glass fiber (for example, see Patent Document 1). However, in this method, fiber breakage during kneading in the extruder is inevitable, so it is not possible to meet the demands of mechanical strength, such as high strength and rigidity at high temperature, as well as fluidity during injection molding. And the resin leakage from the nozzle of the molding machine increases.
[0003]
On the other hand, in recent years, as a method for sufficiently bringing out the inherent properties of the fibrous reinforcing material to be blended, it has been studied to lengthen the reinforcing fibers of the polyamide resin. Such a long fiber reinforced polyamide resin is obtained by a pultrusion method of impregnating the resin while pulling a strand from a continuous roving of reinforcing fibers, and at a high temperature compared to the short fiber reinforced polyamide resin. Not only has excellent mechanical properties, but also very little resin leakage from the nozzle of the molding machine during molding (for example, see Patent Document 2).
[0004]
However, in such a pultrusion method, the fiber length in the pellet is constant because the strands of the continuous reinforcing fiber are drawn out and pelletized while impregnating the resin, but the productivity is low, and the resin has a low viscosity. If not, there is a disadvantage that the fibers cannot be sufficiently impregnated, and also there is a problem that the dispersion of the fibers in the molded article is not uniform.
In addition, by controlling the degree of fiber opening to uniformly disperse the reinforcing fibers and maintaining a long weight-average fiber length, a specific fiber length distribution is achieved by kneading to improve productivity, fluidity and mechanical properties. And improving the surface smoothness and the like have been proposed (for example, see Patent Document 3). However, Patent Document 3 describes only a surface treatment such as a silane coupling agent with respect to a sizing agent for glass fibers. The copolymer of maleic anhydride and an unsaturated monomer as in the present invention is not described. Nothing is shown. In addition, the production method requires special processing on a part of the inner wall of the screw and / or the cylinder of the extruder, so that it is difficult to produce with a normal extruder.
[0005]
[Patent Document 1]
JP-A-11-226949
[Patent Document 2]
Japanese Patent Publication No. 52-3985
[Patent Document 3]
JP 2001-192466 A
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a glass fiber reinforced polyamide resin composition having high productivity and excellent strength and rigidity, particularly excellent strength and rigidity at high temperatures, and a molded product thereof.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-described problems, and as a result, using a roving made of continuous glass fiber surface-treated with a specific sizing agent, a single-screw or multi-screw type Glass fiber with high productivity and high strength and rigidity, especially high temperature strength and rigidity by forming a polyamide layer grafted on the interface between polyamide resin and glass fiber by the composition melt-kneaded by the extruder They have found that it is possible to obtain a reinforced polyamide resin composition and a molded article thereof, and have completed the present invention.
[0008]
That is, the present invention is as follows.
1. A polyamide resin and a glass roving having an average diameter of 5 to 20 μm whose surface is treated with a sizing agent are melt-kneaded, and 100 parts by weight of the polyamide resin (A) component and 10 to 170 parts by weight of the glass fiber (B) component (B) wherein the polyamide grafted at the interface between the component (A) and the component (B) is present in an amount of 0.1 to 2.0% by weight of the component (B); A glass fiber polyamide resin composition, wherein the glass fiber has an aspect ratio of 50 to 2,000.
2. The glass fiber polyamide resin composition according to claim 1, wherein the sizing agent mainly comprises a copolymer of maleic anhydride and an unsaturated monomer and an aminosilane-based coupling agent.
[0009]
3. 3. The glass fiber polyamide resin composition according to claim 1, wherein the proportion of the polyamide fiber grafted on the interface between the component (A) and the component (B) is 50 to 100%. 4.
4. (A) The polyamide resin is at least one selected from polyamide 66, polyamide 6, polyamide 46, polyamide 610, polyamide 612, and polyhexamethylene isophthalamide (polyamide 6I) and / or a copolymer or blend thereof. The glass fiber reinforced polyamide resin composition according to claim 1, wherein:
[0010]
5. (B) The glass fiber reinforced polyamide resin composition according to any one of claims 1 to 3, wherein the continuous glass fiber contains a sizing agent in an amount of 0.1 to 2% by weight based on the glass fiber.
