JP2004339420A - Decomposing method for mixture of moldings comprising biodegradable resin and plant - Google Patents

Decomposing method for mixture of moldings comprising biodegradable resin and plant Download PDF

Info

Publication number
JP2004339420A
JP2004339420A JP2003139898A JP2003139898A JP2004339420A JP 2004339420 A JP2004339420 A JP 2004339420A JP 2003139898 A JP2003139898 A JP 2003139898A JP 2003139898 A JP2003139898 A JP 2003139898A JP 2004339420 A JP2004339420 A JP 2004339420A
Authority
JP
Japan
Prior art keywords
biodegradable resin
urea
plant
moldings
net
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003139898A
Other languages
Japanese (ja)
Other versions
JP4631252B2 (en
Inventor
Hiroshi Suzuki
博 鈴木
Hiroshi Kajiyama
宏史 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2003139898A priority Critical patent/JP4631252B2/en
Publication of JP2004339420A publication Critical patent/JP2004339420A/en
Application granted granted Critical
Publication of JP4631252B2 publication Critical patent/JP4631252B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/105Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with enzymes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply decomposing in a relatively short time moldings comprising a biodegradable resin. <P>SOLUTION: The purpose of this invention is solved by adding urea in the decomposing method for a mixture of the moldings comprising the biodegradable resin and a plant. In case of using the method, upon the addition of the urea, it is more desirable that the urea is dissolved in water, and then the water solution is added thereto. The method is suitable for applying it to the moldings comprising a polylactic acid resin even among the moldings of the biodegradable resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、生分解性樹脂組成物と植物の混合物の簡易な分解方法に関する。
【0002】
【従来の技術】
合成プラスチックは現代の社会生活において不可欠であるが、合成プラスチックの廃棄には焼却処理や埋め立て処理をする必要がある。焼却処理をした場合、地球温暖化の促進や、特定の種類のプラスチックは焼却時にダイオキシンの発生などの環境問題が懸念される。
【0003】
そこで、最近では生分解性樹脂組成物を使用して従来の合成プラスチックの代替に使用する試みがなされている。従来の合成プラスチックとほぼ同じ強度が得られる生分解性樹脂として、ポリ乳酸系樹脂があるが、ポリ乳酸系樹脂は分解が遅く土中などでは4〜5年と分解時間が長くかかってしまう問題点がある。
【0004】
例えば、特許文献1、2には、生分解性樹脂組成物のコンポスト化処理方法が開示されている。この方法は、生分解性樹脂組成物を細かく破砕しなければならないことに加え、生分解性樹脂組成物の含有量を抑えたり、有機性廃棄物を混合したりする必要があり、実施例を見れば明らかな通り、混合や破砕のために、一般的ではあるが大掛かりな混合装置が必要である。
【0005】
また、一般的な、プラスチックの分解方法として、特許文献3にハラタケ目菌類培養床を用いた分解方法が開示されている。例として、プラスチックがポリ乳酸であるものも挙げられ、さらに、尿素を栄養素として加えても良いことが開示されている。
【0006】
しかしながら、処理業者の場合には、温度を一定に保ったり、プラスチックを分解させるための菌を選択したりすることは可能であるが、一般家庭や、そのような装置がない場所での実施は現実的ではない。
【0007】
【特許文献1】
特開平9−249474号公報
【特許文献2】
特開平9−249475号公報
【特許文献3】
特開2002−348405号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、上記問題点を解消し、生分解性樹脂からなる成形体と植物の混合物に尿素を添加する事で、簡易に比較的短時間で生分解性樹脂から成る成形体を分解する方法を提供することにある。
【0009】
【課題を解決するための手段】
上記課題は、生分解性樹脂からなる成形体と植物の混合物に尿素を添加することを特徴とする分解方法により解決する。
【0010】
【発明の実施の形態】
この方法に対する理解を助けるために考えられているメカニズムを説明する。以下二段階のメカニズムが考えられている。
【0011】
分解の第一段階としては、生分解性樹脂組からなる成形体と植物の混合物の中で、植物部分が微生物による分解により発酵する工程である。この工程では、発酵によって、全体の温度が上昇する。その際尿素は発酵を助ける栄養分の役割を果たし、発酵を活発化させ、上昇した温度を長続きさせる効果がある。温度上昇は周囲の状況にも因るが、60〜80℃程度になる。上昇した温度は、発酵を助けると共に、後述する、生分解性樹脂を分解させる第二段階を引き起こす。
【0012】
第二段階は、生分解性樹脂組が加水分解される工程である。生分解性樹脂の分解は一般に、初め加水分解によって数百から数千の分子量まで分解された後に、微生物によって分解される。加水分解を進めるためには水分と温度が必要であり、特に分解温度は生分解性樹脂のガラス転移温度以上である事が必要である。本発明では、植物に含まれる水分と、発酵段階での温度によって、加水分解が引き起こされる。この際尿素は第一段階同様、温度上昇を長続きさせることで、加水分解を円滑に行うことに加えて、全体を若干アルカリ性にすることによって、さらに生分解性樹脂組成物の加水分解を促進させる効果がある。60〜80℃という温度は生分解性樹脂組成物を加水分解させるのに好適な温度である。
【0013】
生分解性樹脂を分解させる時間は、できるだけ速い方が場所を取らず好ましく、1年以内に完全に分解させる事が好ましい。
【0014】
又、本発明の好ましい使用例としては、生分解性樹脂からなる成形体を使用した後に、植物と成形体が混合し、分離することが困難なときに、植物と成形体を同時に処理する場合である。たとえば、農園芸や土木、漁業分野での使用が好ましい。
【0015】
次に各構成についてさらに詳しく述べる。
【0016】
本発明に用いられる尿素は、水に溶かして用いるとさらに好ましい。全体に、行き渡らせることが可能である上に、用いた水が、加水分解にも用いられるという効果もある。
【0017】
扱い易さの観点から、水に溶かして用いる際の濃度は2%以上50%以下が好ましい。
【0018】
本発明の方法に適用される、生分解性樹脂組成物としては、デンプン系、ポリヒドロキシアルカノエート系、脂肪族ポリエステル系などが挙げられる。本発明の方法は、脂肪族ポリエステルにより好適な方法であり、その中でも、ポリ乳酸系樹脂からなるものがより好ましい。ポリ乳酸系樹脂としては、L−乳酸単位またはD−乳酸単位を80%以上含有するポリ乳酸系樹脂により好ましく適用される。また、このポリ乳酸系樹脂は、融点が150℃以上であればいろいろな成形体で使用するのに、充分な強度を持つ成形体が可能であり好ましい。
【0019】
生分解性樹脂組からなる成形体としては、繊維からなるもの、シートからなるもの、押し出し成形体等どれでもよい。
【0020】
混合する植物は、農作物の収穫時に残った根や葉、蔦など特に規定はないが、乾いたものよりも、ある程度水分を含んだものが好ましい。すなわち、生分解性樹脂組成物の加水分解時に水分が必要とされるからである。
【0021】
又、分解途中で、かき混ぜたり、上下などを入れ替えたりすることがより好ましい。かき混ぜたり、上下を入れ替えたりする工程によって、均一になる上に、空気が入ることによって発酵が進み易くなる。
【0022】
この方法は以下の幾つかの観点から、特に農園芸用途に用いられる生分解性樹脂からなる成形体に適している。
【0023】
尿素は、一般的に、農薬に用いられる上、人などの哺乳動物の尿中にも含まれる。すなわち、農作業の現場に、尿素がごく一般的に存在することを意味している。また、尿素の添加方法として、動物の尿などを用いても構わない。
【0024】
また、農園芸分野では蔓と絡まったネットを廃棄するような状況が考えられる。例えば、長芋やきゅうりなどを栽培するにあたって、その蔓を支えて、誘引する誘引ネットを用いる。このネットは、収穫後に蔓と分別することができないため、根元から蔓の絡まった状態で切断して処理をする必要がある。
【0025】
この誘引ネットはこれまで、使いやすさや、強度の問題で、ポリプロピレンや、ポリエチレンの繊維から作られており、野焼き処理を余儀なくされていた。しかしながら、野焼き処理を禁止する条例が多くなってきており、焼却に高いコストがかかる現状がある。そこで、生分解性樹脂であるポリ乳酸系樹脂を用いた誘引ネットが開発され始めており、その誘引ネットを短期間で分解処分する必要性に迫られている。この場合には植物(蔓)と生分解性樹脂からなる成形体(ポリ乳酸系繊維)とが共存して、混合物となっているため、この場合に本発明の方法を用いるのは非常に効果的である。
【0026】
又、分解後に残った残物は堆肥として再度利用する事ができる。
【0027】
【実施例】
以下、実施例を挙げて本発明を説明するが、本発明はこの実施例に限定されない。
【0028】
[実施例1]
カネボウ製ポリ乳酸系樹脂(ラクトロン)からなる単糸繊度420dtexのモノフィラメントを3本撚り合わせたセットを更に3本撚り合わせて、計9本組のロープ状物とし、これを用いて高さ1.5m、幅100mの角目ネットを作成した。展帳ロープにも同じモノフィラメントを90本合わせたものを使用して、ネット上部の穴を通し、ネットを張り、5月に長芋を約25cm間隔で植え、10月に長芋を収穫した
【0029】
10月に長芋を収穫した後、蔓が絡まった状態で、ネットを巻き取った。巻き取ったネットと蔓の束は約3mの直径になった。ネットの巻き取りは、尿素粉末をネット幅1mに対して約1g程度の割合になるように、蒔きながら行った。巻き取ったネットと蔓は、そのまま畑の隅に放置した。1ヶ月後のネットの状況を観察した。
【0030】
[実施例2]
巻き取ったネットと蔓の内側と外側を15日後に混ぜ返す以外は実施例1と同様に行った。
【0031】
[実施例3]
尿素粉末の代わりに30重量%尿素水溶液用いる以外は実施例1と同様に行った。
【0032】
[比較例1]
尿素を蒔かずに処理する以外は実施例1と同様に行った。
【0033】
[比較例2]
実施例1と同じポリ乳酸からなるネットをロール状に巻き取って30重量%尿素水溶液をかけて、1ヶ月後のネットの状況を観察した。
【0034】
[比較例3]
実施例1と同じポリ乳酸からなるネットをロール状に巻き取り、3ヶ月後のネットの状況を観察した。
【0035】
ネットを構成しているポリ乳酸繊維の30%以上が消滅しており、残存部も軽く触ったらつぶれる程度分解していれば◎、消滅している部分が30%未満であるが、軽く引張ると切れる程度分解していれば○、軽く引張って切れない場合は×と判断した。
【0036】
【表1】

Figure 2004339420
【0037】
実施例1から3はいずれも良好な分解性を示した。実施例2と3は掘り返すことや、尿素を水に溶解して用いる事で分解を促進させ、特に良好であった。又残存物は、後に肥料として用いることもできた。
【0038】
比較例1は植物の発酵温度が充分に上がらず、ポリ乳酸繊維がほとんど分解していなかった。
【0039】
比較例2は植物の発酵がないためにポリ乳酸繊維は全く分解しなかった。
【0040】
比較例3は分解させる要素が何もなく、ポリ乳酸繊維は全く分解しなかった。
【0041】
この結果から、尿素を添加することにより、生分解性樹脂組成物の分解に効果があることが分かった。また、掘り返すことや、尿素を水に溶解して用いることの効果もあることが分かった。
【0042】
【発明の効果】
本発明により、生分解性樹脂組成物を簡易に遅くとも1年以内に分解することが可能となった。また、この方法は特に農業用途での使用に適しており、植物と生分解性樹脂を分けることなく一緒に分解することも可能となり、さらに残さは、肥料としても用いることができた。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a simple method for decomposing a mixture of a biodegradable resin composition and a plant.
[0002]
[Prior art]
Synthetic plastics are indispensable in modern social life, but disposal of synthetic plastics requires incineration and landfill. In the case of incineration, there is a concern about promotion of global warming and environmental problems such as generation of dioxin when burning certain types of plastics.
[0003]
Thus, recently, attempts have been made to use a biodegradable resin composition to replace conventional synthetic plastics. Polylactic acid-based resin is a biodegradable resin that can provide almost the same strength as conventional synthetic plastics, but polylactic acid-based resin decomposes slowly and takes a long time to decompose in soil, for example, 4 to 5 years. There are points.
[0004]
For example, Patent Documents 1 and 2 disclose a method for composting a biodegradable resin composition. In this method, in addition to having to crush the biodegradable resin composition finely, it is necessary to reduce the content of the biodegradable resin composition or to mix organic waste, and As can be seen, a general but extensive mixing device is required for mixing and crushing.
[0005]
As a general method for decomposing plastics, Patent Document 3 discloses a decomposition method using a fungus culture bed of Agaricus. Examples include those in which the plastic is polylactic acid, and further discloses that urea may be added as a nutrient.
[0006]
However, in the case of a processor, it is possible to keep the temperature constant and to select bacteria for decomposing plastic, but it is not possible to carry out the method in ordinary households or places without such equipment. Not realistic.
[0007]
[Patent Document 1]
JP-A-9-249474 [Patent Document 2]
JP-A-9-249475 [Patent Document 3]
JP-A-2002-348405
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to easily decompose a molded article made of a biodegradable resin in a relatively short time by adding urea to a mixture of a molded article made of the biodegradable resin and a plant. It is to provide a way to do it.
[0009]
[Means for Solving the Problems]
The above object is achieved by a decomposition method characterized by adding urea to a mixture of a molded body and a plant made of a biodegradable resin.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Describe the mechanisms that are considered to help understand this method. The following two-step mechanism is considered.
[0011]
The first stage of the decomposition is a process in which a plant part is fermented by decomposition by a microorganism in a mixture of a molded body and a plant comprising a biodegradable resin set. In this step, the overall temperature rises due to the fermentation. At that time, urea plays a role of nutrients to assist fermentation, activate fermentation, and has the effect of prolonging the elevated temperature. The temperature rise is about 60 to 80 ° C., depending on the surrounding conditions. The elevated temperature assists fermentation and causes a second step, described below, to degrade the biodegradable resin.
[0012]
The second step is a step in which the biodegradable resin set is hydrolyzed. Biodegradable resins are generally degraded by microorganisms after being first degraded to hundreds to thousands of molecular weights by hydrolysis. In order to promote the hydrolysis, moisture and temperature are required, and particularly, the decomposition temperature needs to be higher than the glass transition temperature of the biodegradable resin. In the present invention, hydrolysis is caused by the moisture contained in the plant and the temperature during the fermentation stage. At this time, the urea promotes the hydrolysis of the biodegradable resin composition further by making the whole slightly alkaline, in addition to performing the hydrolysis smoothly by keeping the temperature rise for a long time as in the first step. effective. The temperature of 60 to 80 ° C. is a temperature suitable for hydrolyzing the biodegradable resin composition.
[0013]
The time for decomposing the biodegradable resin is preferably as fast as possible without taking up space, and it is preferable to completely decompose the resin within one year.
[0014]
Further, as a preferred use example of the present invention, after using a molded body made of a biodegradable resin, when the plant and the molded body are mixed and difficult to separate, when the plant and the molded body are simultaneously treated It is. For example, use in the fields of agriculture and horticulture, civil engineering, and fishing is preferred.
[0015]
Next, each configuration will be described in more detail.
[0016]
The urea used in the present invention is more preferably used after being dissolved in water. In addition to being able to be distributed throughout, there is an effect that the water used is also used for hydrolysis.
[0017]
From the viewpoint of ease of handling, the concentration when dissolved in water and used is preferably 2% or more and 50% or less.
[0018]
Examples of the biodegradable resin composition applied to the method of the present invention include starch, polyhydroxyalkanoate, and aliphatic polyester. The method of the present invention is more suitable for aliphatic polyesters, and among them, a method comprising a polylactic acid-based resin is more preferable. As the polylactic acid-based resin, a polylactic acid-based resin containing at least 80% of an L-lactic acid unit or a D-lactic acid unit is preferably used. The polylactic acid-based resin having a melting point of 150 ° C. or higher is preferable because a molded article having sufficient strength can be used for various molded articles.
[0019]
The molded article made of the biodegradable resin set may be any of a fiber, a sheet, and an extruded article.
[0020]
The plants to be mixed are not particularly limited, such as roots, leaves, ivy, and the like remaining when the crop is harvested, but those containing a certain amount of water are preferable to those that are dry. That is, moisture is required at the time of hydrolysis of the biodegradable resin composition.
[0021]
In addition, it is more preferable to stir or exchange the upper and lower parts during the disassembly. The process of stirring or exchanging the top and bottom makes the fermentation uniform, and the air enters to facilitate fermentation.
[0022]
This method is particularly suitable for a molded article made of a biodegradable resin used in agricultural and horticultural applications from the following several viewpoints.
[0023]
Urea is generally used for pesticides and is also contained in urine of mammals such as humans. In other words, it means that urea is very generally present at the site of agricultural work. Also, urine of animals may be used as a method of adding urea.
[0024]
In the field of agriculture and horticulture, it is possible to discard nets entangled with vines. For example, when growing yams or cucumbers, an attracting net is used to support and attract the vine. Since this net cannot be separated from the vine after harvesting, it is necessary to cut and process the vine from the root in a tangled state.
[0025]
Until now, this attracting net has been made of polypropylene or polyethylene fibers due to problems of ease of use and strength, and has been forced to open burning. However, the number of ordinances prohibiting open burning is increasing, and there is a situation where incineration requires high costs. Therefore, an attraction net using a polylactic acid-based resin, which is a biodegradable resin, has begun to be developed, and there is a pressing need to decompose and dispose of the attraction net in a short period of time. In this case, since the plant (vine) and the molded body (polylactic acid-based fiber) made of the biodegradable resin coexist and are a mixture, it is very effective to use the method of the present invention in this case. It is a target.
[0026]
The residue left after the decomposition can be reused as compost.
[0027]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
[0028]
[Example 1]
A set of three monofilaments made of Kanebo-made polylactic acid-based resin (lactron) having a single filament fineness of 420 dtex and three strands was further twisted together to form a set of nine ropes, and a height of 1. A square net having a width of 5 m and a width of 100 m was prepared. Using the same monofilament of 90 pieces as the exhibition rope, the net was stretched through the hole at the top of the net, the yam was planted at intervals of about 25 cm in May, and the yam was harvested in October.
After harvesting the yam in October, the net was wound up with vines entangled. The wound net and bundle of vines had a diameter of about 3 m. The winding of the net was performed while sowing the urea powder at a rate of about 1 g per 1 m of the net width. The wound net and vines were left in the corner of the field. One month later, the status of the net was observed.
[0030]
[Example 2]
The procedure was performed in the same manner as in Example 1 except that the wound net and the inside and outside of the vine were mixed back after 15 days.
[0031]
[Example 3]
The procedure was performed in the same manner as in Example 1 except that a 30% by weight aqueous urea solution was used instead of the urea powder.
[0032]
[Comparative Example 1]
The procedure was performed in the same manner as in Example 1 except that the treatment was performed without sowing urea.
[0033]
[Comparative Example 2]
A net made of the same polylactic acid as in Example 1 was wound into a roll, and a 30% by weight aqueous urea solution was applied thereto, and the state of the net after one month was observed.
[0034]
[Comparative Example 3]
A net made of the same polylactic acid as in Example 1 was wound into a roll, and the state of the net after three months was observed.
[0035]
If 30% or more of the polylactic acid fiber constituting the net has disappeared and the remaining portion has been decomposed to the point that it can be crushed by lightly touching it, the disappearing portion is less than 30%, but if it is pulled lightly It was judged as "good" when it was decomposed to the extent that it could be cut, and as "x" when it was not lightly pulled to be cut.
[0036]
[Table 1]
Figure 2004339420
[0037]
Examples 1 to 3 all showed good degradability. Examples 2 and 3 were particularly good, because they were dug up and urea was dissolved in water to promote decomposition. The residue could also be used later as fertilizer.
[0038]
In Comparative Example 1, the fermentation temperature of the plant did not rise sufficiently, and the polylactic acid fiber was hardly decomposed.
[0039]
In Comparative Example 2, the polylactic acid fiber did not decompose at all because there was no fermentation of the plant.
[0040]
In Comparative Example 3, there was no element to be decomposed, and the polylactic acid fiber was not decomposed at all.
[0041]
From these results, it was found that the addition of urea was effective in decomposing the biodegradable resin composition. Moreover, it turned out that there is also an effect of excavating and using urea dissolved in water.
[0042]
【The invention's effect】
According to the present invention, it has become possible to easily decompose the biodegradable resin composition within one year at the latest. In addition, this method is particularly suitable for use in agricultural applications, and it is possible to decompose plants and biodegradable resins together without separating them, and the residue can be used as fertilizer.

Claims (3)

生分解性樹脂からなる成形体と植物の混合物に尿素を添加することを特徴とする分解方法。A decomposition method, comprising adding urea to a mixture of a molded body and a plant made of a biodegradable resin. 生分解性樹脂からなる成形物がポリ乳酸系樹脂からなる事を特徴とする請求項1に記載の分解方法。The decomposition method according to claim 1, wherein the molded article made of a biodegradable resin is made of a polylactic acid-based resin. 尿素を添加するに際し、水に溶かした後添加する請求項1または2に記載の分解方法。3. The decomposition method according to claim 1, wherein the urea is added after being dissolved in water.
JP2003139898A 2003-05-19 2003-05-19 Method for decomposing a mixture of a molded body comprising a polylactic acid resin and a plant Expired - Fee Related JP4631252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139898A JP4631252B2 (en) 2003-05-19 2003-05-19 Method for decomposing a mixture of a molded body comprising a polylactic acid resin and a plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139898A JP4631252B2 (en) 2003-05-19 2003-05-19 Method for decomposing a mixture of a molded body comprising a polylactic acid resin and a plant

Publications (2)

Publication Number Publication Date
JP2004339420A true JP2004339420A (en) 2004-12-02
JP4631252B2 JP4631252B2 (en) 2011-02-16

Family

ID=33528780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139898A Expired - Fee Related JP4631252B2 (en) 2003-05-19 2003-05-19 Method for decomposing a mixture of a molded body comprising a polylactic acid resin and a plant

Country Status (1)

Country Link
JP (1) JP4631252B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091463A (en) * 2007-10-09 2009-04-30 Shimizu Corp Volume reducing method for polylactic acid
JP2023506588A (en) * 2020-02-19 2023-02-16 トリプルダブリュー リミテッド Methods and systems for lactic acid production and polylactic acid recycling
CN115806726A (en) * 2021-09-14 2023-03-17 南亚塑胶工业股份有限公司 Degradable environment-friendly polyester film and environment-friendly polyester composition thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665302U (en) * 1993-03-01 1994-09-16 ユニチカ株式会社 garbage bag
JPH08295758A (en) * 1995-02-28 1996-11-12 Mitsui Toatsu Chem Inc Method and apparatus for decomposing polymer
JPH09263653A (en) * 1996-03-27 1997-10-07 Agency Of Ind Science & Technol Degradation of microorganism-produced aliphatic polyester with anaerobic bacterium
JP2000218251A (en) * 1999-01-28 2000-08-08 Unitika Ltd Fermentation treatment of organic waste
JP2001072202A (en) * 1999-09-03 2001-03-21 Daicel Chem Ind Ltd Net shaped garbage bag for composting
JP2001269652A (en) * 2000-03-28 2001-10-02 Unitika Ltd Organic waste treating method
JP2002017173A (en) * 2000-07-06 2002-01-22 Taito Seiko Kk Plant growth guiding net
JP2002027839A (en) * 2000-07-13 2002-01-29 Juraron Kogyo Kk Binding tool for plant culture
JP2002226624A (en) * 2001-01-30 2002-08-14 Unitika Ltd Degradation method of aliphatic polyester-based molded article
JP2002348406A (en) * 2001-05-23 2002-12-04 Mitsubishi Chemicals Corp Disposition method os agricultural mulching film
JP2002348405A (en) * 2001-05-29 2002-12-04 Sumitomo Chem Co Ltd Degradation method of plastic
JP2004267062A (en) * 2003-03-06 2004-09-30 Ishikawa Pref Gov Net for cultivating liana

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665302U (en) * 1993-03-01 1994-09-16 ユニチカ株式会社 garbage bag
JPH08295758A (en) * 1995-02-28 1996-11-12 Mitsui Toatsu Chem Inc Method and apparatus for decomposing polymer
JPH09263653A (en) * 1996-03-27 1997-10-07 Agency Of Ind Science & Technol Degradation of microorganism-produced aliphatic polyester with anaerobic bacterium
JP2000218251A (en) * 1999-01-28 2000-08-08 Unitika Ltd Fermentation treatment of organic waste
JP2001072202A (en) * 1999-09-03 2001-03-21 Daicel Chem Ind Ltd Net shaped garbage bag for composting
JP2001269652A (en) * 2000-03-28 2001-10-02 Unitika Ltd Organic waste treating method
JP2002017173A (en) * 2000-07-06 2002-01-22 Taito Seiko Kk Plant growth guiding net
JP2002027839A (en) * 2000-07-13 2002-01-29 Juraron Kogyo Kk Binding tool for plant culture
JP2002226624A (en) * 2001-01-30 2002-08-14 Unitika Ltd Degradation method of aliphatic polyester-based molded article
JP2002348406A (en) * 2001-05-23 2002-12-04 Mitsubishi Chemicals Corp Disposition method os agricultural mulching film
JP2002348405A (en) * 2001-05-29 2002-12-04 Sumitomo Chem Co Ltd Degradation method of plastic
JP2004267062A (en) * 2003-03-06 2004-09-30 Ishikawa Pref Gov Net for cultivating liana

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091463A (en) * 2007-10-09 2009-04-30 Shimizu Corp Volume reducing method for polylactic acid
JP2023506588A (en) * 2020-02-19 2023-02-16 トリプルダブリュー リミテッド Methods and systems for lactic acid production and polylactic acid recycling
JP7440129B2 (en) 2020-02-19 2024-02-28 トリプルダブリュー リミテッド Methods and systems for lactic acid production and polylactic acid recycling
CN115806726A (en) * 2021-09-14 2023-03-17 南亚塑胶工业股份有限公司 Degradable environment-friendly polyester film and environment-friendly polyester composition thereof

Also Published As

Publication number Publication date
JP4631252B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
Guerrini et al. Biodegradable materials in agriculture: case histories and perspectives
KR101505936B1 (en) Multifuntional Mulching Material and Method for Manufacturing Thereof
CN107298593A (en) A kind of cow dung urine biological treatment and its mixed culture matrix of preparation
JP2008127246A (en) Method for producing fermented compost
CN1429477A (en) Straw composite nutritive soil and its making method
JP4631252B2 (en) Method for decomposing a mixture of a molded body comprising a polylactic acid resin and a plant
JP4868343B2 (en) Fertilizer or soil conditioner, method for producing the same, and method for producing cultured soil conditioner using the same
JP2009227559A (en) Compost having antibiotic function and method of producing the same
JPH10174582A (en) Active microbial mixture and its use
KR100271246B1 (en) Bed soil for horticulture using an organic matter including an excrement of an earthworm
Padamanabhan Effect of vermicompost on growth and flowering of Chrysanthemum
US5674806A (en) Using aggregates containing cellulose for agricultural and horticultural purposes
JP4629893B2 (en) Method for promoting decomposition of organic matter in soil
KR101948573B1 (en) A pot for planting trees and planting method of trees using thereof
JP2008050241A (en) Woody organic material
JP2011055760A (en) Farming method with woody biomass
JP4778673B2 (en) Method for producing fertilizer or soil conditioner
JP3716322B2 (en) Treatment method of biological organic waste
JP2002017173A (en) Plant growth guiding net
Ritz et al. Poultry mortality composting management guide
JP3417556B1 (en) Cut grass compost leachate and method for producing the same
JP2002201370A (en) Biodegradable plastic containing tourmaline
Shakywal et al. ROLE OF ORGANIC MANURE FOR IMPROVING SOIL HEALTH
JPH1014408A (en) Vessel for seedling growth
JP3442071B1 (en) Cut grass compost, method for producing the same, cut grass mixed compost and cut grass compost extract

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees