JP2004347129A - Retainer for bearing - Google Patents

Retainer for bearing Download PDF

Info

Publication number
JP2004347129A
JP2004347129A JP2004265807A JP2004265807A JP2004347129A JP 2004347129 A JP2004347129 A JP 2004347129A JP 2004265807 A JP2004265807 A JP 2004265807A JP 2004265807 A JP2004265807 A JP 2004265807A JP 2004347129 A JP2004347129 A JP 2004347129A
Authority
JP
Japan
Prior art keywords
retainer
cage
oxide
nitriding
nitrided layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004265807A
Other languages
Japanese (ja)
Inventor
Hiroshi Ueno
弘 上野
Kazuhisa Kajiwara
一寿 梶原
Akihiro Bun
明宏 文
Hideki Fujiwara
英樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2004265807A priority Critical patent/JP2004347129A/en
Publication of JP2004347129A publication Critical patent/JP2004347129A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a retainer made of a steel sheet often has an imperfect nitriding layer because the nitriding is carried out in the state that oxide existing on the surface of the retainer has not been completely removed, the nitriding layer can not satisfactorily hold lubricating oil, and the lubricating oil film is often broken because the nitriding layer has imperfect portions and the nitriding layer itself is inferior in smoothness, has cracks, etc. <P>SOLUTION: In the retainer 1 for a bearing, the oxide existing on the surface of an annular sheet 1a formed by press working is removed by converting the oxide into a metal fluoride film by a fluorination treatment 12. The metal fluoride film prevents forming of the oxide, and the surface is fluorinated by surely removing the oxide from the surface. A nitriding layer N is closely, uniformly, and sufficiently formed on the surface of the annular sheet 1a. As a result, smoothness of the surface is maintained and the breakage of the oil film existing on the retainer 1 is prevented. The close, uniform, and smooth nitriding layer N can be stably formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼製軸受用保持器に関する。   The present invention relates to a steel bearing retainer.

従来から、鋼製軸受用保持器には、強度の向上や摩耗防止を図る課題がある。この課題を解決するため、例えば、二輪車用エンジン、特に、2サイクルエンジンの、クランク軸受用の深溝型玉軸受では、いわゆる波形プレス保持器が使用され、この波形プレス保持器の表面に、いわゆるタフトライド処理と呼ばれる、塩浴窒化、ガス窒化等の窒化処理を含む表面処理が施されていた。また、窒化処理を施すと、潤滑性を向上できるという利点もある。   2. Description of the Related Art Conventionally, steel bearing cages have problems of improving strength and preventing wear. In order to solve this problem, for example, a so-called corrugated press retainer is used in a deep groove type ball bearing for a crank bearing of a motorcycle engine, particularly a two-cycle engine, and a so-called tuft ride is provided on the surface of the corrugated press retainer. Surface treatment including nitriding such as salt bath nitriding and gas nitriding has been performed. Further, when the nitriding treatment is performed, there is an advantage that lubricity can be improved.

しかしながら、2サイクルエンジンのクランク軸受は、ガソリンに混合した潤滑油によって潤滑されるため、常に一定量の潤滑油が供給されるとは限らない。そのため、上述のように窒化処理によって潤滑性を高めた保持器であっても、油膜切れが生じることがあり、場合によっては、保持器と転動体との間で焼き付きを生じる虞もあった。
上述の油膜切れの原因としては、以下のことが考えられる。すなわち、窒化処理の前処理で、表面の酸化物の除去が行われる。しかしながら、波形プレス保持器の形状は複雑であり、酸化物が残りやすく、それに加えて、除去後にも再度酸素の吸着や酸化作用が働くので、表面の酸化物を完全に除去できない。この状態で、窒化処理が行われると、窒化層は、酸化物が除去された部分には十分に、酸化物の残った部分には不十分に形成されて、その結果、窒化層にむらが生じていたり、クラックが多数形成されていた。不十分な窒化層の表面では、もともと平滑度が充分でなく、クラックの存在もあり、潤滑油が窒化層の最表面に保持され難く、よって、油膜が切れ易く、潤滑が不充分になると考えられる。
However, the crank bearing of the two-stroke engine is lubricated with lubricating oil mixed with gasoline, so that a constant amount of lubricating oil is not always supplied. For this reason, even in the cage having improved lubricity by the nitriding treatment as described above, the oil film may be broken, and in some cases, seizure may occur between the cage and the rolling elements.
The following may be considered as causes of the oil film shortage. That is, the oxide on the surface is removed in the pretreatment before the nitriding treatment. However, the shape of the corrugated press retainer is complicated, oxides are apt to remain, and in addition, the oxygen adsorption and oxidizing action again works after the removal, so that the oxides on the surface cannot be completely removed. In this state, when the nitriding treatment is performed, the nitrided layer is formed sufficiently in the portion where the oxide has been removed, and insufficiently in the portion where the oxide remains, and as a result, the nitrided layer has unevenness. A number of cracks were formed. On the surface of the insufficiency nitrided layer, the smoothness was originally insufficient, cracks were present, and it was difficult for the lubricating oil to be retained on the outermost surface of the nitrided layer. Can be

そこで、本発明の目的は、上記の技術的課題を解決し、均一な窒化層によって、油膜切れが生じ難く、潤滑性の良い鋼製軸受用保持器を提供することである。   Therefore, an object of the present invention is to solve the above-mentioned technical problems and to provide a steel bearing retainer which is less likely to cause oil film breakage and has good lubricity due to a uniform nitrided layer.

上記の目的を達成するため、本発明の鋼製軸受用保持器は、窒化物の平均粒子径が1μm以下の緻密な窒化層が、鋼の表面から内側に向かって形成され、窒化層の表面粗さは、中心線平均粗さRa=0.7μm〜1.0μm、十点平均粗さRz=4.0μm〜7.0μm、最大高さRmax=4.5μm〜7.5μmであることを特徴とする。
この構成によれば、窒化層を、表面に緻密に、且つむらなく均一に、且つ十分に形成できる。このような窒化層が形成された保持器では、油膜が切れることもなく、良好な潤滑性を維持できる。
In order to achieve the above object, the steel bearing retainer of the present invention has a structure in which a dense nitride layer having an average particle diameter of nitride of 1 μm or less is formed inward from the steel surface, As for the roughness, the center line average roughness Ra = 0.7 μm to 1.0 μm, the ten-point average roughness Rz = 4.0 μm to 7.0 μm, and the maximum height Rmax = 4.5 μm to 7.5 μm. Features.
According to this configuration, the nitride layer can be formed densely, uniformly, and sufficiently on the surface. In the cage in which such a nitride layer is formed, the oil film is not broken, and good lubricity can be maintained.

この保持器は、例えば、以下の鋼製軸受用保持器の製造方法によって製造することができる。
その製造方法は、表面に窒化層が形成された鋼製軸受用保持器の製造方法において、窒化処理の前に、保持器の表面の酸化物を金属ふっ化膜に置き換えるふっ化処理を含む。
ふっ化処理に用いる活性化されたふっ素原子により、母材の鋼の表面に付着していた加工助剤等の異物が破壊等されて除去され、表面が浄化されると同時に、鋼表面の酸化皮膜のような不働態膜が、金属ふっ化膜に置き換えられる。このように置き換えられることによって、鋼の表面が金属ふっ化膜によって被覆保護された状態になり、後の窒化処理まで酸化物の生成が阻止されるので、確実に酸化物を除去できる。従って、表面に緻密、且つ均一、且つ十分な窒化層を形成することができる。
This cage can be manufactured, for example, by the following method for manufacturing a steel bearing cage.
The manufacturing method includes, in the method for manufacturing a steel bearing retainer having a nitrided layer formed on a surface thereof, a fluorine treatment for replacing an oxide on the surface of the retainer with a metal fluoride film before the nitriding treatment.
Activated fluorine atoms used in the fluoride treatment destroy and remove foreign substances such as processing aids attached to the surface of the base metal steel, thereby purifying the surface and simultaneously oxidizing the steel surface. Passive films, such as films, are replaced by metal fluoride films. By being replaced in this manner, the surface of the steel is covered and protected by the metal fluoride film, and the generation of oxide is prevented until the subsequent nitriding treatment, so that the oxide can be surely removed. Therefore, a dense, uniform, and sufficient nitride layer can be formed on the surface.

また、従来は、窒化処理の際、480℃〜700℃の温度域では、鋼材中のCr,Mn,Si,Alのような金属元素は、酸化されやすい。しかし、上記温度領域においては、これらの金属元素を完全に中性もしくは還元性に維持する雰囲気をつくることが困難なことから、上記金属元素は上記温度領域で殆ど酸化され、それによって窒化処理に際して鋼材の表面に粒界酸化物が形成され、この粒界酸化物が障害となって窒化処理が阻害される。結果として、鋼材の表面に窒化層を安定して形成できないでいた。   Conventionally, in a temperature range of 480 ° C. to 700 ° C., metal elements such as Cr, Mn, Si, and Al in a steel material are easily oxidized during nitriding. However, in the above temperature range, it is difficult to create an atmosphere in which these metal elements are kept completely neutral or reducible. Therefore, the above metal elements are almost oxidized in the above temperature range. Grain boundary oxides are formed on the surface of the steel material, and the grain boundary oxides hinder the nitriding treatment. As a result, a nitrided layer could not be stably formed on the surface of the steel material.

これに対して、上述の製造方法では、確実に酸化物を除去できるので、一定の窒化層を安定して形成することができる。すなわち、窒化処理の際、480℃〜700℃程度の温度で、窒素源を有するガス(例えばNH3 ガス)とH2 ガスとの混合ガスを炉内に導入することにより、上記H2 ガスによって、鋼材表面を被覆保護している金属ふっ化膜は破壊され除去される。これにより、浄化されて活性化した金属素地が現れ、この活性化した金属素地に窒化ガス(例えばNH3 ガス)中のN原子が作用し、内部に迅速に浸透拡散し、深い窒化層を均一に形成する。すなわち、鋼の表面から内側に向かってCrN,Fe2 N,Fe3 N,Fe4 N等の窒化物を含有する超硬質な化合物層(窒化層)が、均一に深く形成され、それに続いて硬質なN原子の拡散層が形成され、上記化合物層+拡散層が全窒化層を構成する。また、窒化層の硬さも、従来のタフトライド処理品と同等で、表面硬さはビッカース硬さ450HV(試験荷重50gf)を維持している。 On the other hand, in the above-described manufacturing method, the oxide can be surely removed, so that a constant nitrided layer can be formed stably. That is, when the nitriding treatment at a temperature of about 480 ° C. to 700 ° C., by introducing a mixed gas of the H 2 gas gas (e.g. NH 3 gas) into a furnace having a nitrogen source, by the H 2 gas The metal fluoride film covering and protecting the surface of the steel material is destroyed and removed. As a result, a purified and activated metal matrix appears, and N atoms in a nitriding gas (for example, NH 3 gas) act on the activated metal matrix to quickly penetrate and diffuse into the inside to uniformly form a deep nitride layer. Formed. That is, an ultra-hard compound layer (nitride layer) containing nitrides such as CrN, Fe 2 N, Fe 3 N, and Fe 4 N is formed uniformly and deeply from the surface of the steel toward the inside. A hard diffusion layer of N atoms is formed, and the compound layer + diffusion layer constitutes a fully nitrided layer. Also, the hardness of the nitrided layer is equivalent to that of the conventional tuftride-treated product, and the surface hardness is maintained at Vickers hardness 450 HV (test load 50 gf).

上述の製造方法のふっ化処理に用いるふっ素系ガスとしては、NF3 ,BF3 ,CF3 ,HF,SF6 ,F2 の単独もしくは混合物からなるふっ素源成分をN2 等の不活性ガス中に含有させたガスが好適に用いられる。なかでも、安全性、反応性、コントロール性、取扱性等の点でNF3 が最も優れており、実用的である。このようなふっ素系ガスでは、効果の点から、NF3 等のふっ素源成分が0.05%〜20%(重量基準、以下同じ)の濃度に設定される。好ましいのは、3%〜5%の範囲内である。 As the fluorine-based gas used for the fluoridation treatment in the above-described production method, a fluorine source component consisting of NF 3 , BF 3 , CF 3 , HF, SF 6 , or F 2 alone or in a mixture of inert gas such as N 2 Is preferably used. Among them, NF 3 is the best in terms of safety, reactivity, controllability, handleability and the like, and is practical. In such a fluorine-based gas, the concentration of the fluorine source component such as NF 3 is set to 0.05% to 20% (weight basis, the same applies hereinafter) from the viewpoint of the effect. Preferred is in the range of 3% to 5%.

以下、本発明の一実施の形態にかかる軸受用保持器及びその製造方法を、添付図面を参照しながら詳細に説明する。
まず、本発明の保持器について説明する。図1は、本発明にかかる保持器の斜視図である。図2は、図1の保持器を備えた軸受である玉軸受の断面図である。図1及び図2を参照する。
Hereinafter, a bearing retainer and a method of manufacturing the same according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
First, the cage of the present invention will be described. FIG. 1 is a perspective view of a retainer according to the present invention. FIG. 2 is a sectional view of a ball bearing which is a bearing provided with the retainer of FIG. Please refer to FIG. 1 and FIG.

保持器1は、例えばSPCC材等の低炭素鋼板をプレス成形した一対の環板1aと、一対の環板1aを互いに固定する鋲2とを備えている。一対の環板1aは、対向して配置され、略円環状の保持器1を構成している。環板1aには、複数の凹湾部1bが等間隔に形成されており、凹湾部1bの間には、鋲着固定のための鋲孔(図示せず)が形成されている。凹湾部1bは、互いに対向して配置され、軸受Aの球状の転動体3を収容するポケットPを形成している。   The retainer 1 includes a pair of ring plates 1a formed by press-forming a low carbon steel plate such as an SPCC material, and studs 2 for fixing the pair of ring plates 1a to each other. The pair of ring plates 1a are arranged to face each other, and constitute a substantially annular holder 1. A plurality of recessed portions 1b are formed at equal intervals in the ring plate 1a, and between the recessed portions 1b, rivet holes (not shown) for rivet fixing are formed. The concave bay portions 1b are arranged to face each other, and form pockets P for accommodating the spherical rolling elements 3 of the bearing A.

保持器1は、ポケットPに保持された転動体3とともに、軸受Aの内輪4の外周面と、外輪5の内周面との間に設けられて、内外輪を相対回転可能に支持して、軸受Aを構成する。
また、本発明の保持器1は、後述する製造方法によって、環板1aの表面全体に、Fe3 Nを主成分とする窒化物が、その平均粒子径が1μm以下であるように、緻密且つ均一に積層された状態の窒化層Nが形成されている(後述する実施例の(1) 欄参照)。なお、窒化層Nは、少なくとも環板1aのポケットPを形成する部分に形成してあればよい。すなわち、窒化層Nを、凹湾部1bの内周面のみに形成してもよいし、上記内周面と他の部分とに形成してもよい。
The retainer 1 is provided between the outer peripheral surface of the inner race 4 of the bearing A and the inner peripheral surface of the outer race 5 together with the rolling elements 3 held in the pockets P, and supports the inner and outer races so as to be relatively rotatable. And the bearing A.
In addition, the cage 1 of the present invention is dense and dense by a manufacturing method described below such that the nitride mainly composed of Fe 3 N has an average particle diameter of 1 μm or less over the entire surface of the annular plate 1a. The nitride layer N in a state of being uniformly laminated is formed (see column (1) of the embodiment described later). Note that the nitride layer N may be formed at least in a portion where the pocket P of the annular plate 1a is formed. That is, the nitrided layer N may be formed only on the inner peripheral surface of the concave portion 1b, or may be formed on the inner peripheral surface and other portions.

保持器1は、例えば、以下のようにして製造される。すなわち、図3は本発明の製造方法の概略工程図である。以下、図3を参照して、本発明にかかる製造方法を説明する。
本製造方法は、環板1aを形成する形成工程11と、形成された環板1aの表面の酸化物を金属ふっ化膜に置き換えるふっ化処理12と、窒化層Nを形成する窒化処理13と、環板1aを保持器1に組み立てる組立工程14とを備えている。
The retainer 1 is manufactured, for example, as follows. That is, FIG. 3 is a schematic process diagram of the manufacturing method of the present invention. Hereinafter, the manufacturing method according to the present invention will be described with reference to FIG.
This manufacturing method includes a forming step 11 for forming a ring plate 1a, a fluoridation treatment 12 for replacing an oxide on the surface of the formed ring plate 1a with a metal fluoride film, and a nitriding treatment 13 for forming a nitrided layer N. And an assembling step 14 for assembling the ring plate 1a into the retainer 1.

形成工程11では、鋼板、例えばSPCC材によりプレス成形されて、環板1aの形状を有した成形品が形成される。
ふっ化処理12では、被処理品である成形品を、3ふっ化窒素(NF3 )、窒素等の混合気中に、所定のふっ化温度T1、例えば300℃〜400℃に所定時間(10分〜120分)保持する。その結果、成形品の表面の異物等は、ふっ化処理に用いる活性化されたふっ素原子によって破壊等されて除去され、表面が浄化されると同時に、鋼表面の酸化皮膜のような不働態膜が、金属ふっ化膜に置き換えられる。この際に、表面に形成される金属ふっ化膜は、不働態膜であるので、表面への酸素の吸着や酸化作用を防止し、次の窒化処理13まで酸化物の生成を阻止し、その結果、確実に酸化物を除去することができる。
In the forming step 11, a molded product having the shape of the annular plate 1a is formed by press-molding a steel plate, for example, an SPCC material.
In the fluoride treatment 12, the article to be treated is placed in a mixture of nitrogen trifluoride (NF 3 ) and nitrogen at a predetermined fluoride temperature T1, for example, 300 ° C. to 400 ° C. for a predetermined time (10 ° C.). Min-120 min). As a result, foreign substances and the like on the surface of the molded product are destroyed by activated fluorine atoms used in the fluoridation treatment and removed, and the surface is purified, and at the same time, a passive film such as an oxide film on the steel surface is removed. Is replaced by a metal fluoride film. At this time, since the metal fluoride film formed on the surface is a passive film, it prevents adsorption and oxidation of oxygen to the surface and prevents oxide formation until the next nitriding treatment 13. As a result, the oxide can be reliably removed.

窒化処理13では、ガス窒化が行われる。ここでの被処理品であるふっ化処理された成形品(表面が金属ふっ化膜で覆われている)は、所定の反応ガス、例えばNH3 単体からなるガスまたはNH3 と炭素源とからなる混合ガス(例えばRXガス)中に、所定の窒化温度T2に、所定時間(0.5時間〜5時間)保持される。
ふっ化温度T1から窒化温度T2に、温度が昇温される過程で、被処理品表面の金属ふっ化膜は活性化膜となる。その結果、窒化処理13で、窒素は金属に速やかに深く浸透して、窒化層Nが形成される。その後、所定時間をかけて、冷却される。
In the nitriding treatment 13, gas nitriding is performed. The fluorinated molded article (the surface of which is covered with a metal fluoride film), which is the article to be treated, is made of a predetermined reaction gas, for example, a gas consisting of NH 3 alone or NH 3 and a carbon source. In a mixed gas (for example, RX gas), a predetermined nitriding temperature T2 is maintained for a predetermined time (0.5 to 5 hours).
In the process of raising the temperature from the fluoride temperature T1 to the nitriding temperature T2, the metal fluoride film on the surface of the article to be processed becomes an activated film. As a result, in the nitriding treatment 13, nitrogen quickly penetrates deeply into the metal, and a nitrided layer N is formed. Thereafter, it is cooled over a predetermined time.

被処理品は、冷却終了まで、窒素ガス中に保持されており、表面に酸化物の生成が防止される。
窒化処理13での窒化温度T2及び保持時間は、窒化処理13で形成される窒化層Nの深さ等に応じて、所定値に設定されるのが好ましい。
窒化温度T2としては、480℃〜700℃であれば、表面に硬い窒化層を形成することができる。従って、潤滑性を向上することができる。
The article to be processed is kept in the nitrogen gas until the cooling is completed, so that generation of oxide on the surface is prevented.
The nitriding temperature T2 and the holding time in the nitriding treatment 13 are preferably set to predetermined values according to the depth of the nitrided layer N formed in the nitriding treatment 13 and the like.
If the nitriding temperature T2 is 480 ° C. to 700 ° C., a hard nitrided layer can be formed on the surface. Therefore, lubricity can be improved.

また、ふっ化処理12で被処理品の表面が活性化されるので、窒化温度T2を、従来の窒化層形成時に被処理品を保持する温度よりも低くすることができる。窒化温度T2が低くなる程に、窒化層Nの表面が平滑に形成される傾向があり、特に、上述のように窒化温度T2が480℃〜700℃であれば、この窒化温度T2で形成される窒化層Nの表面が、従来形成されたタフトライド処理品の窒化層の表面よりも平滑になる。窒化層Nの表面粗さは、未処理品、すなわち、研磨仕上げ面の粗さ(中心線平均粗さRa=0.7μm〜1.0μm、十点平均粗さRz=4.0μm〜7.0μm、最大高さRmax=4.5μm〜7.5μm)に対し、殆ど同じ値である。従来のタフトライド処理品の表面粗さは、Ra=1.5μm〜2.0μm、Rz=10.0μm〜15.0μm、Rmax=14.0μm〜18.0μmであるから、本発明の窒化層Nは、表面粗さが従来のタフトライド処理品に比べて小さく、また、かなり平滑性を増している。   Further, since the surface of the article to be treated is activated by the fluoridation treatment 12, the nitriding temperature T2 can be made lower than the temperature at which the article to be treated is held during the conventional formation of a nitride layer. As the nitriding temperature T2 becomes lower, the surface of the nitrided layer N tends to be formed more smoothly. In particular, when the nitriding temperature T2 is 480 ° C. to 700 ° C. as described above, the surface is formed at this nitriding temperature T2. The surface of the nitrided layer N becomes smoother than the surface of the nitrided layer of the conventionally formed tuftride-treated product. The surface roughness of the nitrided layer N is an untreated product, that is, the roughness of the polished surface (center line average roughness Ra = 0.7 μm to 1.0 μm, ten point average roughness Rz = 4.0 μm to 7.0 μm). 0 μm and the maximum height Rmax = 4.5 μm to 7.5 μm). The surface roughness of the conventional tuftride-treated product is Ra = 1.5 μm to 2.0 μm, Rz = 10.0 μm to 15.0 μm, and Rmax = 14.0 μm to 18.0 μm. Has a surface roughness smaller than that of a conventional tuftride-treated product, and has considerably increased smoothness.

さらに、窒化層Nが上述するように平滑且つ緻密であることに加え、クラックが殆どないため、窒化層Nの最表面での潤滑油の保持性がよく(後述する実施例の(4) 欄参照)、この点でも耐焼き付き性が向上している(実施例の(5) ,(6) 欄参照)。
また、窒化層Nでは、摩擦が大きくなる虞がないので、油膜切れも生じ難く、より一層焼き付き難くすることができる。ちなみに、無潤滑状態での摩擦係数は0.24であり、従来のタフトライド処理品の0.54に対して2分の1以下となっている。なお、実験条件は、HRIDON式摩耗試験機にて、試験片(SPCC材)にボール(SUJ2材)を荷重200gf、速度100mm/秒、距離20mmで10往復させ、その際の動摩擦係数を測定し、各測定値の最大値の平均値を求めた。
Furthermore, in addition to the fact that the nitrided layer N is smooth and dense as described above and that there are almost no cracks, the retention of the lubricating oil on the outermost surface of the nitrided layer N is good (see the column (4) in Examples described later). Also in this respect, the seizure resistance is improved (see columns (5) and (6) of the embodiment).
Further, in the nitrided layer N, there is no possibility that the friction is increased, so that the oil film is less likely to break, and the seizure can be made more difficult. Incidentally, the coefficient of friction in the non-lubricated state is 0.24, which is less than half that of 0.54 of the conventional tuftride-treated product. The experimental conditions were as follows: a ball (SUJ2 material) was reciprocated 10 times at a load of 200 gf, a speed of 100 mm / sec, and a distance of 20 mm on a test piece (SPCC material) using an HRIDON abrasion tester, and the dynamic friction coefficient at that time was measured. The average of the maximum values of the measured values was determined.

組立工程14では、窒化層Nの形成された一対の環板1aは、鋲2によって鋲着固定され、保持器1に組み立てられる。
このように本実施の形態の保持器1によれば、以下の作用効果を奏するものである。
保持器1は、鋼板製であるので、温度の高い環境でも、合成樹脂性の保持器に比べて、安心して使用することができる。例えば、エンジン等で使用される軸受でも使用できる。
In the assembling step 14, the pair of annular plates 1 a on which the nitrided layer N is formed are fixedly fastened with the studs 2, and are assembled to the holder 1.
As described above, according to the cage 1 of the present embodiment, the following operation and effect can be obtained.
Since the retainer 1 is made of a steel plate, it can be used more safely even in a high temperature environment than a synthetic resin retainer. For example, a bearing used in an engine or the like can be used.

また、窒化層Nは、以下詳述するように、強度の向上や摩耗防止を図ることができる上に、潤滑性を向上できるという利点もある。
特に、本実施の形態の窒化層Nは、均一に緻密に形成されているので、多孔質の部分がある従来の窒化層に比べて、表面がより一層硬く、耐摩耗性が良好である。
また、保持器1では、表面の硬い窒化層Nによって鋼板の機械的強度が改善される上に、内部の窒化されていない鋼板の部分によって柔軟性、靱性が維持されるため、耐衝撃性を備えて、保持器としての強度がより一層向上する。従って、この保持器1を備えた軸受Aの回転時に、保持器1が、転動体3から衝撃を受けても、衝撃に耐えることができ、切損する虞もなく、実用に適した保持器とすることができる。特に、本発明の製造方法によって形成された窒化層Nは、従来のタフトライド処理品に比べて、素材中心部分の硬さが低く(後述する実施例の(3) 欄参照)、その結果、内部の柔軟性、靱性がより一層向上して衝撃に耐えることができる。なお、ここでの保持器としての強度とは、単純な形状の試験片を測定して求められる材料自体の機械的強度でなく、保持器を実際に使用した際の強度であって、材料自体の強度に、柔軟性、靱性、耐衝撃性等が加味された強度である。
Further, as described in detail below, the nitrided layer N has an advantage that it can improve the strength and prevent abrasion and can also improve lubricity.
In particular, since the nitrided layer N of the present embodiment is formed uniformly and densely, the surface is much harder and the abrasion resistance is better than a conventional nitrided layer having a porous portion.
Further, in the cage 1, the mechanical strength of the steel sheet is improved by the hard nitrided layer N on the surface, and the flexibility and toughness are maintained by the non-nitrided steel sheet portion inside, so that the impact resistance is improved. In addition, the strength as a retainer is further improved. Therefore, when the bearing A provided with the cage 1 rotates, the cage 1 can withstand an impact even if it receives an impact from the rolling element 3 and there is no risk of breakage. can do. In particular, the nitrided layer N formed by the manufacturing method of the present invention has a lower hardness at the central portion of the material as compared with the conventional tufftrided product (see column (3) of the embodiment described later). Can further improve the flexibility and toughness to withstand impact. The strength of the cage here is not the mechanical strength of the material itself obtained by measuring a test piece having a simple shape, but the strength when the cage is actually used. This is a strength in which flexibility, toughness, impact resistance and the like are added to the strength of the above.

また、本実施の形態では、窒化層Nは、ふっ化処理12により酸化物が確実に除去された表面に、緻密に、且つむらなく均一に、且つ十分に形成されているので、潤滑油を表面に保持でき、油膜が切れることもなく、良好な潤滑性を維持できる。一方、従来のタフトライド処理による窒化層は、酸化物が残った表面に形成されており、この酸化物の残った表面には十分に形成されなかったので、不十分な窒化層であり、且つクラックが存在していたので、油膜が切れることがあった(後述する実施例の(1) ,(4) 欄参照)。   Further, in the present embodiment, since the nitrided layer N is formed densely, uniformly and sufficiently on the surface from which the oxide has been surely removed by the fluoridation treatment 12, the lubricating oil is used. Good lubricity can be maintained without breaking the oil film on the surface. On the other hand, the nitride layer formed by the conventional tuftride treatment is formed on the surface where the oxide remains, and is not formed sufficiently on the surface where the oxide remains. , The oil film was sometimes broken (see columns (1) and (4) in Examples described later).

また、本発明の保持器1では、表面の窒化層自身が潤滑性を向上する効果を、緻密、且つ均一、且つ十分な窒化層Nとすることによって、より一層向上させることができるので、潤滑が行われ難い状況でも、上述の効果を高く維持できる。従って、潤滑が行われ難い状況の生じ易い用途、例えば、二輪車用2サイクルエンジンのクランク軸受に、この保持器1を適用すると、顕著な効果がある。ところで、潤滑性を向上する場合でも、油溜まりとなる凹部が表面に形成され、凹部に保持された潤滑剤が潤滑性を向上する場合には、潤滑が行われ難い状況では、効果を維持することが困難である。   In addition, in the cage 1 of the present invention, the effect of improving the lubricity of the nitrided layer itself on the surface can be further improved by forming a dense, uniform, and sufficient nitrided layer N. The above-mentioned effect can be maintained high even in a situation where it is difficult to perform. Therefore, when the cage 1 is applied to an application in which lubrication is difficult to occur, for example, to a crank bearing of a two-cycle engine for a motorcycle, there is a remarkable effect. By the way, even in the case of improving lubricity, when a concave portion serving as an oil reservoir is formed on the surface and the lubricant held in the concave portion improves the lubricity, the effect is maintained in a situation where lubrication is difficult to be performed. It is difficult.

また、本実施の形態の保持器の製造方法によれば、以下の作用効果を奏するものである。
窒化処理13は、ガス窒化であるので、塩浴窒化のような環境汚染の心配がない。
また、従来の製造方法では、窒化処理の際の480℃〜700℃の温度域で、鋼材中のCr,Mn,Si,Al等の金属元素が殆ど酸化され、鋼材の表面に粒界酸化物が形成されていた。この粒界酸化物が障害となって、窒化処理が阻害され、その結果、鋼材の表面に窒化層を安定して形成できないでいた。これに対して、本発明では、ふっ化処理12で確実に酸化物を除去できるので、一定の窒化層Nを安定して形成することができる。窒化層の硬さも、従来のタフトライド処理品と同等で、表面硬さはビッカース硬さ450HVを維持している(後述する実施例(2) 参照)。
Further, according to the method for manufacturing a cage of the present embodiment, the following operation and effect can be obtained.
Since the nitriding treatment 13 is gas nitriding, there is no concern about environmental pollution such as salt bath nitriding.
In the conventional manufacturing method, metal elements such as Cr, Mn, Si, and Al in the steel material are almost oxidized in a temperature range of 480 ° C. to 700 ° C. during the nitriding treatment, and the grain boundary oxide is formed on the surface of the steel material. Was formed. This grain boundary oxide hinders the nitriding treatment, and as a result, a nitrided layer cannot be stably formed on the surface of the steel material. On the other hand, in the present invention, since the oxide can be reliably removed by the fluoridation treatment 12, a constant nitrided layer N can be formed stably. The hardness of the nitrided layer is also the same as that of the conventional tuftride-treated product, and the surface hardness maintains the Vickers hardness of 450 HV (see Example (2) described later).

また、窒化処理13は、ガス窒化であるので、反応ガスが活発に動き回り、被処理品表面に窒素分子が万遍なく行き渡り、入り込んだ部分にも、窒化層Nを均一に形成することができる。例えば、凹湾部1bの内周面や端縁部等にも、窒化層Nが形成される。従って、保持器全体として耐摩耗性が良好である。
また、従来、ガス窒化の場合、熱伝達が遅く、被処理品の表面が十分に活性化するために長時間を要する場合があった。一方、本発明の方法では、被処理品の表面に形成された金属ふっ化膜は、窒化温度T2では、十分に活性化されているので、窒素は速やかに金属に浸透して、長時間をかけずに十分な窒化層Nが形成される。
In addition, since the nitriding treatment 13 is gas nitriding, the reactive gas actively moves around, and the nitrogen molecules are evenly distributed on the surface of the article to be treated, and the nitrided layer N can be formed even in the portion where the nitrogen gas enters. . For example, the nitride layer N is also formed on the inner peripheral surface, the edge, and the like of the concave bay portion 1b. Therefore, the wear resistance of the cage as a whole is good.
Conventionally, in the case of gas nitriding, heat transfer is slow, and it sometimes takes a long time to sufficiently activate the surface of the article to be treated. On the other hand, in the method of the present invention, the metal fluoride film formed on the surface of the article to be treated is sufficiently activated at the nitriding temperature T2, so that nitrogen penetrates into the metal promptly, and a long period of time. A sufficient nitrided layer N is formed without being applied.

また、上述のように、窒化温度T2を、従来の窒化層形成時に被処理品を保持する温度よりも低くできるので、熱変形等の熱による影響も少なくすることができる。
なお、本発明の保持器及びその製造方法は、プレス成形された波形保持器以外にも、もみ抜き保持器や冠形打抜き保持器等に適用することができる。また、材質も炭素鋼に限定されず、ステンレス鋼や工具鋼、クロム鋼、クロムモリブデン鋼にも適用できる。
Further, as described above, since the nitriding temperature T2 can be lower than the temperature at which the workpiece is held during the conventional formation of the nitride layer, the influence of heat such as thermal deformation can be reduced.
The cage and the method for manufacturing the same according to the present invention can be applied to a machined cage, a crown-shaped punched cage, and the like, in addition to the press-formed corrugated cage. Further, the material is not limited to carbon steel, but can be applied to stainless steel, tool steel, chrome steel, and chromium molybdenum steel.

また、上述の実施の形態では、保持器としての組立は、環板1aを窒化処理した後に行われていたが、これには限定されない。例えば、形成工程11の後に組立工程14を行ない、その後、組み立てられた保持器を被処理品として、ふっ化処理12及び窒化処理13を行ってもよい。
また、本発明の軸受用保持器及びその製造方法は、上述の玉軸受以外にも、円筒ころ軸受、円すいころ軸受、球面ころ軸受、針状ころ軸受等の種々の転がり軸受用の、あらゆる形状の保持器に適用することができる。
Further, in the above-described embodiment, the assembly as the retainer is performed after the annular plate 1a is subjected to the nitriding treatment, but is not limited to this. For example, an assembling step 14 may be performed after the forming step 11, and thereafter, the fluoride treatment 12 and the nitriding treatment 13 may be performed using the assembled retainer as an article to be processed.
In addition, the bearing retainer of the present invention and the method of manufacturing the same are not limited to the above-described ball bearings, but may be any shape for various rolling bearings such as cylindrical roller bearings, tapered roller bearings, spherical roller bearings, and needle roller bearings. Can be applied to the cage.

その他、本発明の特許請求の範囲内で種々の設計変更を施すことが可能である。   In addition, various design changes can be made within the scope of the claims of the present invention.

上述の本発明の軸受用保持器の製造方法により製作した保持器1の分析及び試験を行った。その結果を説明する。また、比較例として、従来の保持器の分析及び試験を同様に行った。比較例の保持器は、ふっ化処理せずに、従来の方法で酸化物を除去して、塩浴窒化した保持器である。
(1) 表面状態
[分析方法]
図8の斜視図に示すように、保持器1のポケットPを形成する部分の表面S1(転動体と接する部分)と、表面近傍の断面S2とを、走査形電子顕微鏡(日本電子株式会社製JSM─5400)を用いて分析した。
The cage 1 manufactured by the above-described method for manufacturing a bearing cage of the present invention was analyzed and tested. The results will be described. In addition, as a comparative example, analysis and test of a conventional cage were performed in the same manner. The cage of the comparative example is a cage obtained by removing the oxide by a conventional method without performing a fluoridation treatment and performing salt bath nitriding.
(1) Surface condition [Analysis method]
As shown in the perspective view of FIG. 8, the surface S1 (portion in contact with the rolling element) of the portion forming the pocket P of the cage 1 and the cross section S2 near the surface are scanned with a scanning electron microscope (manufactured by JEOL Ltd.). (JSM # 5400).

[結果]
得られた顕微鏡像を図4〜図7に示す。図4は、実施例の保持器1の窒化層N表面の金属組織を表す写真である。図5は、比較例の保持器の窒化層表面の金属組織を表す写真である。図6は、実施例の保持器1の窒化層Nの断面の金属組織を表す写真である。図7は、比較例の保持器の窒化層の断面の金属組織を表す写真である。なお、図4〜図7は、倍率5000倍で得られた像を撮影したものであり、各図に寸法を示す尺度が写し込まれている。また、図6及び図7では、中央部から下方に表された白い部分が、保持器であり、それよりも上方に表された黒い部分は、撮影用部材である。
[result]
The obtained microscope images are shown in FIGS. FIG. 4 is a photograph showing the metal structure on the surface of the nitrided layer N of the cage 1 of the example. FIG. 5 is a photograph showing the metal structure of the nitride layer surface of the cage of the comparative example. FIG. 6 is a photograph showing a metal structure of a cross section of the nitride layer N of the cage 1 of the example. FIG. 7 is a photograph showing the metal structure of the cross section of the nitride layer of the cage of the comparative example. 4 to 7 show images obtained at a magnification of 5000 times, and a scale indicating the size is imprinted on each figure. In FIGS. 6 and 7, the white portion shown below the center is the retainer, and the black portion shown above it is the photographing member.

実施例の窒化層N表面の粒子は、図4に表されているように、平均粒子径が1μm以下の微細な粒子である。また、その粒子の大きさもほぼ均一である。また、表面に大きな起伏は認められない。これらのことは、図6にも示されている。また、図6に示されている表面近傍の状況から、表面は緻密に形成されていることが判る。
一方、比較例の窒化層表面では、図5に表されているように、粒子の大きさは様々で、粒子径が5μm程度のものも認められる。また、表面の凹凸は、実施例よりも大きく、また、図7では表面から内部にかけてクラックも認められる。
The particles on the surface of the nitrided layer N in the example are fine particles having an average particle diameter of 1 μm or less, as shown in FIG. Also, the size of the particles is almost uniform. No large undulation is observed on the surface. These are also shown in FIG. In addition, the situation near the surface shown in FIG. 6 indicates that the surface is densely formed.
On the other hand, on the surface of the nitrided layer of the comparative example, as shown in FIG. 5, particles having various sizes and a particle diameter of about 5 μm are also observed. In addition, the unevenness of the surface is larger than that of the example, and cracks are observed from the surface to the inside in FIG.

(2) 表面硬さ:
実施例の保持器の表面硬さを、ビッカース硬さで測定した。測定位置は、図8に示す保持器のポケットPを形成する部分の表面S1である。
[結果]
実施例の平均硬さ:619HV(試験荷重25gf)。
平均硬さ:451HV(試験荷重50gf)。
平均硬さ:370HV(試験荷重100gf)。
(2) Surface hardness:
The surface hardness of the cage of the example was measured by Vickers hardness. The measurement position is the surface S1 of the portion forming the pocket P of the cage shown in FIG.
[result]
Average hardness of the examples: 619 HV (test load 25 gf).
Average hardness: 451 HV (test load 50 gf).
Average hardness: 370 HV (test load 100 gf).

(3) 断面の硬さ:
実施例の保持器の硬さを、表面からの距離の異なる複数箇所の断面位置で測定した。同様に、比較例についても測定した。なお、ビッカース硬さの試験荷重は、100gfである。
(3) Section hardness:
The hardness of the cage of the example was measured at a plurality of cross-sectional positions at different distances from the surface. Similarly, the measurement was performed for the comparative example. The test load of the Vickers hardness is 100 gf.

[結果]
図13は、保持器の硬さと、表面からの距離との関係を示すグラフである。図13には、線Ha(─○─)で実施例を、線Hb(─■─)で比較例を示し、縦軸に硬さをビッカース硬さ(HV)で示し、横軸に表面からの距離(μm)を示す。
実施例の窒化層Nは、表面近傍で硬さ約450HVであり、比較例の窒化層とほぼ同等である。また、実施例の窒化層Nは、表面から内部寄りの部分で、比較例の窒化層よりも硬さが低い。このことから、実施例の窒化層Nは、表面が硬く内部が柔らかい2層硬度分布を有し、しかも、実施例は、比較例よりも表面と内部との硬度差が大きいことがわかる。
[result]
FIG. 13 is a graph showing the relationship between the hardness of the cage and the distance from the surface. In FIG. 13, an example is shown by a line Ha (─), a comparative example is shown by a line Hb (─ ■ ─), the hardness is shown by Vickers hardness (HV) on the vertical axis, and the surface is shown by the horizontal axis. Is shown (μm).
The nitrided layer N of the example has a hardness of about 450 HV near the surface, which is almost the same as the nitrided layer of the comparative example. The hardness of the nitrided layer N of the example is lower than that of the nitrided layer of the comparative example at a portion closer to the inside from the surface. From this, it can be seen that the nitrided layer N of the example has a two-layer hardness distribution with a hard surface and a soft inside, and that the example has a larger difference in hardness between the surface and the inside than the comparative example.

従って、実施例は、比較例よりも良好な耐衝撃性を有すると考えられる。
(4) 油の保持性
[試験方法]
実施例及び比較例の保持器表面の油の保持性を試験した。すなわち、平板状の試験片を作成し、作成した試験片の表面に、実施例に形成されたものと同様の窒化層及び比較例と同様の窒化層を形成した。各試験片の窒化層の表面に、潤滑油0.01ccを滴下する。滴下前の表面と、滴下後1時間を温度150℃で経過した表面とを、レーザ顕微鏡で比較し、表面の油膜状況を測定する。
Therefore, it is considered that the examples have better impact resistance than the comparative examples.
(4) Oil retention [Test method]
The oil retaining properties of the cage surfaces of the examples and comparative examples were tested. That is, a flat test piece was prepared, and a nitride layer similar to that formed in the example and a nitride layer similar to that of the comparative example were formed on the surface of the prepared test piece. 0.01 cc of lubricating oil is dropped on the surface of the nitride layer of each test piece. The surface before dropping and the surface at 1 hour after dropping at a temperature of 150 ° C. are compared with a laser microscope to measure the state of the oil film on the surface.

[結果]
観察された顕微鏡像を図9〜図12に示す。図9は、実施例の窒化層N表面の金属組織を表す写真であり、油滴下前の状態である。図10は、実施例の窒化層N表面の金属組織を表す写真であり、油滴下後の状態である。図11は、比較例の窒化層表面の金属組織を表す写真であり、油滴下前の状態である。図12は、比較例の窒化層表面の金属組織を表す写真であり、油滴下後の状態である。図9〜図12は、倍率500倍で得られた像を撮影したものである。
[result]
The observed microscope images are shown in FIGS. FIG. 9 is a photograph showing the metallographic structure on the surface of the nitrided layer N in the example, and shows a state before oil dripping. FIG. 10 is a photograph showing the metallographic structure on the surface of the nitrided layer N in the example, and shows a state after oil dropping. FIG. 11 is a photograph showing the metallographic structure on the surface of the nitrided layer of the comparative example, which is a state before oil dropping. FIG. 12 is a photograph showing the metal structure on the surface of the nitrided layer of the comparative example, which is in a state after oil dropping. 9 to 12 show images obtained at a magnification of 500 times.

実施例の窒化層Nでは、図10に示されているように、潤滑油の存在を示す縞模様が全体に認められ、油膜が表面に保持されていることが判る。なお、このことは、滴下前の図9と滴下後の図10とを比較するとより一層明瞭である。
一方、比較例の窒化層では、図11と図12とで差は少なく、また図12にも縞模様は少ないので、油膜が充分に保持されていないことが判る。
In the nitrided layer N of the example, as shown in FIG. 10, a stripe pattern indicating the presence of the lubricating oil is recognized throughout, which indicates that the oil film is retained on the surface. This is clearer when FIG. 9 before dropping is compared with FIG. 10 after dropping.
On the other hand, in the nitride layer of the comparative example, the difference between FIG. 11 and FIG. 12 is small, and the stripe pattern is also small in FIG. 12, indicating that the oil film is not sufficiently retained.

従って、実施例の窒化層Nは、比較例に比べて潤滑油の保持性に優れていることが判る。
(5) 耐焼き付き性(A):
次に、耐焼き付き性の試験結果を説明する。
上述の保持器1を軸受に適用して、下記条件下で寿命を測定した。ここでの寿命は、潤滑が停止された状態で、焼き付きが生じるまでの時間である。
Therefore, it can be seen that the nitrided layer N of the example is superior in the retention of lubricating oil as compared with the comparative example.
(5) Seizure resistance (A):
Next, the test result of the seizure resistance will be described.
The cage 1 described above was applied to a bearing, and the life was measured under the following conditions. Here, the life is a time required for the seizure to occur when lubrication is stopped.

また、比較例として、従来の保持器の寿命を、同様にして測定した。
[試験条件]
適用した軸受:深溝形玉軸受(呼び番号6305)。
ラジアル荷重:200Kgf。
回転数 :11000rpm。
潤滑条件 :回転前に、2サイクルエンジン用潤滑油を0.01cc滴下。
As a comparative example, the life of the conventional cage was measured in the same manner.
[Test condition]
Applied bearing: deep groove ball bearing (nominal number 6305).
Radial load: 200 kgf.
Rotation speed: 11000 rpm.
Lubrication condition: Before rotation, 0.01 cc of lubricating oil for two-cycle engine was dropped.

[試験結果]
本発明実施品:平均寿命38.5分。
比較例 :平均寿命18.6分。
このように、本発明の保持器は、殆ど無潤滑に近い過酷な条件下でも、従来品に比べて約2倍の寿命を有している。
[Test results]
Inventive product: average life 38.5 minutes.
Comparative example: average life 18.6 minutes.
As described above, the cage of the present invention has a service life approximately twice as long as that of the conventional product even under severe conditions that are almost lubricated.

(6) 耐焼き付き性(B):
(5) の軸受を、さらに過酷な条件を課して寿命を測定した。
[試験条件]
ラジアル荷重:400Kgf。
回転数 :11400rpm。
潤滑条件 :回転前に2サイクルエンジン用潤滑油を0.005cc滴下。
(6) Seizure resistance (B):
The life of the bearing of (5) was measured under more severe conditions.
[Test condition]
Radial load: 400 kgf.
Rotation speed: 11400 rpm.
Lubrication condition: 0.005 cc of 2-cycle engine lubricating oil was dropped before rotation.

[試験結果]
本発明実施品:平均寿命6.1分。
比較例 :平均寿命3.9分。
このように、本発明の保持器は、さらに過酷な条件下でも、従来品に比べて約1.6倍の寿命を有している。
[Test results]
The product of the present invention: average life of 6.1 minutes.
Comparative example: average life 3.9 minutes.
As described above, the cage of the present invention has a life that is about 1.6 times that of the conventional product even under severer conditions.

なお、これら(5) ,(6) の試験は、通常の使用状態で想定されない過酷な条件が課された加速試験である。従って、本発明の保持器は、通常の使用で焼き付くことはない。   Note that these tests (5) and (6) are acceleration tests in which severe conditions that are not assumed in normal use are imposed. Therefore, the retainer of the present invention does not burn during normal use.

本発明にかかる軸受用保持器の斜視図である。1 is a perspective view of a bearing retainer according to the present invention. 図1の軸受用保持器を備えた軸受の断面図である。It is sectional drawing of the bearing provided with the cage for bearings of FIG. 本発明の軸受用保持器の製造方法の概略工程図である。It is a schematic process drawing of the manufacturing method of the bearing cage for the present invention. 本発明の保持器の窒化層表面の金属組織を表す写真である。5 is a photograph showing a metallographic structure on the surface of a nitride layer of the cage of the present invention. 比較例の保持器の窒化層表面の金属組織を表す写真である。It is a photograph showing the metallographic structure of the nitride layer surface of the cage of the comparative example. 本発明の保持器の窒化層の断面の金属組織を表す写真である。5 is a photograph showing a metal structure of a cross section of a nitride layer of the cage of the present invention. 比較例の保持器の窒化層の断面の金属組織を表す写真である。It is a photograph showing the metal structure of a section of a nitride layer of a cage of a comparative example. 図4〜図7の観察位置を説明するための保持器の斜視図である。FIG. 8 is a perspective view of the retainer for explaining the observation positions in FIGS. 4 to 7. 実施例の窒化層表面の金属組織を表す写真であり、油滴下前の状態を示す。It is a photograph showing the metallographic structure of the nitrided layer surface of an Example, and shows the state before oil dripping. 実施例の窒化層表面の金属組織を表す写真であり、油滴下後の状態を示す。It is a photograph showing the metal structure of the nitride layer surface of an example, and shows the state after oil dripping. 比較例の窒化層表面の金属組織を表す写真であり、油滴下前の状態を示す。4 is a photograph showing a metal structure on the surface of a nitride layer of a comparative example, showing a state before oil dripping. 比較例の窒化層表面の金属組織を表す写真であり、油滴下後の状態を示す。5 is a photograph showing a metal structure on the surface of a nitride layer of a comparative example, showing a state after oil dropping. 実施例と比較例の保持器の硬さと、表面からの距離との関係を示すグラフであり、縦軸に硬さをビッカース硬さ(HV)で示し、横軸に表面からの距離(μm)を示し、線Haで実施例の場合を示し、線Hbで比較例の場合を示す。It is a graph which shows the relationship between the hardness of the cage | basket of an Example and a comparative example, and distance from a surface, hardness is shown by Vickers hardness (HV) on a vertical axis | shaft, and distance from a surface (micrometer) is shown on a horizontal axis. , The line Ha shows the case of the embodiment, and the line Hb shows the case of the comparative example.

符号の説明Explanation of reference numerals

1 保持器
N 窒化層
1 cage N nitride layer

Claims (1)

窒化物の平均粒子径が1μm以下の緻密な窒化層が、鋼の表面から内側に向かって形成され、窒化層の表面粗さは、中心線平均粗さRa=0.7μm〜1.0μm、十点平均粗さRz=4.0μm〜7.0μm、最大高さRmax=4.5μm〜7.5μmであることを特徴とする鋼製軸受用保持器。
A dense nitride layer having an average particle diameter of nitride of 1 μm or less is formed inward from the surface of the steel, and the surface roughness of the nitride layer is center line average roughness Ra = 0.7 μm to 1.0 μm, A steel bearing retainer characterized by having a ten-point average roughness Rz = 4.0 μm to 7.0 μm and a maximum height Rmax = 4.5 μm to 7.5 μm.
JP2004265807A 1996-04-16 2004-09-13 Retainer for bearing Pending JP2004347129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265807A JP2004347129A (en) 1996-04-16 2004-09-13 Retainer for bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9445896 1996-04-16
JP2004265807A JP2004347129A (en) 1996-04-16 2004-09-13 Retainer for bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8175753A Division JPH102336A (en) 1996-04-16 1996-06-13 Retainer for bearing and manufacture therefor

Publications (1)

Publication Number Publication Date
JP2004347129A true JP2004347129A (en) 2004-12-09

Family

ID=33542761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265807A Pending JP2004347129A (en) 1996-04-16 2004-09-13 Retainer for bearing

Country Status (1)

Country Link
JP (1) JP2004347129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112739922A (en) * 2018-09-26 2021-04-30 Ntn株式会社 Rolling bearing and main shaft support device for wind power generation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112739922A (en) * 2018-09-26 2021-04-30 Ntn株式会社 Rolling bearing and main shaft support device for wind power generation
CN112739922B (en) * 2018-09-26 2023-02-28 Ntn株式会社 Rolling bearing and main shaft support device for wind power generation

Similar Documents

Publication Publication Date Title
JPH102336A (en) Retainer for bearing and manufacture therefor
EP1624085B1 (en) Rolling bearing
JPH10131970A (en) Rolling bearing and its manufacture
JP4487340B2 (en) Method for manufacturing rolling bearing cage
EP2434172B1 (en) Roller and cage assembly, roller bearing and cage assembly, and cage
JPH07119750A (en) Rolling bearing
JP2004347130A (en) Retainer for bearing
JP2004347129A (en) Retainer for bearing
JP2004360707A (en) Retainer
JP2004239443A (en) Rolling bearing
JPH10141379A (en) Bearing ring for bearing and manufacture thereof
US4872771A (en) Bearing
JP2004347131A (en) Rolling bearing
JP2008032052A (en) Thrust roller bearing
US20210156428A1 (en) Thrust roller bearing
JPH06173958A (en) Rolling bearing
JP2008095916A (en) Roller bearing with flange
JPH04266410A (en) Bearing of roll for rolling
JP2005195150A (en) Rolling device
JP2005106204A (en) Retainer for rolling bearing
JP2003176826A (en) Rolling bearing
JP2007177838A (en) Rolling bearing
JPH04321816A (en) Gear box bearing of helicopter
JP2011043182A (en) Roller with cage, roller bearing with cage, and cage
JPH116521A (en) Roller bearing and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071127

A521 Written amendment

Effective date: 20080128

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20080206

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080229