6. A resin molded product comprising the glass fiber reinforced polyamide resin composition according to claim 1.
7. The resin molded product according to claim 4, wherein the molded product is used for an automobile part.
[0011]
Hereinafter, the present invention will be described in detail. As the polyamide resin (A) according to the present invention, a general polyamide can be used. For example, ring-opening polymerization of polyamide 66, polyamide 46, polyamide 610, polyamide 612, polyamide 6T (polyhexamethylene terephthalamide), polyamide 6I (polyhexamethylene isophthalamide), and lactam obtained by condensation polymerization of diamine and dicarboxylic acid. At least one selected from polyamide 6, polyamide 12, and polyamide 11 obtained by self-polycondensation of ω-aminocarboxylic acid, and / or copolymers or blends of these polyamides. Among the above polyamides, homopolymers, copolymers or blends selected from polyamide 66, polyamide 46, polyamide 6, polyamide 610, polyamide 612 and polyamide 6I in terms of mechanical properties, heat resistance, moldability and appearance of molded articles. Are preferred.
[0012]
The glass fiber (B) used in the present invention is not particularly limited as long as it is a roving in which continuous single fibers used as a reinforcing agent for a polyamide resin are bundled.
Further, the average fiber diameter of the glass fibers is 5 μm or more from the point of convergence and 20 μm or less from the point of mechanical properties, and preferably 8 to 17 μm from the viewpoint of improving the mechanical properties of the composition. preferable. This is not required. As for the number of bundled fibers, a strand in which 1,000 to 10,000 fiber monofilaments are bundled is preferable from the viewpoint of handling.
[0013]
The aspect ratio of the glass fibers contained in the polyamide resin is more than 50 and less than 2000, and more preferably more than 60.
The aspect ratio of the glass fiber referred to here is a value obtained by dividing the weight average length of the glass fiber by the number average fiber diameter. Further, the diameter of the glass fiber contained in the polyamide is substantially equal to the diameter of the glass fiber raw material before being mixed with the polyamide. Here, the weight average length of the glass fiber means that the glass fiber reinforced polyamide resin composition is burned only in the electric furnace at 650 ° C. in an electric furnace, and then observed under an optical microscope. It is determined from the measured value of the length of 400 selected glass fibers.
[0014]
Further, the glass fiber is surface-treated with a sizing agent for polyamide resin (this includes a sizing component for so-called sizing and a surface treatment component for adhesion between the polyamide resin). The sizing agent used here is mainly composed of a copolymer of maleic anhydride and an unsaturated monomer, a silane coupling agent and / or an acrylic acid copolymer and / or a urethane polymer. However, those containing a copolymer of maleic anhydride and an unsaturated monomer and an amino group-containing silane coupling agent as main components are particularly preferred from the viewpoint of improving mechanical properties.
[0015]
Specific examples of the copolymer of maleic anhydride and the unsaturated monomer constituting the sizing agent include styrene, α-methylstyrene, butadiene, isoprene, chloroprene, 2,3-dichlorobutadiene, and 1,3-pentadiene. And a copolymer of an unsaturated monomer such as cyclooctadiene and maleic anhydride. Among them, a copolymer of butadiene, styrene and maleic anhydride is particularly preferable. Further, two or more of these monomers may be used in combination, or may be used in a blend such as a mixture of maleic anhydride and butadiene copolymer and a copolymer of maleic anhydride and styrene. I don't care. The copolymer of maleic anhydride and unsaturated monomer preferably has an average molecular weight of 2,000 or more. Further, the ratio between maleic anhydride and the unsaturated monomer is not particularly limited. Further, an acrylic acid-based copolymer or a urethane-based polymer may be used in combination with the maleic anhydride copolymer.
[0016]
As the silane coupling agent which is another component constituting the sizing agent of the present invention, any silane coupling agent usually used for surface treatment of glass fibers can be used. Specifically, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) aminopropyltrimethoxysilane, N Aminosilane-based coupling agents such as -β (aminoethyl) aminopropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, etc. Epoxysilane-based coupling agents.
[0017]
A methacryloxysilane coupling agent such as γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, and γ-methacryloxypropyltriethoxysilane; Examples include vinyl silane coupling agents such as methoxy silane, vinyl triethoxy silane, and vinyl tris (β methoxy ethoxy) silane.
