JP2004340576A - Package for pressure sensitive device - Google Patents

Package for pressure sensitive device Download PDF

Info

Publication number
JP2004340576A
JP2004340576A JP2003119699A JP2003119699A JP2004340576A JP 2004340576 A JP2004340576 A JP 2004340576A JP 2003119699 A JP2003119699 A JP 2003119699A JP 2003119699 A JP2003119699 A JP 2003119699A JP 2004340576 A JP2004340576 A JP 2004340576A
Authority
JP
Japan
Prior art keywords
electrode
insulating plate
semiconductor element
insulating
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003119699A
Other languages
Japanese (ja)
Inventor
Koji Kinomura
浩司 木野村
Ryuichi Imura
隆一 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003119699A priority Critical patent/JP2004340576A/en
Publication of JP2004340576A publication Critical patent/JP2004340576A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and highly sensitive package for pressure-sensitive devices capable of accurately detecting an external pressure. <P>SOLUTION: The package for pressure-sensitive devices is provided with an insulating substrate 1 having a mounting part 1a in which a semiconductor element 3 is mounted to one main surface; a plurality of wire conductors 5 arranged in its surface and inside and each electrically connected to electrodes of the semiconductor element 3; first and second insulating plates 2 and 2' each joined in a flexible state to the insulating substrate 1 in such a way as to form first and second sealed spaces to the other surface of the insulating substrate 1. The package for pressure sensitive devices is further provided with first and second electrodes 7 and 7' for the formation of electrostatic capacitance each deposited to the other main surface of the insulating substrate 1 in the first and second sealed spaces and electrically connected to one of the wire conductors 5 and third and fourth electrodes 9 and 9' for the formation of electrostatic capacitance each opposed to the first and second electrodes 7 and 7', deposited to the inside surfaces of the first and second insulating plates 2 and 2', and electrically connected to another one of the wire conductors 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、圧力を検出するための圧力検出装置に使用される圧力検出装置用パッケージに関する。
【0002】
【従来の技術】
従来、圧力を検出するための圧力検出装置として静電容量型の圧力検出装置が知られている。この静電容量型の圧力検出装置は、図4に断面図で示すように、セラミック材料や樹脂材料から成る配線基板21上に、静電容量型の感圧素子22と、パッケージ28に収容された演算用の半導体素子29とを備えている。
【0003】
そして、感圧素子22は、例えばセラミック材料等の電気絶縁材料から成り、上面中央部に静電容量形成用の一方の電極23が被着された凹部を有する絶縁基体24と、この絶縁基体24の上面に絶縁基体24との間に密閉空間を形成するようにして可撓な状態で接合され、下面に静電容量形成用の他方の電極25が被着された絶縁板26と、各静電容量形成用の電極23・25をそれぞれ外部に電気的に接続するための外部リード端子27とから構成されており、外部の圧力に応じて絶縁板26が撓むことにより各静電容量形成用の電極23・25間に形成される静電容量が変化する。
そして、この静電容量の変化を演算用の半導体素子29により演算処理することにより外部の圧力を検出することができる。
【0004】
しかしながら、この従来の圧力検出装置によると、感圧素子22と半導体素子29とを配線基板21上に個別に実装していることから、圧力検出装置が大型化してしまうとともに圧力検出用の電極23・25と半導体素子29との間の配線が長いものとなり、この長い配線間に不要な静電容量が形成されるため感度が低いという問題点を有していた。
【0005】
そこで、本願出願人は、特開2001−356064号公報(特許文献1)において、図3に断面図で示すような、一方の主面に半導体素子13が搭載される搭載部11bを有する絶縁基体11と、この絶縁基体11の表面および内部に配設され、半導体素子13の各電極が電気的に接続される複数の配線導体15と、絶縁基体11の他方の主面の中央部に被着され、配線導体15の一つに電気的に接続された静電容量形成用の第一電極17と、絶縁基体11の他方の主面に、この主面の中央部との間に密閉空間を形成するように可撓な状態で接合された絶縁板12と、この絶縁板12の内側主面に第一電極17と対向して被着され、配線導体15の他の一つに電気的に接続された静電容量形成用の第二電極19とを具備する圧力検出装置用パッケージを提案した。
【0006】
この圧力検出装置用パッケージによれば、一方の主面に半導体素子13が搭載される搭載部11bを有する絶縁基体11の他方の主面に静電容量形成用の第一電極17を設けるとともに、この第一電極17に対向する静電容量形成用の第二電極19を内側面に有する絶縁板12を、絶縁基体11の他方の主面との間に密閉空間を形成するようにして可撓な状態で接合させたことから、半導体素子13を収容するパッケージに感圧素子が一体に形成され、その結果、圧力検出装置を小型とすることができるとともに圧力検出用の電極と半導体素子13とを接続する配線を短いものとして、これらの配線間に発生する不要な静電容量を小さなものとすることができるというものである。
【0007】
【特許文献1】
特開2001−356064号公報
【0008】
【発明が解決しようとする課題】
しかしながら、上述の圧力検出装置用パッケージによると、パッケージの強度を確保するために絶縁板12の厚みを厚くすると外部の圧力が印加された際に、絶縁板12に被着された第二電極19の撓み量が小さくなり第一電極17と第二電極19との間隔の変化量が小さくなって、外部圧力の変化を精度良く測定することができないという問題点を有していた。
【0009】
また、逆に外部の圧力の検出感度を高めるために、絶縁板12の厚みを大幅に薄くして絶縁板12の撓み量を大きくすると、絶縁板12に一定以上の高い圧力が印加された際に、絶縁板12が大きく撓んで割れが発生してしまうという問題点を有していた。
【0010】
さらに、他の対策として、突起部12aの厚みを小さくして絶縁基体11と絶縁板12との間の距離を狭くすると、絶縁板12の強度が低下してしまうとともに、外部の圧力が印加された際に、絶縁基体11と絶縁板12とを接合しているろう材に塑性変形が発生しやすくなるという問題点を有していた。
【0011】
本発明はかかる上述の問題点に鑑み案出されたものであり、その目的は、小型でかつ感度が高く、外部の圧力を正確に検出することが可能な圧力検出装置用のパッケージを提供することにある。
【0012】
【課題を解決するための手段】
本発明の圧力検出装置用パッケージは、一方の主面に半導体素子が搭載される搭載部を有する絶縁基体と、この絶縁基体の表面および内部に配設され、前記半導体素子の各電極が電気的に接続される複数の配線導体と、前記絶縁基体の他方の主面との間に第一密閉空間および第二密閉空間を形成するようにそれぞれ可撓な状態で前記絶縁基体に接合された第一絶縁板および第二絶縁板と、前記第一密閉空間および前記第二密閉空間内の前記絶縁基体の前記他方の主面にそれぞれ被着され、前記配線導体の一つに電気的に接続された静電容量形成用の第一電極および第二電極と、前記第一絶縁板および前記第二絶縁板の内側主面にそれぞれ前記第一電極および前記第二電極と対向するように被着され、前記配線導体の他の一つに電気的に接続された静電容量形成用の第三電極および第四電極とを具備することを特徴とするものである。
【0013】
本発明の圧力検出装置用パッケージによれば、一方の主面に半導体素子が搭載される搭載部を有する絶縁基体と、この絶縁基体の表面および内部に配設され、半導体素子の各電極が電気的に接続される複数の配線導体と、絶縁基体の他方の主面との間に第一密閉空間および第二密閉空間を形成するようにそれぞれ可撓な状態で絶縁基体に接合された第一絶縁板および第二絶縁板と、第一密閉空間および第二密閉空間内の絶縁基体の他方の主面にそれぞれ被着され、配線導体の一つに電気的に接続された静電容量形成用の第一電極および第二電極と、第一絶縁板および第二絶縁板の内側主面にそれぞれ第一電極および第二電極と対向するように被着され、配線導体の他の一つに電気的に接続された静電容量形成用の第三電極および第四電極とを具備することから、外部圧力に対して第一電極および第三電極、ならびに第二電極および第四電極で形成される静電容量の変化量を合算することで外部の圧力変化による静電容量の変化量を大きくすることができるので、外部圧力の変化を精度良く測定することができる。また、静電容量の変化量を大きくすることができるので第一絶縁板および第二絶縁板の厚みを大幅に薄くする必要はなく、その結果、第一絶縁板および第二絶縁板に一定以上の高い圧力が印加された場合においても、第一絶縁板および第二絶縁板が大きく撓んで割れが発生することはない。
【0014】
また、本発明の圧力検出装置用パッケージは、上記構成において、前記複数の配線導体のうち、前記半導体素子と前記第一電極との間を接続するものの長さおよび前記第二電極との間を接続するものの長さが同じであり、前記半導体素子と前記第三電極との間を接続するものの長さおよび前記第四電極との間を接続するものの長さが同じであることを特徴する。
【0015】
本発明の圧力検出装置用パッケージによれば、複数の配線導体のうち、半導体素子と第一電極との間を接続するものの長さおよび第二電極との間を接続するものの長さが同じであり、半導体素子と第三電極との間を接続するものの長さおよび第四電極との間を接続するものの長さが同じであるときには、第一電極および第三電極の間で検出される静電容量と、第二電極および第四電極の間で検出される静電容量とを、信号として半導体素子に伝達する際に発生する損失の差を小さくし、二つの静電容量形成部における感度のばらつきの差を小さくすることができる。従って、外部の圧力をより感度良くかつより精度良く検出することができる圧力検出装置用パッケージとすることができる。
【0016】
【発明の実施の形態】
次に、本発明の圧力検出装置用パッケージを添付の図面に基づいて詳細に説明する。
【0017】
図1は、本発明の圧力検出装置用パッケージの実施の形態の一例を示す断面図であり、図中、1は絶縁基体、2は第一絶縁板、2’は第二絶縁板、3は半導体素子、7は第一電極、7’は第二電極、9は第三電極、9’は第四電極である。
【0018】
本発明の圧力検出装置用パッケージは、半導体素子3が搭載される搭載部1aを有する絶縁基体1と、この絶縁基体1に配設され、半導体素子3の各電極が電気的に接続される複数の配線導体5と、絶縁基体1との間に第一密閉空間および第二密閉空間を形成するようにそれぞれ可撓な状態で絶縁基体1に接合された第一絶縁板2および第二絶縁板2’と、第一密閉空間および第二密閉空間内の絶縁基体1にそれぞれ被着され、配線導体5の一つに電気的に接続された静電容量形成用の第一電極7および第二電極7’と、第一絶縁板2および第二絶縁板2’の内側主面にそれぞれ第一電極7および第二電極7’と対向するように被着され、配線導体5の他の一つに電気的に接続された静電容量形成用の第三電極9および第四電極9’とで主に構成されている。
【0019】
絶縁基体1は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・炭化珪素質焼結体・窒化珪素質焼結体・ガラス−セラミックス等の電気絶縁材料から成る積層体であり、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等のセラミック原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿状となすとともに、これを従来周知のドクターブレード法を採用してシート状に成形することにより複数枚のセラミックグリーンシートを得、しかる後、これらのセラミックグリーンシートに適当な打ち抜き加工・積層加工・切断加工を施すことにより絶縁基体1用の生セラミック成形体を得るとともにこの生セラミック成形体を約1600℃の温度で焼成することにより製作される。
【0020】
絶縁基体1は、その下面に半導体素子3を収容するための凹部1aが形成されており、これにより半導体素子3を収容する容器として機能する。そして、この凹部1aの底面中央部が半導体素子3が搭載される搭載部1bとなっており、この搭載部1bに半導体素子3を搭載するとともに凹部1a内に例えばエポキシ樹脂等の樹脂製封止材4を充填することにより半導体素子3が封止される。
【0021】
なお、この例では半導体素子3は樹脂製封止材4を凹部1a内に充填することにより封止されるが、半導体素子3は絶縁基体1の下面に金属やセラミックスから成る蓋体を凹部1aを塞ぐように接合させることにより封止されてもよい。
【0022】
また、搭載部1bには半導体素子3の各電極と接続される複数の配線導体5が導出しており、この配線導体5と半導体素子3の各電極を半田バンプ6等の導電性材料から成る導電性接合部材を介して接合することにより半導体素子3の各電極と配線導体5とが電気的に接続されるとともに半導体素子3が搭載部1bに固定される。なお、この例では、半導体素子3の電極と配線導体5とは半田バンプ6を介して接続されているが、半導体素子3の電極と配線導体5とはボンディングワイヤ等の他の電気的接続手段により接続されてもよい。
【0023】
配線導体5は、半導体素子3の各電極を外部電気回路および後述する第一電極7、第二電極7’、第三電極9および第四電極9’に電気的に接続するための導電路として機能し、その一部は絶縁基体1の下面に導出し、別の一部は第一電極7、第二電極7’、第三電極9および第四電極9’に電気的に接続されている。そして、半導体素子3の各電極をこれらの配線導体5に半田バンプ6を介して電気的に接続するとともに半導体素子3を樹脂製封止材4で封止した後、配線導体5の絶縁基体1の下面に導出した部位を外部電気回路基板の配線導体(図示せず)に半田等の導電性接合材を介して接合することにより、内部に収容する半導体素子3が外部電気回路に電気的に接続されることとなる。
【0024】
このような配線導体5は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤等を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに所定のパターンに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の内部および表面に所定のパターンに形成される。なお、配線導体5の露出表面には、配線導体5が酸化腐食するのを防止するとともに配線導体5と半田等の導電性接合材との接合を良好なものとするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層と厚みが0.1〜3μm程度の金めっき層とが順次被着されている。
【0025】
また、絶縁基体1の上面には、静電容量形成用の第一電極7および第二電極7’が絶縁基体1の中心に対して左右対称となる部位に被着されている。この第一電極7および第二電極7’は、後述する第三電極9および第四電極9’とともに感圧素子用の静電容量を形成するためのものであり、例えば略円形のパターンに形成されている。そして、この第一電極7および第二電極7’は配線導体5の一つである第一配線導体5a・5a’にそれぞれが接続されており、それにより、この第一配線導体5a・5a’に半導体素子3の各電極を半田バンプ6等の導電性接合部材を介して接続すると半導体素子3の各電極と第一電極7および第二電極7’とが電気的に接続されるようになっている。
【0026】
このような第一電極7および第二電極7’は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって絶縁基体1の所定の部位に所定のパターンに形成される。なお、第一電極7および第二電極7’の露出表面には、第一電極7および第二電極7’が酸化腐食するのを防止するために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0027】
また、第一電極7および第二電極7’の外周部には、その全周にわたりそれぞれ枠状の第一接合用メタライズ層8a・8a’が被着されており、この第一接合用メタライズ層8a・8a’には、後述する第一絶縁板2および第二絶縁板2’の第二接合用メタライズ層8b・8b’がそれぞれ銀−銅ろう材等の導電性接合材を介して接合されている。
【0028】
この第一接合用メタライズ層8a・8a’は配線導体5の一つである第二配線導体5b・5b’にそれぞれが接続されており、それにより、この第二配線導体5b・5b’に半導体素子3の各電極を半田バンプ6等の導電性接合部材を介して電気的に接続すると第一接合用メタライズ層8a・8a’および第二接合用メタライズ層8b・8b’とがそれぞれ半導体素子3の各電極と電気的に接続されるようになっている。
【0029】
第一接合用メタライズ層8a・8a’は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して絶縁基体1用のセラミックグリーンシートに印刷塗布し、これを絶縁基体1用の生セラミック成形体とともに焼成することによって、絶縁基体1上面の第一電極1および第二電極2のそれぞれの外周部に枠状の所定のパターンに形成される。なお、第一接合用メタライズ層8a・8a’の露出表面には、第一接合用メタライズ層8a・8a’が酸化腐食するのを防止するとともに第一接合用メタライズ層8a・8a’と導電性接合材との接合を強固なものとするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0030】
また、絶縁基体1の上面に取着された第一絶縁板2および第二絶縁板2’は、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体・ムライト質焼結体・窒化珪素質焼結体・炭化珪素質焼結体・ガラス−セラミックス等の電気絶縁材料から成る厚みが0.01〜5mmの略平板であり、外部の圧力に応じて絶縁基体1側に撓むいわゆる圧力検出用のダイアフラムとして機能する。
【0031】
なお、第一絶縁板2および第二絶縁板2’は、その厚みが0.01mm未満では、その機械的強度が小さいものとなってしまうため、これに大きな外部圧力が印加された場合に破壊されてしまう危険性が大きなものとなり、他方、5mmを超えると、小さな圧力では撓みにくくなり、圧力検出用のダイアフラムとしては不適なものとなってしまう。したがって、第一絶縁板2および第二絶縁板2’の厚みは0.01〜5mmの範囲が好ましい。
【0032】
このような第一絶縁板2および第二絶縁板2’は、例えば酸化アルミニウム質焼結体から成る場合であれば、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等のセラミック原料粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して泥漿状となすとともにこれを従来周知のドクタブレード法を採用してシート状に成形することにより複数枚のセラミックグリーンシートを得、しかる後、このセラミックグリーンシートに適当な打ち抜き加工・積層加工・切断加工を施すことにより第一絶縁板2および第二絶縁板2’用の生セラミック成形体を得るとともにこの生セラミック成形体を約1600℃の温度で焼成することにより製作される。
【0033】
また、第一絶縁板2および第二絶縁板2’のそれぞれの下面外周部には高さが0.01〜5mm程度の枠状の突起部2a・2a’が設けられており、これにより底面が略平坦な凹部2b・2b’が形成されている。この凹部2b・2b’は、絶縁基体1との間に第一密閉空間および第二密閉空間を形成するためのものであり、この凹部2b・2b’の底面に静電容量形成用の第三電極9および第四電極9’がそれぞれ被着されている。
【0034】
この第三電極9はおよび第四電極9’は、前述の第一電極7および第二電極7’とともに感圧素子用の静電容量を形成するための電極として機能し、凹部2b・2b’の底面の略全面にそれぞれ被着されている。
【0035】
このような第三電極9および第四電極9’は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して第一絶縁板2および第二絶縁板2’用のセラミックグリーンシートに印刷塗布し、これを第一絶縁板2および第二絶縁板2’用の生セラミック成形体とともに焼成することによって第一絶縁板2および第二絶縁板2’の凹部2b・2b’底面の略全面にそれぞれ所定のパターンに形成される。なお、第三電極9および第四電極9’の露出表面には、第三電極9および第四電極9’が酸化腐食するのを防止するとともに第三電極9および第四電極9’と導電性接合材との接合を良好とするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0036】
また、第一絶縁板2および第二絶縁板2’の突起部2a・2a’の下面には、その全周にわたり枠状の第二接合用メタライズ層8b・8b’が被着されており、この第二接合用メタライズ層8b・8b’と前述の第一接合用メタライズ層8a・8a’がそれぞれ銀−銅ろう材等の導電性接合材を介して接合されている。
【0037】
また、第一絶縁板2および第二絶縁板2’のそれぞれに形成された突起部2a・2a’の表面または内部には、第二接合用メタライズ層8b・8b’と、第三電極9および第四電極9’とを接続するための接続用メタライズ層10・10’が形成されており、それにより、前述の半導体素子3の電極に電気的に接続された第二接合用メタライズ層8b・8b’を介してそれぞれ接続された第三電極9および第四電極9’が半導体素子3の各電極と電気的に接続されるようになっている。
【0038】
このとき、第一電極7と第三電極9とは、絶縁基体1と第一絶縁板2との間に形成された第一密閉空間を挟んで対向するとともに、第二電極7’と第四電極9’とは、絶縁基体1と第二絶縁板2’との間に形成された第二密閉空間を挟んで対向しており、これらの間には、第一電極7と第三電極9、および第二電極7’と第四電極9’とのそれぞれの間隔に応じて所定の静電容量が形成される。そして、第一絶縁板2および第二絶縁板2’のそれぞれの上面に外部の圧力が印加されると、その圧力に応じて第一電極7と第三電極9、および第二電極7’と第四電極9’との間隔が変わり、それにより第一電極7と第三電極9、および第二電極7’と第四電極9’との間のそれぞれの静電容量が変化するので、それぞれが外部の圧力の変化を静電容量の変化として感知する感圧素子として機能する。そして、この静電容量の変化を凹部1a内に収容した半導体素子3に第一配線導体5a・5a’および第二配線導体5b・5b’を介して伝達し、これを半導体素子3で演算処理することによって外部の圧力の大きさを知ることができる。
【0039】
なお、このような第一接合用メタライズ層8a・8a’および第二接合用メタライス層8b・8b’と接続用メタライズ層10・10’は、タングステンやモリブデン・銅・銀等の金属粉末メタライズから成り、タングステン等の金属粉末に適当な有機バインダ・溶剤・可塑剤・分散剤を添加混合して得たメタライズペーストを従来周知のスクリーン印刷法を採用して、第一絶縁板2および第二絶縁板2’用のセラミックグリーンシートに印刷塗布し、これを第一絶縁板2および第二絶縁板2’の凹部2b・2b’の底面となる部位のそれぞれに形成されて第三電極9および第四電極9’となるパターンとそれぞれ導通させるようにセラミックグリーンシートを積層し、突起部2a・2a’および凹部2b・2bが形成された第一絶縁板2および第二絶縁板2’用のそれぞれの生セラミック成形体とともに焼成することによって所定のパターンに形成される。また、第二接合用メタライズ層8b・8b’および接続用メタライズ層10・10’の露出する表面には、第二接合用メタライズ層8b・8b’および接続用メタライズ層10・10’が酸化腐食するのを防止するとともに、第二接合用メタライズ層8b・8b’と導電性接合材との接合を強固なものとするために、通常であれば、厚みが1〜10μm程度のニッケルめっき層が被着されている。
【0040】
このように、本発明の圧力検出装置用パッケージにおいては、一方の主面に半導体素子3が搭載される搭載部1aを有する絶縁基体1と、この絶縁基体1の表面および内部に配設され、半導体素子3の各電極が電気的に接続される複数の配線導体5と、絶縁基体1の他方の主面との間に第一密閉空間および第二密閉空間を形成するようにそれぞれ可撓な状態で絶縁基体1に接合された第一絶縁板2および第二絶縁板2’と、第一密閉空間および前記第二密閉空間内の絶縁基体1の他方の主面にそれぞれ被着され、配線導体5の一つに電気的に接続された静電容量形成用の第一電極7および第二電極7’と、第一絶縁板2および第二絶縁板2’の内側主面にそれぞれ第一電極7および第二電極7’と対向するように被着され、配線導体5の他の一つに電気的に接続された静電容量形成用の第三電極9および第四電極9’とを具備することから、外部圧力に対して第一電極7と第三電極9、および第二電極7’と第四電極9’で形成される静電容量の変化量を合算することで外部の圧力変化による静電容量の変化量を大きくすることができ、その結果、外部圧力の変化を精度良く測定することができる。また、静電容量の変化量を大きくすることができるので第一絶縁板2および第二絶縁板2’の厚みを大幅に薄くする必要はなく、その結果、第一絶縁板2および第二絶縁板2’に一定以上の高い圧力が印加された場合においても、第一絶縁板2および第二絶縁板2’が大きく撓んで割れが発生することはない。
【0041】
また、第一電極7および第二電極7’と接続される第一配線導体5a・5a’、第三電極9および第四電極9’と接続される第二配線導体5b・5b’は、半導体素子3に最短の配線長となるように接続されることが好ましい。これにより、不要な静電容量を小さなものとして感圧素子の感度を高めることができる。
【0042】
なお、第一電極7と第二電極9、および第三電極7’と第四電極9’との間隔が1気圧中において0.01mm未満の場合、第一絶縁板2および第二絶縁板2’に大きな圧力が印加された際に、第一絶縁板2および第二絶縁板2’のそれぞれが密閉空間側に撓んで第一電極7と第三電極9、および第二電極7’と第四電極9’とが接触して圧力を検出することができなくなってしまう危険性があり、他方、5mmを超えると、第一電極7と第三電極9、および第二電極7’と第四電極9’との間に形成される静電容量が小さなものとなり、圧力を検出する感度が低いものとなる傾向にある。したがって、第一電極7と第三電極9、および第二電極7’と第四電極9’との間隔は、1気圧中において0.01〜5mmの範囲が好ましい。
【0043】
かくして、本発明の圧力検出装置用パッケージによれば、搭載部1aに半導体素子3を搭載するとともに半導体素子3の各電極と配線導体5とを電気的に接続し、しかる後、半導体素子3を封止することによって小型でかつ感度の高い圧力検出装置となる。
【0044】
また、本発明においては、複数の配線導体5のうち、半導体素子3と第一電極7との間を接続する配線導体5aの長さおよび半導体素子3と第二電極7’との間を接続する配線導体5a’の長さが同じであり、半導体素子3と第三電極9との間を接続する配線導体5bの長さおよび半導体素子3と第四電極9’との間を接続する配線導体5b’の長さが同じであることが好ましい。これにより、第一電極7および第三電極9の間で検出される静電容量と、第二電極7’および第四電極9’の間で検出される静電容量とを、配線導体5により信号として半導体素子3に伝達する際に発生する損失の差が小さくなり、第一の電極7および第三の電極9と第二の電極7’および第四の電極9’とによる二つの静電容量形成部における感度のばらつきの差を小さくすることができる。従って、外部の圧力をより感度良く、かつより精度良く検出することができる圧力検出装置用パッケージとすることができる。
【0045】
なお、配線導体5aと配線導体5a’の長さの差と、配線導体5bと配線導体5b’の長さの差は、それぞれ同じであることが好ましいが、±5%以内の誤差はあっても良く、より好ましくは±2%以内で同じであるのか好ましい。
【0046】
また、各電極と半導体素子3とを接続する配線導体5同士の間の損失の差を等しくするために、配線導体5aと配線導体5a’との面積が同じであり、配線導体5bと配線導体5b’との面積が同じであることがより好ましく、そのためには、それぞれの配線導体5の幅が同じであることがより好ましい。
【0047】
また、本発明においては、第一電極7および第二電極7’の第一の組、第三電極9および第四電極9’の第二の組、半導体素子3と第一電極7とを接続する配線導体5aおよび半導体素子3と第二電極7’とを接続する配線導体5a’の第三の組、ならびに、半導体素子3と第三電極9とを接続する配線導体5bおよび半導体素子3と第四電極9’とを接続する配線導体5b’の第四の組について、第一および第二の組における電極同士ならびに第三および第四の組における配線導体同士が、互いに絶縁基体の主面に直交する中心軸に対して対称となるように配設されていることが好ましい。
【0048】
これにより、第一電極7と第三電極9との間隔は、第二電極7’と第四電極9’との間隔と同じとなり、かつ第一電極7および第三電極9の大きさやその対向する領域と第二電極7’および第四電極9’の大きさやその対向する領域とは同じとなるので、第一電極7および第三電極9の間に発生する静電容量と、第二電極7’および第四電極9’の間に発生する静電容量とは同じとなる。さらに、配線導体5aおよび配線導体5a’の漂遊容量も同じとなり、配線導体5bおよび配線導体5b’の漂遊容量も同じとなる。各電極および各配線導体間に発生する漂遊容量は、第一電極7および第三電極9と、第二電極7’および第四電極9’との二つの静電容量検出部で検出される静電容量に与える漂遊容量の影響をそれぞれ等しくすることができ、二つの静電容量検出部で検出される静電容量のばらつきを小さくすることができる。従って、外部の圧力をより感度良くかつより精度良く検出することができる圧力検出装置用パッケージとすることができる。
【0049】
なお、上記それぞれの電極同士と配線導体同士は、対称な位置からの±5%以内の位置的な誤差はあっても良く、より好ましくは±2%以内で同じであるのがよい。
【0050】
なお、本発明は、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。例えば上述の実施の形態の一例では、第一絶縁板2および第二絶縁板2’のそれぞれの下面外周部に枠状の突起部2a、2a’を設け、この突起部2a・2a’を絶縁基体1に接合することにより第一絶縁板2および第二絶縁板2’と絶縁基体1との間にそれぞれ密閉空間を設けるようにしたが、絶縁基体1の第一電極7および第二電極のそれぞれの外周部に突起部2a・2a’を設け、これを第一絶縁板2および第二絶縁板2’の下面と接合することによって絶縁基体1と、第一絶縁板2および第二絶縁板2’との間にそれぞれ密閉空間を設けるようにしてもよい。
【0051】
また、絶縁基体1の第一電極7および第二電極7’の外周部に、それぞれ例えば鉄−ニッケル−コバルト合金や鉄−ニッケル合金等から成る金属枠体を銀−銅ろう等の導電性接合材を介して接合させておき、この金属枠体上に第一絶縁板2および第二絶縁板2’を銀−銅ろう等の導電性接合材を介して接合させることにより絶縁基体1と、第一絶縁板2および第二絶縁板2’との間にそれぞれ密閉空間を設けるようにしてもよい。
【0052】
さらに、図2に断面図で示すように、絶縁基体1と、第一絶縁板2および第二絶縁板2’は同時焼成により焼結一体化することによって接合されていてもよい。その場合、第一接合用メタライズ層8a・8a’および第二接合用メタライズ層8b・8b’は設ける必要はない。
【0053】
なお、図2で示した実施の形態の例においては、図1で示した実施の形態の例と実質的に共通の部分については図1で用いた符号を用い、その説明を省略する。
【0054】
また、二つの密閉空間を設けてそれぞれが感圧素子として機能しているが、3つ以上の複数の密閉空間を設けて複数の感圧素子が機能するようにしてもよい。
【0055】
【発明の効果】
本発明の圧力検出装置用パッケージによれば、一方の主面に半導体素子が搭載される搭載部を有する絶縁基体と、この絶縁基体の表面および内部に配設され、半導体素子の各電極が電気的に接続される複数の配線導体と、絶縁基体の他方の主面との間に第一密閉空間および第二密閉空間を形成するようにそれぞれ可撓な状態で絶縁基体に接合された第一絶縁板および第二絶縁板と、第一密閉空間および第二密閉空間内の絶縁基体の他方の主面にそれぞれ被着され、配線導体の一つに電気的に接続された静電容量形成用の第一電極および第二電極と、第一絶縁板および第二絶縁板の内側主面にそれぞれ第一電極および第二電極と対向するように被着され、配線導体の他の一つに電気的に接続された静電容量形成用の第三電極および第四電極とを具備することから、外部圧力に対して第一電極および第三電極、ならびに第二電極および第四電極で形成される静電容量の変化量を合算することで外部の圧力変化による静電容量の変化量を大きくすることができるので、外部圧力の変化を精度良く測定することができる。また、静電容量の変化量を大きくすることができるので第一絶縁板および第二絶縁板の厚みを大幅に薄くする必要はなく、その結果、第一絶縁板および第二絶縁板に一定以上の高い圧力が印加された場合においても、第一絶縁板および第二絶縁板が大きく撓んで割れが発生することはない。
【0056】
また、本発明の圧力検出装置用パッケージによれば、上記構成において、複数の配線導体のうち、半導体素子と第一電極との間を接続するものの長さおよび第二電極との間を接続するものの長さが同じであり、半導体素子と第三電極との間を接続するものの長さおよび第四電極との間を接続するものの長さが同じであるときには、第一電極および第三電極の間で検出される静電容量と、第二電極と第四電極の間で検出される静電容量とを、信号として半導体素子に伝達する際に発生する損失の差を小さくし、二つの静電容量形成部における感度のばらつきの差を小さくすることができる。従って、外部の圧力をより感度良くかつより精度良く検出することができる圧力検出装置用パッケージとすることができる。
【図面の簡単な説明】
【図1】本発明の圧力検出装置用パッケージの実施の形態の一例を示す断面図である。
【図2】本発明の圧力検出装置用パッケージの実施の形態の他の例を示す断面図である。
【図3】従来の圧力検出装置用パッケージを示す断面図である。
【図4】従来の圧力検出装置用パッケージの他の例を示す断面図である。
【符号の説明】
1・・・・・絶縁基体
2・・・・・第一絶縁板
2’・・・・第二絶縁板
3・・・・・半導体素子
5・・・・・配線導体
7・・・・・第一電極
7’・・・・第二電極
9・・・・・第三電極
9’・・・・第四電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pressure detection device package used for a pressure detection device for detecting pressure.
[0002]
[Prior art]
Conventionally, a capacitance-type pressure detection device has been known as a pressure detection device for detecting pressure. As shown in the sectional view of FIG. 4, the capacitance type pressure detecting device is housed in a capacitance type pressure sensitive element 22 and a package 28 on a wiring board 21 made of a ceramic material or a resin material. And a semiconductor element 29 for calculation.
[0003]
The pressure-sensitive element 22 is made of, for example, an electrically insulating material such as a ceramic material, and has an insulating base 24 having a concave portion in which one electrode 23 for forming a capacitance is attached at the center of the upper surface. An insulating plate 26, which is joined in a flexible state on the upper surface of the insulating substrate 24 so as to form a closed space between the insulating substrate 24 and the other electrode 25 for forming a capacitance on the lower surface, An external lead terminal 27 for electrically connecting the capacitance forming electrodes 23 and 25 to the outside is provided. Each of the capacitance forming electrodes 23 and 25 is formed by bending the insulating plate 26 in response to an external pressure. The capacitance formed between the electrodes 23 and 25 changes.
An external pressure can be detected by subjecting this change in capacitance to arithmetic processing by the arithmetic semiconductor element 29.
[0004]
However, according to this conventional pressure detecting device, since the pressure-sensitive element 22 and the semiconductor element 29 are individually mounted on the wiring board 21, the pressure detecting device becomes large and the pressure detecting electrodes 23 The wiring between the semiconductor element 25 and the semiconductor element 29 is long, and an unnecessary capacitance is formed between the long wirings, so that the sensitivity is low.
[0005]
In view of this, the present applicant has disclosed in Japanese Patent Application Laid-Open No. 2001-356064 (Patent Document 1) an insulating base having a mounting portion 11b on one main surface on which a semiconductor element 13 is mounted as shown in a sectional view of FIG. 11, a plurality of wiring conductors 15 disposed on the surface and inside of the insulating base 11 and electrically connected to the respective electrodes of the semiconductor element 13, and attached to the center of the other main surface of the insulating base 11. A sealed space is formed between the first electrode 17 for forming a capacitance electrically connected to one of the wiring conductors 15 and the other main surface of the insulating base 11 and the center of the main surface. An insulating plate 12 joined in a flexible state so as to be formed; and an inner main surface of the insulating plate 12 which is attached to face the first electrode 17 and electrically connected to another one of the wiring conductors 15. For a pressure detection device having a connected second electrode 19 for forming a capacitance He proposed a package.
[0006]
According to this pressure detection device package, the first electrode 17 for forming a capacitance is provided on the other main surface of the insulating base 11 having the mounting portion 11b on which the semiconductor element 13 is mounted on one main surface, The insulating plate 12 having a second electrode 19 for forming a capacitance facing the first electrode 17 on its inner surface is flexible by forming a closed space between the insulating plate 11 and the other main surface of the insulating base 11. The pressure sensing element is formed integrally with the package accommodating the semiconductor element 13, so that the pressure detecting device can be reduced in size and the pressure detecting electrode and the semiconductor element 13 Are unnecessary, and unnecessary capacitance generated between these wires can be reduced.
[0007]
[Patent Document 1]
JP 2001-356064 A
[0008]
[Problems to be solved by the invention]
However, according to the above-described pressure detecting device package, if the thickness of the insulating plate 12 is increased in order to secure the strength of the package, the second electrode 19 attached to the insulating plate 12 when an external pressure is applied. And the amount of change in the distance between the first electrode 17 and the second electrode 19 becomes small, so that a change in external pressure cannot be accurately measured.
[0009]
Conversely, when the thickness of the insulating plate 12 is greatly reduced and the amount of bending of the insulating plate 12 is increased in order to increase the detection sensitivity of the external pressure, when the insulating plate 12 is applied with a pressure higher than a certain level, In addition, there is a problem that the insulating plate 12 is greatly bent and cracks occur.
[0010]
Further, as another countermeasure, if the distance between the insulating base 11 and the insulating plate 12 is reduced by reducing the thickness of the protrusion 12a, the strength of the insulating plate 12 is reduced and external pressure is applied. In this case, there is a problem that plastic deformation is likely to occur in the brazing material joining the insulating base 11 and the insulating plate 12.
[0011]
The present invention has been devised in view of the above-described problems, and an object of the present invention is to provide a package for a pressure detection device that is small, has high sensitivity, and can accurately detect an external pressure. It is in.
[0012]
[Means for Solving the Problems]
A package for a pressure detecting device according to the present invention is provided with an insulating base having a mounting portion on one main surface on which a semiconductor element is mounted, and disposed on and inside the insulating base, and each electrode of the semiconductor element is electrically connected. And a plurality of wiring conductors connected to the insulating base and the first main surface of the insulating base are connected to the insulating base in a flexible state so as to form a first closed space and a second closed space, respectively. One insulating plate and a second insulating plate, respectively attached to the other main surface of the insulating base in the first enclosed space and the second enclosed space, and electrically connected to one of the wiring conductors; The first electrode and the second electrode for forming the capacitance, and are attached to the inner main surfaces of the first insulating plate and the second insulating plate so as to face the first electrode and the second electrode, respectively. Electrically connected to the other one of the wiring conductors And it is characterized in that it comprises a third electrode and a fourth electrode for the capacitance formed.
[0013]
According to the pressure sensing device package of the present invention, the insulating base having the mounting portion on which the semiconductor element is mounted on one main surface, and the electrodes of the semiconductor element provided on the surface and inside of the insulating base are electrically connected. First and second flexible conductors joined to the insulating base so as to form a first sealed space and a second sealed space between the plurality of wiring conductors to be electrically connected and the other main surface of the insulating base. An insulating plate and a second insulating plate, for forming a capacitance which are respectively attached to the other main surfaces of the insulating bases in the first enclosed space and the second enclosed space and are electrically connected to one of the wiring conductors; And the first electrode and the second electrode, and are attached to the inner main surfaces of the first insulating plate and the second insulating plate so as to face the first electrode and the second electrode, respectively. The third electrode and the fourth electrode for forming the electrostatic capacity are electrically connected to each other. From the external pressure, the capacitance of the first electrode and the third electrode, and the change in the capacitance formed by the second electrode and the fourth electrode are added together to obtain the capacitance of the external pressure. Since the amount of change can be increased, the change in external pressure can be accurately measured. Further, since the amount of change in the capacitance can be increased, it is not necessary to greatly reduce the thickness of the first insulating plate and the second insulating plate. Even when a high pressure is applied, the first insulating plate and the second insulating plate are not largely bent and no crack occurs.
[0014]
Further, in the package for a pressure detecting device according to the present invention, in the above-described configuration, a length of the plurality of wiring conductors connecting the semiconductor element and the first electrode and a distance between the second electrode and the second electrode are different. The length of the connecting part is the same, and the length of the connecting part between the semiconductor element and the third electrode and the length of the connecting part between the fourth electrode are the same.
[0015]
According to the pressure detection device package of the present invention, the length of the plurality of wiring conductors that connect between the semiconductor element and the first electrode and the length of the connection that connects between the second electrode are the same. If the length of the connection between the semiconductor element and the third electrode and the length of the connection between the fourth electrode are the same, the static detected between the first electrode and the third electrode. The difference between the capacitance and the capacitance detected between the second electrode and the fourth electrode when the signal is transmitted to the semiconductor element as a signal is reduced, and the sensitivity in the two capacitance forming portions is reduced. Can be reduced. Therefore, it is possible to provide a pressure detecting device package that can detect external pressure with higher sensitivity and higher accuracy.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the pressure detection device package of the present invention will be described in detail with reference to the accompanying drawings.
[0017]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a pressure detecting device package according to the present invention. In the drawing, 1 is an insulating base, 2 is a first insulating plate, 2 ′ is a second insulating plate, and 3 is A semiconductor element, 7 is a first electrode, 7 'is a second electrode, 9 is a third electrode, and 9' is a fourth electrode.
[0018]
The package for a pressure detecting device according to the present invention includes an insulating base 1 having a mounting portion 1a on which the semiconductor element 3 is mounted, and a plurality of parts provided on the insulating base 1 and electrically connected to respective electrodes of the semiconductor element 3. The first insulating plate 2 and the second insulating plate joined to the insulating base 1 in a flexible state so as to form a first sealed space and a second sealed space between the wiring conductor 5 and the insulating base 1. 2 ′, a first electrode 7 for forming a capacitance and a second electrode 7 which are respectively attached to the insulating base 1 in the first closed space and the second closed space and are electrically connected to one of the wiring conductors 5. The other one of the wiring conductors 5 is attached to the electrode 7 'and the inner principal surfaces of the first insulating plate 2 and the second insulating plate 2' so as to face the first electrode 7 and the second electrode 7 ', respectively. Mainly composed of a third electrode 9 and a fourth electrode 9 ′ for forming a capacitance, which are electrically connected to To have.
[0019]
The insulating substrate 1 is made of a laminate made of an electrically insulating material such as an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a silicon carbide sintered body, a silicon nitride sintered body, and a glass-ceramic. If it is made of aluminum oxide sintered body, for example, an appropriate organic binder, solvent, plasticizer, and dispersant are added to ceramic raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. In addition, a plurality of ceramic green sheets are obtained by forming the sheet into a sheet shape by employing a well-known doctor blade method, and thereafter, these ceramic green sheets are appropriately punched and processed. By performing lamination processing and cutting processing, a green ceramic molded body for the insulating substrate 1 is obtained, and this green ceramic molded body is obtained. It is manufactured by firing at a temperature of about 1600 ° C..
[0020]
The insulating base 1 has a concave portion 1a for accommodating the semiconductor element 3 on its lower surface, and thereby functions as a container for accommodating the semiconductor element 3. The center of the bottom surface of the concave portion 1a is a mounting portion 1b on which the semiconductor element 3 is mounted. The semiconductor element 3 is mounted on the mounting portion 1b, and a resin sealing such as an epoxy resin is formed in the concave portion 1a. The semiconductor element 3 is sealed by filling the material 4.
[0021]
In this example, the semiconductor element 3 is sealed by filling a resin sealing material 4 into the recess 1a. However, the semiconductor element 3 is provided with a lid made of metal or ceramic on the lower surface of the insulating base 1 in the recess 1a. May be sealed by joining them so as to close them.
[0022]
A plurality of wiring conductors 5 connected to the respective electrodes of the semiconductor element 3 are led out from the mounting portion 1b. The wiring conductor 5 and the respective electrodes of the semiconductor element 3 are made of a conductive material such as a solder bump 6. By joining via a conductive joining member, each electrode of the semiconductor element 3 and the wiring conductor 5 are electrically connected, and the semiconductor element 3 is fixed to the mounting portion 1b. In this example, the electrodes of the semiconductor element 3 and the wiring conductors 5 are connected via the solder bumps 6, but the electrodes of the semiconductor element 3 and the wiring conductors 5 are connected to each other by other electrical connection means such as bonding wires. May be connected.
[0023]
The wiring conductor 5 serves as a conductive path for electrically connecting each electrode of the semiconductor element 3 to an external electric circuit and a first electrode 7, a second electrode 7 ', a third electrode 9, and a fourth electrode 9' described later. Function, a part thereof is led out to the lower surface of the insulating base 1, and another part is electrically connected to the first electrode 7, the second electrode 7 ', the third electrode 9, and the fourth electrode 9'. . After electrically connecting the electrodes of the semiconductor element 3 to the wiring conductors 5 via the solder bumps 6 and sealing the semiconductor element 3 with a resin sealing material 4, the insulating base 1 of the wiring conductor 5 is formed. Is connected to a wiring conductor (not shown) of an external electric circuit board via a conductive bonding material such as solder, so that the semiconductor element 3 housed therein is electrically connected to the external electric circuit. It will be connected.
[0024]
Such a wiring conductor 5 is made of metallized metal powder such as tungsten, molybdenum, copper, silver, etc., and is obtained by adding and mixing an appropriate organic binder, solvent, plasticizer, dispersant, etc. to metal powder such as tungsten. The paste is printed and applied in a predetermined pattern on a ceramic green sheet for the insulating substrate 1 by employing a conventionally known screen printing method, and is baked together with the green ceramic molded body for the insulating substrate 1 to thereby form the inside of the insulating substrate 1. And a predetermined pattern on the surface. In addition, on the exposed surface of the wiring conductor 5, in order to prevent the wiring conductor 5 from being oxidized and corroded and to make the connection between the wiring conductor 5 and a conductive bonding material such as solder good, A nickel plating layer having a thickness of about 1 to 10 μm and a gold plating layer having a thickness of about 0.1 to 3 μm are sequentially applied.
[0025]
Further, on the upper surface of the insulating base 1, a first electrode 7 and a second electrode 7 'for forming a capacitance are attached to a portion which is symmetrical with respect to the center of the insulating base 1. The first electrode 7 and the second electrode 7 'are for forming a capacitance for a pressure-sensitive element together with a third electrode 9 and a fourth electrode 9' to be described later, and are formed, for example, in a substantially circular pattern. Have been. The first electrode 7 and the second electrode 7 'are respectively connected to first wiring conductors 5a and 5a', which are one of the wiring conductors 5, whereby the first wiring conductors 5a and 5a 'are thereby connected. When the respective electrodes of the semiconductor element 3 are connected to each other via a conductive bonding member such as a solder bump 6, the respective electrodes of the semiconductor element 3 are electrically connected to the first electrode 7 and the second electrode 7 '. ing.
[0026]
The first electrode 7 and the second electrode 7 'are made of metal powder of metal such as tungsten, molybdenum, copper, silver, etc., and an appropriate organic binder, solvent, plasticizer, and dispersant are added to metal powder such as tungsten. The metallized paste obtained by mixing is printed and applied to a ceramic green sheet for the insulating substrate 1 by employing a conventionally known screen printing method, and is fired together with a green ceramic molded body for the insulating substrate 1 to thereby form the insulating substrate 1. Is formed in a predetermined pattern at a predetermined site. In addition, in order to prevent the first electrode 7 and the second electrode 7 ′ from being oxidized and corroded, the thickness of the exposed surface of the first electrode 7 and the second electrode 7 ′ is usually about 1 to 10 μm. Nickel plating layer is applied.
[0027]
In addition, frame-shaped first bonding metallization layers 8a and 8a 'are respectively attached to the outer periphery of the first electrode 7 and the second electrode 7' over the entire circumference thereof. 8a and 8a ', the second metallizing layers 8b and 8b' of the first insulating plate 2 and the second insulating plate 2 'to be described later are respectively bonded via a conductive bonding material such as a silver-copper brazing material. ing.
[0028]
The first bonding metallization layers 8a and 8a 'are respectively connected to the second wiring conductors 5b and 5b', which are one of the wiring conductors 5, so that semiconductors are connected to the second wiring conductors 5b and 5b '. When the electrodes of the element 3 are electrically connected via a conductive bonding member such as a solder bump 6, the first bonding metallization layers 8a and 8a 'and the second bonding metallization layers 8b and 8b' are connected to the semiconductor element 3 respectively. Are electrically connected to the respective electrodes.
[0029]
The first bonding metallization layers 8a and 8a 'are made of metal powder metallization such as tungsten, molybdenum, copper, and silver. The metal powder such as tungsten is mixed with an appropriate organic binder, solvent, plasticizer, and dispersant. The obtained metallized paste is printed and applied on a ceramic green sheet for the insulating substrate 1 by employing a conventionally known screen printing method, and is baked together with the green ceramic molded body for the insulating substrate 1, thereby forming an upper surface of the insulating substrate 1. Each of the first electrode 1 and the second electrode 2 is formed in a predetermined frame-like pattern on the outer peripheral portion thereof. The exposed surfaces of the first bonding metallization layers 8a and 8a 'prevent the first bonding metallization layers 8a and 8a' from being oxidized and corroded, and have a conductive property with the first bonding metallization layers 8a and 8a '. In order to strengthen the bond with the bonding material, a nickel plating layer having a thickness of about 1 to 10 μm is usually applied.
[0030]
The first insulating plate 2 and the second insulating plate 2 'attached to the upper surface of the insulating base 1 are made of aluminum oxide sintered body, aluminum nitride sintered body, mullite sintered body, silicon nitride sintered body. It is a substantially flat plate having a thickness of 0.01 to 5 mm and made of an electrically insulating material such as a sintered body, a silicon carbide sintered body, or a glass-ceramic, and is bent toward the insulating base 1 in response to an external pressure. Function as a diaphragm.
[0031]
If the thickness of the first insulating plate 2 and the second insulating plate 2 ′ is less than 0.01 mm, the mechanical strength of the first insulating plate 2 and the second insulating plate 2 ′ becomes small. On the other hand, if it exceeds 5 mm, it becomes difficult to bend at a small pressure, and it becomes unsuitable as a diaphragm for pressure detection. Therefore, the thickness of the first insulating plate 2 and the second insulating plate 2 'is preferably in the range of 0.01 to 5 mm.
[0032]
When the first insulating plate 2 and the second insulating plate 2 'are made of, for example, an aluminum oxide sintered body, the first insulating plate 2 and the second insulating plate 2' are suitable for ceramic raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide. An organic binder, a solvent, a plasticizer, and a dispersant are added and mixed to form a slurry, and this is formed into a sheet by employing a conventionally known doctor blade method to obtain a plurality of ceramic green sheets. By subjecting the ceramic green sheet to appropriate punching, laminating, and cutting, a green ceramic molded body for the first insulating plate 2 and the second insulating plate 2 'is obtained, and the green ceramic molded body is heated to about 1600 ° C. It is manufactured by firing at a temperature of
[0033]
Further, frame-shaped projections 2a, 2a 'having a height of about 0.01 to 5 mm are provided on the outer peripheral portion of the lower surface of each of the first insulating plate 2 and the second insulating plate 2'. Are formed to be substantially flat. The recesses 2b and 2b 'are for forming a first closed space and a second closed space between the insulating base 1 and the recesses 2b and 2b'. An electrode 9 and a fourth electrode 9 'are respectively applied.
[0034]
The third electrode 9 and the fourth electrode 9 ′ function as electrodes for forming a capacitance for a pressure-sensitive element together with the first electrode 7 and the second electrode 7 ′, and the concave portions 2 b and 2 b ′. Are attached to substantially the entire bottom surface.
[0035]
The third electrode 9 and the fourth electrode 9 'are made of metallized metal powder such as tungsten, molybdenum, copper, silver, etc., and an appropriate organic binder, solvent, plasticizer, and dispersant are added to the metal powder such as tungsten. The metallized paste obtained by mixing is printed and applied to a ceramic green sheet for the first insulating plate 2 and the second insulating plate 2 'by employing a conventionally known screen printing method, and this is applied to the first insulating plate 2 and the second insulating plate 2'. By firing together with the green ceramic molded body for the insulating plate 2 ', a predetermined pattern is formed on substantially the entire bottom surfaces of the concave portions 2b and 2b' of the first insulating plate 2 and the second insulating plate 2 '. The exposed surfaces of the third electrode 9 and the fourth electrode 9 ′ prevent the third electrode 9 and the fourth electrode 9 ′ from being oxidized and corroded, and have a conductive property with the third electrode 9 and the fourth electrode 9 ′. In order to improve the bonding with the bonding material, a nickel plating layer having a thickness of about 1 to 10 μm is usually applied.
[0036]
Further, on the lower surfaces of the protruding portions 2a and 2a 'of the first insulating plate 2 and the second insulating plate 2', frame-shaped second bonding metallization layers 8b and 8b 'are attached over the entire circumference thereof, The second bonding metallization layers 8b and 8b 'and the above-described first bonding metallization layers 8a and 8a' are respectively bonded via a conductive bonding material such as a silver-copper brazing material.
[0037]
Also, on the surface or inside of the protrusions 2a, 2a 'formed on each of the first insulating plate 2 and the second insulating plate 2', the second bonding metallized layers 8b, 8b ' The connection metallization layers 10 and 10 ′ for connecting to the fourth electrode 9 ′ are formed, and thereby, the second bonding metallization layers 8 b and 10 ′ electrically connected to the electrodes of the semiconductor element 3 described above. The third electrode 9 and the fourth electrode 9 'connected to each other via 8b' are electrically connected to the respective electrodes of the semiconductor element 3.
[0038]
At this time, the first electrode 7 and the third electrode 9 face each other with the first sealed space formed between the insulating base 1 and the first insulating plate 2 therebetween, and the second electrode 7 ′ and the fourth The electrode 9 ′ is opposed to the electrode 9 ′ with a second enclosed space formed between the insulating base 1 and the second insulating plate 2 ′ therebetween. , And a predetermined capacitance is formed according to the distance between the second electrode 7 ′ and the fourth electrode 9 ′. When an external pressure is applied to the respective upper surfaces of the first insulating plate 2 and the second insulating plate 2 ′, the first electrode 7, the third electrode 9, and the second electrode 7 ′ Since the distance between the fourth electrode 9 ′ and the capacitance between the first electrode 7 and the third electrode 9 and between the second electrode 7 ′ and the fourth electrode 9 ′ change, Functions as a pressure sensing element that senses a change in external pressure as a change in capacitance. Then, the change in the capacitance is transmitted to the semiconductor element 3 accommodated in the concave portion 1a via the first wiring conductors 5a and 5a 'and the second wiring conductors 5b and 5b', and this is processed by the semiconductor element 3. By doing so, the magnitude of the external pressure can be known.
[0039]
The first bonding metallization layers 8a and 8a 'and the second bonding metallization layers 8b and 8b' and the connection metallization layers 10 and 10 'are made of metal powder metallization such as tungsten, molybdenum, copper, and silver. A metallized paste obtained by adding a suitable organic binder, a solvent, a plasticizer, and a dispersant to a metal powder such as tungsten is mixed with a first insulating plate 2 and a second insulating plate using a conventionally known screen printing method. A ceramic green sheet for the plate 2 ′ is applied by printing, and this is formed on each of the portions that become the bottom surfaces of the concave portions 2 b and 2 b ′ of the first insulating plate 2 and the second insulating plate 2 ′. Ceramic green sheets are laminated so as to be electrically connected to the patterns to be the four electrodes 9 ', respectively, and the first insulating plate 2 having the projections 2a and 2a' and the recesses 2b and 2b and the second insulating plate are formed. It is formed in a predetermined pattern by firing with each raw ceramic formed body for the plate 2 '. The exposed surfaces of the second bonding metallization layers 8b and 8b 'and the connection metallization layers 10 and 10' are oxidized and corroded by the second bonding metallization layers 8b and 8b 'and the connection metallization layers 10 and 10'. In order to prevent the second bonding metallized layers 8b and 8b 'from being bonded to the conductive bonding material, a nickel plating layer having a thickness of about 1 to 10 [mu] m is usually used. Has been adhered.
[0040]
As described above, in the pressure detecting device package of the present invention, the insulating base 1 having the mounting portion 1a on which the semiconductor element 3 is mounted on one main surface, and the insulating base 1 provided on the surface and inside of the insulating base 1, Each of the plurality of wiring conductors 5 to which the respective electrodes of the semiconductor element 3 are electrically connected and the other main surface of the insulating base 1 are flexible so as to form a first sealed space and a second sealed space. A first insulating plate 2 and a second insulating plate 2 ′ joined to the insulating base 1 in a state, and the other main surfaces of the insulating base 1 in the first enclosed space and the second enclosed space, respectively, A first electrode 7 and a second electrode 7 ′ for forming a capacitance, which are electrically connected to one of the conductors 5, and a first electrode 7 and a second electrode 7 ′ on the inner main surfaces of the first insulating plate 2 and the second insulating plate 2 ′, respectively. It is attached so as to face the electrode 7 and the second electrode 7 ′, and is attached to another one of the wiring conductors 5. Since it includes the third electrode 9 and the fourth electrode 9 ′ for forming a capacitance that are electrically connected, the first electrode 7, the third electrode 9, and the second electrode 7 ′ are provided with respect to an external pressure. By adding the change in capacitance formed by the first electrode and the fourth electrode 9 ′, the change in capacitance due to an external pressure change can be increased, and as a result, the change in external pressure can be accurately measured. can do. In addition, since the amount of change in capacitance can be increased, it is not necessary to greatly reduce the thickness of the first insulating plate 2 and the second insulating plate 2 ′. Even when a pressure higher than a certain level is applied to the plate 2 ′, the first insulating plate 2 and the second insulating plate 2 ′ do not greatly bend and do not crack.
[0041]
The first wiring conductors 5a and 5a 'connected to the first electrode 7 and the second electrode 7', and the second wiring conductors 5b and 5b 'connected to the third electrode 9 and the fourth electrode 9' are semiconductors. It is preferable to connect to the element 3 so as to have the shortest wiring length. Thus, the sensitivity of the pressure-sensitive element can be increased by reducing unnecessary capacitance.
[0042]
When the distance between the first electrode 7 and the second electrode 9 and the distance between the third electrode 7 'and the fourth electrode 9' are less than 0.01 mm in one atmosphere, the first insulating plate 2 and the second insulating plate 2 When a large pressure is applied to the ′, each of the first insulating plate 2 and the second insulating plate 2 ′ bends toward the closed space side, and the first electrode 7 and the third electrode 9, and the second electrode 7 ′ and the second There is a risk that the four electrodes 9 ′ may come into contact with each other to make it impossible to detect the pressure. On the other hand, if the distance exceeds 5 mm, the first electrode 7 and the third electrode 9, and the second electrode 7 ′ and the fourth The capacitance formed between the electrode 9 'and the electrode 9' tends to be small, and the sensitivity for detecting pressure tends to be low. Therefore, the distance between the first electrode 7 and the third electrode 9 and the distance between the second electrode 7 'and the fourth electrode 9' are preferably in the range of 0.01 to 5 mm at 1 atm.
[0043]
Thus, according to the pressure detecting device package of the present invention, the semiconductor element 3 is mounted on the mounting portion 1a, and each electrode of the semiconductor element 3 is electrically connected to the wiring conductor 5, and thereafter, the semiconductor element 3 is mounted. By sealing, a compact and highly sensitive pressure detecting device is obtained.
[0044]
Further, in the present invention, of the plurality of wiring conductors 5, the length of the wiring conductor 5a connecting between the semiconductor element 3 and the first electrode 7 and the connection between the semiconductor element 3 and the second electrode 7 'are provided. The length of the wiring conductor 5b 'connecting the semiconductor element 3 and the third electrode 9 and the length of the wiring conductor 5b connecting the semiconductor element 3 and the fourth electrode 9' are the same. It is preferable that the conductors 5b 'have the same length. Thereby, the capacitance detected between the first electrode 7 and the third electrode 9 and the capacitance detected between the second electrode 7 ′ and the fourth electrode 9 ′ are changed by the wiring conductor 5. The difference in loss generated when the signal is transmitted to the semiconductor element 3 is reduced, and the two electrostatic charges generated by the first electrode 7 and the third electrode 9 and the second electrode 7 ′ and the fourth electrode 9 ′ are reduced. It is possible to reduce a difference in sensitivity variation in the capacitance forming portion. Therefore, it is possible to provide a pressure detection device package that can detect external pressure with higher sensitivity and higher accuracy.
[0045]
The difference between the length of the wiring conductor 5a and the length of the wiring conductor 5a 'and the difference between the length of the wiring conductor 5b and the length of the wiring conductor 5b' are preferably the same, but there is an error within ± 5%. It is more preferable that they are the same within ± 2%.
[0046]
Further, in order to equalize the difference in loss between the wiring conductors 5 connecting the electrodes and the semiconductor element 3, the wiring conductors 5a and 5a 'have the same area, and the wiring conductors 5b and 5b have the same area. It is more preferable that the area of the wiring conductor 5b 'is the same as that of the wiring conductor 5b'.
[0047]
Further, in the present invention, the first pair of the first electrode 7 and the second electrode 7 ′, the second pair of the third electrode 9 and the fourth electrode 9 ′, and the semiconductor element 3 and the first electrode 7 are connected. And a third set of wiring conductors 5a 'connecting the semiconductor element 3 and the second electrode 7', and a wiring conductor 5b connecting the semiconductor element 3 and the third electrode 9 and the third element 9 '. Regarding the fourth set of wiring conductors 5b 'connecting to the fourth electrode 9', the electrodes in the first and second sets and the wiring conductors in the third and fourth sets are mutually connected to the main surface of the insulating base. It is preferable to be disposed so as to be symmetrical with respect to a central axis perpendicular to the axis.
[0048]
Thereby, the interval between the first electrode 7 and the third electrode 9 becomes the same as the interval between the second electrode 7 'and the fourth electrode 9', and the size of the first electrode 7 and the third electrode 9 and the opposition thereof. The size of the second electrode 7 ′ and the size of the fourth electrode 9 ′ and the size of the region facing the second electrode 7 ′ and the fourth electrode 9 ′ are the same. The capacitance generated between 7 ′ and the fourth electrode 9 ′ is the same. Furthermore, the stray capacities of the wiring conductors 5a and 5a 'are the same, and the stray capacities of the wiring conductors 5b and 5b' are also the same. The stray capacitance generated between each electrode and each wiring conductor is detected by two capacitance detecting units, the first electrode 7 and the third electrode 9, and the second electrode 7 'and the fourth electrode 9'. The effects of stray capacitances on the capacitance can be made equal to each other, and variations in capacitance detected by the two capacitance detection units can be reduced. Therefore, it is possible to provide a pressure detecting device package that can detect external pressure with higher sensitivity and higher accuracy.
[0049]
The electrodes and the wiring conductors may have a positional error within ± 5% from the symmetrical position, and more preferably the same within ± 2%.
[0050]
Note that the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention. For example, in one example of the above-described embodiment, frame-shaped protrusions 2a, 2a 'are provided on the outer peripheral portions of the lower surfaces of the first insulating plate 2 and the second insulating plate 2', and the protrusions 2a, 2a 'are insulated. By joining to the base 1, a sealed space is provided between the first insulating plate 2 and the second insulating plate 2 'and the insulating base 1, respectively. Protrusions 2a and 2a 'are provided on the respective outer peripheral portions, and are joined to the lower surfaces of the first insulating plate 2 and the second insulating plate 2' to form the insulating base 1, the first insulating plate 2 and the second insulating plate. A closed space may be provided between each of them and 2 ′.
[0051]
In addition, a metal frame made of, for example, an iron-nickel-cobalt alloy or an iron-nickel alloy is bonded to the outer periphery of the first electrode 7 and the second electrode 7 'of the insulating base 1 by conductive bonding such as silver-copper brazing. By joining the first insulating plate 2 and the second insulating plate 2 ′ on the metal frame via a conductive joining material such as silver-copper solder, A closed space may be provided between the first insulating plate 2 and the second insulating plate 2 '.
[0052]
Further, as shown in a sectional view in FIG. 2, the insulating base 1 and the first insulating plate 2 and the second insulating plate 2 ′ may be joined by sintering and integrating by simultaneous firing. In this case, it is not necessary to provide the first bonding metallization layers 8a and 8a 'and the second bonding metallization layers 8b and 8b'.
[0053]
In the example of the embodiment shown in FIG. 2, portions substantially common to the example of the embodiment shown in FIG. 1 are denoted by the same reference numerals used in FIG. 1, and description thereof will be omitted.
[0054]
Although two sealed spaces are provided and each function as a pressure-sensitive element, three or more sealed spaces may be provided and a plurality of pressure-sensitive elements may function.
[0055]
【The invention's effect】
According to the pressure sensing device package of the present invention, the insulating base having the mounting portion on which the semiconductor element is mounted on one main surface, and the electrodes of the semiconductor element provided on the surface and inside of the insulating base are electrically connected. First and second flexible conductors joined to the insulating base so as to form a first sealed space and a second sealed space between the plurality of wiring conductors to be electrically connected and the other main surface of the insulating base. An insulating plate and a second insulating plate, for forming a capacitance which are respectively attached to the other main surfaces of the insulating bases in the first enclosed space and the second enclosed space and are electrically connected to one of the wiring conductors; And the first electrode and the second electrode, and are attached to the inner main surfaces of the first insulating plate and the second insulating plate so as to face the first electrode and the second electrode, respectively. The third electrode and the fourth electrode for forming the electrostatic capacity are electrically connected to each other. From the external pressure, the capacitance of the first electrode and the third electrode, and the change in the capacitance formed by the second electrode and the fourth electrode are added together to obtain the capacitance of the external pressure. Since the amount of change can be increased, the change in external pressure can be accurately measured. Further, since the amount of change in the capacitance can be increased, it is not necessary to greatly reduce the thickness of the first insulating plate and the second insulating plate. Even when a high pressure is applied, the first insulating plate and the second insulating plate are not largely bent and no crack occurs.
[0056]
Further, according to the pressure detecting device package of the present invention, in the above configuration, of the plurality of wiring conductors, the length connecting the semiconductor element and the first electrode and the connection between the second electrode and the second electrode are connected. When the lengths of the first and third electrodes are the same and the length of the one connecting between the semiconductor element and the third electrode and the length of the one connecting between the fourth electrode are the same, The difference between the capacitance detected between the two electrodes and the capacitance detected between the second electrode and the fourth electrode as a signal to the semiconductor element is reduced to reduce the difference between the two capacitances. It is possible to reduce the difference in sensitivity variation in the capacitance forming section. Therefore, it is possible to provide a pressure detecting device package that can detect external pressure with higher sensitivity and higher accuracy.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a package for a pressure detecting device according to the present invention.
FIG. 2 is a cross-sectional view showing another example of the embodiment of the pressure detection device package according to the present invention.
FIG. 3 is a cross-sectional view showing a conventional pressure detecting device package.
FIG. 4 is a cross-sectional view illustrating another example of a conventional package for a pressure detection device.
[Explanation of symbols]
1 ... Insulating substrate
2... First insulating plate
2 '... second insulating plate
3 ... Semiconductor element
5 ... Wiring conductor
7 ····· First electrode
7 '... second electrode
9 ····· Third electrode
9 '··· Fourth electrode

Claims (2)

一方の主面に半導体素子が搭載される搭載部を有する絶縁基体と、該絶縁基体の表面および内部に配設され、前記半導体素子の各電極が電気的に接続される複数の配線導体と、前記絶縁基体の他方の主面との間に第一密閉空間および第二密閉空間を形成するようにそれぞれ可撓な状態で前記絶縁基体に接合された第一絶縁板および第二絶縁板と、前記第一密閉空間および前記第二密閉空間内の前記絶縁基体の前記他方の主面にそれぞれ被着され、前記配線導体の一つに電気的に接続された静電容量形成用の第一電極および第二電極と、前記第一絶縁板および前記第二絶縁板の内側主面にそれぞれ前記第一電極および前記第二電極と対向するように被着され、前記配線導体の他の一つに電気的に接続された静電容量形成用の第三電極および第四電極とを具備することを特徴とする圧力検出装置用パッケージ。An insulating base having a mounting portion on which a semiconductor element is mounted on one main surface, a plurality of wiring conductors disposed on the surface and inside of the insulating base, and each electrode of the semiconductor element is electrically connected; A first insulating plate and a second insulating plate joined to the insulating base in a flexible state so as to form a first closed space and a second closed space between the other main surface of the insulating base, A first electrode for forming a capacitance, which is respectively attached to the other main surface of the insulating base in the first enclosed space and the second enclosed space and is electrically connected to one of the wiring conductors And the second electrode, the first insulating plate and the inner main surface of the second insulating plate are respectively attached to face the first electrode and the second electrode, and the other one of the wiring conductor Third and fourth electrodes for forming an electrically connected capacitance Package for pressure detection apparatus characterized by comprising a pole. 前記複数の配線導体のうち、前記半導体素子と前記第一電極との間を接続するものの長さおよび前記第二電極との間を接続するものの長さが同じであり、前記半導体素子と前記第三電極との間を接続するものの長さおよび前記第四電極との間を接続するものの長さが同じであることを特徴する請求項1記載の圧力検出装置用パッケージ。Among the plurality of wiring conductors, a length connecting the semiconductor element and the first electrode and a length connecting the second electrode are the same, and the semiconductor element and the 2. The package for a pressure detecting device according to claim 1, wherein the length of the connection between the three electrodes and the length of the connection between the fourth electrode are the same.
JP2003119699A 2003-03-17 2003-04-24 Package for pressure sensitive device Pending JP2004340576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119699A JP2004340576A (en) 2003-03-17 2003-04-24 Package for pressure sensitive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003072354 2003-03-17
JP2003119699A JP2004340576A (en) 2003-03-17 2003-04-24 Package for pressure sensitive device

Publications (1)

Publication Number Publication Date
JP2004340576A true JP2004340576A (en) 2004-12-02

Family

ID=33542953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119699A Pending JP2004340576A (en) 2003-03-17 2003-04-24 Package for pressure sensitive device

Country Status (1)

Country Link
JP (1) JP2004340576A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417447U (en) * 1987-07-20 1989-01-27
JPH0727646A (en) * 1993-06-25 1995-01-31 Csem Centre Suisse Electron & De Microtech Sa Rech & Dev Capacity type differential pressure sensor
JPH11295176A (en) * 1998-04-14 1999-10-29 Nagano Keiki Co Ltd Differential pressure sensor
JP2001356064A (en) * 2000-06-14 2001-12-26 Kyocera Corp Package for pressure detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417447U (en) * 1987-07-20 1989-01-27
JPH0727646A (en) * 1993-06-25 1995-01-31 Csem Centre Suisse Electron & De Microtech Sa Rech & Dev Capacity type differential pressure sensor
JPH11295176A (en) * 1998-04-14 1999-10-29 Nagano Keiki Co Ltd Differential pressure sensor
JP2001356064A (en) * 2000-06-14 2001-12-26 Kyocera Corp Package for pressure detector

Similar Documents

Publication Publication Date Title
JP2001356064A (en) Package for pressure detector
JP4803917B2 (en) Package for pressure detection device
JP2002107254A (en) Package for pressure detector
JP4794073B2 (en) Package for pressure detection device
JP2004340576A (en) Package for pressure sensitive device
JP4863569B2 (en) Package for pressure detection device
JP2006047327A (en) Package for pressure detector, and the pressure detector
JP4974424B2 (en) Package for pressure detection device
JP4127374B2 (en) Pressure detection device package and pressure detection device
JP4789357B2 (en) Package for pressure detection device
JP4582889B2 (en) Package for pressure detection device
JP4925522B2 (en) Package for pressure detection device
JP4557406B2 (en) Package for pressure detection device
JP2003042875A (en) Package for pressure detecting apparatus
JP4794072B2 (en) Package for pressure detection device
JP2004205377A (en) Package for pressure detection device
JP2004340575A (en) Package for pressure-sensitive device
JP2003130744A (en) Package for pressure-detecting apparatus
JP2003042876A (en) Package for pressure detecting apparatus
JP2003065874A (en) Package for pressure detection device
JP2004198387A (en) Package for pressure detecting device
JP2002005766A (en) Package for pressure detecting device
JP2002286569A (en) Package for pressure detector
JP2003065868A (en) Package for pressure detection device
JP2005188989A (en) Package for pressure sensing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021