【0001】
【発明の属する技術分野】
本発明は積層フィルムに関し、詳しくは、水蒸気と酸素のバリア性の両立のみならず、積層膜と基材フィルムとの接着性や耐熱性にも優れた積層フィルムに関するものである。
【0002】
【従来の技術】
従来、ポリエステルやポリオレフィンなどの汎用熱可塑性樹脂からなるフィルムは、その透明性、機械的特性、電気的特性などから磁気記録材料、電気絶縁材料、コンデンサ用材料、包装材料、写真、グラフィック、感熱転写などの各種工業材料として使用されている。
【0003】
また、芳香族ポリアミドに代表される高機能性樹脂からなるフィルムは、高い耐熱性や寸法安定性、機械的強度、ガスバリア性、不燃性などの特長を持ち、高密度の磁気記録媒体やフレキシブルプリント基板などに使用されている。
【0004】
しかし、上記した一般的な熱可塑性樹脂フィルムには、熱によって軟化あるいは溶融しかつ燃焼しやすいなどの熱的欠点やガスバリア性の不十分さがあり、一方の芳香族ポリアミドのような高機能性樹脂からなるフィルムは、通常湿式製膜法により生産されるため生産性が悪く非常に高価なフィルムとなり、その用途が限定されている。
【0005】
そこで、これらの欠点を補うために、両者の貼合わせや塗布による積層体(特許文献1参照)、界面の接着性を改善した耐熱樹脂積層フィルムの製造方法(特許文献2参照)などが提案されている。
一方、主に包装材料用途において、無機層状化合物は水溶性高分子などと併用されて塗膜を形成しガスバリア性フィルムを得る手法が提案されている(特許文献3参照)。
【0006】
【特許文献1】特開平1−97638号公報
【特許文献2】特開2000−177003号公報
【特許文献3】特開平9−150484号公報
【0007】
【発明が解決しようとする課題】
しかしながら、前記した耐熱樹脂積層フィルムではガスバリア性が不十分であり、また、前記した従来のガスバリア性フィルムは耐熱性や積層膜と基材フィルムとの接着性等が不十分であるという欠点があった。そこで、本発明はこのような欠点を改良し、水蒸気と酸素のバリア性がともに優れ、しかも、積層膜と基材フィルムとの接着性や耐熱性にも優れた積層フィルムを提供することを目的とするものである。
【0008】
【課題を解決するための手段】
かかる目的を達成するため、本発明の積層フィルムは、熱可塑性樹脂フィルムの少なくとも片面に、芳香族ポリアミドおよび/または芳香族ポリイミド(A)、ならびに無機系層状化合物(B)からなる積層膜を設けてなり、その配合割合(A/B)が固形分重量比で95/5〜20/80であることを特徴とする。
また、その積層フィルムにおいて、無機系層状化合物(B)が膨潤性無機層状ケイ酸塩であることを特徴とする。
【0009】
【発明の実施の形態】
本発明における熱可塑性樹脂フィルムは、溶融押し出し可能で、かつ二軸延伸により結晶配向可能な熱可塑性樹脂からなるフィルムである。二軸配向しているとは、未延伸、すなわち結晶配向が完了する前の熱可塑性樹脂フィルムを長手方向および幅方向にそれぞれ2.5〜5.0倍程度延伸し、その後熱処理により結晶配向を完了させたものであり、広角X線回折で二軸配向のパターンを示すものをいう。本発明における熱可塑性樹脂フィルムは積層膜が設けられた状態で二軸配向されたものである。
【0010】
その熱可塑性樹脂フィルムの具体例としては、ポリエステル、ポリオレフィン、ポリアミド、ポリフェニレンスルフィドなどの一般的な熱可塑性樹脂からなる二軸配向フィルムであり、特にポリエステルフィルムが透明性、寸法安定性、機械的特性、および、積層膜との接着性などの点で好ましい。好ましいポリエステルとしては、特に限定されないが、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンナフタレートなどが挙げられ、これらの2種以上が混合されたものであってもよい。また、これらと他のジカルボン酸成分やジオール成分が共重合されたものであってもよいが、この場合は、結晶配向が完了したフィルムにおいて、その結晶化度が25%以上、好ましくは30%以上、更に好ましくは35%以上のものが好ましい。結晶化度が25%未満の場合には、寸法安定性や機械的強度、ガスバリア性が不十分となりやすい。
【0011】
また内層と表層の2層以上の複合体フィルムであってもよい。例えば、内層部に実質的に粒子を含有せず、表層部に粒子を含有させた層を設けた複合体フィルム、内層部に粗大粒子を有し、表層部に微細粒子を含有させた積層体フィルム、内層部が微細な気泡を含有した層であって表層部は実質的に気泡を含有しない複合体フィルムなどが挙げられる。また、上記複合体フィルムは、内層部と表層部が異種のポリマーであっても同種のポリマーであってもよい。
【0012】
上述したポリエステルを使用する場合には、その極限粘度(25℃のo−クロロフェノール中で測定)は0.4〜1.2dl/gが好ましく、0.5〜0.8dl/gであるのがより好ましい。このポリエステル中には、各種添加剤、例えば、酸化防止剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、有機の易滑剤、有機および無機の粒子、顔料、染料、充填剤、帯電防止剤および核剤などが、本発明の効果を損なわない範囲で添加されていてもよい。
【0013】
