JP2004342295A - Diffraction element and optical head device - Google Patents

Diffraction element and optical head device Download PDF

Info

Publication number
JP2004342295A
JP2004342295A JP2004125555A JP2004125555A JP2004342295A JP 2004342295 A JP2004342295 A JP 2004342295A JP 2004125555 A JP2004125555 A JP 2004125555A JP 2004125555 A JP2004125555 A JP 2004125555A JP 2004342295 A JP2004342295 A JP 2004342295A
Authority
JP
Japan
Prior art keywords
diffraction
wavelength
optical
diffraction element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004125555A
Other languages
Japanese (ja)
Other versions
JP4314480B2 (en
Inventor
Shinko Murakawa
真弘 村川
Kimitaka Nashiko
公貴 梨子
Hiromasa Sato
弘昌 佐藤
Ryota Murakami
亮太 村上
Mitsuo Osawa
光生 大澤
Yousuke Fujino
陽輔 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004125555A priority Critical patent/JP4314480B2/en
Publication of JP2004342295A publication Critical patent/JP2004342295A/en
Application granted granted Critical
Publication of JP4314480B2 publication Critical patent/JP4314480B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optical head device which is high in optical utilization efficiency by obtaining and using a diffraction element of which the diffraction efficiency is optimized for both wavelengths of a CD and a DVD in spite of one diffraction element. <P>SOLUTION: This diffraction grating 1 is provided with a cyclic concave-convex section formed on one transparent substrate 3. The convex section is provided with an optical multilayer film disposed in parallel with a transparent substrate surface. Moreover, the concave section is filled with a filling material 2 consisting of a transparent material which is an inorganic substance or contains an inorganic substance as the principal component. The diffraction element is obtained, in which the top face of the transparent material is flush with the top face of the convex section and is smooth, and the element is disposed in an optical path between a light source and an objective lens of the optical head device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、回折素子および光ヘッド装置に関し、特に光ヘッド装置に関しては光記録媒体の情報の記録および再生を行う光ヘッド装置に関する。   The present invention relates to a diffraction element and an optical head device, and more particularly to an optical head device that records and reproduces information on an optical recording medium.

同一の光ヘッド装置で、規格の異なる光ディスクであるCD、DVD、および次世代DVDを用いて情報の記録および再生を行うため、複数の波長の光波を用いる互換光ヘッド装置が提案されている。すなわち、CD用の波長780nm帯の光波、DVD用の660nm帯の光波、次世代DVD用の405nm帯の光波を出射する複数の半導体レーザを備える互換光ヘッド装置である。   In order to record and reproduce information using CD, DVD, and next-generation DVD, which are optical discs with different standards, using the same optical head device, compatible optical head devices using light waves of a plurality of wavelengths have been proposed. That is, it is a compatible optical head device including a plurality of semiconductor lasers that emit light waves in the wavelength band of 780 nm for CD, light waves in the 660 nm band for DVD, and light waves in the 405 nm band for next-generation DVD.

特開平10−59746号公報JP 10-59746 A

前記互換光ヘッド装置において用いられる回折素子として、トラッキング用の3ビーム発生用の回折素子、光記録媒体である光ディスクより反射した戻り光を光検出器に導くホログラム素子など、さまざまな用途で用いられる。   The diffractive element used in the compatible optical head device is used in various applications such as a diffractive element for generating three beams for tracking, and a holographic element for guiding return light reflected from an optical disk as an optical recording medium to a photodetector. .

このような複数波長の光波で用いる光ヘッド装置において、構成部品数の削減・小型・軽量化のため、一つの回折素子でありながら各波長により回折効率を最適化された回折素子のニーズが多い。しかしながら、従来の回折素子では、回折効率の波長依存性は、格子の材料および深さのみでほぼ決まるため、各波長において所望の回折効率を得ることが困難であった。   In order to reduce the number of components, reduce the size, and reduce the weight of optical head devices that use light waves with multiple wavelengths, there is a great need for a diffraction element that has a single diffraction element with optimized diffraction efficiency for each wavelength. . However, in the conventional diffraction element, the wavelength dependence of the diffraction efficiency is almost determined only by the material and depth of the grating, and it is difficult to obtain a desired diffraction efficiency at each wavelength.

本発明は、上記の課題を解決するためになされたものであり、少なくとも1枚の透明基板上に形成された周期的な凹凸部を備える回折格子であって、凸部は透明基板面に平行に配された光学多層膜からなり、また凹部には無機物または無機物を主成分とする透明材料により充填されており、透明材料上面が凸部上面に一致して平坦であるか、または凸部上面を覆って透明材料上面が平坦であることを特徴とする回折素子を提供する。   The present invention has been made to solve the above-described problems, and is a diffraction grating including periodic uneven portions formed on at least one transparent substrate, and the convex portions are parallel to the transparent substrate surface. And the concave portion is filled with an inorganic substance or a transparent material mainly composed of an inorganic substance, and the upper surface of the transparent material coincides with the upper surface of the convex portion or is flat. The diffraction element is characterized in that the upper surface of the transparent material is flat.

また、前記回折素子に、さらに複屈折性を有する有機薄膜または複屈折性を有する無機材料からなる積層基板が積層されて構成されている上記の回折素子を提供する。   Further, the present invention provides the above-described diffraction element in which the diffraction element is further laminated with a multilayer substrate made of an organic thin film having birefringence or an inorganic material having birefringence.

また、前記透明基板が複屈折性を有する無機物基板からなる上記の回折素子を提供する。   Further, the present invention provides the above diffraction element, wherein the transparent substrate is made of an inorganic substrate having birefringence.

また、前記光学多層膜は、回折素子に入射する光波の波長が所定の波長から外れるとき、所定の波長より長くなるほど回折効率が大きくなるように構成されている上記の回折素子を提供する。   The optical multilayer film provides the above-described diffraction element configured such that when the wavelength of a light wave incident on the diffraction element deviates from a predetermined wavelength, the diffraction efficiency increases as the wavelength becomes longer than the predetermined wavelength.

波長λおよび波長λの光波を出射する光源と、波長λおよび波長λの光波を光記録媒体に集光する対物レンズと、集光されて光記録媒体により反射された光波を検出する光検出器とを備え、光記録媒体に情報の記録および再生を行う光ヘッド装置において、光源と対物レンズとの間の波長λおよび波長λの光波が共有する光路中に、上記の回折素子が設置されていることを特徴とする光ヘッド装置波長λおよび波長λの光波を出射する光源と、波長λおよび波長λの光波を光記録媒体に集光する対物レンズと、集光されて光記録媒体により反射された光波を検出する光検出器とを備え、光記録媒体に情報の記録および再生を行う光ヘッド装置において、光源と対物レンズとの間の波長λおよび波長λの光波が共有する光路中に、上記の回折素子が設置されていることを特徴とする光ヘッド装置を提供する。 Detection a light source for emitting light waves of a wavelength lambda 1 and wavelength lambda 2, an objective lens for focusing the light waves having a wavelength lambda 1 and wavelength lambda 2 to the optical recording medium, the optical wave reflected by the condenser has been optical recording medium In the optical head device that records and reproduces information on the optical recording medium, the above-described optical path is shared between the light wave of wavelength λ 1 and wavelength λ 2 between the light source and the objective lens. a light source for emitting light waves of the optical head apparatus wavelengths lambda 1 and wavelength lambda 2, characterized in that the diffraction element is installed, an objective lens for focusing the light waves having a wavelength lambda 1 and wavelength lambda 2 to the optical recording medium A light detector that detects a light wave that has been collected and reflected by the optical recording medium, and in an optical head device that records and reproduces information on the optical recording medium, a wavelength λ 1 between the light source and the objective lens it and shared light wave of wavelength λ 2 is In the optical path, to provide an optical head device, characterized in that said diffraction element is installed.

本発明の回折素子は、透明基板に光学多層膜からなる回折格子を有しているので、光学多層膜の設計で、回折効率の波長依存性を容易に制御できる。また、本発明の回折素子は、光学多層膜からなる回折格子と、その回折格子の凹部に充填された無機物または無機物を主成分とした透明な充填材からなり、さらに、前記回折格子と前記透明な充填材が形成された表面が平坦であるので、回折効率の温度変動が小さく、さらにノイズの少ない良好な3ビームを得ることができる。   Since the diffraction element of the present invention has a diffraction grating composed of an optical multilayer film on a transparent substrate, the wavelength dependence of diffraction efficiency can be easily controlled by designing the optical multilayer film. Further, the diffraction element of the present invention comprises a diffraction grating composed of an optical multilayer film, and an inorganic material filled in the concave portion of the diffraction grating or a transparent filler mainly composed of an inorganic material, and further, the diffraction grating and the transparent material Since the surface on which the filler is formed is flat, it is possible to obtain a good three beam with little fluctuation in temperature of diffraction efficiency and less noise.

また、光ヘッド装置に、本発明の回折素子を搭載することで、設計自由度が高く、かつ光利用効率の高い光ヘッド装置を得ることができる。   Further, by mounting the diffraction element of the present invention on an optical head device, an optical head device with a high degree of design freedom and high light utilization efficiency can be obtained.

以下、図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

「第1実施態様」
本発明は、1枚の透明基板上に形成された周期的な凹凸部を備える回折素子であり、凸部は透明基板面に平行に配された光学多層膜からなっている。また凹部は無機物または無機物を主成分とする透明材料により充填されている回折素子である。すなわち、凹部は透明材料により埋められていて、凹部の上面と透明材料の上面の高さが一致していて、表面は平坦となっている。
または、凹部が透明材料により充填されていて、さらに凹部の上面が透明材料により覆われていてもよい。この場合も透明材料の表面は平坦となっている。
“First Embodiment”
The present invention is a diffractive element having a periodic concavo-convex portion formed on a single transparent substrate, and the convex portion is composed of an optical multilayer film arranged in parallel to the transparent substrate surface. The concave portion is a diffraction element filled with an inorganic material or a transparent material mainly composed of an inorganic material. That is, the concave portion is filled with a transparent material, and the height of the upper surface of the concave portion and the upper surface of the transparent material coincide with each other, and the surface is flat.
Alternatively, the recess may be filled with a transparent material, and the upper surface of the recess may be covered with the transparent material. Also in this case, the surface of the transparent material is flat.

さらに、1枚の透明基板の両方の面に上記の周期的な凹凸部を備える回折素子が形成されていてもよい。
さらに、2枚の透明基板の間に上記の周期的な凹凸部が挟持されていてもよい。この場合も、凹部の上面と充填された透明材料の上面が一致していてもよく、また凹部の上面が透明材料により覆われていてもよい。
Furthermore, the diffraction element provided with said periodic uneven | corrugated | grooved part may be formed in both the surfaces of one transparent substrate.
Furthermore, the above-described periodic uneven portion may be sandwiched between two transparent substrates. Also in this case, the upper surface of the concave portion may coincide with the upper surface of the filled transparent material, and the upper surface of the concave portion may be covered with the transparent material.

ここでいう、平坦とは、透明材料を充填した結果表面に残る規則的なうねりのピーク・トウ・バレイdと、透明材料の屈折率と空気の屈折率との差Δnとの積Δndが、透過する可視光線の波長の1/15以下であることを意味する。この条件のとき、うねりによる回折を1%以下に抑えることができる。   As used herein, flat means the product Δnd of the regular undulation peak-to-valley d remaining on the surface as a result of filling the transparent material and the difference Δn between the refractive index of the transparent material and the refractive index of air, It means that it is 1/15 or less of the wavelength of visible light to transmit. Under this condition, diffraction due to undulation can be suppressed to 1% or less.

図1は、本発明の第1実施態様となる回折素子の概念的断面図であり、該回折素子は、透明基板3に形成された光学多層膜からなる回折格子1と、回折格子1の凹部に充填された透明材料である充填材2からなる。   FIG. 1 is a conceptual cross-sectional view of a diffraction element according to a first embodiment of the present invention. The diffraction element includes a diffraction grating 1 formed of an optical multilayer film formed on a transparent substrate 3 and a concave portion of the diffraction grating 1. It consists of the filler 2 which is a transparent material with which it filled.

透明基板3としては、ガラスや石英ガラスなどの光学的に等方である透明な平行基板を用いることができる。   As the transparent substrate 3, an optically isotropic transparent parallel substrate such as glass or quartz glass can be used.

回折格子1としては、透明基板3上に石英や酸化チタンなどの光学多層膜である誘電体を蒸着法、スパッタ法などにより成膜した光学多層膜をエッチング法などで加工したものを用いてもよく、透明基板3上に、リフトオフ用の膜を成膜、パターニング後に、石英や酸化チタンなどの誘電体を蒸着法やスパッタ法により成膜し、リフトオフ用の膜を取り除いたものを用いてもよい。図1では、簡単のため、回折格子1は2種の材料からなる5層の光学多層膜として描かれているが、膜の材料、種類および層数は所望の回折効率が得られるように設計すればよい。   As the diffraction grating 1, an optical multilayer film formed by depositing a dielectric, which is an optical multilayer film such as quartz or titanium oxide, on the transparent substrate 3 by vapor deposition or sputtering may be used. It is also possible to use a film obtained by forming a lift-off film on the transparent substrate 3 and patterning, and then depositing a dielectric such as quartz or titanium oxide by vapor deposition or sputtering, and removing the lift-off film. Good. In FIG. 1, for the sake of simplicity, the diffraction grating 1 is depicted as a five-layer optical multilayer film composed of two kinds of materials, but the material, type and number of layers of the film are designed so as to obtain a desired diffraction efficiency. do it.

充填材2としての透明材料は、石英ガラス、酸化チタンなどの無機材料、または、前記無機材料を主成分とした、アクリル樹脂やエポキシ樹脂などの有機材料を添加したものを用いてもよい。また、第1実施態様となる回折素子において、上記において述べたように透明材料の充填材2を、回折格子1の凹部のみに充填し上部を一致させてもよいし、図2に示すように回折格子1の凹部のみならず凸部を覆うように充填してもよい。図2の符号2および3は、図1と同様それぞれ充填材および透明基板である。以下の図において、符号1、2および3全て同じ要素を意味する。   The transparent material as the filler 2 may be an inorganic material such as quartz glass or titanium oxide, or a material added with an organic material such as an acrylic resin or an epoxy resin containing the inorganic material as a main component. In the diffractive element according to the first embodiment, as described above, the transparent material filler 2 may be filled only in the concave portions of the diffraction grating 1 so that the upper portions coincide with each other, as shown in FIG. You may fill so that not only the recessed part of the diffraction grating 1 but a convex part may be covered. Reference numerals 2 and 3 in FIG. 2 denote a filler and a transparent substrate, respectively, as in FIG. In the following figures, reference numerals 1, 2 and 3 all mean the same element.

このとき、回折格子1を形成する光学多層膜材料の屈折率の温度依存性と、充填材2を形成する透明材料の屈折率の温度依存性との差が、100×10−6/℃以下になるように、おのおのの材料を選定することで、本発明の第1実施態様となる回折素子における回折効率の温度依存性を小さくできて好ましい。 At this time, the difference between the temperature dependence of the refractive index of the optical multilayer film material forming the diffraction grating 1 and the temperature dependence of the refractive index of the transparent material forming the filler 2 is 100 × 10 −6 / ° C. or less. Thus, it is preferable to select each material so that the temperature dependence of the diffraction efficiency in the diffraction element according to the first embodiment of the present invention can be reduced.

充填材2を回折格子1の凹部に充填する手段として、上述の透明材料をCVD(化学気相蒸着法)により成膜して充填してもよいし、上述の透明材料の溶液を回折格子1に滴下させて、スピンコートにより成膜して充填してもよい。   As a means for filling the concave portion of the diffraction grating 1 with the filler 2, the transparent material described above may be formed and filled by CVD (chemical vapor deposition), or a solution of the transparent material described above may be filled with the diffraction grating 1. The film may be dropped and filled by spin coating.

このとき、透明な充填材2は回折格子1の凹部に充填されるのみならず、凸部にも堆積してしまい、透明な充填材2の表面に凹凸が生じ、透明な充填材2からなる回折格子が形成される(図7参照)。ただし、成膜条件を最適化することで、透明な充填材2表面の凹凸の高さを回折格子1の凹凸の高さに対し20分の1以下にできる。   At this time, the transparent filler 2 is not only filled in the concave portions of the diffraction grating 1 but also deposited on the convex portions, and irregularities are generated on the surface of the transparent filler 2, thereby forming the transparent filler 2. A diffraction grating is formed (see FIG. 7). However, by optimizing the film formation conditions, the height of the irregularities on the surface of the transparent filler 2 can be reduced to 1/20 or less of the height of the irregularities of the diffraction grating 1.

透明な充填材2の表面をさらに平坦化するために、透明な充填材2による凹凸が無くなるまで研磨してもよいし(図2参照)、回折格子1の上面に一致するまで研磨してもよい(図1参照)。
また、平坦化の手段としては、図3に示すように、透明な充填材2と同じ屈折率の接着剤(図示せず)を用いて、表面が平坦な透明基板6を積層してもよい。
In order to further flatten the surface of the transparent filler 2, polishing may be performed until the unevenness due to the transparent filler 2 is eliminated (see FIG. 2), or polishing may be performed until it matches the upper surface of the diffraction grating 1. Good (see FIG. 1).
Further, as a flattening means, a transparent substrate 6 having a flat surface may be laminated using an adhesive (not shown) having the same refractive index as that of the transparent filler 2 as shown in FIG. .

上述したように、本発明の第1実施態様の回折素子は、透明基板上に形成した光学多層膜からなる回折格子を用いることで、回折効率の波長依存性に関する設計自由度を増すことができる。   As described above, the diffraction element according to the first embodiment of the present invention can increase the degree of freedom of design related to the wavelength dependence of diffraction efficiency by using a diffraction grating composed of an optical multilayer film formed on a transparent substrate. .

さらに、前記光学多層膜からなる回折格子の凹部に、屈折率の温度依存性が光学多層膜材料とほとんど同じ透明な充填材を充填することで、回折効率の温度依存性を小さくできる。
また、前記透明な充填材の表面を平坦化させることで、前記表面の小さな凹凸により生じうる、不要な回折光または散乱光を無くすことができる。
Furthermore, the temperature dependency of the diffraction efficiency can be reduced by filling the concave portion of the diffraction grating made of the optical multilayer film with a transparent filler whose refractive index temperature dependency is almost the same as that of the optical multilayer film material.
Further, by flattening the surface of the transparent filler, unnecessary diffracted light or scattered light that may be caused by small irregularities on the surface can be eliminated.

「第2実施態様」
前記回折素子に、さらに複屈折性を有する有機薄膜または複屈折性を有する無機材料からなる積層基板が積層されて構成されている回折素子とすることが好ましい。有機薄膜または複屈折性を有する無機基板は、透明基板側に配されていてもよいし、回折格子側に配されていてもよい。
“Second Embodiment”
It is preferable that the diffractive element is a diffractive element in which a laminated substrate made of an organic thin film having birefringence or an inorganic material having birefringence is further laminated. The organic thin film or the inorganic substrate having birefringence may be disposed on the transparent substrate side or on the diffraction grating side.

図4および図5に示すのは、本発明の第2実施態様となる回折素子の概念的断面図であり、該回折素子は、透明基板3に形成された光学多層膜からなる回折格子1と、回折格子1の凹部に充填された透明材料の充填材2と、複屈折性を有する有機薄膜または無機基板4からなり、前記複屈折性を有する有機薄膜または無機材料からなる積層基板4は、透明な充填材2の面に積層されていてもよく(図4参照)、透明基板3の面に積層されていてもよい(図5参照)。   4 and 5 are conceptual cross-sectional views of the diffraction element according to the second embodiment of the present invention. The diffraction element includes a diffraction grating 1 formed of an optical multilayer film formed on a transparent substrate 3 and the diffraction grating 1. The transparent material filler 2 filled in the concave portion of the diffraction grating 1 and the organic thin film or inorganic substrate 4 having birefringence, and the laminated substrate 4 made of the organic thin film or inorganic material having birefringence, It may be laminated on the surface of the transparent filler 2 (see FIG. 4), or may be laminated on the surface of the transparent substrate 3 (see FIG. 5).

回折格子1、透明基板3および透明な充填材2は、本発明の第1実施態様の回折素子と同様のものを用いることができる。   As the diffraction grating 1, the transparent substrate 3, and the transparent filler 2, those similar to the diffraction element of the first embodiment of the present invention can be used.

複屈折性を有する有機薄膜または無機材料の積層基板4として、ポリカーボネートを一軸延伸して複屈折性を誘起した薄膜、または水晶の単板を薄く加工したものを用いることができる。
また、複屈折性を有する有機薄膜または無機材料の積層基板4上に、積層基板4の保護、または平坦性向上のために、光学的に等方的な透明基板を積層してもよい(図示せず)。
As the laminated substrate 4 of the organic thin film or inorganic material having birefringence, a thin film in which birefringence is induced by uniaxial stretching of polycarbonate, or a thin crystal plate made of quartz can be used.
Further, an optically isotropic transparent substrate may be laminated on the organic thin film or inorganic material laminated substrate 4 having birefringence in order to protect the laminated substrate 4 or improve flatness (see FIG. Not shown).

上述したように、本発明の第2実施態様の回折素子は、回折格子による光波の偏向制御と、複屈折を有する有機薄膜または無機材料の積層基板による光波の偏光制御を、一つの素子で実現できる。   As described above, the diffraction element according to the second embodiment of the present invention realizes the light wave deflection control by the diffraction grating and the light wave polarization control by the laminated substrate of the organic thin film or the inorganic material having birefringence with one element. it can.

「第3実施態様」
また、前記透明基板が複屈折性を有する無機物基板からなる回折素子とすることが好ましい。
図6は、本発明の第3実施態様となる回折素子の概念的断面図であり、該回折素子は、複屈折性を有する無機物基板5に形成された光学多層膜からなる回折格子1と、回折格子1の凹部に充填された透明な充填材2からなる。
“Third embodiment”
The transparent substrate is preferably a diffractive element made of an inorganic substrate having birefringence.
FIG. 6 is a conceptual cross-sectional view of a diffraction element according to a third embodiment of the present invention. The diffraction element includes a diffraction grating 1 composed of an optical multilayer film formed on an inorganic substrate 5 having birefringence, It consists of a transparent filler 2 filled in the recesses of the diffraction grating 1.

回折格子1および透明な充填材2は、本発明の第1実施態様の回折素子と同様のものを用いることができる。複屈折性を有する無機物基板5としては、水晶またはニオブ酸リチウムなどの単板を用いることができる。また、回折格子1および透明な充填材2上に、表面の平坦性向上のために、光学的に等方的な透明基板を積層してもよい(図示せず)。   The diffraction grating 1 and the transparent filler 2 can be the same as the diffraction element of the first embodiment of the present invention. As the inorganic substrate 5 having birefringence, a single plate such as quartz or lithium niobate can be used. Further, an optically isotropic transparent substrate may be laminated on the diffraction grating 1 and the transparent filler 2 (not shown) in order to improve surface flatness.

上述したように、本発明の第3実施態様の回折素子は、回折格子による光波の偏向制御と、複屈折を有する無機物基板による光波の偏光制御を、一つの素子で実現できる。   As described above, the diffraction element according to the third embodiment of the present invention can realize light wave deflection control by the diffraction grating and light wave polarization control by the inorganic substrate having birefringence with a single element.

「第4実施態様」
図8は、本発明の第4実施態様の光ヘッド装置を示す光学配置図であり、例えば本発明の回折素子31を搭載した場合について説明する。第4実施態様の光ヘッド装置は光記録媒体であるDVD37およびCD38の情報の記録・再生を行うCD/DVD互換光ヘッド装置であって、DVD用の波長λおよびCD用の波長λの光波を出射する2波長光発振半導体レーザ32とビームスプリッタ33との間に、本発明の回折素子31を備えている。
“Fourth Embodiment”
FIG. 8 is an optical layout diagram showing an optical head device according to a fourth embodiment of the present invention. For example, a case where the diffraction element 31 of the present invention is mounted will be described. The optical head device of the fourth embodiment is a CD / DVD compatible optical head device for recording / reproducing information on DVD 37 and CD 38 which are optical recording media, and has a wavelength λ 1 for DVD and a wavelength λ 2 for CD. The diffraction element 31 of the present invention is provided between the two-wavelength light emitting semiconductor laser 32 that emits a light wave and the beam splitter 33.

図9を参考にして回折素子31について説明する。回折素子31は、透明基板13の上面に形成された、光学多層膜からなる回折格子11と回折格子11の凹部に充填された透明な充填材14からなる第1の回折部分と、透明基板13の下面に形成された、光学多層膜からなる回折格子12と第2の回折格子12の凹部に充填された透明な充填材15からなる第2の回折部分からなる。   The diffraction element 31 will be described with reference to FIG. The diffractive element 31 includes a diffraction grating 11 made of an optical multilayer film and a first diffractive portion made of a transparent filler 14 filled in a concave portion of the diffraction grating 11 formed on the upper surface of the transparent substrate 13. Are formed of a diffraction grating 12 made of an optical multilayer film and a second diffraction portion made of a transparent filler 15 filled in the recesses of the second diffraction grating 12.

前記第1の回折部分では、DVD用の波長λの光波を約6%回折し、CD用の波長λの光波をほぼ100%透過するように設計し、一方、第2の回折部分では、DVD用の波長λの光波をほぼ100%回折し、CD用の波長λの光波を約6%透過するように設計する。これにより、回折素子32は各波長の光波を3ビームに効率良く分けることができる。 The first diffractive portion is designed to diffract the light wave of wavelength λ 1 for DVD by about 6% and transmit the light wave of wavelength λ 2 for CD almost 100%, while in the second diffractive portion, The optical wave of wavelength λ 1 for DVD is diffracted almost 100%, and the optical wave of wavelength λ 2 for CD is designed to transmit about 6%. Thereby, the diffractive element 32 can efficiently divide the light wave of each wavelength into three beams.

回折素子31によって3ビームに分割された、2波長光発振半導体レーザ32からの各波長の光波は、ビームスプリッタ33、コリメートレンズ34を透過し、対物レンズ36により光記録媒体であるDVD37またはCD38に集光される。DVD37またはCD38にて反射された光波は、対物レンズ36、コリメートレンズ34の順に戻り、ビームスプリッタ33で反射して光検出器35によって検出される。回折素子31により得られた各波長の光波の3ビームは、トラッキングに使用できる。   The light waves of each wavelength from the two-wavelength light oscillation semiconductor laser 32 divided into three beams by the diffractive element 31 are transmitted through the beam splitter 33 and the collimator lens 34, and are applied to the DVD 37 or CD 38, which is an optical recording medium, by the objective lens 36. Focused. The light wave reflected by the DVD 37 or CD 38 returns in the order of the objective lens 36 and the collimating lens 34, is reflected by the beam splitter 33, and is detected by the photodetector 35. Three beams of light waves of each wavelength obtained by the diffraction element 31 can be used for tracking.

「実施例1」
本実施例は図1に示す第1実施態様の回折素子の具体例である。ガラス製の透明基板3の表面に、真空蒸着で石英(SiO)と酸化チタン(TiO)からなる光学多層膜を成膜して、フォトリソグラフィとエッチングの技術により矩形状の回折格子1を形成した。
"Example 1"
This example is a specific example of the diffraction element of the first embodiment shown in FIG. An optical multilayer film made of quartz (SiO 2 ) and titanium oxide (TiO 2 ) is formed on the surface of the transparent substrate 3 made of glass by vacuum deposition, and the rectangular diffraction grating 1 is formed by photolithography and etching techniques. Formed.

次に、回折格子1の凹部に透明な充填材2として、ポリシラザンにアクリル樹脂と酸化チタンを混合し、波長589nmの光波に対し屈折率が1.51になるように調整したものを充填し硬化した。さらに、透明な充填材2の表面に残ったわずかな凹凸(図7参照)を平坦にするため精密研磨機によってその凹凸を研磨し、研磨後の表面に反射防止膜を施した(図示せず)また、透明基板3の回折格子1を形成した面とは反対の面にも反射防止膜を施した(図示せず)。   Next, as a transparent filler 2 in the concave portion of the diffraction grating 1, polysilazane is mixed with acrylic resin and titanium oxide, and the refractive index is adjusted to 1.51 with respect to a light wave having a wavelength of 589 nm and cured. did. Further, in order to flatten the slight unevenness remaining on the surface of the transparent filler 2 (see FIG. 7), the unevenness was polished by a precision polishing machine, and an antireflection film was applied to the polished surface (not shown). In addition, an antireflection film was applied to the surface of the transparent substrate 3 opposite to the surface on which the diffraction grating 1 was formed (not shown).

ここで、本実施例の回折素子による回折効率が、波長660nmの光波において、0次光の回折効率(透過光の透過率)が84%、+1次光の回折効率が6%、波長780nmの光波において、0次光の回折効率(透過光の透過率)がほとんど100%になるように、前記回折格子1を構成する光学多層膜を設計(表1参照)し、石英と酸化チタンからなる29層膜とした。   Here, the diffraction efficiency of the diffractive element of the present embodiment is such that, in a light wave having a wavelength of 660 nm, the diffraction efficiency of 0th order light (transmittance of transmitted light) is 84%, the diffraction efficiency of + 1st order light is 6%, and the wavelength is 780 nm. The optical multilayer film constituting the diffraction grating 1 is designed (see Table 1) so that the diffraction efficiency (transmittance of transmitted light) of 0th order light is almost 100% in the light wave, and is made of quartz and titanium oxide. A 29-layer film was formed.

Figure 2004342295
Figure 2004342295

上述のように作製した回折素子の波長660nmの光波に対する回折光を調べたところ、透明な充填材2の表面を平坦化したため、ノイズとなる回折光や散乱光もなく、効率良く3ビームを得ることができた。
さらに、0次回折効率と+1次回折効率との比に関して、室温から100℃までの温度依存性を調べたところ、その比(0次/+1次)は14±2の間にあり、回折効率の温度変動が実用上充分に小さい回折素子を得ることができた。
When the diffracted light with respect to the light wave having a wavelength of 660 nm of the diffractive element manufactured as described above was examined, the surface of the transparent filler 2 was flattened, so that three beams can be efficiently obtained without diffracted light and scattered light becoming noise. I was able to.
Furthermore, when the temperature dependence from room temperature to 100 ° C. was examined with respect to the ratio between the 0th-order diffraction efficiency and the + 1st-order diffraction efficiency, the ratio (0th / + 1st order) was between 14 ± 2 and the diffraction efficiency Thus, a diffraction element having a sufficiently small temperature fluctuation in practical use could be obtained.

次に、上述の実施例で作製した回折素子を、図8に示す光ヘッド装置の回折素子31の位置に搭載して、DVD37のトラッキング特性を調べたところ、良好なトラッキング性能を示し、DVD37の情報の記録・再生特性も良好であった。   Next, the diffractive element produced in the above-described embodiment was mounted at the position of the diffractive element 31 of the optical head device shown in FIG. 8 and the tracking characteristics of the DVD 37 were examined. The information recording / reproducing characteristics were also good.

「実施例2」
本実施例は図3に示す第1実施態様の回折素子の具体例である。図中下側の面に反射防止膜を施したガラス製の透明基板3の図中上側の面に、真空蒸着で石英(SiO)と酸化チタン(TiO)からなる表2に示す9層構造の光学多層膜を成膜する。次に、前記光学多層膜をフォトリソグラフィとエッチングの技術により矩形状の回折格子1に加工する。
"Example 2"
This example is a specific example of the diffraction element of the first embodiment shown in FIG. Nine layers shown in Table 2 made of quartz (SiO 2 ) and titanium oxide (TiO 2 ) by vacuum deposition on the upper surface of the transparent substrate 3 made of glass with an antireflection film on the lower surface of the diagram. An optical multilayer film having a structure is formed. Next, the optical multilayer film is processed into a rectangular diffraction grating 1 by photolithography and etching techniques.

Figure 2004342295
Figure 2004342295

次に、回折格子1の凹部に透明な充填材2として、ポリシラザンにアクリル樹脂と酸化チタンを混合し、波長589nmの光波に対し屈折率が1.56になるように調整したものを充填し硬化する。さらに、また、図中上側の面に反射防止膜を施したガラス製の透明基板6を回折格子1の上に接着剤で接着する。   Next, as a transparent filler 2 in the concave portion of the diffraction grating 1, polysilazane is mixed with acrylic resin and titanium oxide, and the refractive index is adjusted to 1.56 with respect to a light wave having a wavelength of 589 nm, and then cured. To do. Furthermore, a transparent substrate 6 made of glass having an antireflection film on the upper surface in the drawing is bonded onto the diffraction grating 1 with an adhesive.

ここで、本実施例の回折素子による回折効率は、波長660nmの光波において、0次光の回折効率(透過光の透過率)が87%、+1次光の回折効率が5%、波長780nmの光波において、0次光の回折効率(透過光の透過率)も87%、+1次光の回折効率が5%となる。
すなわち、本実施例の回折素子によると、660nmと780nmの異なる波長の光波に対する回折効率を一致させることができる。
Here, the diffraction efficiency of the diffraction element according to the present embodiment is as follows. The diffraction efficiency of 0th-order light (transmittance of transmitted light) is 87%, the diffraction efficiency of + 1st-order light is 5%, and the wavelength is 780 nm. In the light wave, the diffraction efficiency of 0th-order light (transmittance of transmitted light) is 87%, and the diffraction efficiency of + 1st-order light is 5%.
That is, according to the diffraction element of the present embodiment, the diffraction efficiencies for light waves having different wavelengths of 660 nm and 780 nm can be matched.

例えば、CD/DVD互換光ヘッド装置において、単一の回折素子でCDおよびDVDのトラッキング信号を得るトラッキング方法が提案されている。本実施例の回折素子を、上記のトラッキング信号用の回折素子として利用すると、波長780nmの光波を用いるCD、および波長660nmの光波を用いるDVDの記録および再生において、ともに同じ回折効率のトラッキング信号を得ることができる。   For example, in a CD / DVD compatible optical head device, a tracking method for obtaining a tracking signal for CD and DVD with a single diffraction element has been proposed. When the diffraction element of this embodiment is used as the tracking signal diffraction element, a tracking signal having the same diffraction efficiency is recorded in both recording and reproduction of a CD using a light wave having a wavelength of 780 nm and a DVD using a light wave having a wavelength of 660 nm. Can be obtained.

「実施例3」
本実施例は図3に示す第1実施態様の回折素子の具体例の一つである。図中下側の面に反射防止膜を施したガラス製の透明基板3の図中上側の面に、真空蒸着で石英(SiO)と5酸化タンタル(Ta)からなる表3に示す41層構造の光学多層膜を成膜する。次に、前記光学多層膜をフォトリソグラフィとエッチングの技術により矩形状の回折格子1に加工する。次に、回折格子1の凹部に透明な充填材2として、屈折率の温度依存性が100×10−6/℃以下となる、例えばポリシラザンにアクリル樹脂と酸化チタンを混合し、波長660nmの光波に対し屈折率が1.53になるように調整したものを充填し硬化する。さらに、図中上側の面に反射防止膜を施したガラス製の透明基板6を回折格子1の上に接着剤で接着する。
"Example 3"
This example is one of the specific examples of the diffraction element of the first embodiment shown in FIG. Table 3 consisting of quartz (SiO 2 ) and tantalum pentoxide (Ta 2 O 5 ) is formed on the upper surface of the transparent substrate 3 made of glass with an antireflection film on the lower surface of the diagram by vacuum deposition. An optical multilayer film having a 41-layer structure is formed. Next, the optical multilayer film is processed into a rectangular diffraction grating 1 by photolithography and etching techniques. Next, as a transparent filler 2 in the concave portion of the diffraction grating 1, the temperature dependence of the refractive index is 100 × 10 −6 / ° C. or less. For example, polysilazane is mixed with an acrylic resin and titanium oxide, and a light wave having a wavelength of 660 nm is obtained. In contrast, a material adjusted to have a refractive index of 1.53 is filled and cured. Further, a glass transparent substrate 6 having an antireflection film on the upper surface in the figure is bonded onto the diffraction grating 1 with an adhesive.

Figure 2004342295
Figure 2004342295

本実施例の回折素子による回折効率は、波長660nmの光波において、0次光の回折効率(透過光の透過率)が87%、+1次光の回折効率が5%、波長780nmの光波において、0次光の回折効率(透過光の透過率)が99%となる。   The diffraction efficiency of the diffractive element of this example is as follows: in the light wave with a wavelength of 660 nm, the diffraction efficiency of 0th order light (transmittance of transmitted light) is 87%, the diffraction efficiency of + 1st order light is 5%, and the light wave with a wavelength of 780 nm. The diffraction efficiency of 0th-order light (transmittance of transmitted light) is 99%.

特に、前記光学多層膜は、波長660nm近傍の光波に対する回折効率が、波長が長くなるほど大きくなるように設計されている。すなわち回折効率が、波長660nmより長くなるほど大きく、波長660nmより短くなるほど小さくなるように設計されている。また、本発明の回折素子の温度が上昇するとき、波長660nm近傍の光波に対する回折効率が小さくなるように、前記透明な充填材2の材料を選んでいる。
例えば、本実施例の回折素子および光源である半導体レーザを含む系の温度が上昇(または下降)するとき、半導体レーザの温度上昇(または下降)に伴う発振波長の変化による回折効率の変動と、本実施例の回折素子を構成する材料による回折効率の変動を相殺することができる。すなわち、本実施例の回折素子と光源を含む系において、実効的に回折効率の温度変動を略ゼロに抑えることができる。
In particular, the optical multilayer film is designed such that the diffraction efficiency with respect to light waves in the vicinity of a wavelength of 660 nm increases as the wavelength increases. That is, the diffraction efficiency is designed to increase as the wavelength becomes longer than 660 nm and decrease as the wavelength becomes shorter than 660 nm. Further, when the temperature of the diffraction element of the present invention rises, the material of the transparent filler 2 is selected so that the diffraction efficiency with respect to the light wave near the wavelength of 660 nm becomes small.
For example, when the temperature of the system including the diffractive element of this embodiment and the semiconductor laser that is the light source rises (or falls), the fluctuation of the diffraction efficiency due to the change in the oscillation wavelength accompanying the temperature rise (or fall) of the semiconductor laser, Variations in diffraction efficiency due to the material constituting the diffraction element of the present embodiment can be offset. That is, in the system including the diffraction element and the light source of the present embodiment, the temperature variation of the diffraction efficiency can be effectively suppressed to substantially zero.

例えば、CD/DVD互換光ヘッド装置において、レーザ光を分割する際に、本実施例の回折素子を用いることで、該装置の使用環境および駆動時の発熱によって、系の温度が変動しても略一定の効率でレーザ光を分割できるので、安定して動作させることができる。   For example, in a CD / DVD compatible optical head device, when the laser beam is split, the diffraction element of this embodiment is used, so that the temperature of the system fluctuates due to the usage environment of the device and the heat generated during driving. Since the laser beam can be divided with substantially constant efficiency, the laser beam can be operated stably.

なお、本実施例において述べた方法によると、透明な充填材2として、屈折率の温度依存性が100×10−6/℃以下となる材料であれば、無機物、有機物を問わず上述の効果を得ることができる。 In addition, according to the method described in the present Example, as long as the transparent filler 2 is a material having a temperature dependency of the refractive index of 100 × 10 −6 / ° C. or less, the above-described effects can be obtained regardless of whether the material is inorganic or organic. Can be obtained.

本発明の回折素子は、光学多層膜構造となっているので、回折効率の波長依存性に設計自由度を必要とする場合に使用できる。   Since the diffraction element of the present invention has an optical multilayer film structure, it can be used when design freedom is required for the wavelength dependence of diffraction efficiency.

本発明の第1実施態様の回折素子の断面の1例を示す断面図。Sectional drawing which shows an example of the cross section of the diffraction element of the 1st embodiment of this invention. 本発明の第1実施態様の回折素子の断面の他の例を示す断面図。Sectional drawing which shows the other example of the cross section of the diffraction element of the 1st embodiment of this invention. 本発明の第1実施態様の回折素子の断面の別の例を示す断面図。Sectional drawing which shows another example of the cross section of the diffraction element of the 1st embodiment of this invention. 本発明の第2実施態様の回折素子の断面の1例を示す断面図。Sectional drawing which shows an example of the cross section of the diffraction element of the 2nd embodiment of this invention. 本発明の第2実施態様の回折素子の断面の他の例を示す断面図。Sectional drawing which shows the other example of the cross section of the diffraction element of the 2nd embodiment of this invention. 本発明の第3実施態様の回折素子の1例を示す断面図。Sectional drawing which shows an example of the diffraction element of the 3rd embodiment of this invention. 本発明の回折素子の作製途中における該素子の断面図。Sectional drawing of this element in the middle of preparation of the diffraction element of this invention. 本発明の第4実施態様の光ヘッド装置の光学配置を示す概念図。The conceptual diagram which shows the optical arrangement | positioning of the optical head apparatus of the 4th embodiment of this invention. 本発明の第4実施態様の光ヘッド装置に搭載した本発明の回折素子の1例を示す断面図。Sectional drawing which shows an example of the diffraction element of this invention mounted in the optical head apparatus of the 4th embodiment of this invention.

符号の説明Explanation of symbols

1、11、12:回折格子
2、6、14、15:充填材
3:透明基板
4:積層基板
5:無機物基板
13:透明基板
31:回折素子
32:2波長光発振半導体レーザ
1, 11, 12: Diffraction gratings 2, 6, 14, 15: Filler 3: Transparent substrate 4: Laminated substrate 5: Inorganic substrate 13: Transparent substrate 31: Diffraction element 32: Two-wavelength light oscillation semiconductor laser

Claims (5)

少なくとも1枚の透明基板上に形成された周期的な凹凸部を備える回折格子であって、凸部は透明基板面に平行に配された光学多層膜からなり、また凹部には無機物または無機物を主成分とする透明材料により充填されており、透明材料上面が凸部上面に一致して平坦であるか、または凸部上面を覆って透明材料上面が平坦であることを特徴とする回折素子。   A diffraction grating having a periodic concavo-convex portion formed on at least one transparent substrate, wherein the convex portion is composed of an optical multilayer film arranged in parallel to the transparent substrate surface, and the concave portion is made of an inorganic substance or an inorganic substance. A diffractive element, which is filled with a transparent material as a main component, and whose upper surface is flat so as to coincide with the upper surface of the convex portion, or is flat so as to cover the upper surface of the convex portion. 前記回折素子に、さらに複屈折性を有する有機薄膜または複屈折性を有する無機材料からなる積層基板が積層されて構成されている請求項1に記載の回折素子。   The diffractive element according to claim 1, further comprising a laminated substrate made of an organic thin film having birefringence or an inorganic material having birefringence laminated on the diffractive element. 前記透明基板が複屈折性を有する無機物基板からなる請求項1または2に記載の回折素子。   The diffraction element according to claim 1, wherein the transparent substrate is made of an inorganic substrate having birefringence. 前記光学多層膜は、回折素子に入射する光波の波長が所定の波長から外れるとき、所定の波長より長くなるほど回折効率が大きくなるように構成されている請求項1、2または3のいずれかに記載の回折素子。   4. The optical multilayer film according to claim 1, wherein when the wavelength of the light wave incident on the diffraction element deviates from a predetermined wavelength, the diffraction efficiency increases as the wavelength becomes longer than the predetermined wavelength. The diffraction element as described. 波長λおよび波長λの光波を出射する光源と、波長λおよび波長λの光波を光記録媒体に集光する対物レンズと、集光されて光記録媒体により反射された光波を検出する光検出器とを備え、光記録媒体に情報の記録および再生を行う光ヘッド装置において、光源と対物レンズとの間の波長λおよび波長λの光波が共有する光路中に、請求項1から4いずれかに記載の回折素子が設置されていることを特徴とする光ヘッド装置。
Detection a light source for emitting light waves of a wavelength lambda 1 and wavelength lambda 2, an objective lens for focusing the light waves having a wavelength lambda 1 and wavelength lambda 2 to the optical recording medium, the optical wave reflected by the condenser has been optical recording medium In an optical head device that records and reproduces information on an optical recording medium, and in a light path shared by light waves of wavelength λ 1 and wavelength λ 2 between the light source and the objective lens. 5. An optical head device, wherein the diffraction element according to any one of 1 to 4 is installed.
JP2004125555A 2003-04-24 2004-04-21 Diffraction element and optical head device Expired - Lifetime JP4314480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004125555A JP4314480B2 (en) 2003-04-24 2004-04-21 Diffraction element and optical head device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003120234 2003-04-24
JP2004125555A JP4314480B2 (en) 2003-04-24 2004-04-21 Diffraction element and optical head device

Publications (2)

Publication Number Publication Date
JP2004342295A true JP2004342295A (en) 2004-12-02
JP4314480B2 JP4314480B2 (en) 2009-08-19

Family

ID=33543222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004125555A Expired - Lifetime JP4314480B2 (en) 2003-04-24 2004-04-21 Diffraction element and optical head device

Country Status (1)

Country Link
JP (1) JP4314480B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141429A (en) * 2005-10-21 2007-06-07 Matsushita Electric Ind Co Ltd Diffraction grating, optical pickup device and optical disk drive
JP2007273012A (en) * 2006-03-31 2007-10-18 Sony Corp Diffraction element, objective lens unit, optical pickup, and optical disk device
WO2008044686A1 (en) 2006-10-10 2008-04-17 Asahi Glass Co., Ltd. Diffraction element and optical head device equipped therewith
JP2009169132A (en) * 2008-01-17 2009-07-30 Sony Corp Method of manufacturing polarizing plate, and display device
CN114079225A (en) * 2020-08-11 2022-02-22 奇景光电股份有限公司 Optical element and wafer level optical module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141429A (en) * 2005-10-21 2007-06-07 Matsushita Electric Ind Co Ltd Diffraction grating, optical pickup device and optical disk drive
JP2007273012A (en) * 2006-03-31 2007-10-18 Sony Corp Diffraction element, objective lens unit, optical pickup, and optical disk device
WO2008044686A1 (en) 2006-10-10 2008-04-17 Asahi Glass Co., Ltd. Diffraction element and optical head device equipped therewith
CN101523489B (en) * 2006-10-10 2011-05-18 旭硝子株式会社 Diffraction element and optical head device equipped therewith
US8040778B2 (en) 2006-10-10 2011-10-18 Asahi Glass Company, Limited Diffraction element and optical head device equipped therewith
JP5146317B2 (en) * 2006-10-10 2013-02-20 旭硝子株式会社 Diffraction element and optical head device provided with the same
JP2009169132A (en) * 2008-01-17 2009-07-30 Sony Corp Method of manufacturing polarizing plate, and display device
JP4525756B2 (en) * 2008-01-17 2010-08-18 ソニー株式会社 Polarizing plate manufacturing method and display device
CN114079225A (en) * 2020-08-11 2022-02-22 奇景光电股份有限公司 Optical element and wafer level optical module

Also Published As

Publication number Publication date
JP4314480B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4692489B2 (en) Liquid crystal diffractive lens element and optical head device
JP2006351086A (en) Optical path compensation apparatus and optical pickup using the same
JP2008216644A (en) Birefringent plate and optical head device
JP5146317B2 (en) Diffraction element and optical head device provided with the same
JP2006073042A (en) Diffraction element and optical head device
JP4518009B2 (en) Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device
US20060193235A1 (en) Diffraction element and optical head device
JP4314480B2 (en) Diffraction element and optical head device
JP3545905B2 (en) Polarization separation element and optical head using the polarization separation element
WO2004097819A1 (en) Optical diffraction device and optical information processing device
JP4218240B2 (en) Optical head device
JPH10134404A (en) Optical pickup and optical element used for the same
JP2004341471A (en) Diffraction element and optical head system
JP2003288733A (en) Aperture-limiting element and optical head device
JP5082792B2 (en) Optical head device
JP5234151B2 (en) Diffraction element and optical head device
EP1562186A1 (en) Double-wavelength light source unit and optical head device
JP4404189B2 (en) Diffraction element and optical head device
JP2013077374A (en) Diffraction element and optical head unit
JP2006066011A (en) Hologram laser unit and optical pickup device
JP2006099946A (en) Optical head device
JP2002341125A (en) Diffraction element and optical head device
JP2000348366A (en) Optical head device
JP2013093070A (en) Diffraction optical element and optical head device
JP2002170272A (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090505

R151 Written notification of patent or utility model registration

Ref document number: 4314480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250