[0018]
These coupling agents can be used in combination of two or more kinds. Of these, aminosilane-based coupling agents are most preferred from the viewpoint of affinity with the polyamide resin, and among them, γ-aminopropyltriethoxysilane and N-β (aminoethyl) γ-aminopropyltriethoxysilane are most preferred. The maleic anhydride copolymer and the silane coupling agent are preferably used in a ratio of 0.01 to 20 parts by weight with respect to 100 parts by weight of the former which gives a relatively good balance of physical properties. Usually, the maleic anhydride copolymer and the silane-based coupling agent are mixed in an aqueous solvent and used as a sizing agent.If necessary, a surfactant, a lubricant, a softener, an antistatic agent, etc. may be added. Is also good.
[0019]
The sizing agent is used by attaching it to the surface of the glass fiber in the step of processing the glass into a fibrous form or in a step after the processing, and when this is dried, the coating comprising the copolymer and the coupling agent becomes a glass fiber. Formed on the surface. At this time, the final adhesion amount of the sizing agent after drying is 0.1 part by weight or more from the viewpoint of the sizing property of the glass fiber per 100 parts by weight of the glass fiber, and is in the range of 2 parts by weight from the viewpoint of the operability of the glass fiber. Preferably, there is. A more preferred amount of the sizing agent is in the range of 0.2 to 1 part by weight per 100 parts by weight of glass fiber. Here, the sizing agent adhesion amount is measured as the ignition loss of the glass fiber after burning for 60 minutes, and is determined in accordance with JIS R3420.
[0020]
In the glass fiber reinforced polyamide resin composition of the present invention, the blending amount of the glass fiber is 10 parts by weight or more in terms of mechanical properties with respect to (A) 100 parts by weight of the polyamide resin. 170 parts by weight or less from the viewpoint of breakage and the like, preferably 20 to 150 parts by weight.
At the interface between the (A) polyamide resin and the (B) glass fiber of the present invention, a grafted polyamide is formed by melt-kneading the glass fiber surface-treated with a sizing agent with the polyamide resin. This grafted polyamide is presumed to be a product of the reaction between the acid anhydride contained in the sizing agent and the amino terminal group of the polyamide and the functional group of the silane coupling agent and the carbonyl terminal group of the polyamide. Since it is expected that interfacial destruction when shear stress is applied to the interface between the polyamide resin and the glass fiber is expected to be suppressed, the mechanical properties are cited as an important factor.
[0021]
The polyamide in the polyamide resin composition of the present invention and the grafted polyamide present at the interface between the glass fiber and the polyamide are not dissolved in the solvent when the composition is immersed in a polyamide solvent to elute the polyamide and precipitate the glass fiber. Refers to an organic layer mainly composed of polyamide remaining on the surface of the glass fiber, and a layer in which the presence of polyamide can be confirmed from infrared absorption spectrum and pyrolysis gas chromatography analysis.
Specifically, a glass fiber reinforced polyamide 66 resin composition will be described as an example.First, in order to separate glass fiber and non-grafted polyamide 66 in the glass fiber reinforced polyamide 66 resin composition, phenol is separated into phenol. Dissolve. The polyamide 66-phenol solution portion was removed, and the remaining glass fiber portion was washed several times with phenol until the polyamide 66 was no longer eluted, then washed several times with ethanol to remove the phenol, and dried to remove ethanol. Remove.
[0022]
The thus-obtained glass fiber is referred to as a graft glass fiber, and the graft glass fiber is analyzed by infrared absorption spectrum and pyrolysis gas chromatography / mass spectrum (hereinafter referred to as Py GC / MS). Is a polyamide 66, which is referred to as a grafted polyamide.
The amount of the grafted polyamide present on the surface of the glass fiber in the composition of the present invention is determined by measuring the glass fiber obtained as in the above specific example according to JIS R3420 (loss on ignition, Ig. Loss), and measuring its weight. It can be obtained from the reduction amount.
[0023]
The proportion of the grafted polyamide covering the entire surface of the glass fiber can be determined by measuring the abundance of surface elements of the grafted glass fiber by XPS (X-ray photoelectron spectroscopy: also known as ESCA).
