JP2004333355A - Line width measuring method - Google Patents

Line width measuring method Download PDF

Info

Publication number
JP2004333355A
JP2004333355A JP2003131375A JP2003131375A JP2004333355A JP 2004333355 A JP2004333355 A JP 2004333355A JP 2003131375 A JP2003131375 A JP 2003131375A JP 2003131375 A JP2003131375 A JP 2003131375A JP 2004333355 A JP2004333355 A JP 2004333355A
Authority
JP
Japan
Prior art keywords
line
measurement scale
image
angle
extracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003131375A
Other languages
Japanese (ja)
Inventor
Osamu Hirose
修 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2003131375A priority Critical patent/JP2004333355A/en
Publication of JP2004333355A publication Critical patent/JP2004333355A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measuring the line width of a mesh pattern, etc. instantaneously and accurately. <P>SOLUTION: The line width measuring method comprises a step of extracting the line shape from a taken image of the line, a step of setting a temporary center of gravity of the extracted line shape on the image from a plurality of centers of gravity of a plurality of overlapped portions on the image after setting a plurality of regions partly overlapped with the extracted line shape, larger than the line width, at approximately symmetric positions corresponding to the extracted line shape on the image, a step of setting the angle of a measuring scale to an angle corresponding to the center of a half-value width of an overlapping ratio on a curve showing the relation of the angle of the measuring scale with the overlapping ratio after measuring the overlapping ratio of the measuring scale with an extracted line by rotating the scale, the measuring scale center being set at the temporary center of gravity, and a step of parallel translating the measuring scale with holding the set angle of the scale to obtain two positions at which the overlapping ratio of the scale with the extracted line attenuates or increases, thereby determining the width of the line from the angle of the measuring scale and the distance of the parallel translation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はメッシュパターン等の線幅の計測方法に関する。詳しくはメッシュパターン等の線幅を瞬時に精度良く計測する方法に関する。
【0002】
【従来の技術】
集積回路、ディスプレイ前面板等には微細な線からなるメッシュパターンが設けられる。これらの微細な線幅の測定方法として、顕微鏡で実測する方法、画像濃度を測定して行う方法等が知られている。画像濃度を測定して行う方法として、例えば、基準線幅パッチを用い、平均画像濃度を測定して線幅を求める方法が知られている(特許文献1参照。)。
【0003】
【特許文献1】
特開平6−51604号公報
【0004】
【発明が解決しようとする課題】
しかしながら、顕微鏡で実測する方法は、瞬時に測定するのは困難であり、製造プロセスにリンクさせる方法としては不向きである。また画像濃度を測定して行う方法は、線幅の平均値を測定するものであり、個々の部分の線幅を測定するものではない。
【0005】
【課題を解決するための手段】
本発明者はかかる課題を解決するために、メッシュパターン等の個々の線幅を瞬時に精度良く測定する方法について鋭意検討した結果、撮影した画像から線形状を抽出し、抽出した線形状の画像上に計測スケールの角度を線形状に合わせて設定し、計測スケールを平行移動させて線と計測スケールとの重なり部分を求め、計測スケールの角度と平行移動距離から線幅を求めることによって、メッシュパターン等の線幅を瞬時に精度良く測定できることを見出し、本発明に至った。
【0006】
すなわち本発明は、線を撮影した画像から線形状を抽出する工程と、画像上に、抽出した線形状に対応する略対象位置に、抽出した線と一部重なり、線幅より大きい複数の領域を設定し、複数の重なる部分の重心を求め、複数の重心から画像上に抽出した線形状の仮の重心を設定する工程と、計測スケールの中心を仮の重心に置き、計測スケールを回転させて抽出した線と計測スケールとの重なり率を測定し、計測スケールの角度と重なり率の関係を示す曲線における重なり率の半値幅の中央に対応する角度に計測スケールの角度を設定する工程と、設定した計測スケールの角度を保持して計測スケールを平行移動し、抽出した線と計測スケールとの重なり率が減衰または増加する二つの位置を求め、計測スケールの角度と平行移動の距離とから線の線幅を決定する工程とを含むことを特徴とする線幅の計測方法である。
【0007】
【発明の実施の形態】
以下、図面を参照して本発明を詳細に説明するが、本発明はこれら図面に限られるものではない。
図1は本発明の線幅の計測方法に使用する装置の概要と撮影した画像の例を示す図である。(a)は装置の概要、(b)は撮影画像、(c)はその拡大画像である。
例えば、ディスプレイ前面板に印刷したメッシュパターン(1)を顕微鏡カメラ(2)で撮影し、コンピューター(3)およびディスプレイ(4)で画像処理し、メッシュパターンの線幅を求める。
【0008】
メッシュパターンを構成する線などの数ミクロン〜数十ミクロン程度の細い線の場合には、通常、顕微鏡カメラを用いて撮影するが、これに限定されるものではない。
撮影した線の画像は、まだらであったり、一部が細くなったり、途切れている場合もある。これらの影響をなくするため、線形状を抽出処理して、線形状を明確化する。
【0009】
線形状を抽出処理は、画像の輝度波形の二値化値、輝度波形の一次微分値の二値化値および輝度波形の二次微分値の二値化値を加算して得られる画像に膨張および収縮処理をして行われる。
この抽出処理の例を図2、図3に示す。図2は各処理の画像の輝度波形を示す。(1)は線の断面の原波形、(1’)は原波形の二値化値、(2)は原波形の1次微分の絶対値、(2’)は1次微分の絶対値の二値化値、(3)は原波形の2次微分値、(3’)は2次微分の二値化値、(4)は各二値化値の加算値、(5)は二値化値の加算値を膨張収縮処理した結果を表す。図3は前記(1)〜(5)に対応する画像である。
【0010】
膨張収縮処理の方法は、通常、画像処理で使用される方法で行われる。例えば、線を構成するそれぞれの画素について、その周囲の4方向または8方向の1〜2画素を白くし、それを1〜2回行い(膨張)、その後、この膨張回数より多く収縮させ、次いで膨張回数の合計と収縮回数が同じになるよう膨張させて行う。
【0011】
線形状を抽出処理は、上記の微分処理の代わりに鮮鋭化処理した波形を用いてもよい。すなわち、線形状を抽出する工程を、画像の輝度波形の二値化値、輝度波形を鮮鋭化処理した波形の二値化値を加算して得られる画像に膨張および収縮処理を行っても良い。鮮鋭化処理は複数回行ってもよく、その方法は、通常、画像処理で使用される方法で行われる。
この抽出処理の例を図4、図5に示す。図4は各処理の画像の輝度波形を示す。(1)は線の断面の原波形、(1’)は原波形の二値化値、(2)は原波形を1回鮮鋭化処理した輝度波形、(2’)はその二値化値、(3)は原波形を2回鮮鋭化処理した輝度波形、(3’)はその二値化値、(4)は各二値化値の加算値、(5)は二値化値の加算値を膨張収縮処理した結果を表す。図5は前記(1)〜(5)に対応する画像である。
【0012】