本発明の積層フィルムの総厚みは、特に限定されるものではなく、本発明のフィルムが使用される用途に応じて適宜選択されるが、機械的強度、ハンドリング性、生産性などの点から、好ましくは10〜250μm、より好ましくは20〜200μmである。
【0014】
本発明においては、熱可塑性樹脂フィルム(基材フィルム)の少なくとも片面に、芳香族ポリアミドおよび/または芳香族ポリイミド(A)、ならびに無機系層状化合物(B)からなる積層膜が積層される。この積層膜は、それら(A)及び(B)を双極性非プロトン溶媒に溶解した塗液を基材フィルムの片面に塗布することによって形成することができる。この双極性非プロトン溶媒の一例としては、N−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキシドなどを挙げることができる。これら双極性非プロトン溶媒に溶解させた塗液を用いることが基材フィルムとの接着において有利に働く。
【0015】
本発明における積層膜を構成する一成分の芳香族ポリアミドおよび/または芳香族ポリイミド(A)としては、具体的には、芳香族ポリアミド系樹脂、芳香族ポリイミド系樹脂およびその前駆体、また、ポリアミドイミド系樹脂およびその前駆体をいう。そのガラス転移点が200℃以上であること、および/または300℃以下に融点または分解点を持たないことが好ましい。特に、基材フィルムとしてポリエステルフィルムを選択した場合には、積層膜との接着性、ガスバリア性、耐熱特性、寸法安定性、再溶解による回収性などの点で芳香族ポリアミドが好適である。
【0016】
芳香族ポリアミドとしては、次の一般式Iで表される繰り返し単位および/または一般式IIで表される繰り返し単位を単独あるいは共重合の形で50モル%以上、好ましくは70モル%以上含むものであるのが望ましい。
【0017】
【化1】
【0018】
ここで、Ar1、Ar2、Ar3としては、例えば下記の一般式に示すような基が挙げられる。
【0019】
【化2】
【0020】
式中のX、Yは、−O−、−CH2−、−CO−、−SO2−、−S−、−C(CH3)2−などから選ばれるが、これらに限定されるものではない。更に、これらの芳香環上の水素原子の一部が塩素、フッ素、臭素などのハロゲン基(特に塩素基が好ましい)、ニトロ基、メチル基、エチル基、プロピル基などのアルキル基(特にメチル基が好ましい)、メトキシ基、エトキシ基、プロポキシ基などのアルコキシ基などの置換基で置換されているものも含み、また重合体を構成するアミド結合中の水素が他の置換基によって置換されているものも含むものである。
【0021】
特に、上記一般式IIの芳香環Ar3がパラ位で結合されたものが、全芳香環の50モル%以上、より好ましくは70モル%以上を占める重合体が、耐熱性、寸法安定性の点で好ましい。また、芳香環上の水素原子の一部が塩素、フッ素、臭素などのハロゲン基(特に塩素基が好ましい)、ニトロ基、メチル基、エチル基、プロピル基などのアルキル基(特にメチル基が好ましい)、メトキシ基、エトキシ基、プロポキシ基などのアルコキシ基などの置換基で置換された芳香環が全体の30モル%以上、好ましくは50%モル以上であると、耐湿性、吸湿での寸法安定性などが改善されるので好ましい。
【0022】
本発明においては、一般式Iで表される繰り返し単位および/または一般式IIで表される繰り返し単位が50モル%以上、好ましくは70モル%以上である芳香族ポリアミドを用いることが望ましいが、それら一般式I、IIの共重合割合が上記値未満の他の共重合体や他のポリマーが混合されてもよい。
【0023】
本発明における積層膜を構成する他成分の無機系層状化合物(B)とは、極薄の単位結晶層が重なって一つの板状粒子を形成している無機粒子のことであり、溶媒に膨潤・へき開するものが好ましい。これらの中でも特に溶媒への膨潤性を持つ膨潤性無機層状ケイ酸塩が好ましく用いられる。本発明における溶媒への膨潤性を持つ膨潤性無機層状ケイ酸塩は、極薄の単位結晶層間に溶媒が配位され、吸収・膨潤する性質を有するものであり、一般には、Si4+がO2−に対して配位し4面体構造を構成する層と、Al3+、Mg2+、Fe2+、Fe3+、Li+等がO2−またはOH−またはF−に対して配位し8面体構造を構成する層とが、1対1あるいは2対1で結合し積み重なって層状構造を構成しており、天然のものであっても合成されたものであってもよい。代表的なものとしては、モンモリロナイト、バイデライト、サポナイト、ヘクトライト、カオリナイト、ハロイサイト、バーミキュライト、ディッカイト、ナクライト、アンチゴライト、パイロフィライト、マーガライト、タルク、テトラシリリックマイカ、マイカ、テニオライト、白雲母、金雲母、緑泥石等が挙げられる。また、合成されたものの場合、層間イオンが1〜3価の金属塩のみならず、各種有機アミン類で置換されたタイプを用いてもよい。
【0024】
本発明における積層膜において、芳香族ポリアミドおよび/または芳香族ポリイミド(A)と無機系層状化合物(B)との割合(A/B)は、固形分重量比で95/5〜20/80である必要がある。A/Bの範囲は、より好ましくは90/10〜25/75、さらに好ましくは85/15〜30/70である。芳香族ポリアミドおよび/または芳香族ポリイミド(A)の量が少な過ぎると耐熱性や基材フィルムとの接着性が低下し、また、無機系層状化合物(B)の量が少な過ぎるとガスバリア性が低下する。
【0025】
また、積層膜の厚みは、0.1〜6μmが好ましく、より好ましくは0.3〜5μmである。該厚みが薄すぎると耐熱性やガスバリア性が不足する場合があり、厚すぎると生産性や基材フィルムとの接着性が不足する場合がある。
【0026】
本発明の積層フィルムにおける積層膜中には、本発明の効果が損なわれない範囲内で、他の添加剤や樹脂、架橋剤などが含有されていてもよい。例えば、有機粒子、無機系層状化合物以外の無機粒子(例えばシリカ、コロイダルシリカ、アルミナ、アルミナゾル、炭酸カルシウム、硫酸バリウム、カーボンブラック、ゼオライト、酸化チタン、金属微粉末など)、酸化防止剤、耐熱安定剤、紫外線吸収剤、顔料、染料、帯電防止剤、核剤、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、アルキッド樹脂、エポキシ樹脂、尿素樹脂、フェノール樹脂、シリコーン樹脂、ゴム系樹脂、ワックス、メラミン系架橋剤、オキサゾリン系架橋剤、メチロール化またはアルキロール化された尿素系架橋剤、エポキシ架橋剤、イソシアネート架橋剤、アジリジン架橋剤、アクリルアミド、シランカップリング剤、チタネート系カップリング剤などを挙げることができる。
【0027】
本発明の積層フィルムにおける基材フィルムとなる熱可塑性樹脂フィルムの部分は、熱可塑性樹脂を溶融押出してシート状にした後、一軸延伸もしくは二軸延伸を行い、その後に熱処理する方法によって製造することができる。また、その基材フィルムの片面に積層された積層膜の部分は、芳香族ポリアミドおよび/または芳香族ポリイミド(A)、ならびに無機系層状化合物(B)を双極性非プロトン溶媒に溶解した塗液を基材フィルムの表面に塗布する手段によって形成されるが、その塗液は、基材フィルムの結晶配向が完了する前に塗布してもよいし、二軸に結晶配向が完了した基材フィルムに塗布してもよい。特に、結晶配向が完了する前に塗布する方法は、積層膜と基材フィルムとの接着性が著しく向上するので好ましく用いられる。
【0028】
次に、本発明の積層フィルムを製造する方法についてさらに具体的に説明するが、これに限定されるものではない。
【0029】
ポリエステルペレットを真空乾燥した後、溶融押出機に供給し200〜300℃で溶融してT字型口金よりシート状に溶融状態で押し出し、静電印加キャスト法を用いて表面温度10〜60℃の鏡面キャスティングドラムに巻き付けて、冷却固化せしめて未延伸フィルムを作製する。続いて、この未延伸フィルムを60〜120℃に加熱されたロール間で縦方向(フィルムの進行方向)に2.5〜5倍延伸する。続いて、このフィルムの少なくとも片面にコロナ放電処理を施し、積層膜形成用の塗液を塗布する。さらに続いて、この塗布されたフィルムをクリップで把持して70〜150℃に加熱された熱風ゾーンに導き、乾燥した後、幅方向に2.5〜5倍延伸し、引き続き150〜250℃の熱処理ゾーンに導き、1〜30秒間の熱処理を行う。この熱処理工程中で、必要に応じて幅方向あるいは長手方向に3〜12%の弛緩処理を施してもよい。なお、二軸延伸は、上記した縦、横逐次延伸の他に同時二軸延伸で行ってもよく、また、縦、横延伸後、縦、横いずれかの方向に再延伸する方法によって行ってもよい。
【0030】
本発明の積層フィルムは、特にガスバリア性や、積層膜と基材フィルムとの接着性や、耐熱性などが良好であることが要求される用途に好適である。例えば、カード用、ラベル用、写真、OHP、感熱転写やインクジェット、オフセット印刷などの受容シート基材、ハードコートフィルム、包装材料用、磁気記録媒体用、各種工業材料用、建築材料用、電気絶縁材料用などに用いることができる。
【0031】
【実施例】
次に、実施例に基づいて本発明を説明するが、本発明はこれに限定されない。
【0032】
[特性の測定方法および効果の評価方法]
本発明における特性の測定方法及び効果の評価方法は次の通りである。
(1)積層膜の厚み
透過型電子顕微鏡H−7100FA型((株)日立製作所製)を用い、積層フィルムの横断面を観察した電子顕微鏡写真から求めた。厚みは測定視野内の3点の平均値とした。
【0033】
(2)接着性
積層フィルムを40℃相対湿度80%で12時間調湿した後、積層膜表面上に1mm2のクロスカットを100個入れ、その上にポリエステル粘着テープ(日東電工(株)製、No.31B)を貼り付けた後、ゴムローラーで圧着させ、その後、テープを90℃方向に急激に剥離して、積層フィルム側に残存した積層膜の個数を次の基準で評価し、「◎」「○」を良好とした。
◎:90〜100個、 ○:80〜89個、 △:50〜79個、 ×:0〜49個
【0034】
(4)水蒸気バリア性
透湿度測定装置(PARMATRAN−W3/30、モダンコントロール社製)を用いて水蒸気透過率を測定した。測定条件は40℃相対湿度100%である。基材フィルムが38μm厚みのとき、10(g/(m2・day))以下を良好とした。
【0035】
(3)酸素バリア性
酸素透過率測定装置(OX−TRAN2/20、モダンコントロール社製)を用いて酸素透過率を測定した。測定条件は20℃相対湿度80%である。基材フィルムが38μm厚みのとき、10(ml/(m2・day))以下を良好とした。
【0036】
(積層膜形成用塗液)
全芳香族ポリアミドフィルム“ミクトロン”(東レ(株)製)をN−メチル−2−ピロリドンに固形分濃度5重量%となるように50℃で溶解して常温まで冷却し、塗液Aを作成した。次に、無機系層状化合物として有機アミン置換マイカのN−メチル−2−ピロリドン分散液(トピー工業(株)製、固形分濃度約5重量%)(塗液B)を、塗液Aと固形分重量比が50/50になるように混合して積層膜形成用塗液とした。
【0037】
(実施例1)
平均粒径0.4μmのコロイダルシリカを0.015重量%、平均粒径1.5μmのコロイダルシリカを0.005重量%含有するポリエチレンテレフタレート(PET)チップを真空乾燥した後、溶融押出機に供給して280℃で溶融しT字型口金よりシート状に溶融状態で押し出し、静電印加キャスト法を用いて表面温度25℃の鏡面キャスティングドラムに巻き付けて冷却固化して未延伸フィルムとした。この未延伸フィルムを78℃に加熱して長手方向に3.3倍延伸し、一軸延伸フィルムとした。次にこの一軸延伸フィルムの片面に、空気中でコロナ放電処理を施し、30℃に保温した積層膜形成用塗液(濃度約5重量%)をダイコート法で塗布した。塗液が塗布された一軸延伸フィルムをクリップで把持しながら予熱ゾーンに導き、90℃で乾燥後、引き続き連続的に100℃の加熱ゾーンで幅方向に3.3倍延伸し、更に加熱ゾーンで220℃で熱処理を施して積層フィルム(基材フィルム厚みが38μm、積層膜厚みが0.5μm)を作製した。得られたフィルムの評価結果は表1の通りであり、接着性及びガスバリア性がともに優れていた。
【0038】
(実施例2)
芳香族ポリアミドと無機系層状化合物との固形分重量比が75/25となるような割合で前記塗液Aと前記塗液Bとを混合して積層膜形成用塗液とした。この塗液を用い、積層膜の厚みを4μmと変更した以外は、実施例1と同様にして、積層フィルム(基材フィルム厚み38μm)を作製した。得られたフィルムの評価結果は表1の通りであり、接着性及びガスバリア性がともに優れていた。
【0039】
(実施例3)
芳香族ポリアミドと無機系層状化合物との固形分重量比が90/10となるような割合で前記塗液Aと前記塗液Bとを混合して積層膜形成用塗液とした。この塗液を用い、積層膜の厚みを2μmと変更した以外は、実施例1と同様にして、積層フィルム(基材フィルム厚み38μm)を作製した。得られたフィルムの評価結果は表1の通りであり、接着性及びガスバリア性がともに優れていた。
【0040】
(実施例4)
芳香族ポリアミドと無機系層状化合物との固形分重量比が25/75となるような割合で前記塗液Aと前記塗液Bとを混合して積層膜形成用塗液とした。この塗液を用い、積層膜の厚みを3μmと変更した以外は、実施例1と同様にして、積層フィルム(基材フィルム厚み38μm)を作製した。得られたフィルムの評価結果は表1の通りであり、接着性及びガスバリア性がともに優れていた。
【0041】
(実施例5)
実施例1において、積層膜形成用塗液の代わりに、水分散ポリエステル液(“バイロナール”MD1100(東洋紡績(株)製)(濃度 約5重量%))を、フィルムの片面にバーコート法で塗布した以外は、実施例1と同様にして二軸延伸PETフィルム(ポリエステル塗布層の厚み0.05μm)を作製した。この二軸延伸PETフィルムのポリエステル塗布層の表面に、実施例1と同じ積層膜形成用塗液を塗布し、120℃で2分間の乾燥後、次に220℃で1分間の乾燥を施して、積層フィルム(基材フィルム厚み38μm、積層膜厚み1μm)を作製した。得られたフィルムの評価結果は表1の通りであり、接着性及びガスバリア性がともに優れていた。
【0042】
(比較例1)
厚み38μmの二軸配向PETフィルム(“ルミラー”T60(東レ(株)製))についてガスバリア性の評価を行った。なお、積層膜が設けられていないこのフィルムでは接着性の評価は行わなかった。ガスバリア性の評価結果は表1の通り、不十分なものであった。
【0043】
(比較例2)
積層膜形成用塗液として前記塗液Aのみからなるものを使用した以外は、実施例1と同様にして、積層フィルム(基材フィルム厚み38μm)を作製した。得られたフィルムの評価結果は表1の通りであり、ガスバリア性が不十分なものであった。
【0044】
(比較例3)
芳香族ポリアミドと無機系層状化合物との固形分重量比が15/85となるような割合で前記塗液Aと前記塗液Bとを混合して積層膜形成用塗液とした。この塗液を用いた以外は実施例3と同様にして積層フィルムを作製した。得られたフィルムの評価結果は表1の通りであり、ガスバリア性が不十分なものであった。
【0045】
【表1】
【0046】
【発明の効果】
本発明によると、水蒸気と酸素のバリア性がともに優れ、しかも、積層膜と基材フィルムとの接着性や耐熱性にも優れた積層フィルムとすることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a laminated film, and more particularly, to a laminated film excellent in not only compatibility between water vapor and oxygen but also excellent adhesion and heat resistance between a laminated film and a base film.
[0002]
[Prior art]
Conventionally, films made of general-purpose thermoplastic resins such as polyester and polyolefin are used for magnetic recording materials, electrical insulating materials, capacitor materials, packaging materials, photographs, graphics, and thermal transfer because of their transparency, mechanical properties, and electrical properties. It is used as various industrial materials.
[0003]
In addition, films made of highly functional resins represented by aromatic polyamides have features such as high heat resistance, dimensional stability, mechanical strength, gas barrier properties, and non-combustibility, and are used for high-density magnetic recording media and flexible printing. Used for substrates, etc.
[0004]
However, the above-mentioned general thermoplastic resin film has thermal defects and insufficient gas barrier properties such as softening or melting by heat and easy to burn, and high functionalities such as aromatic polyamide on the other hand A film made of a resin is usually produced by a wet film-forming method, so that the productivity is low and the film is very expensive, and its use is limited.
[0005]
Therefore, in order to compensate for these drawbacks, a laminate (see Patent Document 1) by laminating or applying the two, a method for producing a heat-resistant resin laminated film with improved interfacial adhesion (see Patent Document 2), and the like have been proposed. ing.
On the other hand, there has been proposed a method of obtaining a gas barrier film by forming a coating film by using an inorganic layered compound in combination with a water-soluble polymer or the like, mainly for use in packaging materials (see Patent Document 3).
[0006]
[Patent Document 1] Japanese Patent Application Laid-Open No. 1-973838 [Patent Document 2] Japanese Patent Application Laid-Open No. 2000-177003 [Patent Document 3] Japanese Patent Application Laid-Open No. 9-150484
[Problems to be solved by the invention]
However, the above-described heat-resistant resin laminated film has insufficient gas barrier properties, and the conventional gas-barrier film described above has disadvantages such as insufficient heat resistance and poor adhesion between the laminated film and the base film. Was. Therefore, an object of the present invention is to improve such a drawback, and to provide a laminated film having both excellent water vapor and oxygen barrier properties, and also having excellent adhesion and heat resistance between the laminated film and the base film. It is assumed that.
[0008]
[Means for Solving the Problems]
In order to achieve the object, the laminated film of the present invention is provided with a laminated film made of an aromatic polyamide and / or an aromatic polyimide (A) and an inorganic layered compound (B) on at least one surface of a thermoplastic resin film. And the compounding ratio (A / B) is 95/5 to 20/80 in terms of solid content weight ratio.
In the laminated film, the inorganic layered compound (B) is a swellable inorganic layered silicate.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The thermoplastic resin film in the present invention is a film made of a thermoplastic resin that can be melt-extruded and that can be crystallographically oriented by biaxial stretching. Biaxially oriented means that the thermoplastic resin film that has not been stretched, that is, before the completion of the crystal orientation, is stretched about 2.5 to 5.0 times in the longitudinal direction and the width direction, respectively, and then the crystal orientation is reduced by heat treatment. Completed, showing a biaxially oriented pattern in wide angle X-ray diffraction. The thermoplastic resin film in the present invention is biaxially oriented with the laminated film provided.
[0010]
Specific examples of the thermoplastic resin film include biaxially oriented films composed of general thermoplastic resins such as polyester, polyolefin, polyamide, and polyphenylene sulfide.In particular, the polyester film has transparency, dimensional stability, and mechanical properties. This is preferable from the viewpoint of adhesiveness to the laminated film. Preferred polyesters include, but are not particularly limited to, polyethylene terephthalate, polyethylene naphthalate, polypropylene terephthalate, polybutylene terephthalate, and polypropylene naphthalate, and a mixture of two or more of these may be used. Further, these may be copolymerized with another dicarboxylic acid component or diol component. In this case, the crystallinity of the film in which crystal orientation is completed is 25% or more, preferably 30% or more. Above, more preferably 35% or more. When the crystallinity is less than 25%, dimensional stability, mechanical strength, and gas barrier properties tend to be insufficient.
[0011]
Further, a composite film having two or more layers of an inner layer and a surface layer may be used. For example, a composite film having substantially no particles in the inner layer portion and having a layer containing particles in the surface layer portion, a laminate having coarse particles in the inner layer portion and containing fine particles in the surface layer portion Examples of the film include a composite film in which the inner layer is a layer containing fine bubbles and the surface layer is substantially free of bubbles. Further, in the composite film, the inner layer portion and the surface layer portion may be different polymers or the same polymer.
[0012]
When the above-mentioned polyester is used, its intrinsic viscosity (measured in o-chlorophenol at 25 ° C.) is preferably from 0.4 to 1.2 dl / g, more preferably from 0.5 to 0.8 dl / g. Is more preferred. In this polyester, various additives, for example, antioxidants, heat stabilizers, weather stabilizers, ultraviolet absorbers, organic lubricants, organic and inorganic particles, pigments, dyes, fillers, antistatic agents and A nucleating agent and the like may be added as long as the effects of the present invention are not impaired.
[0013]
The total thickness of the laminated film of the present invention is not particularly limited, and is appropriately selected depending on the use in which the film of the present invention is used.However, in terms of mechanical strength, handling properties, productivity, and the like, Preferably it is 10-250 micrometers, More preferably, it is 20-200 micrometers.
[0014]
In the present invention, a laminated film composed of an aromatic polyamide and / or an aromatic polyimide (A) and an inorganic layered compound (B) is laminated on at least one surface of a thermoplastic resin film (base film). This laminated film can be formed by applying a coating solution in which (A) and (B) are dissolved in a dipolar aprotic solvent to one surface of a substrate film. Examples of the dipolar aprotic solvent include N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, dimethylsulfoxide and the like. The use of a coating solution dissolved in such a dipolar aprotic solvent is advantageous for adhesion to a substrate film.
[0015]
Specific examples of the aromatic polyamide and / or aromatic polyimide (A) as one component constituting the laminated film in the present invention include aromatic polyamide-based resins, aromatic polyimide-based resins and precursors thereof, and polyamides. An imide resin and its precursor. It is preferable that the glass transition point is 200 ° C. or higher and / or that it has no melting point or decomposition point at 300 ° C. or lower. In particular, when a polyester film is selected as the base film, an aromatic polyamide is preferable in terms of adhesiveness to the laminated film, gas barrier properties, heat resistance, dimensional stability, recoverability by re-dissolution, and the like.
[0016]
The aromatic polyamide includes a repeating unit represented by the following general formula I and / or a repeating unit represented by the following general formula II alone or in a copolymer form in an amount of 50 mol% or more, preferably 70 mol% or more. It is desirable.
[0017]
Embedded image
[0018]
Here, examples of Ar 1 , Ar 2 , and Ar 3 include groups represented by the following general formula.
[0019]
Embedded image
[0020]
Wherein X, Y are, -O -, - CH 2 - , - CO -, - SO 2 -, - S -, - C (CH 3) 2 - ones -alanine etc., to be limited to is not. Furthermore, some of the hydrogen atoms on these aromatic rings are halogen groups such as chlorine, fluorine and bromine (especially chlorine groups are preferred), and alkyl groups such as nitro, methyl, ethyl and propyl groups (especially methyl groups). Are preferred), those substituted with a substituent such as an alkoxy group such as a methoxy group, an ethoxy group, or a propoxy group, and the hydrogen in the amide bond constituting the polymer is substituted with another substituent. It also includes things.
[0021]
In particular, a polymer in which the aromatic ring Ar 3 of the general formula II is bonded at the para position accounts for 50 mol% or more, more preferably 70 mol% or more of the total aromatic ring, has a high heat resistance and dimensional stability. It is preferred in that respect. In addition, some of the hydrogen atoms on the aromatic ring are halogen groups such as chlorine, fluorine and bromine (particularly preferably chlorine groups), and alkyl groups such as nitro group, methyl group, ethyl group and propyl group (particularly methyl group are preferable). ), When the aromatic ring substituted with a substituent such as an alkoxy group such as a methoxy group, an ethoxy group, or a propoxy group accounts for 30 mol% or more, preferably 50 mol% or more of the total, the moisture resistance and the dimensional stability due to moisture absorption. This is preferred because the properties and the like are improved.
[0022]
In the present invention, it is desirable to use an aromatic polyamide in which the repeating unit represented by the general formula I and / or the repeating unit represented by the general formula II is at least 50 mol%, preferably at least 70 mol%. Other copolymers or other polymers having a copolymerization ratio of these general formulas I and II less than the above values may be mixed.
[0023]
The inorganic layered compound (B) of another component constituting the laminated film in the present invention is an inorganic particle in which an ultrathin unit crystal layer overlaps to form one plate-like particle, and swells in a solvent. Cleavage is preferred. Among these, a swellable inorganic layered silicate having swellability in a solvent is particularly preferably used. Swellable inorganic layered silicate having a swelling property to solvent in the present invention, the solvent is coordinated to a unit crystal layers very thin, which has the property of absorbing and swelling, generally, Si 4+ is O A layer forming a tetrahedral structure by coordinating to 2- , and an octahedron formed by coordinating Al 3+ , Mg 2+ , Fe 2+ , Fe 3+ , Li + to O 2− or OH − or F − The layers constituting the structure are combined in a one-to-one or two-to-one relationship and stacked to form a layered structure, which may be natural or synthetic. Representative examples are montmorillonite, beidellite, saponite, hectorite, kaolinite, halloysite, vermiculite, dickite, nacrite, antigolite, pyrophyllite, margarite, talc, tetrasilyl mica, mica, teniolite, and white clouds. Mother, phlogopite, chlorite and the like. Further, in the case of a synthesized product, a type in which interlayer ions are substituted with various organic amines as well as metal salts having 1 to 3 valences may be used.
[0024]
In the laminated film in the present invention, the ratio (A / B) of the aromatic polyamide and / or the aromatic polyimide (A) and the inorganic layered compound (B) is from 95/5 to 20/80 in terms of solid content weight ratio. Need to be. The range of A / B is more preferably 90/10 to 25/75, and still more preferably 85/15 to 30/70. If the amount of the aromatic polyamide and / or the aromatic polyimide (A) is too small, the heat resistance and the adhesiveness to the base film decrease, and if the amount of the inorganic layered compound (B) is too small, the gas barrier property is reduced. descend.
[0025]
Further, the thickness of the laminated film is preferably 0.1 to 6 μm, more preferably 0.3 to 5 μm. If the thickness is too small, heat resistance and gas barrier properties may be insufficient, and if it is too large, productivity and adhesiveness to the base film may be insufficient.
[0026]
In the laminated film of the laminated film of the present invention, other additives, resins, cross-linking agents and the like may be contained as long as the effects of the present invention are not impaired. For example, organic particles, inorganic particles other than the inorganic layered compound (eg, silica, colloidal silica, alumina, alumina sol, calcium carbonate, barium sulfate, carbon black, zeolite, titanium oxide, metal fine powder, etc.), antioxidants, heat stability Agents, ultraviolet absorbers, pigments, dyes, antistatic agents, nucleating agents, polyester resins, acrylic resins, urethane resins, polyolefin resins, polycarbonate resins, alkyd resins, epoxy resins, urea resins, phenolic resins, silicone resins, rubber resins , Wax, melamine crosslinker, oxazoline crosslinker, methylolated or alkylolated urea crosslinker, epoxy crosslinker, isocyanate crosslinker, aziridine crosslinker, acrylamide, silane coupling agent, titanate coupling agent Etc. Rukoto can.
[0027]
The portion of the thermoplastic resin film serving as the base film in the laminated film of the present invention is manufactured by a method in which the thermoplastic resin is melt-extruded into a sheet shape, and then subjected to uniaxial stretching or biaxial stretching, followed by heat treatment. Can be. The portion of the laminated film laminated on one side of the base film is a coating liquid obtained by dissolving aromatic polyamide and / or aromatic polyimide (A) and inorganic layered compound (B) in a bipolar aprotic solvent. Is formed by means for applying to the surface of the base film, the coating liquid may be applied before the completion of the crystal orientation of the base film, or the base film having the biaxially completed crystal orientation May be applied. In particular, a method of applying before completion of the crystal orientation is preferably used because the adhesiveness between the laminated film and the base film is significantly improved.
[0028]
Next, the method for producing the laminated film of the present invention will be described more specifically, but is not limited thereto.
[0029]
After vacuum drying the polyester pellets, it is supplied to a melt extruder, melted at 200 to 300 ° C., extruded in a molten state from a T-shaped die into a sheet, and subjected to a surface temperature of 10 to 60 ° C. by using an electrostatic application casting method. It is wound around a mirror casting drum and cooled and solidified to produce an unstretched film. Subsequently, the unstretched film is stretched 2.5 to 5 times in the longitudinal direction (the traveling direction of the film) between rolls heated to 60 to 120 ° C. Subsequently, at least one surface of the film is subjected to a corona discharge treatment, and a coating liquid for forming a laminated film is applied. Subsequently, the coated film is gripped with a clip, guided to a hot air zone heated to 70 to 150 ° C., dried, stretched 2.5 to 5 times in the width direction, and subsequently stretched to 150 to 250 ° C. It leads to a heat treatment zone and performs heat treatment for 1 to 30 seconds. During this heat treatment step, a 3 to 12% relaxation treatment may be performed in the width direction or the longitudinal direction as necessary. In addition, biaxial stretching may be performed by simultaneous biaxial stretching in addition to the above-described longitudinal and transverse sequential stretching, and may be performed by a method of longitudinally or transversely stretching, and then re-stretching in any of longitudinal or transverse directions. Is also good.
[0030]
The laminated film of the present invention is particularly suitable for applications that require good gas barrier properties, good adhesion between the laminated film and the substrate film, good heat resistance, and the like. For example, for card, label, photo, OHP, thermal transfer, ink-jet, offset printing etc., receiving sheet substrate, hard coat film, packaging material, magnetic recording medium, various industrial materials, building materials, electrical insulation It can be used for materials and the like.
[0031]
【Example】
Next, the present invention will be described based on examples, but the present invention is not limited thereto.
[0032]
[Method of measuring characteristics and evaluating effect]
The method for measuring characteristics and the method for evaluating effects in the present invention are as follows.
(1) Thickness of Laminated Film Using a transmission electron microscope H-7100FA (manufactured by Hitachi, Ltd.), the thickness was determined from an electron micrograph of a cross section of the laminated film. The thickness was an average value of three points in the measurement visual field.
[0033]
(2) After conditioning the adhesive laminated film at 40 ° C. and a relative humidity of 80% for 12 hours, 100 cross cuts of 1 mm 2 were put on the surface of the laminated film, and a polyester adhesive tape (manufactured by Nitto Denko Corporation) was placed thereon. , No. 31B), and pressed with a rubber roller. Thereafter, the tape was rapidly peeled off in the direction of 90 ° C., and the number of laminated films remaining on the laminated film side was evaluated according to the following criteria. ◎ ”and“ ○ ”were evaluated as good.
◎: 90 to 100, :: 80 to 89, Δ: 50 to 79, ×: 0 to 49
(4) Water vapor barrier property The water vapor transmission rate was measured using a moisture permeability measuring device (PARMATRAN-W3 / 30, manufactured by Modern Control). The measurement conditions are 40 ° C. and 100% relative humidity. When the substrate film had a thickness of 38 μm, the value of 10 (g / (m 2 · day)) or less was determined to be good.
[0035]
(3) Oxygen permeability was measured using an oxygen barrier oxygen permeability measuring device (OX-TRAN2 / 20, manufactured by Modern Control). The measurement conditions are 20 ° C. and 80% relative humidity. When the substrate film had a thickness of 38 μm, the value of 10 (ml / (m 2 · day)) or less was determined to be good.
[0036]
(Coating liquid for forming laminated film)
A wholly aromatic polyamide film “MICTRON” (manufactured by Toray Industries, Inc.) was dissolved in N-methyl-2-pyrrolidone at 50 ° C. so as to have a solid concentration of 5% by weight, and cooled to room temperature to prepare a coating liquid A. did. Next, an N-methyl-2-pyrrolidone dispersion of organic amine-substituted mica (manufactured by Topy Industries, Ltd., solid content concentration: about 5% by weight) (coating liquid B) was used as the inorganic layered compound. Mixing was performed so that the weight ratio by weight became 50/50 to obtain a coating liquid for forming a laminated film.
[0037]
(Example 1)
A polyethylene terephthalate (PET) chip containing 0.015% by weight of colloidal silica having an average particle diameter of 0.4 μm and 0.005% by weight of colloidal silica having an average particle diameter of 1.5 μm is vacuum-dried and then supplied to a melt extruder. Then, the mixture was melted at 280 ° C., extruded in a molten state from a T-shaped die in the form of a sheet, wound around a mirror-surface casting drum having a surface temperature of 25 ° C. using an electrostatic application casting method, cooled and solidified to obtain an unstretched film. This unstretched film was heated to 78 ° C. and stretched 3.3 times in the longitudinal direction to obtain a uniaxially stretched film. Next, one surface of the uniaxially stretched film was subjected to a corona discharge treatment in air, and a coating liquid for forming a laminated film (concentration: about 5% by weight) kept at 30 ° C. was applied by a die coating method. The uniaxially stretched film coated with the coating liquid is guided to a preheating zone while being gripped with a clip, dried at 90 ° C., and then continuously stretched 3.3 times in a width direction in a 100 ° C. heating zone. Heat treatment was performed at 220 ° C. to produce a laminated film (base film thickness: 38 μm, laminated film thickness: 0.5 μm). The evaluation results of the obtained film are as shown in Table 1, and both the adhesiveness and the gas barrier property were excellent.
[0038]
(Example 2)
The coating liquid A and the coating liquid B were mixed at a ratio such that the weight ratio of the solid content of the aromatic polyamide and the inorganic layered compound was 75/25 to obtain a coating liquid for forming a laminated film. Using this coating liquid, a laminated film (base film thickness: 38 μm) was produced in the same manner as in Example 1 except that the thickness of the laminated film was changed to 4 μm. The evaluation results of the obtained film are as shown in Table 1, and both the adhesiveness and the gas barrier property were excellent.
[0039]
(Example 3)
The coating liquid A and the coating liquid B were mixed at such a ratio that the weight ratio of the solid content of the aromatic polyamide and the inorganic layered compound was 90/10 to obtain a coating liquid for forming a laminated film. Using this coating liquid, a laminated film (base film thickness: 38 μm) was produced in the same manner as in Example 1 except that the thickness of the laminated film was changed to 2 μm. The evaluation results of the obtained film are as shown in Table 1, and both the adhesiveness and the gas barrier property were excellent.
[0040]
(Example 4)
The coating liquid A and the coating liquid B were mixed at a ratio such that the weight ratio of the solid content of the aromatic polyamide and the inorganic layered compound was 25/75 to obtain a coating liquid for forming a laminated film. Using this coating liquid, a laminated film (base film thickness: 38 μm) was produced in the same manner as in Example 1 except that the thickness of the laminated film was changed to 3 μm. The evaluation results of the obtained film are as shown in Table 1, and both the adhesiveness and the gas barrier property were excellent.
[0041]
(Example 5)
In Example 1, instead of the coating liquid for forming a laminated film, a water-dispersed polyester liquid ("Vironal" MD1100 (manufactured by Toyobo Co., Ltd.) (concentration: about 5% by weight)) was applied to one surface of the film by a bar coating method. A biaxially stretched PET film (thickness of a polyester coating layer of 0.05 μm) was prepared in the same manner as in Example 1 except that the coating was performed. On the surface of the polyester coating layer of the biaxially stretched PET film, the same coating liquid for forming a laminated film as in Example 1 was applied, dried at 120 ° C. for 2 minutes, and then dried at 220 ° C. for 1 minute. Then, a laminated film (base film thickness 38 μm, laminated film thickness 1 μm) was produced. The evaluation results of the obtained film are as shown in Table 1, and both the adhesiveness and the gas barrier property were excellent.
[0042]
(Comparative Example 1)
The gas barrier properties of a 38 μm-thick biaxially oriented PET film (“Lumirror” T60 (manufactured by Toray Industries, Inc.)) were evaluated. In addition, the evaluation of adhesiveness was not performed on this film having no laminated film. As shown in Table 1, the evaluation results of the gas barrier properties were insufficient.
[0043]
(Comparative Example 2)
A laminated film (base film thickness: 38 μm) was prepared in the same manner as in Example 1, except that the coating liquid for forming a laminated film was composed of only the coating liquid A. The evaluation results of the obtained film are as shown in Table 1, and the gas barrier properties were insufficient.
[0044]
(Comparative Example 3)
The coating liquid A and the coating liquid B were mixed at a ratio such that the weight ratio of the solid content of the aromatic polyamide and the inorganic layered compound was 15/85 to obtain a coating liquid for forming a laminated film. A laminated film was produced in the same manner as in Example 3 except that this coating liquid was used. The evaluation results of the obtained film are as shown in Table 1, and the gas barrier properties were insufficient.
[0045]
[Table 1]
[0046]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it can be set as the laminated film which was excellent also in the barrier property of water vapor and oxygen, and was also excellent in the adhesiveness of a laminated film and a base film, and heat resistance.