The amount of the grafted polyamide is preferably in the range of 0.1 to 2 parts by weight based on 100 parts by weight of the glass fiber contained in the polyamide. If the amount of the grafted polyamide is less than 0.1, the mechanical properties are not improved. If the amount exceeds 2 parts by weight, the viscosity of the composition is improved and the moldability is deteriorated. Further, the ratio of the grafted polyamide in the composition covering the entire surface of the glass fiber (hereinafter referred to as the covering ratio) is preferably 50 to 100% from the viewpoint of mechanical properties, and more preferably 70 to 100%. is there.
[0024]
The glass fiber reinforced resin composition of the present invention is manufactured by a single-screw or multi-screw extruder, and includes an extruder including a mechanism for controlling the degree of fiber opening and the fiber length therein. Say. As the extruder, the most common twin-screw extruder is particularly preferable, and any type of co-direction, different direction, meshing type, non-meshing type may be used. Further, as the screw, a deep groove, a shallow groove, a single-row, a double-row, a three-row screw, or the like can be used. In particular, it is preferable to use a glass fiber cutting screw that can control the length of the glass fiber to be constant by the rotation speed of the screw.
[0025]
For example, using a twin-screw extruder, a predetermined amount of polyamide resin is supplied from the top feed, and when the polyamide resin reaches a molten state, continuous roving of glass fibers is performed through a glass fiber supply pipe, through a screw. It is obtained by winding into an extruder by a shear force between a flight and a cylinder, passing through a glass fiber cutting screw, forming on a strand with a spinneret attached to the extruder tip, cooling, and cutting. The point in time at which the polyamide resin reaches the molten state is defined as an endothermic peak temperature (melting point) plus 20 ° C. when the polyamide resin is measured at a heating rate of 20 ° C./min using a DSC (differential scanning calorimeter). Refers to the point in time when the temperature of the molten polyamide resin reaches or exceeds the temperature. When a plurality of mixed polyamide resins are used, it is assumed that the mixed polyamide resin has reached a molten state when the temperature reaches a temperature equal to or higher than the melting point of the polyamide resin having the highest melting point plus 20 ° C. or more. Further, the glass fiber supply pipe is a pipe for smoothly supplying a strand of glass fiber into the extruder, and has an object to prevent a plurality of strands from being entangled before being supplied into the extruder. The material of the pipe is not particularly limited.
[0026]
The glass fiber reinforced polyamide resin composition of the present invention can be used for known molding processes such as injection molding, extrusion molding, blow molding, and press molding. In molding, in order to suppress breakage of the reinforcing fibers, it is preferable to use a molding machine screw having a deep groove with a large nozzle or gate shape.
In addition, as long as the object of the present invention is not impaired, various additives may be added to the resin composition of the present invention as desired, for example, heat stabilizers for polyamides such as copper compounds and phosphorus compounds, hindered phenols and hindered amines. Antioxidant deterioration inhibitor, light stabilizer such as manganese compound, nucleating agent such as talc, boron nitride, mineral filler such as calcium carbonate, wollastonite, kaolin, calcined kaolin and mica, carbon black, titanium oxide, azine dye And a coloring agent such as a phthalocyanine dye, a plasticizer, an antistatic agent, other thermoplastic resins, and the like can be blended in various steps of the composition production.
[0027]
Applications of the molded article of the present invention include automotive parts that require strength and rigidity, particularly strength and rigidity at high temperatures. Specifically, it is suitably used for a cylinder head cover, a radiator tank, a tire pressure sensor, a car heater tank, a water valve, a radiator pipe, an intake manifold, an engine mount, a front end module, a door module, a pedal, and the like.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In addition, the raw materials and measuring methods used in the examples and comparative examples are shown below.
〔raw materials〕
[1] Polyamide resin
PA-1: Polyamide 66, Leona 1300-001 manufactured by Asahi Kasei
[0029]
[2] Glass fiber
GF-1: glass fiber average fiber diameter 10 μm, glass fiber bundle (roving), sizing agent main components [butadiene-maleic anhydride copolymer, N-β (aminoethyl) γ-aminopropyltriethoxysilane], sizing agent 0.4% by weight
GF-2: glass fiber average diameter 13 μm, glass fiber bundle (roving), sizing agent main component [styrene-maleic anhydride copolymer, γ-aminopropyltriethoxysilane], sizing agent adhesion amount 0.6% by weight
GF-3: glass fiber average diameter 10 μm, glass fiber bundle (roving), no sizing agent.
