【0001】
【発明の属する技術分野】
本発明は、半導体の結晶成長方法、結晶成長装置及びそれらを用いて形成された半導体基板に関し、さらに詳しくはシリコン基板上への化合物半導体のエピタキシャル成長の方法及びそれを行う装置に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
ガリウム砒素(GaAs)は、シリコン(Si)に比べて電子移動度が大きいため、これまではシリコンで実現できかった高速デバイス(HEMT、MESFET等)用の材料として用いられており、また直接遷移型半導体であるため、光デバイス( LEDや半導体レーザなど)等としても用いられている。しかし、ガリウム砒素基板は、高価であると共に機械的に脆く、大口径化の進んでいるシリコン基板に比べると、大口径の基板を入手することは困難でありコスト低減が困難であった。
【0003】
そこで、シリコン基板上にガリウム砒素等の化合物半導体をエピタキシャル成長させる技術が盛んに研究されているが、ガリウム砒素はシリコンに比べ格子定数が約4%大きく、また熱膨張係数も約2.5倍の値となる。この格子定数の差は、格子不整合によるミスフィット転位を発生させる問題があり、熱膨張係数の差は、化合物半導体の結晶成長後の冷却過程でウエハの反り、あるいは反り緩和による転位を発生させるという問題があり、良質なガリウム砒素の層をシリコン基板上に形成することは不可能であった。
【0004】
これらの問題を解決するため、シリコン基板上にアモルファス状の低温ガリウム砒素バッファ層を介してガリウム砒素の結晶成長を行う2段階成長法や、中間層に歪超格子層を導入する方法が提案されている。ところが、これらの方法を用いた場合でも、ガリウム砒素の層の転位密度は、例えば、半導体レーザで許容される転位密度である103 cm−2 に比べて約2〜3桁大きい値となっていたため、さらなる改善が必要とされていた。また、これらの方法は、高温で結晶成長させる必要があり、結晶成長中にシリコン基板からの不純物元素がエピタキシャル層中に取り込まれるオートドーピングが発生するため、高速デバイスで必要な高抵抗のノンドープGaAs膜を得ることが困難であった。
【0005】
そこで、以下のような技術も提案されている。
(1)シリコン基板上の所定領域に、ガリウム砒素の結晶成長温度においてガリウム砒素にドーピングされない安定な物質の皮膜層を形成し、その後、皮膜層を有さないシリコン基板の表面が露出した領域にガリウム砒素を結晶成長させる方法(特許文献1参照)。
(2)シリコン基板上にガリウム砒素を結晶成長させてガリウム砒素層を形成した後、酸化亜鉛膜よりガリウム砒素層にZnを拡散させて、Znをガリウム砒素層の貫通転位に入れる方法(特許文献2参照)。
(3)シリコン基板上にマスク層であるシリコン窒化層を形成し、その開口部内に、シリコンより原子半径が大きくシリコンと四配位結合する元素であるGeをイオン注入してイオン注入層を形成し、イオン注入層上のみに、ガリウム砒素層を形成する方法(特許文献3参照)。
(4)シリコン基板上に局所的に中間層であるGe層を形成し、シリコン基板が吸収せずGe層のみが吸収する波長の光を照射してGe層のみを加熱して、Ge層上にガリウム砒素層を形成する方法(特許文献4参照)。
(5)図4に示すように、下地シリコン基板20の裏面にエッチングにより掘り込み21を形成し、熱歪を緩和する方法(例えば、特許文献5参照)。
【0006】
上記特許文献1〜5のいずれの方法も、図5に示すように、結晶成長装置の結晶成長室内に設けられた平坦な支持板25上で下地シリコン基板20を支持し、この状態で結晶成長を行うようにしていた。なお、図4において、26は支持板21側に下地シリコン基板20を押える押え部材であり、27は支持板21を介して下地シリコン基板20を加熱するヒータである。
【0007】
【特許文献1】
特開平3−34535号公報
【特許文献2】
特開平8−264546号公報
【特許文献3】
特開平8−316149号公報
【特許文献4】
特開平8−316152号公報
【特許文献5】
特開平6−5509号公報
【0008】
しかしながら、上記(1)〜(4)の方法では、十分に転位密度を小さくすることができない、工程数が増加しコストアップする、オートドープの発生を十分に抑制できない、熱歪により生じる基板の反りあるいは反り緩和による転位を十分に抑制できないといった課題を残している。
また、上記(5)の方法については、下地シリコン基板20における化合物半導体層形成領域22の厚みTが、堀り込み21により他の領域よりも薄い数μm〜数十μm程度の厚さとなっており、これにより化合物半導体層形成領域22の熱歪を緩和するようにしているが、掘り込み21を形成するためのフォトリソグラフィやエッチング等の工程が増えコストアップするという欠点と、厚みTが数μm〜数十μm程度と薄い化合物半導体層形成領域22の面積を大きくとると、下地シリコン基板20の強度が低下するという問題がある。なお、図4において、23は誘電体膜である。
【0009】
本発明の主要な目的の一つは、下地用半導体基板上に、転位密度が十分小さい高抵抗のノンドープ半導体結晶層を容易に結晶成長させることができる半導体の結晶成長方法、結晶成長装置及びそれらを用いて形成された高品質、高性能な半導体基板を提供することにある。
【0010】
【課題を解決するための手段】
かくして、本発明によれば、真空に保持できる結晶成長室と、この結晶成長室内に結晶材料用の原料を供給する原料供給部と、結晶成長室内に設けられ、下地用半導体基板を支持する支持部と、結晶成長室内で下地用半導体基板を所定温度に加熱する加熱部とを備え、
前記支持部が、所定の曲率をもって凸状に湾曲する支持曲面を有し、この支持曲面に沿わせた状態で下地用半導体基板を支持可能な支持部材を備えたことを特徴とする半導体の結晶成長装置が提供される。
【0011】
つまり、本発明は、下地用半導体基板の表面に、この下地用半導体基板よりも格子定数の大きい所望の半導体の結晶層を結晶成長させるための結晶成長装置であって、
▲1▼結晶成長に際して、支持部材の支持曲面上に下地用半導体基板を設置し、下地用半導体基板を支持曲面に沿わせて表面側が凸状に膨らむように曲げることにより、表面の格子定数を大きくすることができる。このとき、下地用半導体基板の表面の格子定数が、結晶成長させる半導体の格子定数と略等しくなるような曲率に支持曲面を湾曲させて支持部材が形成されていることにより、下地用半導体基板の表面に所望の半導体の結晶層をミスフィット転位が生ずることなくエピタキシャル成長させることができ、良質な所望の半導体結晶層を得ることができる。
▲2▼また、本発明の半導体の結晶成長装置では、従来のような平坦な支持板上に下地用半導体基板を支持してその表面に半導体層を結晶成長させる場合に比して、低温での結晶成長が可能となるため、下地半導体基板とこれに積層される半導体層との熱膨張係数の差が緩和される。この結果、結晶成長後の冷却過程での半導体基板の反り、あるいは反り緩和による転位を発生させることがない。
▲3▼さらに、低温での結晶成長が可能なことから、下地用半導体基板からの不純物により汚染されることのない、高抵抗のノンドープの半導体層を得ることができる。
▲4▼したがって、例えば、シリコンからなる下地用半導体基板(シリコンウエハ)上に、シリコンよりも格子定数が約4%大きい高抵抗ガリウム砒素結晶成長層(GaAs)を設けた半導体基板を形成することが可能となり、この半導体基板を用いることにより高性能のHEMT、MESFET等の高速デバイスを得ることが可能となる。
▲5▼さらに、ガリウム砒素結晶成長中にシリコンやベリリウム等のドーパントを照射して、所定のN型、P型ガリウム砒素結晶層を順次形成することにより、高性能のLEDや半導体レーザ等の光デバイスなどを得ることも実現できる。
▲6▼また、本発明の結晶成長装置は、既設のMBE法用又はMOCVD法用の装置の支持部を、本発明の支持部と置き換えることにより製作することができ、設備コストを大幅にアップさせることがない。
▲7▼また、本発明の支持部材は構成が簡素であり、製作が容易であると共に、支持部材の支持曲面に下地用半導体基板を沿わせた状態に支持するだけで、簡単に下地用半導体基板の表面を所定の曲率の球面状に湾曲させることができ、複雑な装置を必要としない。
なお、支持部材は、下地用半導体基板を支持する表面側の支持曲面が少なくとも所定の曲率で湾曲する球面を有していれば、全体として板状、ブロック状等であっても形状は特に限定されるものではないが、支持部材を介して下地用半導体基板を加熱する場合は、熱伝導率の観点から支持部材を板状に形成することが好ましい。
【0012】
ここで、本発明において、下地用半導体基板としては、特に限定されるものではないが、機械的強度が比較的大きく、大口径化が容易なシリコン基板(ウエハ)を代表に挙げることができる。なお、下地用半導体基板としては、その厚みが200μm以下のものとされる。これは、厚みが200μmを越えると、支持部材の支持曲面の曲率と略等しい曲率の球面状に下地用半導体基板を湾曲させることが難しくなるからである。厚みの下限は、実質的に得ることができるシリコンウエハの薄さの限界値とすることができる。
また、下地用半導体基板上に結晶成長させる半導体としては、下地用半導体基板を構成する半導体の格子定数よりも大きいものであれば、特に限定されるものではなく、例えばGaAs、AlAs、ZnSe等の化合物半導体が挙げられる。
【0013】
本発明の半導体の結晶成長装置において、支持部材の支持曲面は、円板状の下地用半導体基板の直径Dと略等しい大きさの円形であって、下地用半導体基板の結晶成長させる半導体の格子定数が下地用半導体基板の格子定数よりx%大きいとき、支持部材の支持曲面は、支持曲面に沿って中心を通る曲線の長さL1が、L1=(1+x/100)Dに略等しい曲率の球面とすることができる。したがって、下地用半導体基板がシリコンウエハであり、結晶成長させる半導体がガリウム砒素である場合には、支持部材の支持曲面は、L2=(1+4/100)Dに略等しくなるような曲率の球面とされ、この支持曲面に沿わせた状態でシリコンウエハの表面にガリウム砒素を結晶成長させることができる。
【0014】
また、本発明の半導体の結晶成長装置において、支持部材にて下地用半導体基板を保持した状態で、下地用半導体基板の周縁部を支持曲面側へ押える押え部材をさらに備えてなるものであってもよい。この押え部材を設けることにより、結晶成長時において、下地用半導体基板を支持部材の支持曲面に沿わせた状態を簡単かつ確実に維持させることができる。この押え部材としては、支持部材側への移動によって、支持部材の支持曲面上に設置した下地用半導体基板の周縁部を支持曲面側に均一に押圧し、かつ下地用半導体基板の表面における結晶成長領域に対応する部分に開口部を有するリング状の押圧部を少なくとも有していれば、特に形状、構造は限定されるものではない。なお、押え部材を支持部材側に移動させて下地用半導体基板の周縁部を押圧し、かつ押え部材を支持部材から離間させる方向に移動させて開放し、下地用半導体基板の支持部材への設置、取り出しを可能とさせる往復動手段を設けてもよい。
【0015】
本発明において、支持部材及び押え部材の構成材料としては、結晶成長質内を汚染しない物質であれば特に限定されるものではなく、例えば、多孔質ボロンナイトライド、石英、サファイヤ等を挙げることができるが、その中でも加工が容易な多孔質ボロンナイトライドが好ましい。
【0016】
本発明は、別の観点によれば、下地用半導体基板をその表面が所定の曲率で凸状に湾曲するように保持し、この下地用半導体基板よりも格子定数が大きい半導体の結晶層を、下地用半導体の凸状に湾曲した表面に結晶成長させる半導体の結晶成長方法を提供することができる。
つまり、下地用半導体基板の表面に、この下地用半導体基板よりも格子定数の大きい所望の半導体の結晶層を結晶成長させるに際して、下地用半導体基板をその表面側が凸状に膨らむように曲げることにより、表面の格子定数を大きくする。このとき、下地用半導体基板の表面の格子定数が、結晶成長させる半導体の格子定数と略等しくなるような曲率に下地用半導体基板の表面を湾曲させることにより、下地用半導体基板の表面に所望の半導体の結晶層をミスフィット転位が生ずることなくエピタキシャル成長させることができ、良質な所望の半導体結晶層を得ることができるなど、上記▲1▼〜▲6▼と同様の効果を得ることができる。
【0017】
本発明の半導体の結晶成長方法において、結晶成長させる半導体の格子定数が下地用半導体基板の格子定数よりx%大きく、かつ下地用半導体基板の直径をDとしたとき、湾曲状に保持された下地用半導体基板の凸状に湾曲した表面の中心を通る曲線の長さL2が、L2=(1+x/100)Dに略等しい曲率の球面となるように、下地用半導体基板を保持することができる。この際、本発明の半導体の結晶装置における支持部材の支持曲面に下地用半導体基板を沿わせた状態に保持することにより、上記長さL2に略等しい曲率の球面に下地用半導体基板の表面を簡単に湾曲させることができる。したがって、例えば、下地用半導体基板がシリコンからなり、結晶成長させる半導体がガリウム砒素である場合には、支持部材の支持曲面に下地用シリコン基板(シリコンウエハ)を沿わせた状態に保持することにより、下地用シリコン基板の凸状に湾曲した表面が、L2=(1+4/100)Dに略等しくなるような曲率の球面とされる。
【0018】
本発明において、下地用半導体基板を曲げて凸状に湾曲した表面に半導体を結晶成長させる方法としては、従来公知のMBE法又はMOCVD法を用いることができ、容易に半導体の結晶成長を行うことができる。
【0019】
本発明は、さらに別の観点によれば、上述の半導体の結晶成長方法、及び半導体の結晶成長装置により形成された、良質な所望の半導体結晶層を備えた半導体基板を提供することができる。この半導体基板は、高性能のHEMT、MESFET等の高速デバイス用、あるいは高性能のLEDや半導体レーザ等の光デバイス用として好適である。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳説する。なお、本発明は実施の形態に限定されるものではない。
【0021】
[実施の形態1]
図1は本発明に係る半導体の結晶成長装置の実施の形態1を示す概略構成図であり、図2は同実施の形態1における結晶成長室内で下地用半導体基板が支持部にて支持された状態を示す断面図であり、図3は図2の状態の下地用半導体基板の表面の曲率を説明する図である。
【0022】
本発明の半導体の結晶成長装置1は、MEB法(分子線エピタキシー法)により結晶成長を行うことができる装置であって、結晶成長室2、結晶成長室2に設けられ、原料物質を加熱して蒸発させる原料供給部としてのるつぼ3、蒸発させた原料物質に分子線を照射する図示しない電子銃、結晶成長室2内に設けられ、下地用半導体基板を支持する支持部4、支持部4を介して下地用半導体基板であるシリコンウエハWを加熱する加熱部としてのヒータ5、結晶成長時に支持部4とともにシリコンウエハWを回転させる図示しない回転駆動部、結晶成長室2内のガスを排気する図示しない真空排気系など、MEB法によりシリコンウエハW上に所定の半導体を結晶成長させるのに必要な手段を備える。
【0023】
支持部4は、球面状に湾曲した円板であり、その表面側が凸状に所定の曲率で湾曲した支持曲面6aとされた支持部材6と、支持部材6の周縁部に沿って嵌合する筒部7a及び筒部7aの支持曲面6a側の端縁に沿って内方へ突出状に連設されたリング状の押圧部7bからなる押え部材7と、押え部材7を支持部材6の軸心方向に往復移動させる図示しない往復動手段とを備える。往復動手段としては、例えば、押え部材7を支持部材6の軸心方向に往復移動可能にガイドするガイド部と、押え部材7をガイド部に沿って往復移動させる駆動部とを備えた構成を一例として挙げることができる。この場合、支持部材6、押え部材7及び往復動手段における少なくとも結晶成長室2内に存在する部分は、結晶成長時に結晶成長室2内を汚染しない物質、例えば多孔質ボロンナイトライドにて構成される。
【0024】
ここで、図3を参照しながら支持部材6の支持曲面6aの曲率について説明する。
下地用半導体基板(この場合、シリコンウエハW)に対して、その上に結晶成長させる物質の結晶格子定数が、下地用半導体基板の結晶格子定数よりx%大きいとする。また、下地用半導体基板の直径をDとする(図示省略)。そして、結晶成長時において、支持部4にて湾曲状に保持された下地用半導体基板の凸状に湾曲した表面の中心を通る曲線の長さL1が、L1=(1+x/100)Dに略等しい曲率の球面となるように、下地用半導体基板を湾曲させたいとする。このような場合、支持部材6において、その支持曲面6aに沿って中心を通る曲線の長さL2は、上記長さL1と同じ又はほとんど同じ値に設定される。つまり、支持曲面6aは、
L2 = (1+ x/100) D
となるような球面に設計される。具体的には、支持部材6の支持曲面6aの半径をR, θをラジアンにとって
D = 2・R・sinθ
L2= R・2θ
の関係があり、これより
sinθ/θ = 1/(1+x/100)
の関係を得る。sinθを、θ≒θ−1/3!xθ3で近似して、
θ≒√(6x/(100+x))、R≒5・D・(1+x/100) 3/2/(√(6x))
となる球面を作成すればよい。
本実施の形態1の場合、下地用半導体基板はシリコンウエハWであり、このシリコンウエハW上に、例えばシリコンに比べ格子定数が約4%大きいガリウム砒素を結晶成長させるには、x=4とし、また、6インチのシリコンウエハWを使用するとすれば、2θ≒0.96 (55度)、R≒16.6 cm で設計される。
【0025】
【実施例】
次に、図1〜図3にも基づいて本発明の半導体の結晶成長方法の一実施例について説明する。本実施例では分子線エピタキシー(MBE)法を用いて結晶成長させた。下地用のシリコンウエハWは、直径6インチで、厚さが通常より薄い150μmのものを使用した。支持部4の支持部材6及び押え部材7は、加工が容易な多孔質ボロンナイトライド(PBN)で上述のように2θ≒0.96 (55度)、R≒16.6 cm で設計された球面を持つように作成された。
【0026】
シリコンウエハWはHFで洗浄されて、乾燥後、10分以内に真空の予備室に運ばれ、結晶成長室2の支持部4の支持部材6に設置された。結晶成長前の常温では、シリコンウエハWは、平坦に支持されるが、ウエハ温度が500℃を超えたところで押え部材7が稼動し、シリコンウエハWの周縁部が押え部材7にて支持部材6の支持曲面6aに押圧され、シリコンウエハWは球面状に曲げられる。
【0027】
その後、ヒータ5によってシリコンウエハWは700℃に熱せられる。シリコンウエハWの表面は凸状に湾曲しており、この張力によってシリコンウエハWの表面の自然酸化膜は700℃の低温で除去されるので、結晶成長室2内をシリコンで汚染せずに高抵抗のノンドープGaAs膜を得ることができる。そして、ウエハ温度を530℃まで低下させ、結晶成長室2の真空度が2×10−10torr以下になるまで待った。
【0028】
その後、通常の分子線エピタキシー(MBE)法で結晶成長装置1のるつぼ3に入ったガリウムと砒素の分子線をシリコンウエハWの凸状に湾曲した表面Waに照射した。シリコンウエハWの表面Waは、本発明の支持部4の支持部材6及び押え部材7により球面状に曲げられ、それによって表面Waの格子定数がガリウム砒素と略同じ格子定数となるため、ガリウム砒素がエピタキシャルに成長し、シリコンウエハWの表面Wa上に膜厚:1000nmのガリウム砒素結晶層を結晶成長させることができた。得られたガリウム砒素結晶層は、結晶成長温度が530℃と低温のため、シリコンウエハWからのドーピングがなく、高抵抗のガリウム砒素結晶層であった。
【0029】
その後、ガリウム砒素結晶層の上に、ノンドープのAlGaAsを膜厚:10nmで結晶成長させ、その上にノンドープのガリウム砒素を膜厚:1000nmで結晶成長させ、高品質のノンドープのガリウム砒素結晶層を得た。この高抵抗ガリウム砒素結晶層を用いることで、高速デバイス(HEMT、MESFET等)をシリコンウエハW上に形成することが実現できた。なお、光デバイス(LEDや半導体レーザ等)などを作成する際には、結晶成長中にシリコンやベリリウム等のドーパントを照射して、所定のN型、P型ガリウム砒素結晶層を順次形成すればよい。
【0030】
なお、本実施例では、MBE法を使用したが、MOCVD法では、支持部4(サセプター)を本実施例と同じ構造にすれば同様の効果が得られることは言うまでもない。また、本実施例では支持部4は多孔質ボロンナイトライドで構成されたが、結晶成長室2内を汚染しない物質であればよく、例えば石英等でもよい。
【0031】
【発明の効果】
本発明によれば、下地用半導体基板の表面に、この下地用半導体基板よりも格子定数の大きい所望の半導体の結晶層を結晶成長させるに際して、下地用半導体基板をその表面側が凸状に膨らむように曲げることにより、表面の格子定数を大きくする。このとき、下地用半導体基板の表面の格子定数が、結晶成長させる半導体の格子定数と略等しくなるような曲率に下地用半導体基板の表面を湾曲させることにより、下地用半導体基板の表面に所望の半導体の結晶層をミスフィット転位が生ずることなくエピタキシャル成長させることができ、良質な所望の半導体結晶層を得ることができる。また、従来のような平坦に下地用半導体基板を保持してその表面に半導体層を結晶成長させる場合に比して、低温での結晶成長が可能であるため、下地半導体基板とこれに積層される半導体層との熱膨張係数の差が緩和される。この結果、結晶成長後の冷却過程での半導体基板の反り、あるいは反り緩和による転位を発生させることがない。さらに、低温での結晶成長が可能であるため、下地用半導体基板からの不純物により汚染されることのない、高抵抗のノンドープの半導体層を得ることができる。したがって、例えば、シリコンからなる下地用半導体基板(シリコンウエハ)上に、シリコンよりも格子定数が約4%大きい高抵抗ガリウム砒素結晶成長層(GaAs)を設けた半導体基板を形成することが可能となり、この半導体基板を用いることにより高性能のHEMT、MESFET等の高速デバイスを得ることが可能となる。さらに、ガリウム砒素結晶成長中にシリコンやベリリウム等のドーパントを照射して、所定のN型、P型ガリウム砒素結晶層を順次形成することにより、高性能のLEDや半導体レーザ等の光デバイスなどを得ることも実現できる。
【図面の簡単な説明】
【図1】本発明に係る半導体の結晶成長装置の実施の形態1を示す概略構成図である。
【図2】同実施の形態1における結晶成長室内で下地用半導体基板が支持部にて支持された状態を示す断面図である。
【図3】図2の状態の下地用半導体基板の表面の曲率を説明する図である。
【図4】従来の下地用半導体基板上に半導体結晶層を結晶成長させた状態を示す断面図である。
【図5】従来の半導体の結晶成長装置における支持部により下地用半導体基板を支持した状態を示す断面図である。
【符号の説明】
1 半導体の結晶成長装置
2 結晶成長室
3 るつぼ(原料供給部)
6a 支持曲面
6 支持部材
7 押え部材
W シリコンウエハ(下地用半導体基板)
Wa 表面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for growing a semiconductor crystal, a crystal growth apparatus, and a semiconductor substrate formed using the same, and more particularly, to a method for epitaxially growing a compound semiconductor on a silicon substrate and an apparatus for performing the method.
[0002]
Problems to be solved by the prior art and the invention
Gallium arsenide (GaAs) has a higher electron mobility than silicon (Si), and is therefore used as a material for high-speed devices (HEMT, MESFET, etc.) that could not be realized by silicon, and has a direct transition. Since it is a type semiconductor, it is also used as an optical device (such as an LED or a semiconductor laser). However, gallium arsenide substrates are expensive and mechanically brittle, and it is difficult to obtain a large-diameter substrate and to reduce the cost, as compared with a silicon substrate whose diameter is increasing.
[0003]
Therefore, a technique for epitaxially growing a compound semiconductor such as gallium arsenide on a silicon substrate has been actively studied. Gallium arsenide has a lattice constant of about 4% larger than silicon and a thermal expansion coefficient of about 2.5 times that of silicon. Value. This difference in lattice constant has a problem of causing misfit dislocation due to lattice mismatch, and the difference in thermal expansion coefficient causes dislocation due to wafer warpage or warpage relaxation in a cooling process after crystal growth of a compound semiconductor. Therefore, it has been impossible to form a high quality gallium arsenide layer on a silicon substrate.
[0004]
In order to solve these problems, a two-step growth method of growing gallium arsenide crystal on a silicon substrate via an amorphous low-temperature gallium arsenide buffer layer and a method of introducing a strained superlattice layer into an intermediate layer have been proposed. ing. However, even when these methods are used, the dislocation density of the gallium arsenide layer is a value approximately two to three orders of magnitude higher than, for example, 10 3 cm −2 which is a dislocation density allowed for a semiconductor laser. Therefore, further improvement was needed. In these methods, it is necessary to grow a crystal at a high temperature, and during the crystal growth, auto-doping occurs in which an impurity element from a silicon substrate is taken into an epitaxial layer. Therefore, a high-resistance non-doped GaAs required for a high-speed device is generated. It was difficult to obtain a film.
[0005]
Therefore, the following technology has been proposed.
(1) A film layer of a stable material not doped with gallium arsenide at a crystal growth temperature of gallium arsenide is formed in a predetermined region on the silicon substrate, and then, in a region where the surface of the silicon substrate having no film layer is exposed, A method of growing gallium arsenide crystal (see Patent Document 1).
(2) A method in which gallium arsenide is crystal-grown on a silicon substrate to form a gallium arsenide layer, and then Zn is diffused from the zinc oxide film into the gallium arsenide layer, and Zn is introduced into threading dislocations in the gallium arsenide layer (Patent Document) 2).
(3) A silicon nitride layer as a mask layer is formed on a silicon substrate, and an ion implantation layer is formed by ion-implanting Ge, which is an element having an atomic radius larger than that of silicon and four-coordinated with silicon, in the opening. And a method of forming a gallium arsenide layer only on the ion-implanted layer (see Patent Document 3).
(4) A Ge layer, which is an intermediate layer, is locally formed on a silicon substrate, and is irradiated with light having a wavelength that is not absorbed by the silicon substrate but absorbed only by the Ge layer, and only the Ge layer is heated. (See Patent Document 4).
(5) As shown in FIG. 4, a method in which a dug 21 is formed on the back surface of the underlying silicon substrate 20 by etching to reduce thermal distortion (for example, see Patent Document 5).
[0006]
In each of the above-mentioned Patent Documents 1 to 5, as shown in FIG. 5, a base silicon substrate 20 is supported on a flat support plate 25 provided in a crystal growth chamber of a crystal growth apparatus. Had to do. In FIG. 4, reference numeral 26 denotes a pressing member for pressing the base silicon substrate 20 toward the support plate 21, and reference numeral 27 denotes a heater for heating the base silicon substrate 20 via the support plate 21.
[0007]
[Patent Document 1]
JP-A-3-34535 [Patent Document 2]
JP-A-8-264546 [Patent Document 3]
JP-A-8-316149 [Patent Document 4]
JP-A-8-316152 [Patent Document 5]
JP-A-6-5509
However, in the above methods (1) to (4), the dislocation density cannot be sufficiently reduced, the number of steps increases and the cost increases, the occurrence of autodoping cannot be sufficiently suppressed, There remains a problem that dislocation due to warpage or warpage relaxation cannot be sufficiently suppressed.
In the above method (5), the thickness T of the compound semiconductor layer formation region 22 in the base silicon substrate 20 is reduced to about several μm to several tens μm by engraving 21 so as to be thinner than other regions. Thus, the thermal strain in the compound semiconductor layer formation region 22 is reduced, but the number of processes such as photolithography and etching for forming the digging 21 increases and the cost increases. If the area of the compound semiconductor layer formation region 22 as thin as about μm to several tens μm is increased, there is a problem that the strength of the underlying silicon substrate 20 is reduced. In FIG. 4, reference numeral 23 denotes a dielectric film.
[0009]
One of the main objects of the present invention is to provide a semiconductor crystal growth method, a crystal growth apparatus, and a semiconductor device capable of easily growing a high-resistance non-doped semiconductor crystal layer having a sufficiently low dislocation density on a base semiconductor substrate. An object of the present invention is to provide a high-quality, high-performance semiconductor substrate formed by using the method.
[0010]
[Means for Solving the Problems]
Thus, according to the present invention, a crystal growth chamber that can be maintained in a vacuum, a raw material supply unit that supplies a raw material for a crystal material into the crystal growth chamber, and a support that is provided in the crystal growth chamber and supports the base semiconductor substrate. And a heating unit for heating the underlying semiconductor substrate to a predetermined temperature in the crystal growth chamber,
A semiconductor crystal, comprising: a support member having a support curved surface curved in a convex shape with a predetermined curvature, and a support member capable of supporting a base semiconductor substrate along the support curved surface. A growth device is provided.
[0011]
That is, the present invention is a crystal growth apparatus for growing a crystal layer of a desired semiconductor having a larger lattice constant than the base semiconductor substrate on the surface of the base semiconductor substrate,
{Circle around (1)} At the time of crystal growth, an underlying semiconductor substrate is placed on the support curved surface of the support member, and the underlying semiconductor substrate is bent along the support curved surface so that the surface side swells in a convex shape, thereby reducing the lattice constant of the surface. Can be larger. At this time, the support member is formed by curving the support curved surface to have a curvature such that the lattice constant of the surface of the base semiconductor substrate is substantially equal to the lattice constant of the semiconductor to be crystal-grown. A crystal layer of a desired semiconductor can be epitaxially grown on the surface without causing misfit dislocation, and a desired semiconductor crystal layer of good quality can be obtained.
{Circle around (2)} The semiconductor crystal growth apparatus of the present invention has a lower temperature than the conventional case where a base semiconductor substrate is supported on a flat support plate and a semiconductor layer is grown on the surface. Crystal growth is possible, so that the difference in thermal expansion coefficient between the underlying semiconductor substrate and the semiconductor layer laminated thereon is reduced. As a result, the semiconductor substrate does not warp in the cooling process after the crystal growth or dislocation due to warpage relaxation occurs.
{Circle around (3)} Since the crystal can be grown at a low temperature, a high-resistance non-doped semiconductor layer which is not contaminated by impurities from the underlying semiconductor substrate can be obtained.
{Circle around (4)} Therefore, for example, forming a semiconductor substrate provided with a high-resistance gallium arsenide crystal growth layer (GaAs) having a lattice constant about 4% larger than that of silicon on a base semiconductor substrate (silicon wafer) made of silicon The use of this semiconductor substrate makes it possible to obtain high-performance devices such as HEMTs and MESFETs.
(5) Further, by irradiating a dopant such as silicon or beryllium during the growth of the gallium arsenide crystal, predetermined N-type and P-type gallium arsenide crystal layers are sequentially formed, so that light of high-performance LEDs and semiconductor lasers can be obtained. It is also possible to obtain devices and the like.
{Circle around (6)} The crystal growth apparatus of the present invention can be manufactured by replacing the support part of the existing apparatus for MBE method or MOCVD method with the support part of the present invention, greatly increasing equipment costs. I will not let you.
{Circle around (7)} The support member of the present invention has a simple structure, is easy to manufacture, and can be easily formed by simply supporting the base semiconductor substrate along the support curved surface of the support member. The surface of the substrate can be curved into a spherical shape with a predetermined curvature, and no complicated device is required.
The shape of the support member is not particularly limited as long as the support member has a spherical surface curved at a predetermined curvature at least on a front surface side supporting the base semiconductor substrate, even if the support member is plate-shaped or block-shaped as a whole. However, when the base semiconductor substrate is heated via the support member, the support member is preferably formed in a plate shape from the viewpoint of thermal conductivity.
[0012]
Here, in the present invention, as the base semiconductor substrate, although not particularly limited, a silicon substrate (wafer) having a relatively large mechanical strength and easy to have a large diameter can be exemplified. The base semiconductor substrate has a thickness of 200 μm or less. This is because if the thickness exceeds 200 μm, it becomes difficult to curve the base semiconductor substrate into a spherical shape having a curvature substantially equal to the curvature of the support curved surface of the support member. The lower limit of the thickness can be a limit of the thickness of the silicon wafer that can be substantially obtained.
The semiconductor to be crystal-grown on the base semiconductor substrate is not particularly limited as long as it is larger than the lattice constant of the semiconductor constituting the base semiconductor substrate. For example, GaAs, AlAs, ZnSe, etc. Compound semiconductors are mentioned.
[0013]
In the semiconductor crystal growth apparatus of the present invention, the support curved surface of the support member is a circle having a size substantially equal to the diameter D of the disk-shaped base semiconductor substrate, and the lattice of the semiconductor on which the base semiconductor substrate is grown is formed. When the constant is larger by x% than the lattice constant of the base semiconductor substrate, the length L 1 of a curve passing through the center along the support curved surface of the support member is substantially equal to L 1 = (1 + x / 100) D. It may be a spherical surface of curvature. Therefore, when the underlying semiconductor substrate is a silicon wafer and the semiconductor to be crystal-grown is gallium arsenide, the supporting curved surface of the supporting member has a spherical surface with a curvature substantially equal to L 2 = (1 + 4/100) D. Thus, gallium arsenide can be crystal-grown on the surface of the silicon wafer along the curved support surface.
[0014]
Further, in the semiconductor crystal growth apparatus of the present invention, the apparatus further comprises a pressing member for pressing the peripheral portion of the base semiconductor substrate toward the support curved surface while holding the base semiconductor substrate with the support member. Is also good. By providing the pressing member, it is possible to easily and reliably maintain the state in which the underlying semiconductor substrate is along the curved support surface of the support member during crystal growth. As the pressing member, by moving to the support member side, the peripheral portion of the base semiconductor substrate placed on the support curved surface of the support member is pressed uniformly to the support curved surface side, and crystal growth on the surface of the base semiconductor substrate is performed. The shape and structure are not particularly limited as long as it has at least a ring-shaped pressing portion having an opening at a portion corresponding to the region. The pressing member is moved to the supporting member side to press the peripheral portion of the base semiconductor substrate, and the pressing member is moved in a direction of separating from the supporting member and opened, and the base semiconductor substrate is placed on the supporting member. Alternatively, a reciprocating means for enabling the take-out may be provided.
[0015]
In the present invention, the constituent materials of the support member and the pressing member are not particularly limited as long as they do not contaminate the inside of the crystal growth material, and examples thereof include porous boron nitride, quartz, and sapphire. Among them, porous boron nitride, which is easy to process, is preferable.
[0016]
According to another aspect of the present invention, a base semiconductor substrate is held such that the surface thereof is convexly curved at a predetermined curvature, and a semiconductor crystal layer having a larger lattice constant than the base semiconductor substrate includes: A crystal growth method for a semiconductor can be provided in which crystal growth is performed on a convexly curved surface of a base semiconductor.
In other words, when growing a crystal layer of a desired semiconductor having a larger lattice constant than the underlying semiconductor substrate on the surface of the underlying semiconductor substrate, the underlying semiconductor substrate is bent so that the surface side of the underlying semiconductor substrate bulges in a convex shape. And increase the lattice constant of the surface. At this time, by bending the surface of the base semiconductor substrate to a curvature such that the lattice constant of the surface of the base semiconductor substrate is substantially equal to the lattice constant of the semiconductor to be crystal-grown, a desired surface of the base semiconductor substrate is formed. The same effects as in the above (1) to (6) can be obtained, for example, a semiconductor crystal layer can be epitaxially grown without generating misfit dislocations, and a desired high quality semiconductor crystal layer can be obtained.
[0017]
In the method for growing a semiconductor crystal according to the present invention, when the lattice constant of the semiconductor to be crystal-grown is x% larger than the lattice constant of the underlying semiconductor substrate and the diameter of the underlying semiconductor substrate is D, the underlying substrate held in a curved shape. the length L 2 of the curve passing through the center of the use semiconductor substrate convexly curved surfaces of, L 2 = (1 + x / 100) so as to be substantially equal to the curvature spherical surface D, to hold the semiconductor substrate underlying Can be. In this case, by holding the semiconductor state where along the semiconductor substrate underlying the support curved surface of the supporting member in the crystal device of the present invention, the surface of the underlying semiconductor substrate to the spherical surface of substantially the same curvature to the length L 2 Can be easily curved. Therefore, for example, when the underlying semiconductor substrate is made of silicon and the semiconductor to be crystal-grown is gallium arsenide, by holding the underlying silicon substrate (silicon wafer) along the supporting curved surface of the supporting member, The convexly curved surface of the underlying silicon substrate is formed into a spherical surface having a curvature such that L 2 = (1 + 4/100) D.
[0018]
In the present invention, a conventionally known MBE method or MOCVD method can be used as a method of crystal-growing a semiconductor on a convexly curved surface by bending a base semiconductor substrate, and the semiconductor crystal can be easily grown. Can be.
[0019]
According to still another aspect of the present invention, it is possible to provide a semiconductor substrate provided with a desired high-quality semiconductor crystal layer formed by the above-described semiconductor crystal growth method and semiconductor crystal growth apparatus. This semiconductor substrate is suitable for high-speed devices such as high-performance HEMTs and MESFETs, or for optical devices such as high-performance LEDs and semiconductor lasers.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiment.
[0021]
[Embodiment 1]
FIG. 1 is a schematic configuration diagram showing Embodiment 1 of a semiconductor crystal growth apparatus according to the present invention, and FIG. 2 shows a base semiconductor substrate supported by a support portion in a crystal growth chamber in Embodiment 1. FIG. 3 is a cross-sectional view showing the state, and FIG. 3 is a diagram illustrating the curvature of the surface of the base semiconductor substrate in the state of FIG.
[0022]
The semiconductor crystal growth apparatus 1 of the present invention is an apparatus capable of performing crystal growth by the MEB method (molecular beam epitaxy method). The apparatus is provided in the crystal growth chamber 2 and the crystal growth chamber 2 and heats a raw material. Crucible 3 serving as a raw material supply unit for evaporating the raw material, an electron gun (not shown) for irradiating the evaporated raw material with a molecular beam, a support unit 4 provided in crystal growth chamber 2 and supporting a base semiconductor substrate, a support unit 4 A heater 5 serving as a heating unit for heating a silicon wafer W serving as a base semiconductor substrate via a substrate, a rotation driving unit (not shown) for rotating the silicon wafer W together with the support unit 4 during crystal growth, and exhausting gas in the crystal growth chamber 2 There are provided means necessary for crystal growth of a predetermined semiconductor on the silicon wafer W by the MEB method, such as a vacuum evacuation system (not shown).
[0023]
The support portion 4 is a disk curved in a spherical shape, and the support member 6 having a support curved surface 6 a whose surface side is convexly curved at a predetermined curvature fits along the peripheral edge of the support member 6. A holding member 7 comprising a cylindrical portion 7a and a ring-shaped pressing portion 7b which is continuously provided in an inwardly protruding shape along an edge of the cylindrical portion 7a on the side of the support curved surface 6a; And reciprocating means (not shown) for reciprocating in the center direction. As the reciprocating means, for example, a configuration including a guide portion for guiding the holding member 7 so as to be able to reciprocate in the axial direction of the support member 6 and a driving portion for causing the holding member 7 to reciprocate along the guide portion is used. An example can be given. In this case, at least portions of the support member 6, the holding member 7, and the reciprocating means existing in the crystal growth chamber 2 are made of a substance that does not contaminate the inside of the crystal growth chamber 2 during crystal growth, for example, porous boron nitride. You.
[0024]
Here, the curvature of the support curved surface 6a of the support member 6 will be described with reference to FIG.
It is assumed that the crystal lattice constant of a substance to be crystal-grown on a base semiconductor substrate (in this case, a silicon wafer W) is x% larger than the crystal lattice constant of the base semiconductor substrate. The diameter of the underlying semiconductor substrate is D (not shown). At the time of crystal growth, the length L 1 of the curve passing through the center of the convexly curved surface of the base semiconductor substrate held in a curved shape by the support portion 4 is L 1 = (1 + x / 100) D It is assumed that the base semiconductor substrate is to be curved so as to have a spherical surface having a curvature substantially equal to the following. In this case, the support member 6, the length L 2 of the curve passing through the center along its supporting curved surface 6a is set to the same or nearly the same value as the length L 1. That is, the support curved surface 6a is
L 2 = (1 + x / 100) D
It is designed to be spherical. Specifically, the radius of the support curved surface 6a of the support member 6 is R and θ is radian, and D = 2 · R · sin θ
L 2 = R · 2θ
From this, sin θ / θ = 1 / (1 + x / 100)
Get the relationship. sin θ is θ ≒ θ- /! approximated by a xθ 3,
θ ≒ √ (6x / (100 + x)), R ≒ 5 · D · (1 + x / 100) 3/2 / (√ (6x))
What is necessary is just to make the spherical surface which becomes.
In the case of the first embodiment, the base semiconductor substrate is a silicon wafer W. For example, to grow gallium arsenide having a lattice constant larger than silicon by about 4% on the silicon wafer W, x = 4. If a 6-inch silicon wafer W is used, it is designed to be 2θ ≒ 0.96 (55 degrees) and R ≒ 16.6 cm 2.
[0025]
【Example】
Next, an embodiment of the semiconductor crystal growth method of the present invention will be described with reference to FIGS. In this embodiment, the crystal was grown by using a molecular beam epitaxy (MBE) method. The underlying silicon wafer W was 6 inches in diameter and 150 μm thinner than usual. The support member 6 and the holding member 7 of the support portion 4 are made of porous boron nitride (PBN) which is easy to process and are designed as described above at 2θ ≒ 0.96 (55 °) and R ≒ 16.6 cm 2. Created to have a spherical surface.
[0026]
The silicon wafer W was washed with HF, dried, transported to a vacuum preliminary chamber within 10 minutes after being dried, and set on the support member 6 of the support section 4 of the crystal growth chamber 2. At room temperature before the crystal growth, the silicon wafer W is supported flat, but when the wafer temperature exceeds 500 ° C., the pressing member 7 operates, and the peripheral portion of the silicon wafer W is supported by the supporting member 6 by the pressing member 7. , And the silicon wafer W is bent into a spherical shape.
[0027]
Thereafter, the silicon wafer W is heated to 700 ° C. by the heater 5. The surface of the silicon wafer W is convexly curved, and the natural oxide film on the surface of the silicon wafer W is removed at a low temperature of 700 ° C. by this tension. A non-doped GaAs film having resistance can be obtained. Then, the wafer temperature was lowered to 530 ° C., and the process was waited until the degree of vacuum in the crystal growth chamber 2 became 2 × 10 −10 torr or less.
[0028]
Thereafter, the molecular beam of gallium and arsenic in the crucible 3 of the crystal growth apparatus 1 was irradiated to the convexly curved surface Wa of the silicon wafer W by the ordinary molecular beam epitaxy (MBE) method. The surface Wa of the silicon wafer W is bent into a spherical shape by the support member 6 and the holding member 7 of the support portion 4 of the present invention, whereby the lattice constant of the surface Wa becomes substantially the same as that of gallium arsenide. Grew epitaxially, and a gallium arsenide crystal layer having a thickness of 1000 nm could be grown on the surface Wa of the silicon wafer W. The obtained gallium arsenide crystal layer was a high-resistance gallium arsenide crystal layer without doping from the silicon wafer W because the crystal growth temperature was as low as 530 ° C.
[0029]
Thereafter, non-doped AlGaAs is grown on the gallium arsenide crystal layer with a thickness of 10 nm, and non-doped gallium arsenide is grown on the gallium arsenide crystal layer with a thickness of 1000 nm to form a high-quality non-doped gallium arsenide crystal layer. Obtained. By using this high-resistance gallium arsenide crystal layer, a high-speed device (HEMT, MESFET, etc.) can be formed on the silicon wafer W. When an optical device (LED, semiconductor laser, or the like) is formed, a predetermined N-type or P-type gallium arsenide crystal layer is sequentially formed by irradiating a dopant such as silicon or beryllium during crystal growth. Good.
[0030]
In the present embodiment, the MBE method is used. However, in the MOCVD method, it goes without saying that the same effect can be obtained if the support 4 (susceptor) has the same structure as the present embodiment. Further, in this embodiment, the support portion 4 is made of porous boron nitride. However, any material that does not contaminate the inside of the crystal growth chamber 2 may be used, such as quartz.
[0031]
【The invention's effect】
According to the present invention, when a desired semiconductor crystal layer having a larger lattice constant than the underlying semiconductor substrate is crystal-grown on the surface of the underlying semiconductor substrate, the underlying semiconductor substrate is formed such that the surface side protrudes in a convex shape. To increase the lattice constant of the surface. At this time, by bending the surface of the base semiconductor substrate to a curvature such that the lattice constant of the surface of the base semiconductor substrate is substantially equal to the lattice constant of the semiconductor to be crystal-grown, a desired surface of the base semiconductor substrate is formed. The semiconductor crystal layer can be epitaxially grown without generating misfit dislocations, and a desired high-quality semiconductor crystal layer can be obtained. In addition, crystal growth can be performed at a lower temperature than in the conventional case where a base semiconductor substrate is held flat and a semiconductor layer is crystal-grown on the surface thereof. The difference in thermal expansion coefficient between the semiconductor layer and the semiconductor layer is reduced. As a result, the semiconductor substrate does not warp in the cooling process after the crystal growth or dislocation due to warpage relaxation occurs. Further, since crystal growth can be performed at a low temperature, a high-resistance non-doped semiconductor layer which is not contaminated by impurities from the base semiconductor substrate can be obtained. Therefore, for example, it is possible to form a semiconductor substrate provided with a high-resistance gallium arsenide crystal growth layer (GaAs) having a lattice constant about 4% larger than that of silicon on a base semiconductor substrate (silicon wafer) made of silicon. By using this semiconductor substrate, a high-speed device such as a high-performance HEMT or MESFET can be obtained. Further, by irradiating a dopant such as silicon or beryllium during gallium arsenide crystal growth, predetermined N-type and P-type gallium arsenide crystal layers are sequentially formed, so that optical devices such as high-performance LEDs and semiconductor lasers can be manufactured. Can also be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing Embodiment 1 of a semiconductor crystal growth apparatus according to the present invention.
FIG. 2 is a cross-sectional view showing a state where a base semiconductor substrate is supported by a support in a crystal growth chamber according to the first embodiment.
FIG. 3 is a diagram illustrating a curvature of a surface of a base semiconductor substrate in the state of FIG. 2;
FIG. 4 is a cross-sectional view showing a state in which a semiconductor crystal layer is grown on a conventional semiconductor substrate.
FIG. 5 is a cross-sectional view showing a state in which a base semiconductor substrate is supported by a support in a conventional semiconductor crystal growth apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor crystal growth apparatus 2 Crystal growth room 3 Crucible (raw material supply part)
6a Support curved surface 6 Support member 7 Holding member W Silicon wafer (underlying semiconductor substrate)
Wa surface