次に、この様にして線形状を抽出した画像上に、線形状の重心を設定するために、線形状に対応する略対象位置に抽出した線と一部重なり、線幅より大きい複数の領域を設定する。設定した複数の領域について、重なる部分に重心を設定する。複数の重なる部分の重心から線形状の重心を設定する。
この重心を設定する工程の例を図6に示す。この例では格子を形成する線、すなわち直交する線の画像である。この線と一部重なり、線幅より大きい領域(直線で囲む領域)を四方の線形状に対応する略対象位置に設定する。この領域を形成する線と抽出された線とで形成される平行四辺形の対角線の交点をこの部分の重心とし、これらの部分の重心から形成される四辺形の対角線の交点を抽出した線形状の仮の重心とする。
【0013】
次に、計測スケールの角度を抽出した線の角度に合わせる。具体的には、この仮の重心に計測スケールの中心を置き、計測スケールを回転させて抽出した線形状と計測スケールの重なり率を測定し、計測スケールの角度と重なり率の関係を示す曲線における重なり率の半値幅の中央に対応する角度に計測スケールの角度を設定する。
この計測スケールの角度を設定する工程の例を図7に示す。直交する線(黒線)からなる計測スケールの中心を先に設定した線形状の仮の重心に置き、これを回転させる(a)。その時、計測スケールの直線と抽出した線との重なり率を測定し、計測スケールの角度と重なり率の関係を示す曲線において、重なり率の半値幅の中央に対応する角度に計測スケールの角度を設定する(b)。
【0014】
次に、この設定した計測スケールの角度を保持して計測スケールを平行移動し、線形状と計測スケールとの重なり率が減衰または増加する二つの位置を求め、計測スケールの角度と平行移動の距離とから線の線幅を決定する。
この線幅を決定する工程の例を図8に示す。直交する計測スケールを形成する一方の直線を平行移動させて行き(a→b→c)、重なり率が減衰する位置を求める。平行移動し過ぎた場合は戻して(d)、重なり率が増加する位置を求める。計測スケールを平行移動させて線形状の線幅に対応して重なり率が減衰または増加する二つの位置を求め、その間の平行移動距離と計測スケールの直線の角度から、線形状の線幅を求める。平行移動距離は、通常、平行移動距離と重なり率の関係を示す曲線における重なり率の半値幅に対応する距離として把握される。直交する線についても同様にして線幅が求められる。
【0015】
【発明の効果】
本発明の方法によって、メッシュパターン等の個々の線幅を瞬時に精度良く測定できる。
【図面の簡単な説明】
【図1】本発明の線幅の計測方法に使用する装置の概要と撮影した画像を示す図である。
【図2】線形状の抽出処理の例における各輝度波形を示す図である。
【図3】線形状の抽出処理の例における各画像を示す図である。
【図4】線形状の抽出処理の別の例における各輝度波形を示す図である。
【図5】線形状の抽出処理の別の例における各画像を示す図である。
【図6】線形状の仮の重心を設定する工程の例を示す図である。
【図7】計測スケールの角度を設定する工程の例を示す図である。
【図8】計測スケールを平行移動して線幅を決定する工程の例を示す図である。
【符号の説明】
1:メッシュパターン
2:顕微鏡カメラ
3:コンピューター
4:ディスプレイ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring a line width of a mesh pattern or the like. More specifically, the present invention relates to a method for instantaneously and accurately measuring a line width of a mesh pattern or the like.
[0002]
[Prior art]
A mesh pattern composed of fine lines is provided on an integrated circuit, a display front plate, or the like. As a method of measuring these fine line widths, a method of actually measuring with a microscope, a method of measuring and measuring an image density, and the like are known. As a method for measuring and performing image density, for example, a method is known in which a reference line width patch is used to measure an average image density to obtain a line width (see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-6-51604 [0004]
[Problems to be solved by the invention]
However, the method of actually measuring with a microscope is difficult to measure instantaneously, and is not suitable as a method for linking to a manufacturing process. In addition, the method of measuring the image density is to measure the average value of the line width, and is not to measure the line width of each part.
[0005]
[Means for Solving the Problems]
In order to solve such a problem, the present inventors have earnestly studied a method for instantaneously and accurately measuring individual line widths of a mesh pattern or the like, and as a result, extracted a line shape from a captured image, and obtained an image of the extracted line shape. Set the angle of the measurement scale according to the line shape above, move the measurement scale in parallel, find the overlapping part of the line and the measurement scale, and calculate the line width from the angle of the measurement scale and the translation distance, mesh The present inventors have found that the line width of a pattern or the like can be instantaneously and accurately measured, and have reached the present invention.
[0006]
That is, the present invention provides a process of extracting a line shape from an image obtained by capturing a line, and a plurality of regions that partially overlap with the extracted line on the image at a substantially target position corresponding to the extracted line shape and are larger than the line width. Setting the center of gravity of multiple overlapping parts, setting the temporary center of gravity of the linear shape extracted on the image from the multiple centers, and placing the center of the measurement scale at the temporary center of gravity and rotating the measurement scale. Measuring the overlap ratio between the line extracted and the measurement scale, and setting the angle of the measurement scale to an angle corresponding to the center of the half width of the overlap ratio in the curve indicating the relationship between the angle of the measurement scale and the overlap ratio, Move the measurement scale in parallel while holding the angle of the set measurement scale, find two positions where the overlap rate between the extracted line and the measurement scale attenuates or increases, and calculate the angle of the measurement scale and the distance of the translation. It is a method of measuring a line width which comprises the step of determining the line width of the al lines.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these drawings.
FIG. 1 is a diagram showing an outline of an apparatus used for the line width measuring method of the present invention and an example of a photographed image. (A) is an outline of the device, (b) is a captured image, and (c) is an enlarged image thereof.
For example, the mesh pattern (1) printed on the front panel of the display is photographed by the microscope camera (2) and image-processed by the computer (3) and the display (4) to determine the line width of the mesh pattern.
[0008]
In the case of a thin line of several microns to several tens of microns, such as a line constituting a mesh pattern, an image is usually taken using a microscope camera, but the present invention is not limited to this.
The captured line image may be mottled, partly thin, or interrupted. In order to eliminate these effects, a line shape is extracted to clarify the line shape.
[0009]
The line shape extraction process expands the image obtained by adding the binarized value of the luminance waveform of the image, the binarized value of the first derivative of the luminance waveform, and the binarized value of the second derivative of the luminance waveform. And a contraction process.
FIGS. 2 and 3 show an example of this extraction processing. FIG. 2 shows a luminance waveform of an image in each process. (1) is the original waveform of the cross section of the line, (1 ') is the binarized value of the original waveform, (2) is the absolute value of the first derivative of the original waveform, and (2') is the absolute value of the first derivative. The binarized value, (3) is the second derivative of the original waveform, (3 ') is the binarized value of the second derivative, (4) is the sum of the binarized values, and (5) is the binary It shows the result of the expansion / contraction processing of the sum of the coded values. FIG. 3 shows images corresponding to the above (1) to (5).
[0010]
The method of the expansion and contraction processing is generally performed by a method used in image processing. For example, for each pixel constituting the line, the surrounding one or two pixels in four directions or eight directions are whitened, performed one or two times (expansion), then contracted more than this number of times of expansion, and then The expansion is performed so that the total number of times of expansion and the number of times of contraction become the same.
[0011]
In the process of extracting the line shape, a waveform subjected to a sharpening process may be used instead of the above-described differentiation process. That is, in the step of extracting the line shape, the expansion and contraction processing may be performed on an image obtained by adding the binarized value of the luminance waveform of the image and the binarized value of the waveform obtained by performing the sharpening processing on the luminance waveform. . The sharpening process may be performed a plurality of times, and the method is usually performed by a method used in image processing.
An example of this extraction processing is shown in FIGS. FIG. 4 shows a luminance waveform of an image in each process. (1) is the original waveform of the cross section of the line, (1 ') is the binarized value of the original waveform, (2) is the luminance waveform obtained by subjecting the original waveform to a single sharpening process, and (2') is its binarized value. , (3) is a luminance waveform obtained by subjecting the original waveform to twice sharpening processing, (3 ′) is its binarized value, (4) is the sum of the binarized values, and (5) is the binarized value. The result of the expansion and contraction processing of the added value is shown. FIG. 5 shows images corresponding to the above (1) to (5).
[0012]
Next, in order to set the center of gravity of the line shape on the image in which the line shape is extracted in this manner, a plurality of areas that partially overlap with the line extracted at a substantially target position corresponding to the line shape and are larger than the line width are set. Set. A center of gravity is set at an overlapping portion for the plurality of set regions. A linear center of gravity is set from the centers of gravity of a plurality of overlapping portions.
FIG. 6 shows an example of the process of setting the center of gravity. In this example, it is an image of a line forming a grid, that is, an orthogonal line. An area that partially overlaps with this line and is larger than the line width (an area surrounded by a straight line) is set to a substantially target position corresponding to a four-sided line shape. The intersection of the diagonal of the parallelogram formed by the line forming this area and the extracted line is taken as the center of gravity of this part, and the intersection of the diagonal of the quadrilateral formed from the center of gravity of these parts is extracted as a line shape Of the temporary center of gravity.
[0013]
Next, the angle of the measurement scale is adjusted to the angle of the extracted line. Specifically, put the center of the measurement scale at this temporary center of gravity, rotate the measurement scale, measure the line shape extracted and the overlap ratio of the measurement scale, and measure the overlap between the angle of the measurement scale and the overlap ratio. Set the angle of the measurement scale to the angle corresponding to the center of the half width of the overlap rate.
FIG. 7 shows an example of a process for setting the angle of the measurement scale. The center of the measurement scale composed of orthogonal lines (black lines) is placed at the temporary center of gravity of the previously set linear shape, and this is rotated (a). At that time, measure the overlap rate between the straight line of the measurement scale and the extracted line, and set the angle of the measurement scale to the angle corresponding to the center of the half width of the overlap rate in the curve showing the relationship between the angle of the measurement scale and the overlap rate (B).
[0014]
Next, hold the set angle of the measurement scale and translate the measurement scale in parallel, obtain two positions where the overlap rate between the linear shape and the measurement scale attenuates or increases, and calculate the angle of the measurement scale and the distance of the translation. The line width of the line is determined from and.
FIG. 8 shows an example of a process for determining the line width. One of the straight lines forming the orthogonal measurement scale is moved in parallel (a → b → c), and the position where the overlap ratio attenuates is obtained. If it has moved too much, it is returned (d) to find the position where the overlap ratio increases. Move the measurement scale in parallel to find the two positions where the overlap ratio attenuates or increases in accordance with the line width of the line shape, and calculate the line width of the line shape from the parallel movement distance between them and the angle of the straight line of the measurement scale . The parallel movement distance is generally grasped as a distance corresponding to the half width of the overlap ratio in a curve indicating the relationship between the parallel movement distance and the overlap ratio. The line width is similarly obtained for the orthogonal lines.
[0015]
【The invention's effect】
According to the method of the present invention, individual line widths such as mesh patterns can be instantaneously and accurately measured.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a device used for a line width measuring method of the present invention and a photographed image.
FIG. 2 is a diagram illustrating each luminance waveform in an example of a line shape extraction process.
FIG. 3 is a diagram illustrating each image in an example of a line shape extraction process.
FIG. 4 is a diagram showing each luminance waveform in another example of the linear shape extraction processing.
FIG. 5 is a diagram showing each image in another example of the line shape extraction processing.
FIG. 6 is a diagram illustrating an example of a process of setting a temporary center of gravity of a linear shape.
FIG. 7 is a diagram illustrating an example of a process of setting an angle of a measurement scale.
FIG. 8 is a diagram illustrating an example of a step of determining a line width by moving a measurement scale in parallel.
[Explanation of symbols]
1: mesh pattern 2: microscope camera 3: computer 4: display

Claims (4)

線を撮影した画像から線形状を抽出する工程と、
画像上に、抽出した線形状に対応する略対象位置に、抽出した線と一部重なり、線幅より大きい複数の領域を設定し、複数の重なる部分の重心を求め、複数の重心から画像上に抽出した線形状の仮の重心を設定する工程と、
計測スケールの中心を仮の重心に置き、計測スケールを回転させて抽出した線と計測スケールとの重なり率を測定し、計測スケールの角度と重なり率の関係を示す曲線における重なり率の半値幅の中央に対応する角度に計測スケールの角度を設定する工程と、
設定した計測スケールの角度を保持して計測スケールを平行移動し、抽出した線と計測スケールとの重なり率が減衰または増加する二つの位置を求め、計測スケールの角度と平行移動の距離とから線の線幅を決定する工程とを含むことを特徴とする線幅の計測方法。
Extracting a line shape from the image of the line,
On the image, at the approximate target position corresponding to the extracted line shape, a plurality of areas that partially overlap with the extracted line and are larger than the line width are set, the center of gravity of the plurality of overlapping parts is obtained, Setting a temporary center of gravity of the line shape extracted in
Place the center of the measurement scale at the temporary center of gravity, rotate the measurement scale, measure the overlap rate between the line extracted and the measurement scale, and determine the half-width of the overlap rate in the curve showing the relationship between the angle of the measurement scale and the overlap rate. Setting the angle of the measurement scale to an angle corresponding to the center;
Move the measurement scale in parallel while holding the angle of the set measurement scale, find the two positions where the overlap rate between the extracted line and the measurement scale attenuates or increases, and draw a line from the angle of the measurement scale and the distance of the translation. Determining a line width of the line width.
線形状を抽出する工程が、画像の輝度波形の二値化値、輝度波形の一次微分値の二値化値および輝度波形の二次微分値の二値化値を加算して得られる画像に膨張および収縮処理を行うことからなる請求項1記載の方法。The step of extracting the line shape is performed on the image obtained by adding the binarized value of the luminance waveform of the image, the binarized value of the first derivative of the luminance waveform, and the binarized value of the second derivative of the luminance waveform. The method of claim 1, comprising performing an expansion and contraction process. 線形状を抽出する工程が、画像の輝度波形の二値化値、輝度波形を鮮鋭化処理した波形の二値化値を加算して得られる画像に膨張および収縮処理を行うことからなる請求項1記載の方法。The step of extracting a line shape comprises performing expansion and contraction processing on an image obtained by adding a binarized value of a luminance waveform of an image and a binarized value of a waveform obtained by performing a sharpening process on the luminance waveform. The method of claim 1. 平行移動の距離を、計測スケールの移動距離と重なり率の関係を示す曲線における重なり率の半値幅に対応する距離とする請求項1記載の方法。2. The method according to claim 1, wherein the distance of the parallel movement is a distance corresponding to a half value width of the overlap ratio in a curve indicating a relationship between the movement distance of the measurement scale and the overlap ratio.
JP2003131375A 2003-05-09 2003-05-09 Line width measuring method Pending JP2004333355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131375A JP2004333355A (en) 2003-05-09 2003-05-09 Line width measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131375A JP2004333355A (en) 2003-05-09 2003-05-09 Line width measuring method

Publications (1)

Publication Number Publication Date
JP2004333355A true JP2004333355A (en) 2004-11-25

Family

ID=33506566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131375A Pending JP2004333355A (en) 2003-05-09 2003-05-09 Line width measuring method

Country Status (1)

Country Link
JP (1) JP2004333355A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150792A (en) * 2007-12-21 2009-07-09 Gunze Ltd Film inspecting apparatus
CN107228876A (en) * 2017-06-26 2017-10-03 东旭科技集团有限公司 A kind of method for evaluating glass substrate thermal contraction
CN107664480A (en) * 2016-07-28 2018-02-06 大陆汽车电子(连云港)有限公司 Automobile sensor cable length measuring system based on machine vision
CN109458899A (en) * 2018-09-21 2019-03-12 大族激光科技产业集团股份有限公司 A kind of method of quick judgement mark line width

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150792A (en) * 2007-12-21 2009-07-09 Gunze Ltd Film inspecting apparatus
CN107664480A (en) * 2016-07-28 2018-02-06 大陆汽车电子(连云港)有限公司 Automobile sensor cable length measuring system based on machine vision
CN107228876A (en) * 2017-06-26 2017-10-03 东旭科技集团有限公司 A kind of method for evaluating glass substrate thermal contraction
CN109458899A (en) * 2018-09-21 2019-03-12 大族激光科技产业集团股份有限公司 A kind of method of quick judgement mark line width
CN109458899B (en) * 2018-09-21 2020-12-18 大族激光科技产业集团股份有限公司 Method for rapidly judging marking line width

Similar Documents

Publication Publication Date Title
US5109430A (en) Mask alignment and measurement of critical dimensions in integrated circuits
US5119444A (en) System for expedited computation of laplacian and gaussian filters and correlation of their outputs for image processing
KR100730051B1 (en) Defect detection apparatus and defect detection method
JP6548542B2 (en) SEM image acquisition apparatus and SEM image acquisition method
JP2005315596A (en) Image inspection method and device
TWI303540B (en)
CN108616726A (en) Exposal control method based on structure light and exposure-control device
TW201113516A (en) Method for examining a sample by using a charged particle beam
EP0254644A2 (en) Mask alignment and measurement of critical dimensions in integrated circuits
TW201430336A (en) Defect detection method, device and system
KR20150064168A (en) Image processor, method for generating pattern using self-organizing lithographic techniques and computer program
JP2006023178A5 (en)
KR101653861B1 (en) Drawing data generating method, drawing method, drawing data generating apparatus and drawing apparatus
JP2004333355A (en) Line width measuring method
WO2013191132A1 (en) Analyzing system and method for repeatedly patterned image and three-dimensionally repeated structural data
JP2001201318A (en) Film thickness measuring method and device, and recording medium
JP2002175520A (en) Device and method for detecting defect of substrate surface, and recording medium with recorded program for defect detection
JP2006208340A (en) Defect inspecting device
JP3857668B2 (en) Pattern alignment method
KR20120098386A (en) Three-dimensional shape measuring device and three-dimensional shape measuring method
TWI585547B (en) Optical property acquisition apparatus, position measuring apparatus, data amending apparatus, optical property acquisition method, position measuring method and data amending method
JP4427980B2 (en) Mark position detection method
JP6355544B2 (en) Position measuring apparatus, data correcting apparatus, position measuring method and data correcting method
KR20070050320A (en) Method for 3-d shape recovery using 3-d focus measure operator
JP2008232840A (en) Sample inspection device and sample inspection method