GF-4: glass fiber average fiber diameter 10 μm, chopped strand, glass fiber average length 3 mm, sizing agent main component [butadiene-maleic anhydride copolymer, N-β (aminoethyl) γ-aminopropyltriethoxysilane] 0.4% by weight of sizing agent
[0030]
GF-5: glass fiber average diameter 13 μm, chopped strand, glass fiber average length 6 mm, sizing agent main component [styrene-maleic anhydride copolymer, γ-aminopropyltriethoxysilane], sizing agent adhesion amount 0.6 weight
GF-6: glass fiber average diameter 10 μm, chopped strand, glass fiber average length 3 mm, sizing agent main component [urethane, γ-aminopropyltriethoxysilane], sizing agent adhesion amount 0.4 weight
GF-7: glass fiber average diameter 10 μm, chopped strand, glass fiber average length 3 mm, sizing agent main component [urethane, γ-aminopropyltriethoxysilane], sizing agent adhesion amount 0.05 weight
[0031]
[Preparation of test piece]
Preparation of bending specimen
Using an injection molding machine (manufactured by Nissei Plastic Co., Ltd .: FN3000), a multipurpose test piece A shape conforming to ISO3167 was molded at a mold temperature of 80 ° C. and machined into a bending test piece.
[0032]
[Measuring method]
(1) Amount and coverage of grafted polyamide
5 g of the glass fiber reinforced polyamide resin composition is mixed with 100 ml of 90% phenol (agitated at 40 ° C. for 2 hours). The glass fiber portion is allowed to settle by standing, and the supernatant polyamide-phenol solution is removed. 100 ml of 90% phenol is added to the remaining glass fiber portion and the glass fiber portion is further washed (stirred at 40 ° C. for 2 hours). This is allowed to stand to precipitate the glass fiber portion, and the supernatant solution is removed. After repeating this operation three times, 100 ml of 99.5% ethanol is added to remove phenol (agitated at 40 ° C. for 2 hours). This is allowed to stand to precipitate the glass fiber portion, and the supernatant solution is removed. After repeating this operation three times, the mixture is dried at 80 ° C. for 2 days and night using a nitrogen flow dryer to remove ethanol. What was obtained in this way is herein referred to as a grafted glass fiber.
[0033]
The amount of the grafted glass fiber obtained in this manner was determined as follows in accordance with JIS R3420. 1 g or more of the grafted glass fiber is taken and its mass is measured. Next, after drying at 110 ± 5 ° C. for 1 hour or more, the mixture is placed in a desiccator, allowed to cool to room temperature, and its mass is measured (m1). This is heated in an electric furnace maintained at 625 ± 20 ° C. until a constant weight is obtained (15 minutes), taken out, put in a desiccator, allowed to cool to room temperature, and its mass is measured (m2). The loss on ignition (parts by weight) is calculated according to equation 1, and the amount of grafting (W0 parts by weight) is determined.
W0 = {(m1-m2) / m1} × 100 Formula 1
[0034]
(2) Coverage of grafted polyamide
Grafted glass fibers obtained by performing the same treatment as in the above (1) were measured under the following conditions. XPS device: ESCALAB 200-X manufactured by VG
Excitation source: MgKα 14kV × 20mA
Capture area: 1100 to 0 eV (Wide Scan)
Uptake area: C1S, N1S, Si2P, O1S, Al2P, Ca2P (Narrow Scan)
Pass Energy: 100 eV (Wide Scan)
Pass Energy: 20 eV (Narrow Scan)
The quantification of the surface element composition ratio was performed by determining the area intensity of the obtained Narrow Scan spectrum and the relative sensitivity coefficient (C1S: 1.00, N1S: 1.77, Si2P: 0.87, O1S: 2.85) in the apparatus library. , Al2P: 0.57, Ca2P: 5.10) as an element abundance (atomic%).
[0035]
Using the grafted glass fiber obtained by the same method as in the above (1), the coverage was determined as follows from the surface element abundance ratio measured by the XPS apparatus. The grafted glass fiber was fixed on a sample stand of an XPS device with a double-sided tape, and the measurement was performed under the above conditions to determine the abundance ratio of various elements on the surface. In a glass fiber without a grafted polyamide (pure glass fiber), the abundance ratio of aluminum (Al) is maximum: Almax = 6.9 (atomic%).
Further, in the glass fibers coated with the grafted polyamide (glass fibers of Examples and Comparative Examples), the abundance ratio of aluminum on the surface: Al (atomic%) decreases. From these results, the coverage (%) was calculated using Equation 2.
Figure 2004300278
[0036]
(3) Weight average length of glass fiber
After burning at least 1 g of the glass fiber reinforced polyamide resin composition in an electric furnace at 650 ° C., only the polyamide resin was observed under an optical microscope, and the length of 400 glass fibers randomly selected using an image analyzer was measured. Was measured to determine the weight average length of the glass fiber.
(4) Flexural modulus and flexural strength
In the bending test at 23 ° C., a test piece was measured with an autograph (manufactured by Shimadzu Corporation: AG-5000D type) under the conditions of an ambient temperature of 23 ° C., a crosshead speed of 5 mm / min, and a span of 64 mm according to ISO 178. went.
In the bending test at 150 ° C., a test piece was measured with an autograph (manufactured by Shimadzu Corporation: AG-5000D type) at an ambient temperature of 150 ° C., a crosshead speed of 5 mm / min, and a span of 64 mm in accordance with ISO 178. went.
[0037]
【Example】
The present invention will be described based on examples.
[0038]
[Examples 1 to 4]
Using a twin screw extruder ZSK40MC (manufactured by WERNER & PFLEIDERER), supply polyamide resin to the top feed port at a cylinder temperature of 295 ° C, and melt continuous glass fibers from the glass fiber inlet through the glass fiber supply pipe with the composition shown in Table 1. The strand supplied to the obtained polyamide resin and extruded from the spinneret was cooled, cut into pellets having a length of 8 mm and a diameter of 5 mm, and dried to obtain a glass fiber reinforced polyamide resin composition. The obtained resin composition was molded under the conditions of a cylinder temperature of 290 ° C. by the above-described method and evaluated. Table 1 shows the results.
[0039]
[Comparative Examples 1-4]
Using a twin screw extruder TEM35BS (manufactured by Toshiba Machine Co., Ltd.), supply the polyamide resin to the top feed port at a cylinder temperature of 295 ° C., and melt the chopped strand glass fiber from the side feed port with the composition shown in Table 2 The strands fed into the spinneret and extruded from the spinneret were cooled, cut into pellets having a length of 3 mm and a diameter of 2 mm, and dried to obtain a glass fiber reinforced polyamide resin composition. The obtained resin composition was molded in the same manner as in the examples and evaluated. Table 2 shows the results.
[0040]
[Comparative Example 5]
A glass fiber reinforced polyamide resin composition was obtained in the same manner as in Examples 1 to 4 except that the glass fiber was changed to GF-3, and various properties were evaluated. Table 2 shows the results.
[0041]
[Table 1]
Figure 2004300278
[0042]
[Table 2]
Figure 2004300278
[0043]
【The invention's effect】
A molded product obtained by molding the glass fiber reinforced polyamide resin composition of the present invention is excellent in strength and rigidity, particularly strength and rigidity at high temperatures, so that a cylinder head cover requiring mechanical properties at high temperatures, It can be suitably used for automobile parts such as a radiator tank, a tire pressure sensor, a car heater tank, a water valve, a radiator pipe, an intake manifold, an engine mount, a front end module, a door module, and a pedal.

Claims (7)

ポリアミド樹脂と、表面が集束剤で処理された平均直径5〜20μmのガラスロービングを溶融混練してなり、ポリアミド樹脂(A)成分100重量部に対し、該ガラス繊維(B)成分10〜170重量部からなる樹脂組成物であって、(A)成分と(B)成分との界面にグラフトしたポリアミドが(B)成分の0.1〜2.0重量%存在し、かつ樹脂組成物中のガラス繊維のアスペクト比が50〜2000であることを特徴とするガラス繊維ポリアミド樹脂組成物。A polyamide resin and a glass roving having an average diameter of 5 to 20 μm, the surfaces of which are treated with a sizing agent, are melt-kneaded. (B) wherein the polyamide grafted at the interface between the component (A) and the component (B) is present in an amount of 0.1 to 2.0% by weight of the component (B); A glass fiber polyamide resin composition, wherein the glass fiber has an aspect ratio of 50 to 2,000. 該集束剤が、無水マレイン酸と不飽和単量体との共重合体およびアミノシラン系カップリング剤とを主成分とすることを特徴とする請求項1に記載のガラス繊維ポリアミド樹脂組成物。The glass fiber polyamide resin composition according to claim 1, wherein the sizing agent mainly comprises a copolymer of maleic anhydride and an unsaturated monomer and an aminosilane-based coupling agent. (A)成分と(B)成分との界面にグラフトしたポリアミドで被覆される割合が、50〜100%であることを特徴とする請求項1または2に記載のガラス繊維ポリアミド樹脂組成物。3. The glass fiber polyamide resin composition according to claim 1, wherein a ratio of the polyamide fiber grafted on the interface between the component (A) and the component (B) is 50 to 100%. 4. (A)ポリアミド樹脂が、ポリアミド66、ポリアミド6、ポリアミド46、ポリアミド610、ポリアミド612及びポリヘキサメチレンイソフタルアミド(ポリアミド6I)から選ばれる少なくとも1種及び/またはこれらの共重合体もしくはブレンド物であることを特徴とする請求項1に記載のガラス繊維強化ポリアミド樹脂組成物。(A) The polyamide resin is at least one selected from polyamide 66, polyamide 6, polyamide 46, polyamide 610, polyamide 612, and polyhexamethylene isophthalamide (polyamide 6I) and / or a copolymer or blend thereof. The glass fiber reinforced polyamide resin composition according to claim 1, wherein: (B)連続したガラス繊維が、集束剤をガラス繊維に対し0.1〜2重量%含有することを特徴とする請求項1〜3のいずれかに記載のガラス繊維強化ポリアミド樹脂組成物。(B) The glass fiber reinforced polyamide resin composition according to any one of claims 1 to 3, wherein the continuous glass fiber contains a sizing agent in an amount of 0.1 to 2% by weight based on the glass fiber. 請求項1〜3のいずれかに記載のガラス繊維強化ポリアミド樹脂組成物をからなる樹脂成形品。A resin molded product comprising the glass fiber reinforced polyamide resin composition according to claim 1. 成形品が自動車用部品に用いられることを特徴とする請求項4に記載の樹脂成形品。The resin molded product according to claim 4, wherein the molded product is used for an automobile part.
JP2003094571A 2003-03-31 2003-03-31 Method for producing reinforced polyamide resin composition Expired - Fee Related JP4472264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003094571A JP4472264B2 (en) 2003-03-31 2003-03-31 Method for producing reinforced polyamide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003094571A JP4472264B2 (en) 2003-03-31 2003-03-31 Method for producing reinforced polyamide resin composition

Publications (2)

Publication Number Publication Date
JP2004300278A true JP2004300278A (en) 2004-10-28
JP4472264B2 JP4472264B2 (en) 2010-06-02

Family

ID=33407101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003094571A Expired - Fee Related JP4472264B2 (en) 2003-03-31 2003-03-31 Method for producing reinforced polyamide resin composition

Country Status (1)

Country Link
JP (1) JP4472264B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269914A (en) * 2006-03-30 2007-10-18 Asahi Kasei Chemicals Corp Glass long fiber-reinforced polyamide resin pellet and its molded article
JP2010270326A (en) * 2009-04-22 2010-12-02 Asahi Kasei Chemicals Corp Glass fiber-reinforced polyamide resin composition and molding
JP2010270327A (en) * 2009-04-22 2010-12-02 Asahi Kasei Chemicals Corp Glass fiber-reinforced polyamide resin composition
JP2014037525A (en) * 2012-07-18 2014-02-27 Asahi Kasei Chemicals Corp Polyamide resin composition and formed part
WO2014203606A1 (en) * 2013-06-20 2014-12-24 旭化成ケミカルズ株式会社 Polyamide resin composition and molding
JP2015040300A (en) * 2013-08-23 2015-03-02 旭化成ケミカルズ株式会社 Polyamide resin composition, and molded product
JP2015157887A (en) * 2014-02-21 2015-09-03 旭化成ケミカルズ株式会社 Polyamide resin composition and molded product

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269914A (en) * 2006-03-30 2007-10-18 Asahi Kasei Chemicals Corp Glass long fiber-reinforced polyamide resin pellet and its molded article
JP2010270326A (en) * 2009-04-22 2010-12-02 Asahi Kasei Chemicals Corp Glass fiber-reinforced polyamide resin composition and molding
JP2010270327A (en) * 2009-04-22 2010-12-02 Asahi Kasei Chemicals Corp Glass fiber-reinforced polyamide resin composition
JP2014037525A (en) * 2012-07-18 2014-02-27 Asahi Kasei Chemicals Corp Polyamide resin composition and formed part
JP2014037526A (en) * 2012-07-18 2014-02-27 Asahi Kasei Chemicals Corp Polyamide resin composition and formed part
WO2014203606A1 (en) * 2013-06-20 2014-12-24 旭化成ケミカルズ株式会社 Polyamide resin composition and molding
JPWO2014203606A1 (en) * 2013-06-20 2017-02-23 旭化成株式会社 Polyamide resin composition and molded body
US9783677B2 (en) 2013-06-20 2017-10-10 Asahi Kasei Chemicals Corporation Polyamide resin composition and molded body
JP2015040300A (en) * 2013-08-23 2015-03-02 旭化成ケミカルズ株式会社 Polyamide resin composition, and molded product
JP2015157887A (en) * 2014-02-21 2015-09-03 旭化成ケミカルズ株式会社 Polyamide resin composition and molded product

Also Published As

Publication number Publication date
JP4472264B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
US7834080B2 (en) Process for producing glass fiber-reinforced polyamide resin composition
JPWO2018181995A1 (en) Polyamide composition and molded article
JP4678979B2 (en) Glass fiber reinforced polyamide resin composition
WO2007097184A1 (en) Glass-fiber-reinforced thermoplastic resin composition and molded article
JP6034463B2 (en) Reinforced polyamide resin pellets
CN106046643B (en) High-compatibility PMMA/ASA alloy resin compositions and preparation method thereof
JP4472264B2 (en) Method for producing reinforced polyamide resin composition
JP2016060902A (en) Polyamide resin composition and manufacturing method therefor
JP2007269914A (en) Glass long fiber-reinforced polyamide resin pellet and its molded article
JP6893132B2 (en) Inorganic filler reinforced polyamide resin composition and molded article
JP5942122B2 (en) Long fiber reinforced polyamide resin composition pellets and molded products
JP6797707B2 (en) Method for manufacturing an injection molded product made of a fiber reinforced resin composition
JP2022524348A (en) Polyamide molding composition for high gloss applications
JP2015129243A (en) Polyamide composition and molded product
JP2005298663A (en) Automobile interior part made of resin
JP4467326B2 (en) Production method
JP2019026670A (en) Polyamide composition and molding
JP5451522B2 (en) Method for producing long fiber reinforced polyamide resin composition
JPH10316849A (en) Polyamide resin composition and its molded product
US20210031418A1 (en) Method for producing injection molded articles from highly-filled fiber-reinforced resin composition
KR101795675B1 (en) Polyamide based polymer compositions comprising cyclic compound and polyamide based composite material using the same
JP2002103327A (en) Method for manufacturing glass fiber reinforced polyamide resin
KR102175062B1 (en) Long fiber reinforced thermoplastic resin composition having excellent weatherability and molded article produced therefrom
JP7444158B2 (en) Glass fiber-reinforced polyamide resin composition and molded products for vehicle interiors or vehicle exteriors made from the same
KR102020606B1 (en) Long fiber reinforced thermoplastic resin composition having excellent weatherability and article comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4472264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees