JP2004335232A - Lithium secondary battery and manufacturing method thereof - Google Patents

Lithium secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2004335232A
JP2004335232A JP2003128428A JP2003128428A JP2004335232A JP 2004335232 A JP2004335232 A JP 2004335232A JP 2003128428 A JP2003128428 A JP 2003128428A JP 2003128428 A JP2003128428 A JP 2003128428A JP 2004335232 A JP2004335232 A JP 2004335232A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
secondary battery
battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003128428A
Other languages
Japanese (ja)
Inventor
Yuji Yamamoto
祐司 山本
Tadashi Ise
忠司 伊勢
Takuya Sunakawa
拓也 砂川
Takeshi Yoshida
武史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003128428A priority Critical patent/JP2004335232A/en
Publication of JP2004335232A publication Critical patent/JP2004335232A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery which can compensate the deterioration of battery capacity due to irreversible capacity of a negative electrode and can be charged with margin in time after filling of electrolyte solution, and to provide a manufacturing method thereof. <P>SOLUTION: The lithium secondary battery has an outer package containing a negative electrode 6 that includes negative electrode active material which can absorb and emit at least lithium ions, a positive electrode 5 that includes positive electrode active material which can absorb and emit the lithium ions and nonaqueous electrolyte. At the time of lithium secondary battery assembly, a strip 9 made of lithium aluminum alloy is disposed on the positive electrode or a positive electrode collector with which the strip is connected electrically and the battery is charged within 24 hours after filling of the electrolyte solution. The lithium secondary battery having high charge and discharge capacity is obtained if the battery is charged within 24 hours though the battery is not charged till then after the filling of the electrolyte solution, because harmful reaction occurrence accompanying over-discharging can be suppressed while eliminating the irreversible capacity effectively. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、リチウム二次電池及びその製造方法に係り、更に詳しくは、通常のリチウム二次電池で発生する負極の不可逆容量に起因する電池容量の低下を補うと共に、電解液の注液後に時間的に余裕を持って充電操作を行うことができるリチウム二次電池及びその製造方法に関する。
【0002】
【従来の技術】
リチウム二次電池は、ニッケルカドミウム電池、ニッケル水素電池及び鉛蓄電池に比べて、軽量でエネルギー密度が高いという特質を具備していることからその開発が活発化している。このリチウム二次電池は、充電時に正極のリチウム含有酸化物から負極にリチウムイオンを供給し、放電時に負極炭素中のリチウムイオンを正極に戻す、いわゆるロッキングチェア型の電池であって、特に、正極にLiCoO、LiMn等の材料を用いたリチウム電池は、低コストでエネルギー密度が高く、高電圧、高容量が実現可能であるものとして期待されている。
【0003】
しかしながら、これまでのリチウム二次電池は、負極に炭素材料が活物質として使用されているので、充電時に正極材のLiCoO、LiMn等から負極活物質の炭素材料中に導入されたリチウムが全て放電によって取り出せず、一定量のリチウムが炭素材料中に残存してしまう、いわゆる不可逆容量のリチウムが生じ、その結果、電池の放電容量が低下し、電池能力が低下するという課題を有している。この課題を解決する方策がこれまで多く提案され実施されているが、特許文献でも多く紹介されている。(例えば、特許文献1、2参照)。
【0004】
【特許文献1】
特開平8−255635(第2頁右欄〜第3頁左欄、図2)
【特許文献2】
特開平10−223259(第2頁、図1)
【0005】
上記特許文献1には、不可逆容量分のリチウムイオンを補填でき、内部抵抗が低く、高容量で且つ高電圧を発生可能な有機電解質電池が開示されている。この有機電解質電池は、正極にリチウム含有金属酸化物、負極に炭素材料をそれぞれ使用し、電池の組立て後に、負極の炭素材料には正極のリチウム含有金属酸化物からのリチウムイオンを負極に担持させ、正極には電池内に予め配設した金属リチウムよりリチウムイオンを担持させたものである。具体的には、金属リチウムを電極断面方向に配置し、このリチウムと正極とを抵抗体で接続し、この抵抗体により正極と金属リチウムとの間に流れる電流を制御するようにしたものである。
【0006】
この構成においては、電解液を注液すると、金属リチウムと正極とが内部電池として働き、金属リチウムがリチウムイオンとなって正極へ移動し、正極にリチウムイオンが担持される。そして、この反応と並行して、通常の充電反応としての正極から負極へのリチウムの担持が行われる。その結果、リチウムイオンは、金属リチウムから正極へ、更に正極から負極へという2段階の過程を経て負極へ担持されることになる。
【0007】
この二次電池によると、通常のリチウム電池で発生する負極の不可逆容量(負極容量の約7%)に起因する電池容量の低下は、金属リチウムからのリチウムイオンの補填で補うことができる。また、電池の構造が通常の構成に加えて、第3電極に接続された金属リチウムと正極とを電池内部で抵抗体を介して接続するという簡単なのもので済むので、電池外部に第3電極端子を露出させる必要がない利点がある。
【0008】
また、上記特許文献2には、同様に不可逆容量分のリチウムイオンを補填できるリチウム二次電池を製造する方法が開示されている。この二次電池は、リチウムマンガン複合酸化物を正極活物質とした正極と、炭素材料を負極活物質とした負極と、リチウム塩を溶解した有機電解液と、これらを収納した電池缶とを備え、予め、この電池缶内に金属リチウムを配設した構成を備えている。そして、この二次電池は、先ず、電池缶内に、有機電解液を注入して金属リチウムと正極とを短絡させて、正極に負極の不可逆容量相当分のリチウムを導入し、その後、正極と負極との間に初期充電を行って初期充電状態としたものである。その結果、リチウムイオンは、金属リチウムから正極へ、更に正極から負極へという2段階の過程を経て負極へ担持されることになる。したがって、この二次電池においても、通常のリチウム電池で発生する負極の不可逆容量(負極容量の約7%)に起因する電池容量の低下は、金属リチウムからのリチウムイオンの補填で補うことができる。
【0009】
【発明が解決しようとする課題】
しかし、上記特許文献1に記載された有機電解質電池は、正極にリチウムコバルト複合酸化物を使用しているので、図3に示すように、電解液の注液前は正極の電位がリチウムに対して約3V程度存在しているものの、電解液の注液後は、直ちにリチウムに対し1V程度まで低下して正極が過放電状態になってしまうことになる。この程度の電位になると、リチウム電池の正極に含まれるカーボンが電解液を分解して分解ガスを発生させ、この分解ガスによって電池容器の膨れ及び内部抵抗の上昇が生じ、加えて正極表面での分解性生物(高分子体)の付着による内部抵抗の上昇、更には、電解液の枯渇によるサイクル寿命の低下等の不具合が発生する恐れがある。
【0010】
更に、分解反応の後は、電位が0.3V程度に低下してしまうので、この程度の電位となると、正極集電体に用いられているアルミ材がリチウムイオンと反応して、リチウムアルミニウム合金が形成される。すると、このリチウムアルミニウム合金は、機械的に脆い金属なので、集電体の破損が起り、電池容量の大幅な低下を招いてしまうことになる。
【0011】
また、この正極電位の低下は、電解液の注液後に直ちに通常の充電を開始することによって防ぐことが可能であるが、電解液の注液後、直ぐに、例えば数秒以内に充電を行うことは、電池の製造工程上極めて困難であり、実施しようとすると設備費用の大幅な投資が必要となる。仮に、設備の対応ができても、通常この種の電池の製造工程でよく起こる瞬時の製造設備の停止が発生したりすると、電解液の注入後、直ぐ充電ができなかった電池は廃棄の対象になるので、製造歩留りを大きく悪化させることになる。
【0012】
また、正極にリチウムマンガン複合酸化物(LiMn)を使用している上記特許文献2に記載されているリチウム二次電池においては、過放電状態でも2.8Vで大きな放電領域(図4参照)があり、上記特許文献1に記載されている電池のように、正極電位が直ちに1V或いは0.3Vまで低下することはなく、電位の極端な低下による不具合は起こす恐れはない。しかしながら、この上記特許文献2に記載された二次電池は、正極の材料が、リチウムマンガン複合酸化物(LiMn)に限定されるので、リチウムコバルト複合酸化物を用いた二次電池より電池容量が小さい電池になってしまうという課題がある。
【0013】
そこで本発明は、上記の従来技術が抱える課題を解決するためになされたもので、その発明の目的は、リチウム二次電池の不可逆容量を解消すると共に、正極の過放電に付随して起りがちな有害反応を抑えて電池容量の低下を防止したリチウム二次電池を提供することにある。また、本発明の第2の目的は、製造の歩留まりの向上を図ったリチウム二次電池の製造方法を提供することにある。
【0014】
【課題を解決するための手段】
上記目的は、以下の手段で達成できる。すなわち本発明の第1の態様によれば、少なくともリチウムイオンを吸蔵・放出することが可能な負極活物質を含有する負極と、リチウムイオンを吸蔵・放出することが可能な正極活物質を含有する正極と、非水電解質とを収納した外装体を備えたリチウム二次電池において、組立て時に、前記正極又は正極集電体上にリチウム合金が電気的に接続された状態で配置されているリチウム二次電池が提供される。
【0015】
係る態様においては、前記負極活物質は炭素系材料であり、また、前記正極活物質はリチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物の何れか1つであることが好ましい。更に、前記リチウム合金はリチウムアルミニウム合金であることが好ましい。
【0016】
係る態様によれば、例えば、正極活物質としてリチウムコバルト複合酸化物を使用し、負極活物質として炭素系材料を使用した例で説明すれば、電解液の注液開始直後から、正極の電位は、リチウム合金に引っ張られ1V付近まで低下し、この電位で分解ガス発生や正極表面での分解性生物(高分子体)の付着という副反応が起る。しかし、その反応速度は前記従来技術のようにリチウムを貼り付けた場合よりも遅くなっている。その理由は、リチウム金属よりもリチウム合金のほうが、電位が相対的に高く、且つ活性度が低いためである。
【0017】
また、その後、正極の電位はさらに0.3Vまでに低下する。しかし、前記従来技術のように正極集電体がリチウム合金化するような副反応は起らない。その理由は、その電位低下は、同じリチウム合金によって行われるからである。すなわち、アルミニウムがリチウムと反応して合金化するためには、合金化電位である0.3Vより低い電位を与えなければならないが、それ以下になることはないのでアルミニウムがリチウムと合金化することはない。
【0018】
また、本発明の第2の態様によれば、少なくともリチウムイオンを吸蔵・放出することが可能な負極活物質を含有する負極と、リチウムイオンを吸蔵・放出することが可能な正極活物質を含有する正極と、非水電解質とを収納した外装体を備えたリチウム二次電池において、電池の組立て時に、前記正極又は正極集電体上にリチウム合金を電気的に接続された状態で配置し、電解液を注入後48時間以内、好ましくは24時間以内に充電することを特徴とするとするリチウム二次電池の製造方法が提供される。
【0019】
この場合、負極活物質としては炭素系材料、正極活物質としてはリチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物の何れか1つであることが好ましい。
【0020】
このような製造方法を採用すれば、注液直後に直ちに充電せずに放置されたとしても、48時間以内、好ましくは24時間以内に充電すれば初期の充放電効率を維持できるため、製造工程に時間的余裕ができ、上述のリチウム金属を貼り付けた従来技術と比して不具合は小さくてすみ、リチウム二次電池の不可逆容量を有効に解消できるだけでなく電池の製造歩留まりが向上する。
【0021】
【発明の実施形態】
以下、本発明の実施の形態を図面を参照して説明する。図1は本発明のリチウム電池を構成する巻回電極体の外観斜視図、図2は電池ケースを示し、図2(A)は正面図、図2(B)は電池ケースを構成する外装体を開口した状態の斜視図である。
【0022】
(実施例)
正極の作製
炭酸リチウム(LiCO)と酸化コバルト(Co)とを700〜900℃の温度で焼成して正極活物質としてのコバルト酸リチウム(LiCoO)を作成した。このコバルト酸リチウムと、導電助剤としての黒鉛及びケッチェンブラックと、結着剤としてのフッ素樹脂とを質量比で90:3:2:5の割合で混合し、これをN−メチル−2−ピロリドン(NMP)に溶解して活物質ベーストとした。この活物質ペーストをドクターブレード法により厚み20μmのアルミ箔(金属芯体)の両面に均一に塗布した後、乾燥機中を通過させて100〜150℃の温度で真空乾燥することにより、ペースト作成時に必要であった有機溶媒を除去した。次いで、この極板をロールプレス機により圧延して正極を作製した。この時、アルミ箔の一部は正極活物質が塗布されないで残るように調整して置く。
【0023】
負極の作製
リチウムイオンを吸蔵・脱離することのできる天然黒鉛からなる負極活物質と、結着剤としてのフッ素樹脂とを質量比で95:5の割合で混合し、これをN−メチル−2−ピロリドンに溶解してペーストとした。このペーストをドクターブレード法により金属芯体としての銅箔(厚み20μm)の両面に均一に塗布した後、乾燥機中を通過させて100〜150℃の温度で真空乾燥することによりペースト作成時に必要であった有機溶媒を除去した。次いで、この極板をロールプレス機により圧延して負極を作製した。
【0024】
巻回電極体の作製
上記の正極と負極を所定寸法に切り出し、図1に示すように、正極5の芯体に正極タブ7を取付け、負極6の芯体に負極タブ8を取り付けた後、正負電極間にポリプロピレン製微多孔膜からなるセパレータを介装し巻取り機で巻回した。その後、その最外周をテープで止め、偏平に押しつぶして偏平巻回電極体1とした。この時、正極は正極活物質を塗布していないアルミ箔だけの部分が、巻取りの周囲の余分に1周分巻き取られるように長さを調整しておく。すなわち、でき上がった偏平巻回電極体1の最外周はアルミ箔が露出した状態になっている。
【0025】
リチウムアルミ合金の作製
リチウム金属とアルミニウム金属を原子比が1:1の分子量となるように張り合わせ、組成1:1のα相をも持つリチウムアルミニウム合金を作製した。このリチウムアルミニウム合金を所定量切り出し、切り出した細片9を巻回電極体1の最外周のアルミ箔上に貼り付けした。
【0026】
上記正極、負極のそれぞれの容量設計は、下記表1のとおりであり、貼り付けたリチウムアルミニウム合金中のリチウム量は、電気量換算で12mAhである。
【表1】

Figure 2004335232
【0027】
電解液の調製
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比3:7となるように混合した混合溶媒に、LiPF(電解質塩)を1モル/リットル濃度に溶解した溶液を電解液とした。
【0028】
電池ケースの作製
ポリエチレンテレフタレートフィルム、アルミニウムフィルム等が積層されたアルミラミネートシートを用いて、上下が開いた筒状の外装体を作製し、これを電池ケースとした。図2に示すように、偏平巻回電極体1を筒状のラミネート外装体3の収納空間2内に、正極タブ7、負極タブ8が外側に突き出るようにして収納し、各タブ7、8側の開口部4aを加熱溶着した。次いで、もう一方の開口から上記電解液を注液した後、この開口を同様に加熱溶着して封止部4bを形成し、リチウム二次電池を作製した。
【0029】
充放電操作
この電池に電解液を注入後、24時間経過してから、電流値32mAで、電池電圧4.3Vに達するまで充電し、次に、電流値32mAで、電池電圧3.0Vに達するまで放電した。この時の放電容量は、160mAであった。
【0030】
(比較例1)
巻回電極体の最外周にリチウムアルミニウム合金を貼り付けないこと以外は、実施例1と同様の方法で電池を作製し、電解液を注液後24時間経過後に、同様の充放電を行った。放電容量は148mAhであった。
【0031】
(実施例2)
実施例1と同様の方法で電池を作製し、電解液の注液後、48時間経過した後に、実施例と同様の充放電を行った。放電容量は155mAhであった。
【0032】
(比較例2)
巻回電極体の最外周にアルミニウム合金に代えてリチウム金属を貼り付けしたこと以外は、実施例1と同様に電池を作製した。貼り付けたリチウム金属の量は、実施例1と同様にするため電気量換算で12mAhとした。電解液の注液後24時間経過後に、実施例1と同様の充放電を行った。放電容量は108mAhであった。
【0033】
上記実施例1、2及び比較例1、2の測定データをまとめて示すと、下記表2のとおりである。
【表2】
Figure 2004335232
【0034】
上記表2に示した測定結果から明らかなように、実施例1では、リチウム供給源を持たない比較例1に比すると容量が大幅に向上している。また、電解液の注液後、充電までの時間を48時間に伸ばした実施例2では、比較例1に比すると容量が大きいが、実施例1に比すると若干容量が低下している。これはリチウム供給源からのリチウムが一部、電解液の分解や、正極集電体に移動したものと考えられる。更に、リチウム金属を用いた比較例2では容量がむしろ低下しているが、電池を分解してみたところ、正極集電体がリチウム合金化して崩壊していることが観察された。したがって、本発明においては、電解液の注液後、充電までの時間は48時間以内が好ましく、より好ましくは24時間以内である。
【0035】
なお、本発明は、活物質を金属芯体に塗布し、セパレータを介して巻回した巻回電極体を用いた電極の他に、タブレット状の極板をセパレータを介して対向させて外装缶に挿入したボタン型電池にも適用できる。この場合、外装缶や封口キャップが金属芯体の役割も持つことになる。
【0036】
【発明の効果】
以上述べたように、本発明により得られたリチウム二次電池は、電解液注液後24時間以内に充電操作を行えば、不可逆容量を有効に解消しながらも過放電に付随して起る有害反応を抑えることができるので、高充放電容量のリチウム二次電池が得られる。
【図面の簡単な説明】
【図1】本発明のリチウム電池を構成する巻回電極体の外観斜視図である。
【図2】電池ケースを示し、図2(A)は正面図、図2(B)は電池ケースを構成する外装体を開口した状態の斜視図である。
【図3】正極活物質としてLiCoOを使用した正極の放電容量と電極電位の関係を示す図である。
【図4】正極活物質としてLiMnを使用した正極の放電容量と電極電位の関係を示す図である。
【符号の説明】
1 巻回電極体
2 収納空間
3 外装体
4a 開口部
4b 封止部
5 正極
6 負極
7 正極タブ
8 負極タブ
9 リチウムアルミニウム合金の細片[0001]
[Industrial applications]
The present invention relates to a lithium secondary battery and a method for manufacturing the same, and more specifically, to compensate for a decrease in battery capacity due to irreversible capacity of a negative electrode generated in a normal lithium secondary battery, and to reduce the time after injection of an electrolyte. The present invention relates to a lithium secondary battery capable of performing a charging operation with a sufficient margin and a method for manufacturing the same.
[0002]
[Prior art]
The development of lithium secondary batteries has been active because they have the characteristics of being lightweight and having a high energy density as compared with nickel cadmium batteries, nickel hydrogen batteries and lead storage batteries. This lithium secondary battery is a so-called rocking chair type battery that supplies lithium ions from the lithium-containing oxide of the positive electrode to the negative electrode during charging and returns lithium ions in the negative electrode carbon to the positive electrode during discharging. Lithium batteries using materials such as LiCoO 2 and LiMn 2 O 4 are expected to be low-cost, have high energy density, and be capable of realizing high voltage and high capacity.
[0003]
However, in conventional lithium secondary batteries, since a carbon material is used as an active material for the negative electrode, the lithium secondary battery was introduced into the carbon material of the negative electrode active material from LiCoO 2 , LiMn 2 O 4 or the like of the positive electrode material during charging. All of the lithium cannot be taken out by discharging, and a certain amount of lithium remains in the carbon material, so-called irreversible capacity lithium is generated. As a result, there is a problem that the discharge capacity of the battery is reduced and the battery capacity is reduced. are doing. Many measures to solve this problem have been proposed and implemented so far, but many have been introduced in patent documents. (For example, see Patent Documents 1 and 2).
[0004]
[Patent Document 1]
JP-A-8-255635 (page 2, right column to page 3, left column, FIG. 2)
[Patent Document 2]
JP-A-10-223259 (page 2, FIG. 1)
[0005]
Patent Literature 1 discloses an organic electrolyte battery that can compensate for irreversible capacity of lithium ions, has low internal resistance, has high capacity, and can generate high voltage. This organic electrolyte battery uses a lithium-containing metal oxide for the positive electrode and a carbon material for the negative electrode. After assembling the battery, the carbon material for the negative electrode carries lithium ions from the lithium-containing metal oxide for the positive electrode on the negative electrode. The positive electrode carries lithium ions from metallic lithium previously disposed in the battery. Specifically, metallic lithium is arranged in the electrode cross-sectional direction, this lithium and the positive electrode are connected by a resistor, and the current flowing between the positive electrode and the metallic lithium is controlled by the resistor. .
[0006]
In this configuration, when the electrolytic solution is injected, the metallic lithium and the positive electrode function as an internal battery, the metallic lithium becomes lithium ions, moves to the positive electrode, and the positive electrode carries lithium ions. In parallel with this reaction, lithium is carried from the positive electrode to the negative electrode as a normal charging reaction. As a result, the lithium ions are carried on the negative electrode through a two-step process from metallic lithium to the positive electrode and from the positive electrode to the negative electrode.
[0007]
According to this secondary battery, the decrease in battery capacity due to the irreversible capacity of the negative electrode (about 7% of the negative electrode capacity) generated in a normal lithium battery can be compensated for by supplementing lithium ions from metallic lithium. Further, in addition to the usual structure of the battery, it is only necessary to connect the metallic lithium connected to the third electrode and the positive electrode via a resistor inside the battery, so that the third electrode is provided outside the battery. There is an advantage that the terminal does not need to be exposed.
[0008]
Patent Document 2 discloses a method of manufacturing a lithium secondary battery capable of supplementing lithium ions of an irreversible capacity in the same manner. This secondary battery includes a positive electrode using a lithium manganese composite oxide as a positive electrode active material, a negative electrode using a carbon material as a negative electrode active material, an organic electrolyte solution in which a lithium salt is dissolved, and a battery can containing these. The battery is provided with a configuration in which metallic lithium is previously disposed in the battery can. In this secondary battery, first, an organic electrolytic solution is injected into the battery can to short-circuit the lithium metal and the positive electrode, and lithium corresponding to the irreversible capacity of the negative electrode is introduced into the positive electrode. An initial charge is performed between the anode and the negative electrode to obtain an initial charge state. As a result, the lithium ions are carried on the negative electrode through a two-step process from metallic lithium to the positive electrode and from the positive electrode to the negative electrode. Therefore, also in this secondary battery, a decrease in battery capacity due to the irreversible capacity of the negative electrode (about 7% of the negative electrode capacity) generated in a normal lithium battery can be compensated for by supplementing lithium ions from metallic lithium. .
[0009]
[Problems to be solved by the invention]
However, since the organic electrolyte battery described in Patent Document 1 uses a lithium-cobalt composite oxide for the positive electrode, as shown in FIG. 3, before the electrolyte is injected, the potential of the positive electrode is higher than that of lithium. Although about 3 V is present, immediately after the injection of the electrolytic solution, the voltage drops to about 1 V with respect to lithium, and the positive electrode is over-discharged. At this level of potential, the carbon contained in the positive electrode of the lithium battery decomposes the electrolytic solution to generate a decomposed gas, and the decomposed gas causes the battery container to swell and an increase in internal resistance. There is a possibility that problems such as an increase in internal resistance due to the attachment of degradable organisms (polymers) and a decrease in cycle life due to depletion of the electrolyte may occur.
[0010]
Further, after the decomposition reaction, the potential drops to about 0.3 V. At this level of potential, the aluminum material used for the positive electrode current collector reacts with lithium ions to form a lithium aluminum alloy. Is formed. Then, since the lithium aluminum alloy is a mechanically brittle metal, the current collector is damaged, and the battery capacity is greatly reduced.
[0011]
Further, this decrease in the positive electrode potential can be prevented by starting normal charging immediately after the injection of the electrolytic solution.However, immediately after the injection of the electrolytic solution, it is possible to charge the battery immediately within several seconds, for example. However, the production process of the battery is extremely difficult, and if it is to be implemented, a large investment in equipment costs is required. Even if the equipment can be handled, if the production equipment shuts down instantly, which often occurs in the manufacturing process of this type of battery, batteries that could not be charged immediately after the injection of the electrolyte are subject to disposal. Therefore, the production yield is greatly deteriorated.
[0012]
Further, in the lithium secondary battery described in Patent Document 2 using a lithium manganese composite oxide (LiMn 2 O 4 ) for the positive electrode, a large discharge region at 2.8 V even in an overdischarge state (FIG. 4) Unlike the battery described in Patent Document 1, the positive electrode potential does not immediately drop to 1 V or 0.3 V, and there is no possibility that a problem due to an extreme drop in the potential will occur. However, since the material of the positive electrode is limited to the lithium manganese composite oxide (LiMn 2 O 4 ), the secondary battery described in Patent Literature 2 is less than the secondary battery using the lithium cobalt composite oxide. There is a problem that the battery capacity becomes small.
[0013]
Therefore, the present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to eliminate the irreversible capacity of a lithium secondary battery and to cause the overdischarge of the positive electrode. Another object of the present invention is to provide a lithium secondary battery that suppresses adverse reactions and prevents a decrease in battery capacity. A second object of the present invention is to provide a method for manufacturing a lithium secondary battery that improves the yield of manufacturing.
[0014]
[Means for Solving the Problems]
The above object can be achieved by the following means. That is, according to the first aspect of the present invention, the negative electrode contains at least a negative electrode active material that can occlude and release lithium ions, and the positive electrode active material that can occlude and release lithium ions. In a lithium secondary battery provided with an outer package containing a positive electrode and a nonaqueous electrolyte, a lithium secondary battery in which a lithium alloy is electrically connected to the positive electrode or the positive electrode current collector during assembly is provided. A secondary battery is provided.
[0015]
In such an embodiment, the negative electrode active material is preferably a carbon-based material, and the positive electrode active material is preferably one of a lithium cobalt composite oxide, a lithium manganese composite oxide, and a lithium nickel composite oxide. . Further, the lithium alloy is preferably a lithium aluminum alloy.
[0016]
According to this aspect, for example, using an example in which a lithium-cobalt composite oxide is used as the positive electrode active material and a carbon-based material is used as the negative electrode active material, immediately after the start of the injection of the electrolytic solution, the potential of the positive electrode becomes The lithium alloy is pulled by the lithium alloy and drops to around 1 V. At this potential, side reactions occur such as generation of decomposition gas and adhesion of decomposable organisms (polymers) on the surface of the positive electrode. However, the reaction speed is slower than the case where lithium is applied as in the above-mentioned prior art. The reason is that a lithium alloy has a relatively higher potential and a lower activity than a lithium metal.
[0017]
Thereafter, the potential of the positive electrode further decreases to 0.3 V. However, a side reaction such as that the positive electrode current collector is converted into a lithium alloy does not occur as in the related art. The reason is that the potential drop is performed by the same lithium alloy. That is, in order for aluminum to react with lithium to form an alloy, a potential lower than the alloying potential of 0.3 V must be applied. However, since the potential does not drop below that, aluminum must be alloyed with lithium. There is no.
[0018]
According to the second aspect of the present invention, a negative electrode containing at least a negative electrode active material capable of inserting and extracting lithium ions and a positive electrode active material capable of inserting and extracting lithium ions are included. In the lithium secondary battery having an outer body containing a positive electrode and a non-aqueous electrolyte, when assembling the battery, a lithium alloy is disposed on the positive electrode or the positive electrode current collector in an electrically connected state, A method for manufacturing a lithium secondary battery is provided, wherein the battery is charged within 48 hours, preferably within 24 hours after injection of the electrolyte.
[0019]
In this case, the negative electrode active material is preferably a carbon-based material, and the positive electrode active material is preferably one of a lithium cobalt composite oxide, a lithium manganese composite oxide, and a lithium nickel composite oxide.
[0020]
By adopting such a manufacturing method, even if the battery is left without being charged immediately after the injection, the initial charge / discharge efficiency can be maintained if the battery is charged within 48 hours, preferably within 24 hours. As a result, the irreversible capacity of the lithium secondary battery can be effectively eliminated, and the production yield of the battery can be improved.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of a spirally wound electrode body constituting a lithium battery of the present invention, FIG. 2 shows a battery case, FIG. 2 (A) is a front view, and FIG. 2 (B) is an exterior body constituting a battery case. It is a perspective view in the state where it opened.
[0022]
(Example)
Preparation of positive electrode Lithium carbonate (Li 2 CO 3 ) and cobalt oxide (Co 3 O 4 ) are fired at a temperature of 700 to 900 ° C. to prepare lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material. did. This lithium cobaltate, graphite and Ketjen black as a conductive additive, and a fluororesin as a binder were mixed at a mass ratio of 90: 3: 2: 5, and this was mixed with N-methyl-2. -Dissolved in pyrrolidone (NMP) to make the active material base. This active material paste is uniformly applied on both sides of a 20 μm-thick aluminum foil (metal core) by a doctor blade method, and then passed through a drier to be vacuum-dried at a temperature of 100 to 150 ° C., thereby producing a paste. The organic solvent sometimes needed was removed. Next, this electrode plate was rolled by a roll press to produce a positive electrode. At this time, a part of the aluminum foil is adjusted so as to remain without being coated with the positive electrode active material.
[0023]
Preparation of negative electrode A negative electrode active material composed of natural graphite capable of inserting and extracting lithium ions and a fluororesin as a binder were mixed at a mass ratio of 95: 5, and this was mixed. It was dissolved in N-methyl-2-pyrrolidone to obtain a paste. This paste is uniformly applied to both surfaces of a copper foil (thickness: 20 μm) as a metal core by a doctor blade method, and then passed through a drier to be vacuum-dried at a temperature of 100 to 150 ° C., so that the paste is necessary for preparing the paste. Was removed. Next, this electrode plate was rolled by a roll press to produce a negative electrode.
[0024]
Preparation of wound electrode body The above positive electrode and negative electrode were cut into predetermined dimensions, and a positive electrode tab 7 was attached to the core of the positive electrode 5 and a negative electrode tab 8 was attached to the core of the negative electrode 6 as shown in FIG. After the attachment, a separator composed of a polypropylene microporous membrane was interposed between the positive and negative electrodes, and wound by a winder. After that, the outermost periphery was stopped with a tape and crushed flat to obtain a flat wound electrode body 1. At this time, the length of the positive electrode is adjusted so that a portion of only the aluminum foil to which the positive electrode active material is not applied is wound by an extra turn around the winding. That is, the outermost periphery of the completed flat wound electrode body 1 is in a state where the aluminum foil is exposed.
[0025]
Preparation of lithium aluminum alloy Lithium metal and aluminum metal were bonded together so that the atomic ratio had a molecular weight of 1: 1 to prepare a lithium aluminum alloy having an α phase having a composition of 1: 1. A predetermined amount of this lithium aluminum alloy was cut out, and the cut strip 9 was attached on the outermost aluminum foil of the wound electrode body 1.
[0026]
The capacity design of each of the positive electrode and the negative electrode is as shown in Table 1 below, and the amount of lithium in the attached lithium aluminum alloy is 12 mAh in terms of electricity.
[Table 1]
Figure 2004335232
[0027]
Electrolyte prepared <br/> ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 3: and the mixed solvent mixture such that 7, dissolving LiPF 6 (electrolytic salt) in 1 mol / liter concentration The solution thus obtained was used as an electrolytic solution.
[0028]
Production of battery case A cylindrical exterior body with an open top and bottom was produced using an aluminum laminated sheet on which a polyethylene terephthalate film, an aluminum film, and the like were laminated, and this was used as a battery case. As shown in FIG. 2, the flat wound electrode body 1 is housed in the housing space 2 of the cylindrical laminate outer body 3 with the positive electrode tab 7 and the negative electrode tab 8 protruding outward. The side opening 4a was heated and welded. Next, after the electrolyte solution was injected from the other opening, this opening was similarly heated and welded to form a sealing portion 4b, thereby producing a lithium secondary battery.
[0029]
Charge / discharge operation 24 hours after the electrolyte was injected into the battery, the battery was charged at a current value of 32 mA until the battery voltage reached 4.3 V, and then charged at a current value of 32 mA and a battery voltage of 3 V was applied. It discharged until it reached 0.0V. The discharge capacity at this time was 160 mA.
[0030]
(Comparative Example 1)
A battery was prepared in the same manner as in Example 1 except that the lithium aluminum alloy was not attached to the outermost periphery of the wound electrode body, and the same charge and discharge were performed 24 hours after the injection of the electrolyte. . The discharge capacity was 148 mAh.
[0031]
(Example 2)
A battery was manufactured in the same manner as in Example 1, and after 48 hours from the injection of the electrolytic solution, the same charging and discharging as in the example were performed. The discharge capacity was 155 mAh.
[0032]
(Comparative Example 2)
A battery was fabricated in the same manner as in Example 1, except that lithium metal was attached to the outermost periphery of the wound electrode body instead of the aluminum alloy. The amount of the adhered lithium metal was set to 12 mAh in terms of the amount of electricity in order to make the same as in Example 1. Twenty-four hours after the injection of the electrolytic solution, the same charging and discharging as in Example 1 was performed. The discharge capacity was 108 mAh.
[0033]
Table 2 below summarizes the measurement data of Examples 1 and 2 and Comparative Examples 1 and 2.
[Table 2]
Figure 2004335232
[0034]
As is clear from the measurement results shown in Table 2 above, in Example 1, the capacity was significantly improved as compared with Comparative Example 1 having no lithium supply source. Further, in Example 2, in which the time until charging after the injection of the electrolyte was extended to 48 hours, the capacity was larger than that of Comparative Example 1, but the capacity was slightly lower than that of Example 1. This is considered to be because part of lithium from the lithium supply source was decomposed in the electrolytic solution or moved to the positive electrode current collector. Further, in Comparative Example 2 using lithium metal, although the capacity was rather lowered, when the battery was disassembled, it was observed that the positive electrode current collector was converted into a lithium alloy and collapsed. Therefore, in the present invention, the time from injection of the electrolytic solution to charging is preferably within 48 hours, more preferably within 24 hours.
[0035]
Note that, in addition to an electrode using a wound electrode body in which an active material is applied to a metal core body and wound via a separator, the present invention provides an outer can It can also be applied to button-type batteries inserted into the battery. In this case, the outer can and the sealing cap also have a role of a metal core.
[0036]
【The invention's effect】
As described above, in the lithium secondary battery obtained according to the present invention, if the charging operation is performed within 24 hours after the injection of the electrolytic solution, the irreversible capacity is effectively eliminated and the secondary battery is accompanied by overdischarge. Since adverse reactions can be suppressed, a lithium secondary battery with a high charge / discharge capacity can be obtained.
[Brief description of the drawings]
FIG. 1 is an external perspective view of a wound electrode body constituting a lithium battery of the present invention.
FIGS. 2A and 2B show a battery case, and FIG. 2A is a front view, and FIG. 2B is a perspective view showing a state where an outer body constituting the battery case is opened.
FIG. 3 is a diagram showing a relationship between a discharge capacity of a positive electrode using LiCoO 2 as a positive electrode active material and an electrode potential.
FIG. 4 is a diagram showing a relationship between a discharge capacity of a positive electrode using LiMn 2 O 4 as a positive electrode active material and an electrode potential.
[Explanation of symbols]
Reference Signs List 1 wound electrode body 2 storage space 3 exterior body 4a opening 4b sealing part 5 positive electrode 6 negative electrode 7 positive electrode tab 8 negative electrode tab 9 lithium aluminum alloy strip

Claims (9)

少なくともリチウムイオンを吸蔵・放出することが可能な負極活物質を含有する負極と、リチウムイオンを吸蔵・放出することが可能な正極活物質を含有する正極と、非水電解質とを収納した外装体を備えたリチウム二次電池において、組立て時に、前記正極又は正極集電体上にリチウム合金が電気的に接続された状態で配置されていることを特徴とするリチウム二次電池。An outer package containing a negative electrode containing a negative electrode active material capable of inserting and extracting lithium ions, a positive electrode containing a positive electrode active material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte Wherein the lithium alloy is disposed on the positive electrode or the positive electrode current collector in an electrically connected state at the time of assembly. 前記負極活物質は、炭素系材料であることを特徴とする請求項1記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the negative electrode active material is a carbon-based material. 前記正極活物質は、リチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物の少なくとも何れか1つであることを特徴とする請求項1記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the positive electrode active material is at least one of a lithium cobalt composite oxide, a lithium manganese composite oxide, and a lithium nickel composite oxide. 前記リチウム合金は、リチウムアルミニウム合金であることを特徴とする請求項1記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the lithium alloy is a lithium aluminum alloy. 少なくともリチウムイオンを吸蔵・放出することが可能な負極活物質を含有する負極と、リチウムイオンを吸蔵・放出することが可能な正極活物質を含有する正極と、非水電解質とを収納した外装体を備えたリチウム二次電池において、組立て時に、前記正極又は正極集電体上にリチウム合金を電気的に接続された状態で配置し、電解液を注入後48時間以内に充電することを特徴とするとするリチウム二次電池の製造方法。An outer package containing a negative electrode containing a negative electrode active material capable of inserting and extracting lithium ions, a positive electrode containing a positive electrode active material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte In the lithium secondary battery provided with, during assembly, a lithium alloy is disposed on the positive electrode or the positive electrode current collector in an electrically connected state, and charged within 48 hours after injection of the electrolyte. Then, a method for manufacturing a lithium secondary battery. 電解液を注入後24時間以内に充電することを特徴とする請求項5に記載のリチウム二次電池の製造方法。The method for manufacturing a lithium secondary battery according to claim 5, wherein the battery is charged within 24 hours after the injection of the electrolyte. 前記負極活物質として炭素系材料を使用したことを特徴とする請求項5記載のリチウム二次電池の製造方法。The method for manufacturing a lithium secondary battery according to claim 5, wherein a carbon-based material is used as the negative electrode active material. 前記正極活物質としてリチウムコバルト複合酸化物、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物の少なくとも何れか1つを用いたことを特徴とする請求項5記載のリチウム二次電池の製造方法。The method for manufacturing a lithium secondary battery according to claim 5, wherein at least one of a lithium cobalt composite oxide, a lithium manganese composite oxide, and a lithium nickel composite oxide is used as the positive electrode active material. 前記リチウム合金としてリチウムアルミニウム合金を用いたことを特徴とする請求項5記載のリチウム二次電池の製造方法。6. The method for manufacturing a lithium secondary battery according to claim 5, wherein a lithium aluminum alloy is used as the lithium alloy.
JP2003128428A 2003-05-06 2003-05-06 Lithium secondary battery and manufacturing method thereof Pending JP2004335232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003128428A JP2004335232A (en) 2003-05-06 2003-05-06 Lithium secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003128428A JP2004335232A (en) 2003-05-06 2003-05-06 Lithium secondary battery and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2004335232A true JP2004335232A (en) 2004-11-25

Family

ID=33504587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003128428A Pending JP2004335232A (en) 2003-05-06 2003-05-06 Lithium secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2004335232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021520614A (en) * 2018-09-07 2021-08-19 エルジー・ケム・リミテッド Positive electrode for secondary battery, its manufacturing method, and lithium secondary battery including it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021520614A (en) * 2018-09-07 2021-08-19 エルジー・ケム・リミテッド Positive electrode for secondary battery, its manufacturing method, and lithium secondary battery including it
JP7106190B2 (en) 2018-09-07 2022-07-26 エルジー エナジー ソリューション リミテッド Positive electrode for secondary battery, manufacturing method thereof, and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
JP4563264B2 (en) Lithium secondary battery
JP4752574B2 (en) Negative electrode and secondary battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JP2006344505A (en) Electrolyte solution and battery
JP2008084705A (en) Nonaqueous electrolyte secondary battery
US20080171264A1 (en) Nonaqueous electrolyte secondary battery and fabrication method thereof
JP2002056835A (en) Sealed secondary battery
JP2004303597A (en) Lithium secondary battery and manufacturing method of the same
JP2002170567A (en) Nonaqueous electrolyte cell
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JP5282966B2 (en) Lithium ion secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP2001068160A (en) Flat nonaqueous electrolyte secondary battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP2008171589A (en) Negative electrode and battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JP4366790B2 (en) Battery electrolyte and non-aqueous electrolyte secondary battery
JP2003346768A (en) Non-aqueous electrolyte secondary battery
JP2000149994A (en) Polymer electrolyte lithium secondary battery
JP2000306610A (en) Nonaqueous electrolyte secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JP2004335232A (en) Lithium secondary battery and manufacturing method thereof
JP2730641B2 (en) Lithium secondary battery
JP2004247192A (en) Lithium secondary battery
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery