JP2004351597A - Producing method of substrate for electrophotographic photoreceptor - Google Patents

Producing method of substrate for electrophotographic photoreceptor Download PDF

Info

Publication number
JP2004351597A
JP2004351597A JP2003154889A JP2003154889A JP2004351597A JP 2004351597 A JP2004351597 A JP 2004351597A JP 2003154889 A JP2003154889 A JP 2003154889A JP 2003154889 A JP2003154889 A JP 2003154889A JP 2004351597 A JP2004351597 A JP 2004351597A
Authority
JP
Japan
Prior art keywords
cutting
cylindrical
substrate
cylindrical member
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003154889A
Other languages
Japanese (ja)
Other versions
JP4078252B2 (en
JP2004351597A5 (en
Inventor
Takao Soma
孝夫 相馬
Hiroshi Chiba
博司 千葉
Makoto Sasaki
真 佐々木
Yorihiro Kobayashi
順博 小林
Yoichi Kawamorita
陽一 川守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003154889A priority Critical patent/JP4078252B2/en
Publication of JP2004351597A publication Critical patent/JP2004351597A/en
Publication of JP2004351597A5 publication Critical patent/JP2004351597A5/ja
Application granted granted Critical
Publication of JP4078252B2 publication Critical patent/JP4078252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a producing method of a cylindrical electrophotographic substrate equipped with a cylindrical surface having high outer peripheral surface roughness and dimensional accuracy, and drastically reduced in the producing cost of the substrate. <P>SOLUTION: In this producing method of the cylindrical electrophotographic substrate for cutting and processing an outer peripheral surface of a cylindrical article to be processed, vibration, displacement or transmission sound generated by cutting and processing are monitored, and generation of a chattering by cutting and processing is automatically detected and determined. When it is determined that the chattering is generated by cutting and processing and a transmission frequency of the vibration peculiar to generation of abnormality in the cutting and processing after specifying the transmission frequency peculiar to generation of the chattering is S(Hz) and a rotational speed per second of a main shaft for rotating the tool or the cylindrical article to be processed is R, the rotational speed of the main shaft is controlled to be automatically varied to be in a range of R'. The value R' is expressed as follows: R' = R-aäR/[(S/R)+m]}, or R'=R+aäR/[(S/R)+m]}, 0.1≤a≤0.9, (m=±1, ±2, ±3, ±4, ±5...). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は円筒状電子写真用基体の製造方法に関し、特には電子写真方式の複写機、レーザービームプリンター、ファクシミリ等の画像形成装置に用いる円筒状電子写真用円筒状基体の製造方法に関する。
【0002】
【従来の技術】
電子写真方式の複写機、レーザービームプリンター、ファクシミリ等の画像形成装置においては一般に帯電手段、露光手段により感光体ドラム上に静電潜像を形成し、更にこの潜像を現像手段により現像して潜像を忠実に顕像化し、更には紙等の転写材に転写して画像として出力する。
【0003】
電子写真装置を構成する部品のうち、感光体ドラムや現像スリーブは高画質の画像を得るためには高精度に仕上げられている必要がある。例えば、電子写真感光体ドラムは所定の表面粗さに仕上げされた基体表面に感光膜を設けることによって製造されるが、基体の表面粗さが限度以上に粗いと感光膜に凹凸が生じ、このために画像にポチやカブリ等の画像欠陥が生じる。また、電子写真感光体用基体、現像スリーブ用基体が所定の真直度、真円度、偏肉度を満たしていない場合は潜像の現像時に感光ドラムと現像スリーブとの距離が一定せず画像ムラが生じる場合がある。更に、いくつかの色の画像を重ねてカラー画像を出力する装置においては、画像を重ねた時に色ずれを発生し画像品位が低下するため特に高精度の感光体ドラムが必要となる。
【0004】
そこで感光ドラムと現像スリーブに用いる円筒状電子写真用基体は、均一でかつ所定の表面粗さで更には真直度、振れ精度、真円度、偏肉等の基体の寸法が所定の精度に仕上げられている必要がある。
【0005】
そこで押し出し、引抜きによって製造された円筒部材の外周面を切削加工によって仕上げる方法が知られている(例えば、特許文献1)。この方法の例としては、旋盤加工呼ばれる方式がある。例えば、円筒部材(ワ−クともいう)の中心軸を一定に保ちながら回転させ、該円筒部材の外周部に切削工具を当て中心軸と沿うように平行に一定の速度で送りながら切削加工する方法であり、円筒部材の外周部を所定の精度になるように削り取る。
【0006】
また、所定の軸に沿って保持された円筒部材の外周面を前記軸の周りに回転する切削手段によって切削する切削方法も知られている(例えば、特許文献2)。
【0007】
【特許文献1】
特開平2−110570号公報
【特許文献2】
特開平6−328303号公報
【0008】
【発明が解決しようとする課題】
このようにして外周面を切削加工する方法は、寸法精度の高い円筒状電子写真用基体を安価に効率良く製造することが可能であるが以下のような課題がある。
【0009】
通常、円筒状電子写真用基体を旋盤加工と呼ばれる切削加工方法において製造する場合は、円筒状被加工物を固定治具により固定し主軸中心に回転させる。更に、前記円筒状被加工物と前記工具とを相対移動させる送り軸とを有し切削工具により円筒部材外周面を切削工具がその刃先形状に従って一定の深さ、一定の幅でスパイラル状に切削していく。
【0010】
この時、切削工具(バイトともいう)は円筒状被加工物に対して切削するための圧力をかけた状態でいる。円筒状被加工物と切削工具は相対的に回転しているため回転数に従って特定の方向より圧力をかけていることになる。この振動数の整数倍と固定治具により固定された円筒状被加工物の固有振動数の整数倍が一致すると円筒状被加工物が共振してより大きな振動現象であるビビリを起こす場合があることが知られている。通常の切削状態では刃先形状に従って一定の深さ、一定の幅でスパイラル状に切削していくが円筒状被加工物が振動を起こすとスパイラルの周期、溝の深さが一定でなくなり、更には円筒状被加工物の表面粗さが部分的に大きくなる(ビビリにより加工面に発生した円筒部材表面の加工欠陥をビビリマークという)。
【0011】
このようなビビリマークを有する円筒部材を基体として用いて電子写真感光体を作製した場合、塗布ムラの発生、感光層表面が凹凸となる等の欠陥が生じたり、更には画像上スジ状の模様となる場合もある。また、レーザープリンターのようにデジタル信号に基づき光のドットで書き込む電子写真感装置においては、スパイラルの周期の乱れが書き込みドットピッチと干渉しモアレ模様が発生する場合もある。更に、現像スリーブの場合でも電子写真感光体ドラムとの距離が一定せず画像ムラが生じる場合がある。
【0012】
ビビリを防止する手段としては、例えば、刃物の送り速度を遅くして切削ピッチ(旋盤加工における円筒部材一回転あたりの送り長さ)を短くし、切削抵抗を減らす方法がある。しかしながら刃物の送り速度を遅くすると加工タクトが長くなり、基体一本当りの加工費がアップするという問題が生じる。また、円筒部材の肉厚を厚くして部材の強度を上げる方法もあるがコストアップの要因となり問題がある。更に、バイトの先端形状を選択して切削抵抗を減らす方法があるが、切削抵抗を減らすためには先端が尖ったバイトを使うようになり通常先端が尖ったバイトを使うと得られる加工面が粗くなり電子写真感光体用基体としては適さない場合もありいずれの対策も完全ではない。
【0013】
以上のようにビビリが発生せずかつ電子写真用基体として良好な切削方法は得られていないのが現状であった。
【0014】
本発明は、上記従来の問題点を解決するための検討の結果得られたものであり、その目的は極めて高い外周面の面粗度、寸法精度を有する円筒面を備えており、しかも円筒面を仕上げ加工する切削装置の設備費やメンテナンスのコストが低く、基体の製作費等も大幅に低減できる円筒状電子写真用基体の製造方法を提供することにある。
【0015】
本発明の別の目的は、該製造方法により作製された電子写真用基体及び電子写真感光体、円筒状電子写真用基体の製造装置を提供することである。
【0016】
【課題を解決するための手段】
本発明に従って、円筒状被加工物外周面を切削加工する円筒状電子写真用基体の製造方法において、切削加工により発生する振動、変位又は発信音を監視し切削加工におけるビビリ発生を自動的に検知判断し、更には切削加工においてビビリが発生したと判断した場合、ビビリ発生時特有の発信周波数を特定し以降の切削加工で、異常発生時特有の振動の発信周波数がS(Hz)、前記工具又は円筒状被加工物を回転させる主軸の一秒当りの回転数がRであった場合、前記主軸の回転数を下記R’の範囲の値に自動的に変化させる制御を行うことを特徴とする円筒状電子写真用基体の製造方法が提供される;

Figure 2004351597
又は
Figure 2004351597
【0017】
第2の本発明によれば、切削加工中のビビリ発生により切削加工で前記主軸の回転速度を変更する制御をした場合、送り軸の送り速度の値を回転速度の変化に比例して変化させる制御を行う円筒状電子写真用基体の製造方法である。
【0018】
第3の本発明によれば、軸回りに旋回する切削工具により円筒状被加工物の外周面を切削加工する工程を含む円筒状電子写真用基体の製造方法である。
【0019】
第4の本発明によれば、上記の製造方法により作製された円筒状電子写真感光体用基体である。
【0020】
第5の本発明によれば、上記の製造方法により製造された基体を用いた電子写真感光体である。
【0021】
第6の本発明によれば、切削加工により発生する振動、変位又は発信音を電気信号に変換して検出する手段、前記電気信号を周波数成分に分別する手段、切削加工における加工異常発生時特有の周波数成分を分離しビビリ発生を自動的に判断する判断手段、ビビリ発生時特有の発信周波数を検知し以降の切削加工で、ビビリ発生時特有の振動の発信周波数がS(Hz)、前記工具又は円筒状被加工物を回転させる主軸の一秒当りの回転数がRであった場合、前記主軸の回転数を下記R’の範囲の値に自動的に変化させる制御を行う手段を具備することを特徴とする円筒状電子写真用基体の製造装置;
Figure 2004351597
又は
Figure 2004351597
【0022】
【発明の実施の形態】
以下に、本発明の実施の形態を詳細に説明する。
【0023】
本発明は、切削加工中にビビリに伴って発生する異常振動を検知しその周波数を割り出し、主軸回転数を共振周波数より外す回転数に変更することによりビビリを回避するものである。
【0024】
更に詳細に説明すると、固定治具により固定された円筒状被加工物はそれぞれ独自の固有振動数を有している。一方、切削工具(バイト)は、切削加工する時円筒状被加工物に対して振動を与えており、円筒状被加工物に対して与える振動数は主軸回転数と一致している。主軸回転数の整数倍と円筒状被加工物の固有振動数の整数倍が一致すると発信周波数S(Hz)で円筒状被加工物が共振してより大きな振動を起こす場合がある。それに伴って音波の発信、更には切削加工の周期、深さがばらつき円筒状被加工物上にビビリマークが形成され、この基体を用いて電子写真用基体を作製すると欠陥となる。発信の振動数は、それぞれの円筒状被加工物固有であり、同一の材質・形状の円筒状被加工物を用いれば毎回同一の周波数の振動で発信する。そこで共振が発生した信号を捉え円筒状被加工物又は切削工具の回転数をずらして円筒状被加工物固有の振動数と一致しない回転数に変更すればビビリの発生を防止することができる。
【0025】
主軸回転数の何倍で円筒状被加工物の固有振動と一致して共振が発生ししているか計算する方法に関して述べる。今、振動の周波数がS(Hz)、主軸の一秒当りの回転数がR(sec−1)であったとすると発信周波数を主軸回転数で割った値すなわちS/R=nが求められ、主軸回転数のn倍(n次振動)が円筒状被加工物の固有振動と一致して共振が発生していることがわかる。共振が発生する条件はこのほかにR=S/(n+m)
(m=±1、±2、±3、±4、±5・・・)の時である。
【0026】
例えば、主軸の一秒当りの回転数を連続的に減少させてRsec−1の次に共振を発生する主軸の回転数R’の条件は(R’=S/n+1)すなわち(n+1次振動)となる。その条件は、主軸の一秒当りの回転数R’=R−R/〔(S/R)+1〕つまりR/〔(S/R)+1〕減少した値である。その間の回転数では共振が発生し難い。つまり主軸の一秒当りの回転数を連続的に増加させてゆくと共振が発生し難い条件が存在し、更に増加すると再び共振を発生し易い条件となり、共振が発生し難い条件で加工を行うとビビリが発生し難い。
【0027】
主軸の一秒当りの回転数を連続的に増加させても同様である。例を挙げて具体的に説明すると、ビビリが発生した時の発信周波数が3000Hzで主軸の一秒当りの回転数が300sec−1であったするとS/R=10であり、主軸回転数の10倍(10次振動)が円筒状被加工物の固有振動と一致して共振振動している。
【0028】
主軸の一秒当りの回転数を連続的に減少させてRsec−1の次に共振を発生する条件は、主軸の回転数R’を求めると、n+1次振動(例では10+1=11次振動)の場合でR’=S/(n+1)(例では3000/11=272.7Hz)になる。その条件は、主軸の一秒当りの回転数Rsec−1を主軸の回転数変化量ΔR=R/〔(S/R)+1〕(例では300/11=27.3Hz)すなわち27.3Hz減少した値である。R、R’では共振が発生し易いが、その中間の周波数では共振が発生し難い。つまり主軸の回転数を増減させてRsec−1の次に共振を発生する回転数の間の条件で加工を行うことでビビリが発生を無くすことができる。
【0029】
この例では、主軸の回転数が300sec−1と272.7sec−1の場合、主軸の回転数の整数倍と円筒状被加工物の固有振動数一致しているためビビリが発生し易く、主軸の回転数の整数倍と円筒状被加工物の固有振動数が一致しないその中間の286.4sec−1では最も共振が発生し難い。
【0030】
ビビリが発生している場合のビビリを防止するための主軸回転数の変化量(シフト比率aと定義)は、{R/〔(S/R)+m〕}の0.1倍〜0.9倍の変化量が好ましい。特に好ましくは0.3〜0.7倍の間である。1×{R/〔(S/R)+m〕}では、次の次数で主軸の回転数の整数倍と円筒状被加工物の固有振動数が一致しビビリが発生し易い条件になってしまう。
【0031】
同様にn+2、又はn+3・・・n−2、n−3・・・次の共振点を計算しその周波数を外した回転数にしてもビビリは防止できるが、回転数の変動が少なくてすむn+1次振動、又はn−1次振動との間に変動させることが好ましい。
【0032】
本発明で用いる切削加工により発生する振動の検知方法としては、振動、変位又は振動に伴って発せられる発信音より検知する。振動、変位より振動を検知する方法は、円筒部材に直接センサを設置してビビリ振動を受けるのが難しく切削装置、例えば被切削部材固定装置等にセンサを設置して振動を受けるが装置のビビリ以外の装置の振動を拾い易い。切削音より検知する方法は、マイクロホン等で発信音を電気信号に変換するがセンサの設置場所選定の自由度が高く被切削部材の近くにマイクロホンを設置し、ビビリ発信音を選択的に受け易い位置に設置することが好ましい。更に、周囲の音をなるべく受けずビビリの発信音を選択的に受けるために指向性マイクロホンを用いることことが好ましい。いずれにしても振動は、電気信号に変換されてデータ処理部に送られる。
【0033】
異常発生を自動的に検知判断する方法としては、検知手段より得られた信号の大きさで検知する例、得られた信号を周波数に弁別し特定周波数成分の信号の大きさ又は大きさの比に基づいて判断する例が挙げられる。さまざまな周囲の音の中からビビリ発信音を選択的に検知するためには、特定周波数成分の信号の大きさ又は大きさの比に基づいて判断が好ましい。
【0034】
本発明では得られた信号を周波数に弁別し振動周波数を特定する必要があり、バンドパスフィルターや高速フーリエ変換等の処理により周波数に弁別する。
【0035】
得られた信号は、主軸の制御部に送られ本発明の式に従って回転数を変更しビビリを回避する。
【0036】
なお、ビビリを検知してからビビリを回避する条件に検討する間に加工中の被切削物に初期のビビリマークが残る場合があるが、基体に要求される表面精度により不良として分別廃棄する方法の例も挙げられるが、初期のビビリが品質に問題ないレベルであれば良品に入れても差し支えない。
【0037】
本発明は円筒状電子写真用基体、特に現像スリーブ、電子写真感光体ドラムに有用である。
【0038】
更に、切削加工中の異常発生により切削加工で前記主軸の回転速度を変更する制御をした場合、送り軸の送り速度の値を回転速度の変化に比例して変化させる抑制を行う例も挙げられる。この方法により製造された電子写真感光体用基体は、主軸回転数の変動にかかわらず切削ピッチが一定となり切削ピッチが大きくなることによる面粗さの上昇、更には画像上のスジの発生を防止できる。
【0039】
次に、本発明の切削加工に用いる切削装置に関して述べる。
【0040】
本発明の切削加工に用いる切削装置は、切削加工又は円筒状被加工物を回転させる主軸と、前記円筒状被加工物と前記工具とを相対移動させる送り軸とを有する工作機械を用い、前記切削工具により前記円筒状被加工物外周面を切削加工する装置である。
【0041】
円筒部材が回転する構造の旋盤の例による円筒部材の製造方法を説明する。図1は切削加工装置の概略構成図である。この切削加工装置は、加工する円筒部材1の両端を固定する手段2−a及び2−b、円筒部材右端を固定圧力変更手段3、更に該円筒部材を中心軸中心に回転させる手段4を有す。一方、切削工具5は刃物台6に固定され切削工具の段取りの際に必要とする調整手段を持ち取つけ状態を調整することが可能である。刃物台は、送り装置7により平行移動する。
【0042】
切削中の音を切削加工を行っている近傍に設置したマイク8で電気信号に変換する。更に、信号増幅手段9で増幅、周波数分別手段10により周波数に別に分別する。判定手段11により異常振動発生の判断、振動の周波数の特定を行う。その結果に基づいて制御手段12で必要に応じて主軸回転数、送り回転数を制御する。
【0043】
本発明の製造方法において切削は荒削り、仕上げの2回に分けてもよい。荒引きは一般的なバイトでもよいが、荒ら削りは精度が出る切削工具を用いることが有効で切削抵抗が小さい剣バイト及びRバイトの例が挙げられる。仕上げは、必要とする面によりRバイト、平バイト及びミラクルバイト等の例が挙げられる。
【0044】
円筒部材が回転する方式の加工装置では、円筒部材の高速回転化には限度があり切削工程の高速化が困難である。加えて、各ワークを切削機械に着脱する時はモータの回転を停止しなければならず、各ワークの加工サイクルごとにモータの立上がり時間を必要とするため待機時間が長い。その結果、全体の加工サイクルタイムが長くなり、製造コストが上昇する。
【0045】
そこで、所定の軸に沿って保持された円筒部材の外周面を前記軸の周りを回転する切削手段によって切削する工程を有し、筒状体がその内面の一部分を所定の内径に加工されており、前記内面に係合する保持手段によって保持される切削方法を用いることも有効である。
【0046】
この切削方法は筒状部材を所定の軸に沿って保持し、その周りを回転する切削手段によって筒状部材の外周面を切削するものであり、筒状部材を回転させる必要がないため、切削速度を高くしても筒状部材を回転させる場合のように筒状部材の偏肉や真直度の不足のために振動を発生するおそれがない。従って、加工工程の高速化が容易である。また、切削手段を回転させたままで筒状部材を交換できるため待機時間が短くて済み、全体の加工サイクルタイムを短縮できる。その結果、製造コストを大幅に低減できる。加えて、筒状部材を少なくとも部分的に所定の内径に加工された内面に係合する保持手段によって保持させることで切削手段に対するセンタリングの精度を向上させ、筒状体に偏肉等があっても表面精度、真円度、真直度の向上した外周面を有する円筒部材を得ることができるという利点があり更に好ましい。
【0047】
図2に示す所定の軸に沿って保持された円筒部材の外周面を前記軸の周りに回転する切削手段によって切削するタイプの切削装置によって円筒部材の外周面を切削する工程を説明する。図2に示すように、テーブル及び送り手段13上に円筒部材固定手段14−a、14−b及び固定圧力変更手段14−cが載っている。この間に円筒部材を搬入し、左右より押圧し円筒部材中心軸と切削工具回転軸が一致するように保持する。この間、切削工具15の回転は、前回の切削加工サイクルから中断することなく続いている。次いで、テーブル13を中心軸に沿って左方向へ移動させることで、円筒部材1の外周面を切削工具15により連続的に切削し、円筒部材1の全長にわたって切削が完了した後、テーブル13の移動を停止させ、円筒部材に対する保持を解除し、円筒面の切削加工の完了した円筒部材は機外に搬出される。
【0048】
なお、図3に示すように、切削工具は回転治具16に二個の切削刃物17−a及び17−bがバイトホルダ18−a及び18−b固定されている。一つは荒削り用でもう一つは仕上げ用である。前記2個の刃物は回転軸Oを横切る直径上に配設され、ホルダの案内溝19−a及び19−bに係合するビス20−a及び20−bを緩めて、ホルダ18−a及び18−bと共に切削刃物17−a及び17−bを回転軸Oに向かって進退させることで切り込み深さを調節できるように構成されている。
【0049】
本発明における円筒状被加工物の保持方法としては、外周部を加える方法、各内径拡大部をコレットチャック等のように内部入れて円周部を拡張して円筒部材を保持して外周面をバイトによって切削加工し、所定の表面粗さの円筒面に仕上げる方法(特開平2−110570号公報参照)が挙げられるが、電子写真感光体用基体を得るためには両端面に隣接する部分を切削加工によりテーパー状に仕上げたうえで、テーパー部をテーパー状のクランプ面を持つ保持手段で軸方向に押圧することによって両端を押え前記円筒部材を保持し、外周面をバイトによって切削加工し、所定の表面粗さの円筒面に仕上げる方法(特開平9−66401号公報参照)が知られている。この方法においては、円筒部材のテーパー部のみを高精度で加工すれば済むため、円筒部材の製作費も安価である。円筒部材保持手段のメンテナンスのコストと円筒部材の製作費を削減して円筒部材の製造コストを大幅に低減でき好ましい。コレットチャックのように円筒部材を径方向の押圧力によって保持する機構の円筒部材保持手段のように組み付け誤差等を厳密に管理する必要もないため、切削装置の設備費を大幅に削減できる。これによって、電子写真感光体基体用の円筒部材の製造コストをより一層低減できる。つまりこの方法は、コストが安く、高い形状精度(表面精度、真円度及び真直度)の円筒面に仕上げることが可能である。
【0050】
本発明で用いる円筒部材の材質としては、例としては、アルミニウム、銅、鉄、ニッケル、チタン等の金属及びこれらの合金。また、プラスチック、セラミック、ガラス等に導電性処理をしたものが挙げられる。
【0051】
広く用いられるものとしては、アルミニウム又はアルミニウム合金、例えばJIS 3000系、6000系等が挙げられる。また、円筒部材の製法としては、例えば精度やコスト等を考慮し決定するが、本発明に用いる円筒部材の例としては公知の押し出し、引抜きによって製造されたアルミニウム合金の管材を所定の長さに切断したもの、更に切断された管材の端面及びに端面に隣接する部分を切削加工したものを用いてもよい。
【0052】
本発明で用いるバイトの先端形状の例としては、平バイト、Rバイト及び剣バイトが挙げられるが、仕上げ加工には平バイト及びRバイトが好ましい。更に、本発明で用いる切削工具の材質の例としては超鋼、焼結ダイヤモンド及び単結晶ダイヤモンド等が挙げられる、特に焼結ダイヤモンドはコストが安く量産に用いるのに好ましい。
【0053】
更に、本発明の電子写真用感光体基体の製造方法において、特にレーザープリンター用の基体を製造する場合、旋盤による切削加工のみではレーザー光が基体に反射して起こる干渉縞を十分に防止することができない場合は、何らかの手段による粗面化する例もある。この粗面の粗さは形状にもよるが、およそRzが0.6μm以上必要である。粗面化の方法としては、本発明で得られた良好な基体表面を生かす方法が好ましく、ホーニング処理や陽極酸化処理が特に好ましい。ホーニング処理には、乾式及び湿式での処理方法があるがいずれを用いてもよい。湿式(液体)ホーニング処理は、水等の液体に粉末状の研磨剤(砥粒)を懸濁させ、高速度で導電性基体表面に吹き付けて粗面化する方法であり、表面粗さは吹き付け圧力、速度、研磨剤の量、種類、形状、大きさ、硬度、比重及び懸濁温度等により制御することができる。同様に、乾式ホーニング処理は、研磨剤をエアにより、高速度で導電性基体表面に吹き付けて粗面化する方法であり、湿式ホーニング処理と同じように表面粗さを制御することができる。これら湿式又は乾式ホーニング処理に用いる研磨剤としては、炭化ケイ素、アルミナ、ジルコニア、ステンレス、鉄、ガラスビーズ及びプラスティックショット等の粒子が挙げられる。
【0054】
また、本発明の電子写真用感光体基体の製造方法において、電子写真感光体とした場合、部分的な注入により画像上にポチカブリ、黒ベタ画像の白抜け等の画像欠陥を生じる場合がある。この部分的な注入を防止して画像欠陥を無くすために使用されている手段の一例として、アルミニウム基体表面を陽極酸化処理して酸化アルミニウムの層を設けることが行われる。更に、陽極酸化処理は干渉縞を防止の働きもする。
【0055】
本発明による電子写真感光体用基体を用いて感光体を作製する場合、感光層は電荷発生層と電荷輸送層からなる積層構造型のもの、あるいは1層の中に電荷発生材料及び電荷輸送材料を含む単層型のものがある。
【0056】
電子写真感光体に用いられる電荷発生材料としては、ピリリウム系染料、チアピリリウム系染料、フタロシアニン系顔料、アントアントロン系顔料、ジベンズピレンキノン顔料、ピラントロン顔料、トリスアゾ顔料、ジスアゾ顔料、アゾ顔料、インジゴ顔料、キナクリドン顔料及び非対称キノシアニン等が挙げられる。特に、デジタル用電子写真感光体の場合、これらの電荷発生材料の中で、赤外レーザー、可視光レーザーへの対応において、波長への感光依存性の広さから、フタロシアニン系が優れており、更に、フタロシアニン系の中でもオキシチタニルフタロシアニン及びヒドロキシガリウムフタロシアニンがその感度の高さから特に優れていると言える。
【0057】
また、電子写真感光体に使用される電荷輸送材料としては、例えば各種ヒドラゾン類、ピラゾリン類、オキサゾール化合物、チアゾール化合物、トリアリールメタン系化合物、トリアリルアミン系化合物及びポリアリールアルカン類等の化合物の中から選択される。これらの電荷発生材料や電荷輸送材料は、適当な結着樹脂と組み合わせて、基体上に塗工して成膜を行うことで感光層とする。感光層の結着樹脂としては、例えば、ポリビニールアセタール、ポリカーボネート、ポリアリレート、ポリスチレン、ポリエステル、ポリ酢酸ビニル、ポリメタクリル酸エステル、アクリル樹脂及びセルロース系樹脂等が好ましく用いられる。
【0058】
本発明にかかる電子写真感光体においては、感光層上に保護層を設けてもよい。保護層は主に樹脂で構成される。保護層を構成する材料としては、例えば、ポリエステル、ポリウレタン、ポリアクリレート、ポリエチレン、ポリスチレン、ポリブタジエン、ポリカーボネート、ポリアミド、ポリプロピレン、ポリイミド、ポリアミドイミド、ポリサルホン、ポリアクリルエーテル、ポリアセタール、フェノール樹脂、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、ユリア樹脂、アリル樹脂、アルキッド樹脂及びブチラール樹脂等が挙げられる。
【0059】
これらの樹脂中には、クリーニング性や耐摩耗性等の改善のために、ポリ四フッ化エチレン、ポリフッ化ビリニデン、フッ素系グラフトポリマー、シリコーン系グラフトポリマー及びシリコーン系オイル等の潤滑剤や、保護層の抵抗制御の意味で酸化スズ粉体や導電性酸化チタン等を分散させることも可能である。
【0060】
本発明による導電性基体と感光層の間に、バリアー機能と下引き機能を持つ下引き層を設けることもできる。下引き層は、感光層の接着性改良、基体の保護、基体からの電荷注入性改良、感光体の電気的破壊に対する保護等のために形成することができる。下引き層の材料としては、ポリビニルアルコール、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、メチルセルロース、エチレン・アクリル酸コポリマー、カゼイン、ポリアミド、共重合ナイロン、ニカワ及びゼラチン等が挙げられる。更に、干渉縞防止のためのフィラーを混入してもよい。
【0061】
本発明による電子写真感光体は、電子写真複写機、レーザービームプリンター、等以外にもCRTプリンター、LEDプリンター、液晶プリンター、ファクシミリ、レーザー製版等の電子写真応用技術に広く用いることができる。
【0062】
【実施例】
次に、本発明を実施例により具体的に説明するが、本発明はこれらの実施例により限定されるものではない。なお、実施例中の「部」は質量部を示す。
【0063】
(実施例1)
A3003の外径φ30.64mm、内径φ28.5mm、長さ260.5mm、のアルミニウム引抜基体を準備した。
【0064】
次に、図2に示す切削装置によって円筒部材の外周面を切削した。テーブル及び送り手段13上に円筒部材固定手段14−a、14−b、固定圧力変更手段14−cが載っている。この間に円筒部材1を搬入し、左右より押圧し円筒部材中心軸と切削工具回転軸が一致するように保持する。この間、切削工具15の回転は、前回の切削加工サイクルから中断することなく続いている。次いで、テーブル13を中心軸に沿って左方向へ移動させることで、円筒部材1の外周面を切削工具15により連続的に切削し、円筒部材1の全長にわたって切削が完了した後、テーブル13の移動を停止させ、円筒部材に対する保持を解除し、円筒面の切削加工の完了した円筒部材は機外に搬出される。
【0065】
ビビリの検知手段として切削中の発信音をマイク8(単一指向性コンデンサマイク)で電気信号に変換した。マイクは円筒部材中心より50mmの距離で指向性の方向は円筒部材に向けて設置した。更に、信号は増幅手段9(オペアンプ)で適当な大きさに増幅する。更に、周波数分別手段10(FFTアナライザ:富士通製パーソナルコンピュタ−FMV6450にUFE製スペクロラムアナリシスソウトを搭載)により周波数に別に分別した後、判定手段11により異常振動発生の判断、振動の周波数の特定を行う。その結果に基づいて制御手段12で必要に応じて主軸回転数、送り回転数、固定圧力を制御するような装置を作製した。
【0066】
切削刃物は以下のものを選択した。
【0067】
荒削りバイト:焼結ダイヤモンド製曲率半径0.5mmのRバイト
仕上げバイト:焼結ダイヤモンド製曲率半径4mmのRバイト
切削刃物の段取りの際に以下の調整を行った。
【0068】
旋盤の設定は、押圧力4kgfで押圧保持し、切削工具回転速度18000min−1(300sec−1)、送りピッチは30mm/秒、切り込み量0.08mmとし円筒部材外周面を切削した。連続して切削を行い300本目の円筒部材を切削したところ通常の切削では起きない発信音が発生したので、ビビリが発生したと自動的に判断した。発信音の周波数を確認したところ3000Hzであったので主軸回転数を17181min−1(286.4sec−1)になるように変更して切削を続行した。更に、送りピッチは主軸回転速度に比例して制御し28.64mm/秒とし、連続して更に700本の電子写真感光体用円筒部材外周面を切削した。目視確認の結果、ビビリの発生は無かった。円筒部材の円筒面の振れ精度は平均15μmであった、得られた切削基体の表面粗さを測定した結果Rz=0.50μmのアルミニウム基体が得られた。なお、切削タクトは円筒部材の脱着込みで30秒であった。振れ精度は、円筒部材の両端をベアリングで受部、中心部の振れをダイヤルゲージで測定した。
【0069】
表面粗さの測定は、JIS B 0601(1994)に準拠し、小坂研究所表面粗さ計サーフコーダーSE3500を用い、カットオフを0.8mm、測定長さを8mmで行った。
【0070】
なお、十点平均粗さRzはJIS B 0601(1994)での設定における値を示す。アルミニウム基体に対して、湿式(液体)ホーニング装置(不二精機製造所製)を用いて、下記条件にて湿式ホーニング処理を行った。
【0071】
<湿式ホーニング処理条件>
研磨剤(砥粒):球状アルミナビーズ(平均粒径30μm)
(商品名:CB−A30S、昭和電工社製)
懸濁媒体:水
研磨剤/懸濁媒体=0.11/0.89(体積比)
アルミニウム基体の回転数:1.60s−1
エア吹き付け圧力:0.165MPa
ガン移動速度:15mm/sec.
ガンノズルとアルミニウム基体の距離:200mm
ホーニング砥粒吐出角度:45°
研磨液投射回数:1回(片道)
【0072】
ホーニング処理後の基体表面粗さは、Rmax2.3μm、Rz1.7μm、Ra0.24μm、Sm31μmであった。
【0073】
次に、界面活性剤(バンライズS:常盤化学社製)の10%溶液を満たし温度を40℃に保った槽に上記のホーニング処理を施したアルミニウム基体を浸漬し、更に5秒周期で30mmの範囲で揺動しながら3分間洗浄を行った。更に、イオン交換水を満たした槽に上記の湿式ホーニング処理を施したアルミニウム基体を浸漬し1分間リンス洗浄を行い、その後アルミニウム基体を槽から引き上げアルミニウム基体をイオン交換水でシャワー洗浄した。次に、このアルミニウム基体を75℃のイオン交換水を満たした槽に20秒間浸漬し、その後10mm/秒の速度で槽から引き上げ基体の乾燥状況を確認したところ水分は残留していなかった。
【0074】
次に、ポリアミド樹脂(商品名:アミランCM8000、東レ社製)10部及びメトキシメチル化6ナイロン樹脂(商品名:トレジンEF−30T、帝国化学社製)12部をメタノール300部/n−ブタノール230部の混合溶媒中に溶解した塗料を浸漬コーティング法で塗布し、95℃で12分間熱風乾燥させることによって、膜厚が0.6μmの下引き層を形成した。
【0075】
次に、CuKα特性X線回折におけるブラッグ角(2θ±0.2°)の7.4°、16.6°、25.5°及び28.2°に強いピークを有するクロロガリウムフタロシアニン7部、ポリビニルブチラール樹脂(商品名:BX−1、積水化学工業社製)3.2部及びシクロヘキサノン55部からなる溶液を1mmφのガラスビーズを用いたサンドミルで8時間分散した後、エチルアセテート100部を加えて電荷発生層用の分散液を調合した。この分散液を中間層上に浸漬コーティング法で塗布し、95℃で10分間加熱乾燥することによって、膜厚が0.17μmの電荷発生層を形成した。
【0076】
次に、下記式で示されるアミン化合物8.4部、
【0077】
【化1】
Figure 2004351597
下記式で示されるアミン化合物2.5部
【0078】
【化2】
Figure 2004351597
及びビスフェノールZ型ポリカーボネート樹脂(商品名:ユーピロンZ−200、三菱ガス化学社製)10部をモノクロロベンゼン80部/ジメトキシメタン20部の混合溶媒に溶解した。この塗料を浸漬コーティング法で塗布し、125℃で1時間乾燥することによって、膜厚が16μmの電荷輸送層を形成した。
【0079】
<評価>
このようにして切削した基体を用いて作製した電子写真感光体を、ヒューレット・パッカード社製プリンターLaser Jet 4000に装着して、黒画像、ハーフトーン画像をそれぞれ出力し画像評価を行い、結果を表1に示した。ハーフトーン画像は、黒線1本と白線2本分が交互に連続しているものであり、縦方向、横方向にそれぞれ走査したものを使用した。
◎:良好
○:電子写真感光体用円筒部材上にビビリマークが見られるが画像に出ないレベルで問題なし
×:電子写真感光体用円筒部材上にビビリマークが見られ画像上にビビリマークがに対応する欠陥見られ製品として使用不可
◎、○は良品、×は不良品
結果を表1に示す。
【0080】
(実施例2〜12)
実施例1と同様のアルミニウム円筒部材を準備し、表1に示す切削における切削開始時の主軸回転数R(sec−1)、ビビリ発生後の主軸回転数R’(sec−1)、シフト比率a条件で実施例1と同様の切削装置で円筒部材の外周面を切削した。それ以外は実施例1と同様にしてホーニング処理、感光層を塗布し電子写真感光体を作製し、画像評価を行った。結果を表1に示す。
【0081】
(実施例13及び14)
実施例1と同様のアルミニウム円筒部材を準備し、表1の実施例11及び12に示す切削における切削開始時の主軸回転数R(sec−1)、ビビリ発生後の主軸回転数R’(sec−1)、シフト比率a条件で実施例1と同様の切削装置で円筒部材の外周面を切削した。更に、送り軸の送り速度の値を主軸回転速度の変化に比例して変化させる抑制を行った。それ以外は実施例1と同様にしてホーニング処理、感光層を塗布し電子写真感光体を作製し、画像評価を行った。結果を表1に示す。
【0082】
実施例11及び12では主軸回転速度のみを低下させたため切削ピッチが大きくなり表面粗さが大きくなり画像上にごく薄いスジが見られたが、実施例13及び14では切削ピッチ、表面粗さとも変化なく画像上も更に良好である。
【0083】
(比較例1)
実施例1と同様のアルミニウム円筒部材を準備し、ビビリが発生しても主軸回転数を変化させずに切削を続けた以外は実施例1と同様の切削装置、切削条件でによって円筒部材の外周面を切削し面粗さを測定した。それ以外は実施例1と同様にしてホーニング処理、感光層を塗布し電子写真感光体を作製し、画像評価を行った。結果は表1に示す。
【0084】
(比較例2及び3)
実施例1と同様のアルミニウム円筒部材を準備し、ビビリが発生した場合の主軸回転数のシフト比率を+1.0又は−1.0とした以外は実施例1と同様の切削装置、切削条件でによって円筒部材の外周面を切削し面粗さを測定した。それ以外は実施例1と同様にしてホーニング処理、感光層を塗布し電子写真感光体を作製し、画像評価を行った。結果は表1に示す。
【0085】
【表1】
Figure 2004351597
【0086】
【発明の効果】
本発明の効果は、形状精度が高く、かつビビリ発生の無い面粗さが良好な円筒状電子写真感光体用基体を製造することが可能となり、また切削装置の設備費やメンテナンスのコスト及びワークの製作費等を削減し、上記円筒状基体の製造コストを大幅に低減でき、上記の良好な円筒状電子写真感光体用基体を得ることが可能となった。
【0087】
このような円筒部材を電子写真感光体基体に用いることで、画像形成装置の高性能化と低価格化に大きく貢献できる。
【図面の簡単な説明】
【図1】円筒部材が回転する構造の旋盤の概略構成図である。
【図2】切削工具が回転する構造の旋盤の概略構成図である。
【図3】切削工具組み立て図である。
【符号の説明】
1 円筒部材
2−a 円筒部材右端を固定する手段
2−b 円筒部材左端を固定する手段
3 円筒部材右端を固定圧力変更手段
4 円筒部材を中心軸中心に回転させる手段
5 切削工具
6 刃物台
7 送り手段
8 マイク
9 信号増幅手段
10 周波数分別手段
11 判定手段
12 制御手段
13 テーブル
14−a 円筒部材右端を固定する手段
14−b 円筒部材左端を固定する手段
15 切削工具
16 回転治具
17−a、17−b 切削刃物
18−a、18−b バイトホルダ
19−a、19−b ホルダ案内溝
20−a、20−b バイトホルダ固定用ビス[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a cylindrical electrophotographic substrate, and more particularly to a method of manufacturing a cylindrical electrophotographic cylindrical substrate used in an image forming apparatus such as an electrophotographic copying machine, a laser beam printer, and a facsimile.
[0002]
[Prior art]
In an image forming apparatus such as an electrophotographic copying machine, a laser beam printer, and a facsimile, an electrostatic latent image is generally formed on a photosensitive drum by a charging unit and an exposure unit, and the latent image is further developed by a developing unit. The latent image is faithfully visualized, further transferred to a transfer material such as paper, and output as an image.
[0003]
Of the components constituting the electrophotographic apparatus, the photosensitive drum and the developing sleeve need to be finished with high precision in order to obtain a high quality image. For example, an electrophotographic photosensitive drum is manufactured by providing a photosensitive film on the surface of a substrate finished to a predetermined surface roughness. If the surface roughness of the substrate is rougher than a limit, irregularities are generated on the photosensitive film. As a result, image defects such as spots and fog occur in the image. If the electrophotographic photosensitive member substrate and the developing sleeve substrate do not satisfy the predetermined straightness, roundness, and unevenness, the distance between the photosensitive drum and the developing sleeve during development of the latent image is not constant. Unevenness may occur. Further, in an apparatus that outputs a color image by superimposing images of several colors, a color shift occurs when the images are superimposed, and the image quality is deteriorated. Therefore, a particularly high-precision photosensitive drum is required.
[0004]
Therefore, the cylindrical electrophotographic substrate used for the photosensitive drum and the developing sleeve is uniform and has a predetermined surface roughness, and the dimensions of the substrate such as straightness, runout accuracy, roundness, and uneven thickness are finished to a predetermined accuracy. Need to be
[0005]
Therefore, there is known a method of finishing the outer peripheral surface of a cylindrical member manufactured by extrusion and drawing by cutting (for example, Patent Document 1). As an example of this method, there is a method called lathe processing. For example, a cylindrical member (also referred to as a work) is rotated while keeping its central axis constant, and a cutting tool is applied to an outer peripheral portion of the cylindrical member to perform cutting while feeding at a constant speed parallel to the central axis. In this method, the outer peripheral portion of the cylindrical member is scraped so as to have a predetermined accuracy.
[0006]
There is also known a cutting method in which an outer peripheral surface of a cylindrical member held along a predetermined axis is cut by a cutting unit that rotates around the axis (for example, Patent Document 2).
[0007]
[Patent Document 1]
JP-A-2-110570
[Patent Document 2]
JP-A-6-328303
[0008]
[Problems to be solved by the invention]
The method of cutting the outer peripheral surface in this manner can efficiently and inexpensively produce a cylindrical electrophotographic substrate having high dimensional accuracy, but has the following problems.
[0009]
Usually, when a cylindrical electrophotographic substrate is manufactured by a cutting method called lathe processing, a cylindrical workpiece is fixed by a fixing jig and rotated about a main shaft. Further, the cutting tool has a feed shaft for relatively moving the cylindrical workpiece and the tool, and the cutting tool cuts the outer peripheral surface of the cylindrical member in a spiral at a constant depth and a constant width according to the shape of the cutting edge. I will do it.
[0010]
At this time, the cutting tool (also called a cutting tool) is in a state where a pressure for cutting the cylindrical workpiece is applied. Since the cylindrical workpiece and the cutting tool are relatively rotating, pressure is applied from a specific direction according to the number of rotations. When the integral multiple of this frequency and the integral multiple of the natural frequency of the cylindrical workpiece fixed by the fixing jig match, the cylindrical workpiece may resonate and cause chatter, which is a larger vibration phenomenon. It is known. In a normal cutting state, cutting is performed in a spiral with a certain depth and a certain width according to the cutting edge shape, but when the cylindrical workpiece vibrates, the period of the spiral and the depth of the groove become inconsistent, The surface roughness of the cylindrical workpiece partially increases (a processing defect on the surface of the cylindrical member generated on the processing surface due to chatter is called a chatter mark).
[0011]
When an electrophotographic photoreceptor is manufactured using a cylindrical member having such chatter marks as a base, defects such as generation of coating unevenness, unevenness of the photosensitive layer surface, and streak-like patterns on an image occur. In some cases, Further, in an electrophotographic apparatus for writing with light dots based on a digital signal, such as a laser printer, a disorder of a spiral cycle may interfere with a writing dot pitch to generate a moire pattern. Furthermore, even in the case of the developing sleeve, the distance from the electrophotographic photosensitive drum is not constant, and image unevenness may occur.
[0012]
As a means for preventing chatter, for example, there is a method of reducing a cutting speed (a feed length per one rotation of a cylindrical member in lathe processing) by reducing a feed speed of a blade to reduce a cutting resistance. However, when the feed speed of the blade is reduced, the processing tact becomes longer, and there is a problem that the processing cost per substrate increases. Further, there is a method of increasing the thickness of the cylindrical member to increase the strength of the member, but there is a problem that the cost is increased. Furthermore, there is a method of reducing the cutting force by selecting the tip shape of the cutting tool.To reduce the cutting force, a cutting tool with a sharp tip is used. In some cases, the solution becomes coarse and is not suitable as a substrate for an electrophotographic photoreceptor.
[0013]
As described above, at present, no chattering has occurred and a favorable cutting method for an electrophotographic substrate has not been obtained.
[0014]
The present invention has been obtained as a result of a study for solving the above-mentioned conventional problems, and its object is to provide a cylindrical surface having extremely high outer surface roughness, dimensional accuracy, and a cylindrical surface. It is an object of the present invention to provide a method for manufacturing a cylindrical electrophotographic substrate, which can reduce the equipment cost and maintenance cost of a cutting device for finishing the substrate and can greatly reduce the production cost of the substrate.
[0015]
Another object of the present invention is to provide an apparatus for producing an electrophotographic substrate, an electrophotographic photosensitive member, and a cylindrical electrophotographic substrate produced by the production method.
[0016]
[Means for Solving the Problems]
According to the present invention, in a method for manufacturing a cylindrical electrophotographic substrate for cutting an outer peripheral surface of a cylindrical workpiece, vibration, displacement or transmission sound generated by the cutting is monitored to automatically detect chatter in the cutting. In the case where it is determined that chatter has occurred in the cutting process, the transmission frequency peculiar to the occurrence of chatter is specified, and in the subsequent cutting process, the transmission frequency of the vibration peculiar to the occurrence of the abnormality is S (Hz). Or, if the number of revolutions per second of the spindle for rotating the cylindrical workpiece is R, control is performed to automatically change the number of revolutions of the spindle to a value in the range of R ′ below. A method for producing a cylindrical electrophotographic substrate, comprising:
Figure 2004351597
Or
Figure 2004351597
[0017]
According to the second aspect of the present invention, when control is performed to change the rotation speed of the spindle in the cutting process due to occurrence of chattering during the cutting process, the value of the feed speed of the feed shaft is changed in proportion to the change in the rotation speed. This is a method for producing a cylindrical electrophotographic substrate for controlling.
[0018]
According to a third aspect of the present invention, there is provided a method for manufacturing a cylindrical electrophotographic substrate, comprising a step of cutting an outer peripheral surface of a cylindrical workpiece with a cutting tool that rotates around an axis.
[0019]
According to a fourth aspect of the present invention, there is provided a cylindrical electrophotographic photosensitive member substrate produced by the above-described production method.
[0020]
According to a fifth aspect of the present invention, there is provided an electrophotographic photoreceptor using a substrate manufactured by the above manufacturing method.
[0021]
According to the sixth aspect of the present invention, means for converting vibration, displacement, or transmission sound generated by cutting into an electric signal and detecting the electric signal, means for separating the electric signal into frequency components, and special processing when a processing abnormality occurs in cutting. Means for automatically determining the occurrence of chatter by separating the frequency components of the above, detecting the transmission frequency peculiar to the occurrence of chatter, and in subsequent cutting processing, the transmission frequency of the vibration peculiar to the occurrence of chatter is S (Hz); Or, if the rotation speed per second of the spindle for rotating the cylindrical workpiece is R, a means for performing control for automatically changing the rotation speed of the spindle to a value in the range of R 'below is provided. An apparatus for manufacturing a cylindrical electrophotographic substrate;
Figure 2004351597
Or
Figure 2004351597
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0023]
The present invention is intended to avoid abnormal chatter by detecting abnormal vibration generated due to chatter during cutting, determining the frequency thereof, and changing the spindle rotational speed to a rotational speed outside the resonance frequency.
[0024]
More specifically, the cylindrical workpiece fixed by the fixing jig has a unique natural frequency. On the other hand, the cutting tool (bite) gives vibration to the cylindrical workpiece during cutting, and the frequency given to the cylindrical workpiece matches the spindle speed. If the integral multiple of the spindle speed and the integral multiple of the natural frequency of the cylindrical workpiece match, the cylindrical workpiece may resonate at the transmission frequency S (Hz), causing greater vibration. Along with this, transmission of sound waves, and furthermore, the cycle and depth of the cutting process are varied, and chatter marks are formed on the cylindrical workpiece. When this substrate is used to manufacture an electrophotographic substrate, it becomes a defect. The transmission frequency is specific to each cylindrical workpiece, and the transmission is performed at the same frequency every time when a cylindrical workpiece of the same material and shape is used. Therefore, the occurrence of chatter can be prevented by catching the signal at which the resonance has occurred and shifting the rotational speed of the cylindrical workpiece or the cutting tool to a rotational speed that does not match the frequency inherent in the cylindrical workpiece.
[0025]
A method of calculating how many times the spindle speed is equal to the natural vibration of the cylindrical workpiece to generate resonance will be described. Now, the frequency of vibration is S (Hz), and the number of revolutions per second of the spindle is R (sec).-1), A value obtained by dividing the transmission frequency by the spindle rotation speed, that is, S / R = n, is obtained, and n times the spindle rotation speed (n-order vibration) coincides with the natural vibration of the cylindrical workpiece and resonates. It can be seen that is occurring. The condition under which resonance occurs is as follows: R = S / (n + m)
(M = ± 1, ± 2, ± 3, ± 4, ± 5...).
[0026]
For example, by continuously reducing the number of revolutions per second of the spindle, Rsec-1Next, the condition of the rotational speed R 'of the main shaft that generates resonance is (R' = S / n + 1), that is, (n + 1 order vibration). The condition is a value obtained by reducing the number of revolutions per second of the main shaft R ′ = R−R / [(S / R) +1], that is, R / [(S / R) +1]. Resonance is unlikely to occur at a rotational speed during that period. In other words, there are conditions under which resonance is unlikely to occur when the number of revolutions per second of the main shaft is continuously increased, and when the rotation speed is further increased, the condition is likely to cause resonance again, and machining is performed under conditions where resonance is unlikely to occur. And chatter is less likely to occur.
[0027]
The same is true even if the number of revolutions per second of the spindle is continuously increased. To be more specific, the transmission frequency when chattering occurs is 3000 Hz and the number of revolutions per second of the main shaft is 300 sec.-1In this case, S / R = 10, and 10 times (10th order vibration) of the spindle rotation speed coincides with the natural vibration of the cylindrical workpiece, and resonates.
[0028]
Rsec by continuously reducing the number of revolutions per second of the spindle-1Next, the condition for generating resonance is as follows: When the rotational speed R ′ of the main shaft is obtained, in the case of the (n + 1) th-order vibration (10 + 1 = 11th-order vibration), R ′ = S / (n + 1) (3000/11 = 272.7 Hz). The condition is the number of rotations per second Rsec of the spindle.-1Is the amount of change in the rotational speed of the main shaft ΔR = R / [(S / R) +1] (300/11 = 27.3 Hz in the example), that is, a value reduced by 27.3 Hz. Although resonance is likely to occur at R and R ', resonance is unlikely to occur at an intermediate frequency. In other words, by increasing or decreasing the number of revolutions of the spindle, Rsec-1Next, by performing machining under the condition of the number of rotations at which resonance occurs, chatter can be eliminated.
[0029]
In this example, the rotation speed of the main shaft is 300 seconds.-1And 272.7 sec-1In the case of, chatter is likely to occur because the integral frequency of the spindle speed and the natural frequency of the cylindrical workpiece match, and the integral frequency of the spindle speed and the natural frequency of the cylindrical workpiece match. Not in the middle 286.4 sec-1Then, resonance is most unlikely to occur.
[0030]
The amount of change in the spindle rotation speed (defined as shift ratio a) for preventing chatter when chatter occurs is 0.1 to 0.9 times {R / [(S / R) + m]}. A fold change is preferred. Particularly preferably, it is between 0.3 and 0.7 times. In the case of 1 × {R / [(S / R) + m]}, the natural frequency of the cylindrical workpiece coincides with the integral multiple of the rotation speed of the spindle in the next order, and the condition is likely to cause chatter. .
[0031]
Similarly, chattering can be prevented by calculating the next resonance point of n + 2 or n + 3... N-2, n-3... It is preferable to vary between the (n + 1) th order vibration and the (n-1) th order vibration.
[0032]
As a method of detecting the vibration generated by the cutting work used in the present invention, the vibration, the displacement, or the outgoing sound generated with the vibration is detected. In the method of detecting vibration from vibration and displacement, it is difficult to install a sensor directly on the cylindrical member and receive chatter vibration. It is easy to pick up vibration of other devices. The method of detecting from the cutting sound converts the outgoing sound into an electric signal with a microphone, etc., but the degree of freedom in selecting the installation location of the sensor is high, and the microphone is installed near the cut member, and it is easy to receive the chattering sound selectively It is preferable to install at a position. Further, it is preferable to use a directional microphone in order to selectively receive chattering sound without receiving surrounding sounds as much as possible. In any case, the vibration is converted into an electric signal and sent to the data processing unit.
[0033]
As a method of automatically detecting and judging the occurrence of an abnormality, an example of detecting the magnitude of the signal obtained by the detection means, discriminating the obtained signal into frequencies, and the magnitude of the signal of the specific frequency component or the ratio of magnitudes An example in which the determination is made based on the following is given. In order to selectively detect chattering sound from various surrounding sounds, it is preferable to make a determination based on the magnitude of the signal of the specific frequency component or the ratio of the magnitude.
[0034]
In the present invention, it is necessary to discriminate the obtained signal into a frequency and specify the vibration frequency, and the signal is discriminated into a frequency by a process such as a band-pass filter or a fast Fourier transform.
[0035]
The obtained signal is sent to the control unit of the main shaft to change the rotation speed according to the formula of the present invention to avoid chatter.
[0036]
In addition, the initial chatter mark may remain on the workpiece during machining during the examination of the conditions to avoid chatter after detecting chatter, but the method of sorting and discarding it as defective due to the surface accuracy required for the base body However, if the initial chatter is at a level where there is no problem with the quality, it can be placed in a good product.
[0037]
INDUSTRIAL APPLICABILITY The present invention is useful for a cylindrical electrophotographic substrate, particularly for a developing sleeve and an electrophotographic photosensitive drum.
[0038]
Furthermore, in the case where control is performed to change the rotation speed of the spindle in the cutting process due to the occurrence of an abnormality during the cutting process, there is also an example of suppressing the change of the feed speed value of the feed shaft in proportion to the change in the rotation speed. . The substrate for the electrophotographic photosensitive member manufactured by this method prevents the surface roughness from increasing due to the constant cutting pitch and the large cutting pitch irrespective of the fluctuation of the spindle speed, and also prevents the occurrence of streaks on the image. it can.
[0039]
Next, a cutting device used for cutting according to the present invention will be described.
[0040]
The cutting device used in the cutting process of the present invention uses a machine tool having a main shaft for rotating the cutting process or the cylindrical workpiece, and a feed shaft for relatively moving the cylindrical workpiece and the tool. This is an apparatus for cutting the outer peripheral surface of the cylindrical workpiece with a cutting tool.
[0041]
A method for manufacturing a cylindrical member using an example of a lathe having a structure in which the cylindrical member rotates will be described. FIG. 1 is a schematic configuration diagram of a cutting device. This cutting apparatus has means 2-a and 2-b for fixing both ends of the cylindrical member 1 to be machined, fixed pressure changing means 3 for the right end of the cylindrical member, and means 4 for rotating the cylindrical member about a central axis. You. On the other hand, the cutting tool 5 is fixed to the tool post 6 and has an adjusting means required for setting up the cutting tool, so that the mounting state can be adjusted. The tool rest is translated by the feed device 7.
[0042]
The sound during cutting is converted into an electric signal by the microphone 8 installed near the cutting. Further, the signal is amplified by the signal amplifying means 9 and separated into frequencies by the frequency separating means 10. The determination means 11 determines the occurrence of abnormal vibration and specifies the frequency of vibration. Based on the result, the control means 12 controls the spindle speed and the feed speed as required.
[0043]
In the manufacturing method of the present invention, the cutting may be divided into rough cutting and finishing. Roughing may be performed by a general cutting tool, but rough cutting may be performed by using a cutting tool with high precision, and examples of the cutting tool include a sword cutting tool and an R cutting tool having a small cutting resistance. Finishing includes examples such as an R bite, a flat bite, and a miracle bite depending on a required surface.
[0044]
In a processing apparatus in which the cylindrical member rotates, there is a limit to the high-speed rotation of the cylindrical member, and it is difficult to increase the speed of the cutting process. In addition, when each work is attached to and detached from the cutting machine, the rotation of the motor must be stopped, and a rise time of the motor is required for each machining cycle of each work, so that the standby time is long. As a result, the overall processing cycle time becomes longer, and the manufacturing cost rises.
[0045]
Therefore, there is a step of cutting the outer peripheral surface of the cylindrical member held along a predetermined axis by cutting means rotating around the axis, and the cylindrical body is formed by processing a part of the inner surface to a predetermined inner diameter. It is also effective to use a cutting method that is held by holding means that engages with the inner surface.
[0046]
In this cutting method, the cylindrical member is held along a predetermined axis, and the outer peripheral surface of the cylindrical member is cut by cutting means that rotates around the cylindrical member. Even when the speed is increased, there is no possibility that vibration is generated due to uneven thickness of the tubular member or lack of straightness as in the case of rotating the tubular member. Therefore, it is easy to speed up the processing steps. Further, since the tubular member can be replaced while the cutting means is being rotated, the waiting time can be shortened, and the entire machining cycle time can be shortened. As a result, manufacturing costs can be significantly reduced. In addition, the cylindrical member is held at least partially by the holding means engaging with the inner surface machined to the predetermined inner diameter to improve the accuracy of centering with respect to the cutting means. This is further preferable because a cylindrical member having an outer peripheral surface with improved surface accuracy, roundness, and straightness can be obtained.
[0047]
A step of cutting the outer peripheral surface of the cylindrical member by a cutting device of a type that cuts the outer peripheral surface of the cylindrical member held along a predetermined axis shown in FIG. 2 by a cutting unit that rotates around the axis will be described. As shown in FIG. 2, the cylindrical member fixing means 14-a and 14-b and the fixing pressure changing means 14-c are mounted on the table and the feeding means 13. During this time, the cylindrical member is carried in, pressed from the left and right, and held so that the central axis of the cylindrical member coincides with the rotation axis of the cutting tool. During this time, the rotation of the cutting tool 15 continues without interruption from the previous cutting cycle. Next, the outer peripheral surface of the cylindrical member 1 is continuously cut by the cutting tool 15 by moving the table 13 to the left along the central axis, and after the cutting is completed over the entire length of the cylindrical member 1, the table 13 The movement is stopped, the holding of the cylindrical member is released, and the cylindrical member having been subjected to the cutting of the cylindrical surface is carried out of the machine.
[0048]
As shown in FIG. 3, the cutting tool has two cutting blades 17-a and 17-b fixed to a rotary jig 16 with bite holders 18-a and 18-b. One is for roughing and the other is for finishing. The two blades are arranged on a diameter crossing the rotation axis O, loosen the screws 20-a and 20-b which engage with the guide grooves 19-a and 19-b of the holder, and remove the holders 18-a and 18-a. The cutting depth is adjusted by moving the cutting blades 17-a and 17-b toward and away from the rotation axis O together with the cutting blade 18-b.
[0049]
As a method of holding a cylindrical workpiece in the present invention, a method of adding an outer peripheral portion, each inner diameter enlarged portion is inserted inside like a collet chuck or the like to expand a circumferential portion, hold a cylindrical member, and fix an outer peripheral surface. There is a method of cutting with a cutting tool to finish a cylindrical surface having a predetermined surface roughness (see Japanese Patent Application Laid-Open No. 2-110570). In order to obtain a substrate for an electrophotographic photosensitive member, a portion adjacent to both end surfaces is required. After finishing in a tapered shape by cutting, holding the cylindrical member by pressing both ends by pressing the tapered portion in the axial direction with holding means having a tapered clamp surface, cutting the outer peripheral surface with a cutting tool, There is known a method of finishing a cylindrical surface having a predetermined surface roughness (see Japanese Patent Application Laid-Open No. 9-66401). In this method, since only the tapered portion of the cylindrical member needs to be processed with high precision, the manufacturing cost of the cylindrical member is low. This is preferable because the maintenance cost of the cylindrical member holding means and the manufacturing cost of the cylindrical member can be reduced, and the manufacturing cost of the cylindrical member can be greatly reduced. Since it is not necessary to strictly control an assembling error or the like unlike a cylindrical member holding means of a mechanism for holding a cylindrical member by a pressing force in a radial direction like a collet chuck, the equipment cost of a cutting device can be greatly reduced. Thereby, the manufacturing cost of the cylindrical member for the electrophotographic photosensitive member substrate can be further reduced. In other words, this method can produce a cylindrical surface with low cost and high shape accuracy (surface accuracy, roundness and straightness).
[0050]
Examples of the material of the cylindrical member used in the present invention include metals such as aluminum, copper, iron, nickel and titanium and alloys thereof. Further, a material obtained by conducting a conductive treatment on plastic, ceramic, glass, or the like can be used.
[0051]
Aluminum or aluminum alloys such as JIS 3000 series and 6000 series are widely used. The method of manufacturing the cylindrical member is determined in consideration of, for example, accuracy and cost. However, as an example of the cylindrical member used in the present invention, a known aluminum alloy tube manufactured by extrusion and drawing is formed into a predetermined length. A cut tube or a tube obtained by cutting the end face of the cut tube material and a portion adjacent to the end face may be used.
[0052]
Examples of the tip shape of the cutting tool used in the present invention include a flat cutting tool, an R cutting tool, and a sword cutting tool, but a flat cutting tool and an R cutting tool are preferable for finishing. Further, examples of the material of the cutting tool used in the present invention include super steel, sintered diamond, and single crystal diamond. In particular, sintered diamond is inexpensive and is preferable for mass production.
[0053]
Further, in the method for producing a photoreceptor substrate for electrophotography according to the present invention, particularly when producing a substrate for a laser printer, it is sufficient to sufficiently prevent interference fringes caused by reflection of laser light on the substrate only by cutting with a lathe. If this is not possible, there is an example in which the surface is roughened by some means. Although the roughness of the rough surface depends on the shape, Rz is required to be about 0.6 μm or more. As a method of surface roughening, a method utilizing the good substrate surface obtained in the present invention is preferable, and honing treatment and anodic oxidation treatment are particularly preferable. There are dry and wet treatment methods for the honing treatment, and any of them may be used. The wet (liquid) honing treatment is a method in which a powdery abrasive (abrasive grains) is suspended in a liquid such as water and sprayed at a high speed to a surface of a conductive substrate to roughen the surface. The surface roughness is sprayed. It can be controlled by pressure, speed, amount, type, shape, size, hardness, specific gravity, suspension temperature, etc. of the abrasive. Similarly, dry honing is a method in which an abrasive is blown onto the surface of a conductive substrate with air at a high speed to roughen the surface, and the surface roughness can be controlled in the same manner as wet honing. Examples of the abrasive used in these wet or dry honing treatments include particles such as silicon carbide, alumina, zirconia, stainless steel, iron, glass beads, and plastic shots.
[0054]
Further, in the method of manufacturing a photoconductor substrate for electrophotography according to the present invention, when an electrophotographic photoconductor is used, image defects such as spot fogging and white spots on a solid black image may occur on an image due to partial injection. As an example of means used to prevent this partial implantation and eliminate image defects, an aluminum oxide layer is provided by anodizing the surface of an aluminum substrate. Further, the anodic oxidation treatment also serves to prevent interference fringes.
[0055]
When a photoreceptor is produced using the electrophotographic photoreceptor substrate according to the present invention, the photosensitive layer is of a laminated structure comprising a charge generation layer and a charge transport layer, or a charge generation material and a charge transport material in one layer. There is a single-layer type containing.
[0056]
Examples of charge generation materials used in the electrophotographic photoreceptor include pyrylium dyes, thiapyrylium dyes, phthalocyanine pigments, anthantrone pigments, dibenzopyrene quinone pigments, pyranthrone pigments, trisazo pigments, disazo pigments, azo pigments, indigo pigments Quinacridone pigments and asymmetric quinocyanines. In particular, in the case of a digital electrophotographic photoreceptor, among these charge generation materials, in response to infrared lasers and visible light lasers, phthalocyanine-based materials are excellent due to the broad sensitivity dependence on wavelength, Furthermore, among phthalocyanine-based compounds, oxytitanyl phthalocyanine and hydroxygallium phthalocyanine can be said to be particularly excellent due to their high sensitivity.
[0057]
Examples of the charge transport material used in the electrophotographic photoreceptor include compounds such as various hydrazones, pyrazolines, oxazole compounds, thiazole compounds, triarylmethane compounds, triallylamine compounds, and polyarylalkanes. Is selected from These charge generation materials and charge transport materials are combined with an appropriate binder resin, applied to a substrate, and formed into a photosensitive layer by forming a film. As the binder resin for the photosensitive layer, for example, polyvinyl acetal, polycarbonate, polyarylate, polystyrene, polyester, polyvinyl acetate, polymethacrylate, acrylic resin, and cellulose resin are preferably used.
[0058]
In the electrophotographic photoreceptor according to the present invention, a protective layer may be provided on the photosensitive layer. The protective layer is mainly composed of a resin. Examples of the material constituting the protective layer include, for example, polyester, polyurethane, polyacrylate, polyethylene, polystyrene, polybutadiene, polycarbonate, polyamide, polypropylene, polyimide, polyamide imide, polysulfone, polyacryl ether, polyacetal, phenol resin, acrylic resin, and silicone. Resins, epoxy resins, urea resins, allyl resins, alkyd resins, butyral resins, and the like.
[0059]
Some of these resins include lubricants such as polytetrafluoroethylene, polyvinylidene fluoride, fluorine-based graft polymers, silicone-based graft polymers and silicone-based oils, and protective agents for improving cleaning properties and abrasion resistance. In order to control the resistance of the layer, tin oxide powder, conductive titanium oxide, or the like can be dispersed.
[0060]
An undercoat layer having a barrier function and an undercoat function can be provided between the conductive substrate according to the present invention and the photosensitive layer. The undercoat layer can be formed for the purpose of improving the adhesion of the photosensitive layer, protecting the substrate, improving the charge injection property from the substrate, protecting the photoreceptor against electrical breakdown, and the like. Examples of the material of the undercoat layer include polyvinyl alcohol, poly-N-vinylimidazole, polyethylene oxide, ethyl cellulose, methyl cellulose, ethylene / acrylic acid copolymer, casein, polyamide, copolymerized nylon, glue, gelatin and the like. Further, a filler for preventing interference fringes may be mixed.
[0061]
The electrophotographic photoreceptor according to the present invention can be widely used in electrophotographic application technologies such as CRT printers, LED printers, liquid crystal printers, facsimile machines, and laser platemaking, in addition to electrophotographic copying machines and laser beam printers.
[0062]
【Example】
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In addition, "part" in an Example shows a mass part.
[0063]
(Example 1)
An aluminum drawn substrate of A3003 having an outer diameter of 30.64 mm, an inner diameter of 28.5 mm, and a length of 260.5 mm was prepared.
[0064]
Next, the outer peripheral surface of the cylindrical member was cut by the cutting device shown in FIG. The cylindrical member fixing means 14-a and 14-b and the fixing pressure changing means 14-c are mounted on the table and the feeding means 13. During this time, the cylindrical member 1 is carried in, pressed from the left and right, and held so that the central axis of the cylindrical member coincides with the rotation axis of the cutting tool. During this time, the rotation of the cutting tool 15 continues without interruption from the previous cutting cycle. Next, the outer peripheral surface of the cylindrical member 1 is continuously cut by the cutting tool 15 by moving the table 13 to the left along the central axis, and after the cutting is completed over the entire length of the cylindrical member 1, the table 13 The movement is stopped, the holding of the cylindrical member is released, and the cylindrical member having been subjected to the cutting of the cylindrical surface is carried out of the machine.
[0065]
As a means of detecting chatter, the sound generated during cutting was converted into an electric signal by the microphone 8 (unidirectional condenser microphone). The microphone was placed at a distance of 50 mm from the center of the cylindrical member with the direction of directivity facing the cylindrical member. Further, the signal is amplified to an appropriate size by the amplification means 9 (operational amplifier). Further, the frequency is separated by a frequency separating means 10 (FFT analyzer: a personal computer made by Fujitsu, FMV6450 equipped with a spectrum analysis solution made by UFE), and then the judgment means 11 judges the occurrence of abnormal vibration and specifies the frequency of the vibration. Do. Based on the results, a device was manufactured in which the control means 12 controls the spindle speed, the feed speed, and the fixed pressure as required.
[0066]
The following cutting tools were selected.
[0067]
Rough cutting tool: R tool with a radius of curvature of 0.5 mm made of sintered diamond
Finishing tool: R tool with a radius of curvature of 4 mm made of sintered diamond
The following adjustments were made when setting up the cutting tool.
[0068]
The setting of the lathe is pressing and holding at a pressing force of 4 kgf, and the cutting tool rotation speed is 18000 min.-1(300sec-1), The feed pitch was 30 mm / sec, the cutting depth was 0.08 mm, and the outer peripheral surface of the cylindrical member was cut. When cutting was performed continuously and the 300th cylindrical member was cut, a beep sound was generated that would not occur in normal cutting, and it was automatically determined that chatter had occurred. When the frequency of the dial tone was confirmed, it was 3000 Hz.-1(286.4 sec-1) And continued cutting. Further, the feed pitch was controlled in proportion to the rotational speed of the spindle to 28.64 mm / sec, and the outer peripheral surface of another 700 electrophotographic photosensitive member cylindrical members was continuously cut. As a result of the visual check, no chatter occurred. The deflection accuracy of the cylindrical surface of the cylindrical member was 15 μm on average. As a result of measuring the surface roughness of the obtained cutting substrate, an aluminum substrate having Rz = 0.50 μm was obtained. The cutting tact was 30 seconds when the cylindrical member was attached and detached. The run-out accuracy was measured by using a bearing at both ends of the cylindrical member with bearings and the run-out at the center with a dial gauge.
[0069]
The surface roughness was measured according to JIS B 0601 (1994) using a Kosaka Laboratory surface roughness meter surf coder SE3500 with a cutoff of 0.8 mm and a measurement length of 8 mm.
[0070]
The ten-point average roughness Rz indicates a value set in JIS B 0601 (1994). The aluminum base was subjected to a wet honing treatment using a wet (liquid) honing apparatus (manufactured by Fuji Seiki Seisakusho) under the following conditions.
[0071]
<Wet honing condition>
Abrasive (abrasive): spherical alumina beads (average particle size 30 μm)
(Product name: CB-A30S, manufactured by Showa Denko KK)
Suspension medium: water
Abrasive / suspension medium = 0.11 / 0.89 (volume ratio)
Number of rotations of aluminum substrate: 1.60 s-1
Air blowing pressure: 0.165MPa
Gun moving speed: 15 mm / sec.
Distance between gun nozzle and aluminum substrate: 200mm
Honing abrasive discharge angle: 45 °
Number of polishing liquid projections: 1 (one way)
[0072]
The substrate surface roughness after the honing treatment was Rmax 2.3 μm, Rz 1.7 μm, Ra 0.24 μm, and Sm 31 μm.
[0073]
Next, the aluminum substrate subjected to the above honing treatment was immersed in a tank filled with a 10% solution of a surfactant (Vanrise S: manufactured by Tokiwa Chemical Co., Ltd.) and the temperature was maintained at 40 ° C., and further a 30-mm plate was formed at a period of 5 seconds. Washing was performed for 3 minutes while rocking in the range. Further, the aluminum substrate subjected to the wet honing treatment was immersed in a bath filled with ion-exchanged water and rinsed for 1 minute, and then the aluminum substrate was pulled out of the bath and the aluminum substrate was shower-washed with ion-exchanged water. Next, this aluminum substrate was immersed in a bath filled with ion-exchanged water at 75 ° C. for 20 seconds, and then pulled up from the bath at a speed of 10 mm / sec. The state of drying of the substrate was confirmed. As a result, no water remained.
[0074]
Next, 10 parts of polyamide resin (trade name: Amilan CM8000, manufactured by Toray Industries, Inc.) and 12 parts of methoxymethylated 6 nylon resin (trade name: Toresin EF-30T, manufactured by Teikoku Chemical Co., Ltd.) were mixed with 300 parts of methanol / n-butanol 230. Of the mixed solvent was applied by a dip coating method and dried with hot air at 95 ° C. for 12 minutes to form an undercoat layer having a thickness of 0.6 μm.
[0075]
Next, 7 parts of chlorogallium phthalocyanine having strong peaks at 7.4 °, 16.6 °, 25.5 ° and 28.2 ° in Bragg angles (2θ ± 0.2 °) in CuKα characteristic X-ray diffraction, A solution composed of 3.2 parts of a polyvinyl butyral resin (trade name: BX-1, manufactured by Sekisui Chemical Co., Ltd.) and 55 parts of cyclohexanone was dispersed in a sand mill using 1 mmφ glass beads for 8 hours, and then 100 parts of ethyl acetate was added. Thus, a dispersion for the charge generation layer was prepared. This dispersion was applied on the intermediate layer by a dip coating method, and dried by heating at 95 ° C. for 10 minutes to form a charge generation layer having a thickness of 0.17 μm.
[0076]
Next, 8.4 parts of an amine compound represented by the following formula,
[0077]
Embedded image
Figure 2004351597
2.5 parts of an amine compound represented by the following formula
[0078]
Embedded image
Figure 2004351597
And 10 parts of a bisphenol Z-type polycarbonate resin (trade name: Iupilon Z-200, manufactured by Mitsubishi Gas Chemical Company) was dissolved in a mixed solvent of 80 parts of monochlorobenzene / 20 parts of dimethoxymethane. This paint was applied by a dip coating method, and dried at 125 ° C. for 1 hour to form a charge transport layer having a thickness of 16 μm.
[0079]
<Evaluation>
The electrophotographic photoreceptor manufactured using the substrate thus cut is mounted on a Hewlett-Packard printer, Laser Jet 4000, and a black image and a halftone image are output and image evaluation is performed. 1 is shown. The halftone image is one in which one black line and two white lines are alternately continuous, and is one that is scanned in the vertical and horizontal directions, respectively.
:: good
:: Chatter marks can be seen on the cylindrical member for the electrophotographic photosensitive member, but there is no problem at a level not appearing in the image
×: Chatter marks are seen on the cylindrical member for the electrophotographic photosensitive member, and defects corresponding to the chatter marks are seen on the image, and the product cannot be used.
◎, ○: good, ×: defective
Table 1 shows the results.
[0080]
(Examples 2 to 12)
An aluminum cylindrical member similar to that in Example 1 was prepared, and the spindle rotation speed R (sec) at the start of cutting in the cutting shown in Table 1 was set.-1), Main shaft rotation speed R '(sec)-1), The outer peripheral surface of the cylindrical member was cut by the same cutting device as in Example 1 under the condition of the shift ratio a. Otherwise in the same manner as in Example 1, a honing treatment and application of a photosensitive layer were performed to prepare an electrophotographic photosensitive member, and image evaluation was performed. Table 1 shows the results.
[0081]
(Examples 13 and 14)
An aluminum cylindrical member similar to that of Example 1 was prepared, and the spindle rotation speed R (sec) at the start of cutting in the cutting shown in Examples 11 and 12 of Table 1 was obtained.-1), Main shaft rotation speed R '(sec)-1), The outer peripheral surface of the cylindrical member was cut by the same cutting device as in Example 1 under the condition of the shift ratio a. Furthermore, the value of the feed speed of the feed shaft is suppressed from being changed in proportion to the change in the main shaft rotation speed. Otherwise in the same manner as in Example 1, a honing treatment and application of a photosensitive layer were performed to prepare an electrophotographic photosensitive member, and image evaluation was performed. Table 1 shows the results.
[0082]
In Examples 11 and 12, only the spindle rotation speed was reduced, so that the cutting pitch was increased and the surface roughness was increased, and very thin streaks were seen on the image. In Examples 13 and 14, both the cutting pitch and the surface roughness were reduced. The image is still better without any change.
[0083]
(Comparative Example 1)
The outer periphery of the cylindrical member was prepared using the same cutting device and cutting conditions as in Example 1, except that the same aluminum cylindrical member as in Example 1 was prepared and cutting was continued without changing the spindle rotation speed even if chatter occurred. The surface was cut and the surface roughness was measured. Otherwise in the same manner as in Example 1, a honing treatment and application of a photosensitive layer were performed to prepare an electrophotographic photosensitive member, and image evaluation was performed. The results are shown in Table 1.
[0084]
(Comparative Examples 2 and 3)
The same aluminum cylinder member as in Example 1 was prepared, and the same cutting device and cutting conditions as in Example 1 were used, except that the shift ratio of the main shaft rotation speed when chatter occurred was set to +1.0 or −1.0. The outer peripheral surface of the cylindrical member was cut by using this method, and the surface roughness was measured. Otherwise in the same manner as in Example 1, a honing treatment and application of a photosensitive layer were performed to prepare an electrophotographic photosensitive member, and image evaluation was performed. The results are shown in Table 1.
[0085]
[Table 1]
Figure 2004351597
[0086]
【The invention's effect】
The effect of the present invention is that it is possible to manufacture a cylindrical electrophotographic photoreceptor base having high shape accuracy and good surface roughness without chattering, and also requires equipment cost and maintenance cost of a cutting device and work cost. And the manufacturing cost of the cylindrical substrate can be greatly reduced, and the above-described excellent cylindrical electrophotographic photosensitive member substrate can be obtained.
[0087]
By using such a cylindrical member for the electrophotographic photosensitive member base, it is possible to greatly contribute to higher performance and lower cost of the image forming apparatus.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a lathe having a structure in which a cylindrical member rotates.
FIG. 2 is a schematic configuration diagram of a lathe having a structure in which a cutting tool rotates.
FIG. 3 is an assembly view of a cutting tool.
[Explanation of symbols]
1 cylindrical member
2-a Means for Fixing Right End of Cylindrical Member
2-b Means for Fixing Left End of Cylindrical Member
3 The right end of the cylindrical member is fixed pressure changing means
4. Means for rotating a cylindrical member about a central axis
5 Cutting tools
6 Tool post
7 sending means
8 microphone
9 Signal amplification means
10 Frequency separation means
11 Judgment means
12 control means
13 Table
14-a Means for Fixing Right End of Cylindrical Member
14-b Means for Fixing Left End of Cylindrical Member
15 Cutting tools
16 Rotating jig
17-a, 17-b Cutting knife
18-a, 18-b Tool holder
19-a, 19-b Holder guide groove
20-a, 20-b Screw for fixing tool holder

Claims (1)

円筒状被加工物外周面を切削加工する円筒状電子写真用基体の製造方法において、切削加工により発生する振動、変位又は発信音を監視し切削加工におけるビビリ発生を自動的に検知判断し、更には切削加工においてビビリが発生したと判断した場合、ビビリ発生時特有の発信周波数を特定し以降の切削加工で、異常発生時特有の振動の発信周波数がS(Hz)、前記工具又は円筒状被加工物を回転させる主軸の一秒当りの回転数がRであった場合、前記主軸の回転数を下記R’の範囲の値に自動的に変化させる制御を行うことを特徴とする円筒状電子写真用基体の製造方法;
Figure 2004351597
又は
Figure 2004351597
In the method of manufacturing a cylindrical electrophotographic substrate for cutting an outer peripheral surface of a cylindrical workpiece, vibration, displacement or transmission sound generated by the cutting is monitored, and chattering in the cutting is automatically detected and determined. When it is determined that chatter has occurred in the cutting process, the specific transmission frequency at the time of chatter occurrence is specified, and in the subsequent cutting process, the transmission frequency of the vibration specific at the time of occurrence of the abnormality is S (Hz), and the tool or the cylindrical cover is used. When the number of revolutions per second of the spindle for rotating the workpiece is R, control is performed to automatically change the number of revolutions of the spindle to a value in the range of R 'below. A method for producing a photographic substrate;
Figure 2004351597
Or
Figure 2004351597
JP2003154889A 2003-05-30 2003-05-30 Cylindrical electrophotographic photoreceptor substrate manufacturing method, cylindrical electrophotographic substrate, electrophotographic photoreceptor, and cylindrical electrophotographic substrate manufacturing apparatus Expired - Fee Related JP4078252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154889A JP4078252B2 (en) 2003-05-30 2003-05-30 Cylindrical electrophotographic photoreceptor substrate manufacturing method, cylindrical electrophotographic substrate, electrophotographic photoreceptor, and cylindrical electrophotographic substrate manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154889A JP4078252B2 (en) 2003-05-30 2003-05-30 Cylindrical electrophotographic photoreceptor substrate manufacturing method, cylindrical electrophotographic substrate, electrophotographic photoreceptor, and cylindrical electrophotographic substrate manufacturing apparatus

Publications (3)

Publication Number Publication Date
JP2004351597A true JP2004351597A (en) 2004-12-16
JP2004351597A5 JP2004351597A5 (en) 2006-06-15
JP4078252B2 JP4078252B2 (en) 2008-04-23

Family

ID=34049418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154889A Expired - Fee Related JP4078252B2 (en) 2003-05-30 2003-05-30 Cylindrical electrophotographic photoreceptor substrate manufacturing method, cylindrical electrophotographic substrate, electrophotographic photoreceptor, and cylindrical electrophotographic substrate manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4078252B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035343A (en) * 2004-07-23 2006-02-09 Asahi Glass Fine Techno Co Ltd Method for detecting cracking of glass plate and device therefor, and method for polishing glass plate and device therefor
JP2009274179A (en) * 2008-05-15 2009-11-26 Mitsubishi Heavy Ind Ltd Control method of machine tool and control device used for the same
JP2010247316A (en) * 2009-04-10 2010-11-04 Nt Engineering Kk Method and device for suppressing chattering of work machine
JP2013240837A (en) * 2012-05-17 2013-12-05 Okuma Corp Method and apparatus for reducing machining vibration of machine tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006035343A (en) * 2004-07-23 2006-02-09 Asahi Glass Fine Techno Co Ltd Method for detecting cracking of glass plate and device therefor, and method for polishing glass plate and device therefor
JP4569749B2 (en) * 2004-07-23 2010-10-27 旭硝子株式会社 Glass plate crack detection method and apparatus, and glass plate polishing method and apparatus
JP2009274179A (en) * 2008-05-15 2009-11-26 Mitsubishi Heavy Ind Ltd Control method of machine tool and control device used for the same
JP2010247316A (en) * 2009-04-10 2010-11-04 Nt Engineering Kk Method and device for suppressing chattering of work machine
CN102387892A (en) * 2009-04-10 2012-03-21 日本Nt工程技术株式会社 Method and device for suppressing chattering of work machine
JP2013240837A (en) * 2012-05-17 2013-12-05 Okuma Corp Method and apparatus for reducing machining vibration of machine tool
US9221143B2 (en) 2012-05-17 2015-12-29 Okuma Corporation Machining vibration suppressing method and machining vibration suppressing apparatus for machine tool

Also Published As

Publication number Publication date
JP4078252B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP2007292772A (en) Method and system of evaluating surface roughness of image forming apparatus component, and method and system for cutting
JP4667270B2 (en) Cutting method of support for cylindrical electrophotographic photosensitive member
JP4078252B2 (en) Cylindrical electrophotographic photoreceptor substrate manufacturing method, cylindrical electrophotographic substrate, electrophotographic photoreceptor, and cylindrical electrophotographic substrate manufacturing apparatus
US6656652B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2002174921A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2006201686A (en) Electrophotographic photoreceptor, process cartridge, and electrophotographic apparatus
JPH08292592A (en) Base body for electrophotographic photoreceptor and its production
JP2005186253A (en) Cutting method for peripheral surface of cylindrical member, manufacturing method for electrophotographic photoreceptor, manufacturing method for electrophotographic photoreceptor unit, manufacturing method for developer carrier, manufacturing method for developer carrier unit, process cartridge, and electrophotographic device
JP2005292363A (en) Method for manufacturing cylindrical electrophotographic photoreceptor substrate, and cutting device used therefor
JP3840178B2 (en) Electrophotographic photosensitive member support manufacturing method, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP3913168B2 (en) Support manufacturing method, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4866258B2 (en) Cutting method and electrophotographic photosensitive member
JP3907583B2 (en) Electrophotographic photosensitive member and manufacturing method thereof, process cartridge, and electrophotographic apparatus
JP2006239850A (en) Substrate for photosensitive body, manufacturing method of substrate for photosensitive body and photosensitive body
JP2003295479A (en) Device and method for manufacturing cylindrical body for electrophotographic device, and cylindrical body for electrophotography
JPH09239649A (en) Cylindrical member grinding device for electrophotography
JP4181763B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP4262124B2 (en) Cutting method and method for producing electrophotographic photosensitive member using the cutting method
JP4779753B2 (en) Manufacturing method of cylindrical tube for electrophotographic member, and electrophotographic member, electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus using cylindrical tube for electrophotographic member produced by the manufacturing method
JP2003202691A (en) Electrophotographic photoreceptor, manufacturing method for electrophotographic photoreceptor, and process cartridge and electrophotographic device having electrophotographic photoreceptor
JP2005141120A (en) Electrophotographic photoreceptor and its substrate
JP2004101815A (en) Electrophotographic photoreceptor
JP2008216308A (en) Manufacturing method of cylindrical substrate for electrophotographic photoreceptor
JP4174378B2 (en) Method for producing cylindrical substrate for electrophotographic photosensitive member, method for producing electrophotographic photosensitive member, and electrophotographic photosensitive member
JP3566607B2 (en) Electrophotographic cylindrical member grinding apparatus and grinding method, and electrophotographic cylindrical member

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees