JP2004346256A - Resin composition for flexible printed circuit board - Google Patents

Resin composition for flexible printed circuit board Download PDF

Info

Publication number
JP2004346256A
JP2004346256A JP2003147101A JP2003147101A JP2004346256A JP 2004346256 A JP2004346256 A JP 2004346256A JP 2003147101 A JP2003147101 A JP 2003147101A JP 2003147101 A JP2003147101 A JP 2003147101A JP 2004346256 A JP2004346256 A JP 2004346256A
Authority
JP
Japan
Prior art keywords
flexible printed
resin composition
resin
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003147101A
Other languages
Japanese (ja)
Other versions
JP4433689B2 (en
Inventor
Toshirou Komiyatani
壽郎 小宮谷
Satoru Nakao
悟 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003147101A priority Critical patent/JP4433689B2/en
Publication of JP2004346256A publication Critical patent/JP2004346256A/en
Application granted granted Critical
Publication of JP4433689B2 publication Critical patent/JP4433689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a halogen-free resin composition having excellent heat-resistance, folding endurance and flexing resistance and meeting the increasing requirement for the fine wiring, high mounting density and high flexing resistance of a flexible printed circuit board according to the performance improvement and the miniaturization of electronic equipment and the requirement for a halogen-free material from the viewpoint of environmental problem. <P>SOLUTION: This resin composition for flexible printed circuit board is used as an adhesive for flexible printed circuit boards. It contains a biphenyl aralkyl epoxy resin expressed by formula (1), a novolak phenolic resin as a curing agent and a polyamide imide as essential components. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はフレキシブルプリント配線板用の樹脂組成物に関する。
【0002】
【従来の技術】
フレキシブルプリント配線板は薄く、軽く、屈曲性に優れることから、特に携帯電話、PDA、液晶ドライバーモジュールを始めとしてモバイル機器を中心に利用されているが、近年、これら電子機器の高性能化、小型化に伴いフレキシブルプリント配線板への配線の微細化、高密度実装化、耐屈曲性などがますます要求されてきている。
【0003】
更に加えて、環境対応問題より鉛フリーはんだを用いる実装も増えつつあり、今後は主流となってくることが予想される。鉛フリーはんだの実装温度が通常のはんだに比べ15〜20℃高く、これに伴いフレキシブルプリント配線板も従来以上の高耐熱性、高寸法安定性が求められている。また、難燃剤としてもハロゲンを含まないことが要求されている。
【0004】
従来の難燃性接着剤としては臭素化エポキシ樹脂を使用するのが一般的であったが(例えば特許文献1)、燃焼時にダイオキシンの発生が懸念され、ハロゲンフリー材料が求められている。
フレキシブルプリント配線板の特徴の一つである耐折性やポリイミドフィルムとの(あるいは圧延銅はくなどとの)密着性を発現する為にカルボキシル基含有アクリロニトリルポリブタジエン等のゴム系エラストマーが使用されている。(例えば特許文献1、特許文献2、特許文献3)しかしながら、ゴムを使用すると耐熱性や難燃性が低下する。また、耐折性は良いが弾性率が低下することから耐屈曲性が悪くなる。
一方、耐熱性を克服する材料として熱可塑性ポリイミドを使用する場合がある。(例えば特許文献4)しかし、ポリイミドはまだまだ高価であり使用できる用途がコスト面で限定されてしまう。
【0005】
【特許文献1】
特開平4−197746号公報
【特許文献2】
特開平4−328183号公報
【特許文献3】
特開2000−44915号公報
【特許文献4】
特開平7−70539号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、ハロゲンフリーで耐熱性、耐折性および屈曲性に優れたフレキシブルプリント配線板用の樹脂組成物を提供することである。
【0007】
【課題を解決するための手段】
このような目的は、下記(1)〜(4)に記載の本発明により達成される。
(1)フレキシブルプリント配線板用の接着剤に用いる樹脂組成物であって、下記化学式(1)で表されるビフェニルアラルキルエポキシ樹脂、および硬化剤としてノボラック型フェーノール樹脂を用い、ポリアミドイミドを必須成分として含有してなることを特徴とするフレキシブルプリント配線板用樹脂組成物。
【化2】

Figure 2004346256
(2)前記ポリアミドイミドがビフェニルアラルキルエポキシ樹脂とノボラック型フェーノール樹脂の総量100重量部に対し5〜50重量部である(1)項記載のフレキシブルプリント配線板用樹脂組成物。
(3)前記ポリアミドイミドが8000〜15000の分子量でありガラス転位温度が250℃〜300℃である(1)または(2)項記載のフレキシブルプリント配線板用樹脂組成物。
(4)前記ノボラック型フェノール樹脂において含有する2核体が10%以下で且つ分子量分布を表すMw/Mn(Mw:重量平均分子量、Mn:数平均分子量)が2.0以下である(1)ないし(3)項のいずれかに記載のフレキシブルプリント配線板用樹脂組成物。
(5)平均粒子径が0.1〜10μmである無機フィラーが樹脂固形分100重量部に対して50〜100重量部を配合した(1)ないし(4)項のいずれかに記載のフレキシブルプリント配線板用樹脂組成物。
【0008】
【発明の実施の形態】
以下、本発明の樹脂組成物について、詳細に説明する。
本発明の樹脂組成物は、ポリイミドフィルムなどのベースフィルムにワニスとして塗布、乾燥されカバーレイとして用いたり、ポリイミドフィルムなどのベースフィルムにワニスとして塗布、乾燥された後に銅はくと貼り合わせてフレキシブルプリント配線板用銅張積層板として用いたり、フレキシブルプリント配線板関連材料の接着などに用いることができる。
本発明の樹脂組成物はハロゲン化物を含まないものであって、ビフェニルアラルキルエポキシ樹脂および硬化剤としてノボラック型フェーノール樹脂を用い、ポリアミドイミドを必須成分としておよび無機フィラーを含有してなることを特徴とするフレキシブルプリント配線板用樹脂組成物である。
本発明においてはビフェニルアラルキル樹脂とノボラック型フェノール樹脂にポリアミドイミドを配合することにより耐熱性、難燃性、高弾性、低吸水性を発現し、更にはプレス成形時の流動性を制御し、耐熱性を落とさずに密着力を向上させる。
本発明における樹脂組成物は例えばフレキシブルプリント配線板に用いる接着剤やカバーレイなどに使用できる。特にカバーレイにおいては耐屈曲性において高弾性であることが望ましく、本発明の配合物は剛直な分子骨格を三次元的に硬化するため目的に適している。また、使用するポリアミドイミドもポリイミドに比べても高弾性であり強靭でありガラス転位点も高い樹脂であるため耐屈曲性が良い。
【0009】
以下、本発明の樹脂組成物について説明する。
本発明の樹脂組成物に使用されるビフェニルアラルキル樹脂は下記一般式(1)で示される。
【化3】
Figure 2004346256
ビフェニルアラルキルエポキシ樹脂はそのベンゼン環の多い分子骨格上、低吸水化の効果と難燃性の効果が得られる。配合量は20〜50重量部が好ましい。20重量部未満では低吸水化が十分でなく、また50重量部を越えると密着性が低下し好ましくない。
また、本発明でビフェニルアラルキル樹脂のnは2〜7が260℃の半田耐熱性の点で好ましい。nが2未満であると架橋密度が低下する傾向があり260℃での半田耐熱性が悪化する場合があり、7を超えるとポリアミドイミドとの相溶性が悪くなる。
【0010】
本発明の樹脂組成物に使用されるノボラック型フェノール樹脂は含有する2核体が10%以下で且つ分子量分布を表すMw/Mn(Mw:重量平均分子量、Mn:数平均分子量)が2.0以下であることを特徴とする。このことにより、低分子量成分の発生がなく、強度的に優れた硬化物を得られる。また、硬化時に揮発成分による発泡もなくなる為、ボイドのない硬化物が得られ、電気的信頼性が向上する。また、ノボラック型フェノール樹脂は分子量分布を表すMw/Mn(Mw:重量平均分子量、Mn:数平均分子量)が2.0以下であることを特徴とする。このように分子量分布が非常に狭いことで均一に且つ架橋密度を高くすることが可能となるため、耐熱性、機械的強度に優れた硬化物が得られる。また、硬化時の濡れ性が上がり密着力も向上する。Mw/Mnが2.0を超えるとTgの低下がみられ耐熱性が弱くなる。
【0011】
フレキシブルプリント配線板に用いる接着剤やカバーレイとして使用する場合は接着剤としての樹脂組成物は機能上、積層時に樹脂の染み出しがないことが望まれる。貼り合わせ時に樹脂の流動性が大きいと樹脂の染み出しが起こり、フレキシブルプリント配線板用銅張積層板として使用するには厚み精度が出せなく、カバーレイとして使用する場合は染み出しが大きいと端子部の回路を露出できなくなる。
【0012】
本発明におけるポリアミドイミド樹脂は重量平均分子量が8000以上15000未満であることが望ましい。重量平均分子量が8000未満であると染み出し量が大きくなり、15000以上であると当該エポキシ樹脂と相溶性が悪くなる。
また、ガラス転位温度が250℃未満では半田耐熱性が悪くなり300℃を超えると、200℃以下での積層やラミネートが難しくなる。
【0013】
また、ポリアミドイミドはビフェニルアラルキルエポキシ樹脂とノボラック型フェーノール樹脂の総量100重量部に対し5〜50重量部の配合が好ましい。5重量部未満であると染み出しを抑えきれなくなり、50重量部を超えると回路間を埋め込めないなど成形性が悪くなる。
本発明で用いられるポリアミドイミドはその分子骨格上、耐熱性と難燃性の効果も得られる。
【0014】
本発明に使用される無機フィラーは耐熱性向上と弾性率向上に寄与する。平均粒子径が0.1〜10μmである無機フィラーが樹脂固形分100重量部に対して50〜100重量部を配合するのが好ましい。平均粒子径が0.1μm未満であるとワニスのチキソトロピーが高くなり扱いが難しくなる。10μmを超えると特にファインピッチ回路においては絶縁信頼性が低下する。50重量部未満であると弾性率が低下し耐屈曲性が低下する。また、100重量部を超えると耐折性が低下する。
無機フィラーの種類については特に限定はされないが、絶縁性の高い材料が好まれる。例えば溶融シリカ、炭酸カルシウム、水酸化アルミニウム、アルミナ、マイカ、タルク、ホワイトカーボンなどの無機フィラーが使用可能である。
【0015】
さらに、銅はくや内層回路基板との密着力の向上、耐湿性の向上のためにエポキシシラン等のシランカップリング剤あるいはチタネート系カップリング剤、消泡剤などの添加剤の配合も可能である。
【0016】
溶剤としては、樹脂組成物に対し良好な溶解性を持つものを選択しなければならない。例えば、アセトン、メチルエチルケトン、トルエン、キシレン、n−ヘキサン、メタノール、エタノール、メチルセルソルブ、エチルセルソルブ、ブチルセロソルブ、メトキシプロパノール、シクロヘキサノン、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミドなどを一種または二種以上の混合系を使用することが可能である。
【0017】
以下、本発明を実施例及び比較例により説明するが、本発明はこれに限定されるものではない。
【0018】
【実施例】
(実施例1)
樹脂組成分としてビフェニルアラルキルエポキシ樹脂(エポキシ当量280、日本化薬製NC−3000)50重量部、ノボラック型フェノール樹脂(2核体量2.5%、フリーフェノール量0%、Mw/Mn=1.43 住友ベークライト製PR−NMD−103)17重量部およびポリアミドイミド(分子量10000、Tg=280℃、東洋紡社製)をビフェニルアラルキルエポキシ樹脂とノボラック型フェーノール樹脂の総量100重量部に対し35重量部およびシランカップリング剤0.5重量部をMEK及びブチルセロソルブとの混合溶剤に樹脂固形分が50%となるように溶解した。
この樹脂ワニスの樹脂固形分100重量部に対して溶融シリカ(平均粒子径0.5μm アドマテック社製)30重量部の割合で添加し、均一に分散するまで攪拌して配合物ワニスを作製した。
この配合物ワニスを厚み25μmのポリイミドフィルムの両面に各樹脂組成物の厚みが乾燥後、10μmとなるようにコンマロールコーターで塗工、80℃5分+125℃3分で乾燥し、次いで12μm厚の圧延銅はくを180℃でロールラミネーターにより積層した。185℃1時間の熱処理を行った後に、エッチングにより所定の評価用のフレキシブルプリント配線板を作成した。尚、難燃性評価には全面エッチングにより銅はくを除去して評価用基板を得た。
【0019】
同様に得られた配合物ワニスを厚み25μmのポリイミドフィルムの片面に各樹脂組成物の厚みが乾燥後、20μmとなるようにコンマロールコーターで塗工、80℃5分+125℃3分で乾燥し、所定の開口部を設けた後に上記評価用のフレキシブルプリント配線板に真空プレスにて185℃2時間で積層した。
【0020】
(実施例2)
ポリアミドイミド(分子量8000、Tg=255℃、東洋紡社製)をビフェニルアラルキルエポキシ樹脂とノボラック型フェーノール樹脂の総量100重量部に対し5重量部にした以外は実施例1と同様にしてフレキシブルプリント配線板を得、同様に評価した。
【0021】
(実施例3)
ノボラック型フェノール樹脂を2核体量6.5%、フリーフェノール量0%、Mw/Mn=1.33(住友ベークライト製PR−NMD−102)にした以外は実施例1と同様にしてフレキシブルプリント配線板を得、同様に評価した。
【0022】
(実施例4)
樹脂ワニスの樹脂固形分100重量部に対して平均粒子径が5〜10μmのマイカ(コープケミカル社製 MK−200)とした以外は実施例1と同様にしてフレキシブルプリント配線板を得、同様に評価した。
【0023】
(比較例1)
エポキシ樹脂をビスフェノールA型エポキシ樹脂(エポキシ当量:210)とし、硬化剤としてのノボラック型フェノール樹脂を同当量使用した以外は実施例1と同様にしてフレキシブルプリント配線板を得、同様に評価した。
【0024】
(比較例2)
ポリアミドイミドを分子量30000、Tg=320のものに変えた以外は実施例1と同様にワニスを調整し、この配合物ワニスを厚み25μmのポリイミドフィルムの両面に各樹脂組成物の厚みが乾燥後、10μmとなるようにコンマロールコーターで塗工、80℃5分+125℃3分で乾燥し、次いで12μm厚の圧延銅はくを195℃でロールラミネーターにより積層しようとしたが密着力が不充分で評価を中断した。同様に得られた配合物ワニスを厚み25μmのポリイミドフィルムの片面に各樹脂組成物の厚みが乾燥後、20μmとなるようにコンマロールコーターで塗工、80℃5分+125℃3分で乾燥し、所定の開口部を設けた後に実施例1で作成したフレキシブルプリント配線板に真空プレスにて185℃2時間で積層しようとしたが回路間の埋め込みが出来ず、密着力も不充分であった為評価を中断した。
【0025】
(比較例3)
ノボラック型フェノール樹脂を2核体含有量が14%で且つ分子量分布を表すMw/Mn(Mw:重量平均分子量、Mn:数平均分子量)が9.4であるフェノール樹脂(住友ベークライト社製 PR−50731)を同当量使用した以外は実施例1同様にしてフレキシブルプリント配線板を得、同様に評価した。
【0026】
(比較例4)
無機フィラーを平均粒子径が15μmの不定形硫酸バリウムを樹脂ワニスの樹脂固形分100重量部に対して100重量部の割合で添加した以外は実施例1と同様にしてフレキシブルプリント配線板を得、同様に評価した。
【0027】
このようにして得られたフレキシブルプリント配線板をガラス転移温度、成形性、吸湿半田耐熱性、密着力、電気絶縁性、屈曲性を測定し、その結果を表1に示す。
【表1】
Figure 2004346256
【0028】
*ガラス転移温度の測定方法
得られた樹脂ワニスを離型処理されたアルミはくに塗工、80℃5分+125℃3分乾燥し、更には185℃2時間の条件で硬化した後、アルミはくを剥がして試料を得た。これをTMA法によりガラス転移温度を測定した。
*成形性
測定用端子を露出させる為に打ち抜いたカバーレイ端部からの最大染み出し量を測定するとともに回路間などの埋め込み不良によるボイドが無いかを観察しボイドの無かったものを○とした。
*吸湿半田耐熱性
JIS規格C5016−10.3に順ずる。フクレ、剥がれのなかったものを○とした。
*密着力
JIS規格C5016−8.1に順ずる
*電気絶縁性
回路幅及び回路間幅をそれぞれ40μmとした櫛型パターンを用い、初期状態および65℃90%50V1000時間処理後の絶縁抵抗値を測定した。
*屈曲性
IPC法に準じる。R=2mm、1000rpm、ストローク15mmで屈曲回数が10万回以上のものを◎、7万5千回以上10万回未満のものを○、5万回以上7万5千回未満のものを△、5万回に満たなかったものを×とした。
*耐折性
MIT法に順ずる。R=0.4mm、荷重500g、裏全面エッチング、片面のみカバーレイありで基材の耐折性をみた。
【0029】
【発明の効果】
本発明により、ハロゲンフリーで耐熱性、耐折性および屈曲性に優れたフレキシブルプリント配線板用の樹脂組成物を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin composition for a flexible printed wiring board.
[0002]
[Prior art]
Flexible printed wiring boards are thin, light, and have excellent flexibility, and are used mainly for mobile devices such as mobile phones, PDAs, and liquid crystal driver modules. In recent years, these electronic devices have been improved in performance and reduced in size. With the development of wiring, miniaturization of wiring on a flexible printed wiring board, high-density mounting, bending resistance, and the like are increasingly required.
[0003]
In addition, mounting using lead-free solder is increasing due to environmental issues, and is expected to become mainstream in the future. The mounting temperature of lead-free solder is 15 to 20 ° C. higher than that of ordinary solder, and accordingly, flexible printed wiring boards are required to have higher heat resistance and higher dimensional stability than ever before. It is also required that the flame retardant does not contain halogen.
[0004]
Although a brominated epoxy resin has generally been used as a conventional flame-retardant adhesive (for example, Patent Document 1), there is a concern about generation of dioxin during combustion, and a halogen-free material is required.
Rubber-based elastomers such as carboxyl group-containing acrylonitrile polybutadiene are used to express the bending resistance and adhesion to polyimide film (or to rolled copper foil), which are one of the features of flexible printed wiring boards. I have. (For example, Patent Literature 1, Patent Literature 2, Patent Literature 3) However, when rubber is used, heat resistance and flame retardancy are reduced. In addition, although the bending resistance is good, the bending resistance deteriorates because the elastic modulus decreases.
On the other hand, a thermoplastic polyimide may be used as a material for overcoming heat resistance. (For example, Patent Document 4) However, polyimides are still expensive and usable applications are limited in terms of cost.
[0005]
[Patent Document 1]
JP-A-4-197746 [Patent Document 2]
JP-A-4-328183 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2000-44915 [Patent Document 4]
JP-A-7-70539
[Problems to be solved by the invention]
An object of the present invention is to provide a resin composition for a flexible printed wiring board that is halogen-free and has excellent heat resistance, folding resistance, and flexibility.
[0007]
[Means for Solving the Problems]
Such an object is achieved by the present invention described in the following (1) to (4).
(1) A resin composition used for an adhesive for a flexible printed wiring board, comprising a biphenyl aralkyl epoxy resin represented by the following chemical formula (1), a novolak phenol resin as a curing agent, and polyamide imide as an essential component. A resin composition for a flexible printed wiring board, characterized in that it is contained as a resin.
Embedded image
Figure 2004346256
(2) The resin composition for a flexible printed wiring board according to (1), wherein the polyamide imide is 5 to 50 parts by weight based on 100 parts by weight of the total amount of the biphenylaralkyl epoxy resin and the novolak phenol resin.
(3) The resin composition for a flexible printed wiring board according to (1) or (2), wherein the polyamide imide has a molecular weight of 8,000 to 15,000 and a glass transition temperature of 250 to 300 ° C.
(4) The novolak-type phenol resin contains no more than 10% of binuclides and Mw / Mn (Mw: weight average molecular weight, Mn: number average molecular weight) representing a molecular weight distribution of 2.0 or less (1). Or the resin composition for a flexible printed wiring board according to any one of (3) to (3).
(5) The flexible print according to any one of (1) to (4), wherein 50 to 100 parts by weight of an inorganic filler having an average particle diameter of 0.1 to 10 μm is blended with respect to 100 parts by weight of the resin solid content. Resin composition for wiring board.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the resin composition of the present invention will be described in detail.
The resin composition of the present invention is applied as a varnish to a base film such as a polyimide film, dried and used as a coverlay, or applied as a varnish to a base film such as a polyimide film, dried, and then bonded to a copper foil to be flexible. It can be used as a copper-clad laminate for printed wiring boards, or used for bonding flexible printed wiring board-related materials.
The resin composition of the present invention does not contain a halide, and is characterized by comprising a biphenylaralkyl epoxy resin and a novolak type phenol resin as a curing agent, containing polyamideimide as an essential component and an inorganic filler. It is a resin composition for flexible printed wiring boards.
In the present invention, heat resistance, flame retardancy, high elasticity, low water absorption are exhibited by blending polyamide imide with biphenyl aralkyl resin and novolak type phenol resin, and further, the fluidity during press molding is controlled, Improves adhesion without sacrificing properties.
The resin composition of the present invention can be used for, for example, an adhesive or a coverlay used for a flexible printed wiring board. In particular, it is desirable that the coverlay has high elasticity in terms of bending resistance, and the compound of the present invention is suitable for the purpose of curing a rigid molecular skeleton three-dimensionally. Also, the polyamideimide used is a resin having high elasticity and toughness as compared with polyimide, and also has a high glass transition point, so that it has good bending resistance.
[0009]
Hereinafter, the resin composition of the present invention will be described.
The biphenyl aralkyl resin used in the resin composition of the present invention is represented by the following general formula (1).
Embedded image
Figure 2004346256
The biphenylaralkyl epoxy resin has a low water absorption effect and a flame retardant effect on the molecular skeleton having many benzene rings. The amount is preferably 20 to 50 parts by weight. If the amount is less than 20 parts by weight, the water absorption is not sufficiently reduced, and if it exceeds 50 parts by weight, the adhesion is undesirably reduced.
In the present invention, n of the biphenyl aralkyl resin is preferably 2 to 7 from the viewpoint of solder heat resistance at 260 ° C. If n is less than 2, the crosslink density tends to decrease, and the solder heat resistance at 260 ° C. may deteriorate. If n exceeds 7, the compatibility with polyamideimide deteriorates.
[0010]
The novolak type phenol resin used in the resin composition of the present invention has a binuclear content of 10% or less and has a molecular weight distribution Mw / Mn (Mw: weight average molecular weight, Mn: number average molecular weight) of 2.0. It is characterized by the following. Thereby, a cured product excellent in strength can be obtained without generation of low molecular weight components. In addition, since foaming due to volatile components during curing is eliminated, a cured product without voids is obtained, and electrical reliability is improved. Further, the novolak type phenol resin is characterized in that Mw / Mn (Mw: weight average molecular weight, Mn: number average molecular weight) representing a molecular weight distribution is 2.0 or less. Since the molecular weight distribution is very narrow as described above, it is possible to increase the crosslinking density uniformly and to obtain a cured product having excellent heat resistance and mechanical strength. In addition, the wettability at the time of curing is increased, and the adhesion is also improved. When Mw / Mn exceeds 2.0, Tg is reduced and heat resistance is weakened.
[0011]
When used as an adhesive or a coverlay for a flexible printed wiring board, it is desired that the resin composition as an adhesive does not exude resin during lamination in terms of function. If the fluidity of the resin is large at the time of bonding, the resin will seep out, and the thickness accuracy cannot be obtained for use as a copper-clad laminate for flexible printed wiring boards. The circuit of the section cannot be exposed.
[0012]
The polyamide-imide resin in the present invention preferably has a weight average molecular weight of 8,000 or more and less than 15,000. If the weight average molecular weight is less than 8000, the amount of oozing increases, and if it is 15,000 or more, the compatibility with the epoxy resin becomes poor.
Further, when the glass transition temperature is lower than 250 ° C., the solder heat resistance deteriorates, and when the glass transition temperature exceeds 300 ° C., lamination or lamination at 200 ° C. or lower becomes difficult.
[0013]
Further, the amount of the polyamide imide is preferably 5 to 50 parts by weight based on 100 parts by weight of the total amount of the biphenyl aralkyl epoxy resin and the novolak phenol resin. If the amount is less than 5 parts by weight, the bleeding cannot be suppressed, and if the amount is more than 50 parts by weight, the formability such as the inability to embed the space between circuits deteriorates.
The polyamide imide used in the present invention has heat resistance and flame retardant effects due to its molecular skeleton.
[0014]
The inorganic filler used in the present invention contributes to improvement of heat resistance and elastic modulus. It is preferable to mix 50 to 100 parts by weight of an inorganic filler having an average particle diameter of 0.1 to 10 μm with respect to 100 parts by weight of a resin solid content. When the average particle size is less than 0.1 μm, the varnish has a high thixotropy and is difficult to handle. If it exceeds 10 μm, the insulation reliability is reduced particularly in a fine pitch circuit. If the amount is less than 50 parts by weight, the elastic modulus is reduced and the bending resistance is reduced. On the other hand, if it exceeds 100 parts by weight, the folding resistance is reduced.
The type of the inorganic filler is not particularly limited, but a material having a high insulating property is preferred. For example, inorganic fillers such as fused silica, calcium carbonate, aluminum hydroxide, alumina, mica, talc, and white carbon can be used.
[0015]
Furthermore, silane coupling agents such as epoxy silane or additives such as titanate coupling agents and defoaming agents can be added to improve adhesion to copper foil and inner circuit boards, and to improve moisture resistance. is there.
[0016]
As the solvent, a solvent having good solubility in the resin composition must be selected. For example, one or more of acetone, methyl ethyl ketone, toluene, xylene, n-hexane, methanol, ethanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methoxypropanol, cyclohexanone, N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like It is possible to use a mixed system of
[0017]
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[0018]
【Example】
(Example 1)
As resin components, 50 parts by weight of biphenylaralkyl epoxy resin (epoxy equivalent: 280, Nippon Kayaku NC-3000), novolak type phenol resin (binuclear amount: 2.5%, free phenol amount: 0%, Mw / Mn = 1) .43 17 parts by weight of PR-NMD-103 manufactured by Sumitomo Bakelite and 35 parts by weight of polyamideimide (molecular weight 10,000, Tg = 280 ° C., manufactured by Toyobo Co., Ltd.) based on 100 parts by weight of the total amount of the biphenylaralkyl epoxy resin and the novolak type phenol resin. And 0.5 part by weight of the silane coupling agent was dissolved in a mixed solvent of MEK and butyl cellosolve so that the resin solid content became 50%.
A fused varnish was prepared by adding 30 parts by weight of fused silica (average particle size: 0.5 μm, manufactured by Admatech) at a ratio of 30 parts by weight to 100 parts by weight of the resin solid content of the resin varnish, and stirring the mixture until dispersed uniformly.
This composition varnish was dried on both sides of a polyimide film having a thickness of 25 μm with a comma roll coater so that the thickness of each resin composition became 10 μm, dried at 80 ° C. for 5 minutes and at 125 ° C. for 3 minutes, and then dried at a thickness of 12 μm. Rolled copper foil was laminated at 180 ° C. with a roll laminator. After performing heat treatment at 185 ° C. for 1 hour, a flexible printed wiring board for predetermined evaluation was formed by etching. For evaluation of flame retardancy, copper foil was removed by etching the entire surface to obtain an evaluation substrate.
[0019]
Similarly, the obtained compound varnish was dried on one side of a polyimide film having a thickness of 25 μm with a comma roll coater so that the thickness of each resin composition became 20 μm, and dried at 80 ° C. for 5 minutes and at 125 ° C. for 3 minutes. After the predetermined opening was provided, the flexible printed wiring board for evaluation was laminated by a vacuum press at 185 ° C. for 2 hours.
[0020]
(Example 2)
Flexible printed wiring board in the same manner as in Example 1 except that the polyamideimide (molecular weight: 8000, Tg = 255 ° C., manufactured by Toyobo Co., Ltd.) was used in an amount of 5 parts by weight based on 100 parts by weight of the total amount of the biphenylaralkyl epoxy resin and the novolak-type phenol resin. And evaluated similarly.
[0021]
(Example 3)
Flexible printing was performed in the same manner as in Example 1 except that the novolak type phenol resin was changed to a binuclear body amount of 6.5%, a free phenol amount of 0%, and Mw / Mn = 1.33 (PR-NMD-102 manufactured by Sumitomo Bakelite). A wiring board was obtained and similarly evaluated.
[0022]
(Example 4)
A flexible printed wiring board was obtained in the same manner as in Example 1 except that mica (MK-200 manufactured by Corp Chemical) having an average particle diameter of 5 to 10 μm was used for 100 parts by weight of the resin solid content of the resin varnish. evaluated.
[0023]
(Comparative Example 1)
A flexible printed wiring board was obtained and evaluated in the same manner as in Example 1, except that the epoxy resin was a bisphenol A type epoxy resin (epoxy equivalent: 210) and the same amount of a novolak type phenol resin as a curing agent was used.
[0024]
(Comparative Example 2)
A varnish was prepared in the same manner as in Example 1 except that the polyamideimide was changed to one having a molecular weight of 30,000 and Tg = 320. After the compound varnish was dried on both sides of a 25 μm-thick polyimide film, the thickness of each resin composition was dried. Coating with a comma roll coater to a thickness of 10 μm, drying at 80 ° C. for 5 minutes + 125 ° C. for 3 minutes, and then trying to laminate a rolled copper foil having a thickness of 12 μm at 195 ° C. with a roll laminator, but the adhesion was insufficient. Evaluation suspended. Similarly, the obtained compound varnish was dried on one side of a polyimide film having a thickness of 25 μm with a comma roll coater so that the thickness of each resin composition became 20 μm, and dried at 80 ° C. for 5 minutes and at 125 ° C. for 3 minutes. After a predetermined opening was provided, the flexible printed wiring board prepared in Example 1 was laminated by a vacuum press at 185 ° C. for 2 hours. However, embedding between circuits could not be performed, and the adhesion was insufficient. Evaluation suspended.
[0025]
(Comparative Example 3)
A novolak-type phenol resin having a binuclear content of 14% and a molecular weight distribution Mw / Mn (Mw: weight average molecular weight, Mn: number average molecular weight) of 9.4 (PR- manufactured by Sumitomo Bakelite Co., Ltd.) A flexible printed wiring board was obtained and evaluated in the same manner as in Example 1 except that 50731) was used in the same equivalent amount.
[0026]
(Comparative Example 4)
A flexible printed wiring board was obtained in the same manner as in Example 1, except that amorphous barium sulfate having an average particle diameter of 15 μm was added in an amount of 100 parts by weight based on 100 parts by weight of the resin solid content of the resin varnish. It was evaluated similarly.
[0027]
The flexible printed wiring board thus obtained was measured for glass transition temperature, moldability, moisture absorption solder heat resistance, adhesion, electrical insulation, and flexibility, and the results are shown in Table 1.
[Table 1]
Figure 2004346256
[0028]
* Measurement method of glass transition temperature The obtained resin varnish was applied to a release-treated aluminum foil, dried at 80 ° C for 5 minutes and dried at 125 ° C for 3 minutes, and further cured at 185 ° C for 2 hours. The sample was peeled off. The glass transition temperature was measured by the TMA method.
* Measure the maximum amount of exudation from the edge of the coverlay punched out to expose the moldability measurement terminals, observe the presence of voids due to improper embedding between circuits, etc., and mark those without voids as ○. .
* Heat absorption solder heat resistance Complies with JIS standard C5016-10.3. A mark without blisters and no peeling was marked with a circle.
* Adhesion force According to JIS standard C5016-8.1 * Electrical insulation circuit width and inter-circuit width are each 40 μm using a comb-shaped pattern. It was measured.
* According to the flexible IPC method. R = 2 mm, 1000 rpm, stroke 15 mm, and the number of bending times of 100,000 times or more ◎, 75,000 to less than 100,000 times ○, 50,000 to less than 75,000 times Δ And those less than 50,000 times were evaluated as x.
* Fold resistant MIT method is followed. R = 0.4 mm, load 500 g, etching on the entire back surface, cover lay on one side only, and the folding resistance of the substrate was observed.
[0029]
【The invention's effect】
According to the present invention, it is possible to provide a halogen-free resin composition for a flexible printed wiring board excellent in heat resistance, folding resistance and flexibility.

Claims (5)

フレキシブルプリント配線板用の接着剤に用いる樹脂組成物であって、下記化学式(1)で表されるビフェニルアラルキルエポキシ樹脂、および硬化剤としてノボラック型フェーノール樹脂を用い、ポリアミドイミドを必須成分として含有してなることを特徴とするフレキシブルプリント配線板用樹脂組成物。
Figure 2004346256
A resin composition used for an adhesive for a flexible printed wiring board, comprising a biphenylaralkyl epoxy resin represented by the following chemical formula (1) and a novolak type phenol resin as a curing agent, and containing polyamideimide as an essential component. A resin composition for a flexible printed wiring board, comprising:
Figure 2004346256
前記ポリアミドイミドが、ビフェニルアラルキルエポキシ樹脂とノボラック型フェーノール樹脂の総量100重量部に対し、5〜50重量部である請求項1記載のフレキシブルプリント配線板用樹脂組成物。2. The resin composition for a flexible printed wiring board according to claim 1, wherein the polyamideimide is 5 to 50 parts by weight based on 100 parts by weight of the total amount of the biphenyl aralkyl epoxy resin and the novolak phenol resin. 3. 前記ポリアミドイミドが8000〜15000の分子量でありガラス転位温度が250℃〜300℃である請求項1または2記載のフレキシブルプリント配線板用樹脂組成物。The resin composition for a flexible printed wiring board according to claim 1 or 2, wherein the polyamide imide has a molecular weight of 8,000 to 15,000 and a glass transition temperature of 250 to 300 ° C. 前記ノボラック型フェノール樹脂において含有する2核体が10%以下で且つ分子量分布を表すMw/Mn(Mw:重量平均分子量、Mn:数平均分子量)が2.0以下である請求項1ないし3のいずれかに記載のフレキシブルプリント配線板用樹脂組成物。4. The novolak-type phenolic resin according to claim 1, wherein a binuclear compound contained therein is 10% or less and Mw / Mn (Mw: weight average molecular weight, Mn: number average molecular weight) representing a molecular weight distribution is 2.0 or less. The resin composition for a flexible printed wiring board according to any one of the above. 平均粒子径が0.1〜10μmである無機フィラーが樹脂固形分100重量部に対して50〜100重量部を配合した請求項1ないし4のいずれかに記載のフレキシブルプリント配線板用樹脂組成物。The resin composition for a flexible printed wiring board according to any one of claims 1 to 4, wherein the inorganic filler having an average particle diameter of 0.1 to 10 µm is blended in an amount of 50 to 100 parts by weight based on 100 parts by weight of the resin solid content. .
JP2003147101A 2003-05-26 2003-05-26 Resin composition for flexible printed wiring board Expired - Fee Related JP4433689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003147101A JP4433689B2 (en) 2003-05-26 2003-05-26 Resin composition for flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003147101A JP4433689B2 (en) 2003-05-26 2003-05-26 Resin composition for flexible printed wiring board

Publications (2)

Publication Number Publication Date
JP2004346256A true JP2004346256A (en) 2004-12-09
JP4433689B2 JP4433689B2 (en) 2010-03-17

Family

ID=33533729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003147101A Expired - Fee Related JP4433689B2 (en) 2003-05-26 2003-05-26 Resin composition for flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP4433689B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222390A (en) * 2009-03-19 2010-10-07 Lintec Corp Adhesive composition, adhesive sheet and method for producing semiconductor apparatus
JP2015017241A (en) * 2013-06-10 2015-01-29 住友ベークライト株式会社 Phenol resin composition for rubber compounding, rubber composition, and tire
WO2017142094A1 (en) * 2016-02-19 2017-08-24 日立化成株式会社 Adhesive film for multilayer printed wiring boards
WO2017183722A1 (en) * 2016-04-22 2017-10-26 日立化成株式会社 Adhesive film to be used in multilayer printed circuit board
WO2017183721A1 (en) * 2016-04-22 2017-10-26 日立化成株式会社 Adhesive film to be used in multilayer printed circuit board
CN114591708A (en) * 2020-12-30 2022-06-07 广东生益科技股份有限公司 Resin composition, resin adhesive film and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222390A (en) * 2009-03-19 2010-10-07 Lintec Corp Adhesive composition, adhesive sheet and method for producing semiconductor apparatus
JP2015017241A (en) * 2013-06-10 2015-01-29 住友ベークライト株式会社 Phenol resin composition for rubber compounding, rubber composition, and tire
WO2017142094A1 (en) * 2016-02-19 2017-08-24 日立化成株式会社 Adhesive film for multilayer printed wiring boards
CN108699408A (en) * 2016-02-19 2018-10-23 日立化成株式会社 The adhesive film of multilayer printed circuit board
CN108699408B (en) * 2016-02-19 2021-11-05 昭和电工材料株式会社 Adhesive film for multilayer printed wiring board
WO2017183722A1 (en) * 2016-04-22 2017-10-26 日立化成株式会社 Adhesive film to be used in multilayer printed circuit board
WO2017183721A1 (en) * 2016-04-22 2017-10-26 日立化成株式会社 Adhesive film to be used in multilayer printed circuit board
CN114591708A (en) * 2020-12-30 2022-06-07 广东生益科技股份有限公司 Resin composition, resin adhesive film and application thereof
WO2022141816A1 (en) * 2020-12-30 2022-07-07 广东生益科技股份有限公司 Resin composition, resin adhesive film, and application thereof
CN114591708B (en) * 2020-12-30 2023-04-07 广东生益科技股份有限公司 Resin composition, resin adhesive film and application thereof

Also Published As

Publication number Publication date
JP4433689B2 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
JP2009144052A (en) Resin composition for printed circuit board, insulating layer with supporting substrate, laminate, and printed circuit board
JP2012097197A (en) Flame-retardant adhesive composition and adhesive sheet and coverlay film using the same
JP2009108144A (en) Flexible halogen-free epoxy resin composition, metallic foil with resin, cover-lay film, prepreg, laminate for printed wiring board, metal-clad flexible laminate
JP2007211143A (en) Resin composition, cover-lay film and metal-clad laminate
JP4277614B2 (en) Resin composition for flexible printed wiring board and coverlay
JP4788255B2 (en) Resin composition, coverlay film using the same, and metal-clad laminate
JP2009167396A (en) Adhesive composition, copper-clad laminate plate using the same, cover-lay film and adhesive sheet
JP2004256678A (en) Resin composition, coverlay and copper-clad laminate for flexible printed wiring board
KR101484013B1 (en) Thermosetting adhesive composition and coverlay film using the same
JP2007112848A (en) Resin composition and cover-lay film and metal-clad laminate each using the same
JP4433693B2 (en) Resin composition, coverlay, metal-clad laminate for flexible printed wiring board and flexible printed wiring board
JP2004331783A (en) Flame-retardant adhesive composition, flexible copper-clad laminate, cover lay and adhesive film
JP4433689B2 (en) Resin composition for flexible printed wiring board
JP2005105159A (en) Resin composition, coverlay, and flexible printed circuit board
JP2006306007A (en) Metal clad laminate and printed-wiring board
JP2008195846A (en) Resin composition for printed circuit board, electrical insulation material with substrate, and metal-clad laminated board
JP2005015506A (en) Adhesive composition for semiconductor device and adhesive sheet and cover lay film and copper-clad polyimide film using the same
JP2005340270A (en) Laminated plate, pre-preg therefor, flexible printed wiring board using the same and flex rigid printed wiring board
JP2007238769A (en) Resin composition, resin film, cover-lay film and flexible printed circuit board
JP2004269616A (en) Resin composition and cover lay for flexible printed wiring board using the same
JP2005238617A (en) Metal clad laminated sheet and printed wiring board
JP2722402B2 (en) Adhesive composition for flexible printed circuit boards
JP2007051258A (en) Resin composition, coverlay film using the same and metal-clad laminated board
JP2006332150A (en) Resin composition for coverlay film, coverlay film, and flexible printed circuit board using the same
JP2005225962A (en) Resin composition, prepreg and laminated board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20091221

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20140108

LAPS Cancellation because of no payment of annual fees