JP2004333015A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2004333015A
JP2004333015A JP2003129791A JP2003129791A JP2004333015A JP 2004333015 A JP2004333015 A JP 2004333015A JP 2003129791 A JP2003129791 A JP 2003129791A JP 2003129791 A JP2003129791 A JP 2003129791A JP 2004333015 A JP2004333015 A JP 2004333015A
Authority
JP
Japan
Prior art keywords
compressor
radiator
cooling device
fins
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003129791A
Other languages
Japanese (ja)
Inventor
Naohiro Konosu
直広 鴻巣
Tomoyoshi Kamoshita
友義 鴨下
Satoyuki Matsushita
智行 松下
Hitoshi Hamanaka
仁 浜中
Atsushi Iikura
淳 飯倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2003129791A priority Critical patent/JP2004333015A/en
Publication of JP2004333015A publication Critical patent/JP2004333015A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device for very low temperature capable of reducing the manufacturing cost and performing the efficient cooling. <P>SOLUTION: This cooling device comprises a compressor 2a having the cylindrical outer shape, and an integrated radiator 3a for the compressor, having a cylindrical inner face same as the compressor. The integrated radiator 3a for the compressor has groups of fins composed of parallel fins of high concentration on a plurality of parts of its outer face, and has a clearance part for separating a part of the circumference, and a fastening part 34 for fixing, on its lower part. As a clearance of the clearance part can be adjusted on the basis of a screwing state of a screw 36 to the fastening part 34 for fixing, the radiator can be easily fitted to the compressor 2a, and can be easily and surely adhered and fixed to the compressor 2a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、各種センサーや通信用デバイス等を小型冷凍機によって極低温に冷却する冷凍装置に関する。
【0002】
【従来の技術】
赤外線センサーや磁気センサーを例えば液体窒素温度のような極低温に冷却すると、その検出感度が向上する。このため、これらのセンサーに極低温発生用小型冷凍機を組み合わせて、これらのセンサーを防災・警備用暗視装置や生体磁気計測装置等へ適用することが今後拡大するものと期待されている。また、通信デバイスをそのような極低温に冷却すると、その対雑音比が向上するので、それらのデバイスの小型化、低損失化が可能となる。したがって、このような冷却性能を有する小型冷凍機を用いた冷却装置は移動体通信やサブミリ波、ミリ波の通信デバイスの高性能化にも有効である。このような理由から、近年、各種センサーや通信用デバイス等を液体窒素温度近傍の極低温まで冷却できる小型冷凍機を用いた冷却装置の開発が積極的に推進されている。
【0003】
図5および図6は、このような冷却装置の従来例の上部の構成を示し、図5は筐体内部の正面図、図6は筐体内部の側面図である。
筐体1は屋外据付けのために防雨構造となっており、筐体1の内部は仕切板6で上下に分けられている。図5および図6は、仕切り板6より上の部分だけを示した図である。極低温を発生するための冷凍機は、圧縮機2と膨張機4と膨張機4の下部に配されている不図示の真空容器とで構成され、これらを運転、制御するための電源部および制御部は、図示されていないが、仕切板6の下側の空間に収納されている。冷却対象となるセンサー等は真空容器に収納される。
【0004】
特に発生する熱量の大きい圧縮機2および膨張機4が、仕切板6より上の空間に配置され、発生熱による温度上昇を抑制するために、圧縮機2の外面には7個の圧縮機用放熱ユニット3が取り付けられ、膨張機4の外側面には1対の膨張機用放熱器5が取り付けられている。圧縮機用放熱ユニット3への熱の伝達を良くするため、圧縮機2の外面の軸方向の中央部(放散熱量の特に多い部分)には、軸方向に垂直な断面が正八角形になる多面体形状部21が形成されており、この多面体形状部21の下辺を除く7辺のそれぞれに、伝熱グリース等の伝熱材を介して、高い密度にフィンを備えた圧縮機用放熱ユニット3がねじ31によって取り付けられている。これらの放熱手段に効果的に冷却用の外気を流通させるために、放熱手段の外側を覆って風洞7が配置され、風洞7の一端には風洞7内に冷却用の外気を吸い込ませるファン8が配置されている。圧縮機用放熱ユニット3および膨張機用放熱器5のフィンは圧縮機2の軸方向と同じ方向を長さ方向とし、風洞7はこの方向の両側を開口部としている。風洞7は、直射日光等によって温度上昇する筐体1からの熱が更に内部へ侵入することを抑制する働きもする。
【0005】
なお、上記のように、この種の冷却装置において、発熱量の大きい圧縮機等を分離配置してこれらを強制冷却するようにしたものとしては、例えば、特開2001−304711号公報に記載のものが知られている(特許文献1参照)。
【0006】
【特許文献1】
先行特許文献:特開2001−304711号公報
【0007】
【発明が解決しようとする課題】
極低温用の冷凍機の圧縮機は、小型で比較的大きな発熱量を有するので、その熱量を効果的に放散するために、放熱手段のフィンの密度を最大限に大きくしている。上記した従来の冷却装置においては、圧縮機の外形を多面体形状にして、個々の面にフィン密度を高くできる平行フィンを有する放熱ユニットをねじで取り付けている。しかし、圧縮機の外形を多面体形状に加工することおよびそこにねじ孔を加工することは多くの加工工数を必要とし、また多面体形状部にそれぞれの放熱ユニットを別々にねじで固定することも多くの組立工数を必要とする。
【0008】
この発明の課題は、上記のように多くの加工工数および組立工数を必要としなくて製造コストが安く、且つ効率良く冷却できる極低温用の冷却装置を提供することである。
【0009】
【課題を解決するための手段】
請求項1の発明は、圧縮機と膨張機と被冷却体を収納する真空容器とを備える冷凍機と、これらを運転制御する電源部および制御部と、を同一筐体内に収納して構成される冷却装置であって、前記圧縮機として円筒状の外形を有する圧縮機を備え、この圧縮機の放熱器として、その内面が圧縮機の円筒状の外形の直径と同等の直径を有する円筒状であり、その外面には円筒状の外形の中心軸に平行な複数の放熱フィンを備え、その下部に前記中心軸に平行な間隔部を有し、この間隔部を挟む両端部の外側に間隔部の幅を調節するための固定用締付け部を備え、且つ熱伝導性に優れた材料からなる一体型の圧縮機用放熱器を備えている。
【0010】
圧縮機の外形が円筒形であるので、圧縮機の外形加工は単純な旋盤加工となり、圧縮機の加工工数が大幅に低減する。また、放熱器の内面の形状を圧縮機の外形形状に合わせて円筒状にしており、且つ放熱器の下部に中心軸に平行な間隔部を有し、この間隔部を挟む両端部の外側に間隔部の幅を調節するための固定用締付け部を備えているので、間隔部の幅を広げることで圧縮機に放熱器を装着することが容易になり、且つ、間隔部の幅を狭めることによって、放熱器の内面を圧縮機の外面に押し付けて密着させ、熱伝導の良い状態に固定することができ、圧縮機が発生する熱を効率良くフィンに伝えることができる。間隔部の幅は、例えば固定用締付け部のねじの締め具合を調節することによって容易に調節できる。更に、放熱器が一体型であるから、放熱器の取付け工数は少なくて済む。
【0011】
請求項2の発明は、前記放熱フィンを、少なくとも、前記中心軸を含む水平面を中心としてその上下に配した水平面に平行な2組のフィン群と、前記中心軸を含み且つ前記水平面に対して45度の傾きをもつ2つの面に平行な4組のフィン群と、で構成する。
放熱フィンを、加工が容易でフィン密度を高くできる平行配置のフィン群を複数箇所に配置することによって構成しているので、高いフィン密度のフィンを備えた圧縮機用放熱器を得ることができる。また、圧縮機が配置される空間の軸方向に垂直な断面形状は正方形または矩形となるので、この形状内に、平行なフィンで構成されるフィン群を複数箇所に配置する場合には、フィンの先端の包絡線をできるだけその形状に近づけることによって、形成できるフィンの数を多くすることができる。しかし、放熱器に必要な可撓性の確保も勘案すると、前記包絡線を八角形とするのが最も実用的である。八角形の内、圧縮機の下面には膨張機が配置されるのでフィン群を配置することはできず、上面には大きさの制限からフィンが配置されないこともあるので、少なくとも水平方向の両側および水平から45度傾いた方向の4箇所にフィンが配置されることになる。
【0012】
【発明の実施の形態】
この発明による冷却装置の特徴は、圧縮機の外形が円筒状に加工されていること、および、圧縮機用の放熱器が、円筒状の内面を有し、圧縮機の外面に嵌め合わされた後に間隔部の締め付けで圧縮機に密着固定される一体型の放熱器であること、である。
以下において、この発明による冷却装置の実施の形態について実施例を用いてより詳しく説明する。
なお、従来技術と同じ機能の部分には同じ符号をつける。
【0013】
図1および図2は、この発明による冷却装置の実施例の上部の構成を示し、図1は筐体内部の正面図、図2は筐体内部の側面図であり、それぞれ従来例の図5および図6に対応する。
筐体1は屋外据付けのために防雨構造となっており、筐体1の内部は仕切板6で上下に分けられている。図1および図2は、仕切り板6より上の部分だけを示した図である。極低温を発生するための冷凍機は、圧縮機2aと膨張機4と膨張機4の下部に配されている不図示の真空容器とで構成され、これらを運転、制御するための電源部および制御部は、図示されていないが、仕切板6の下側の空間に収納されている。冷却対象となるセンサー等は真空容器に収納される。
【0014】
特に発生する熱量の大きい圧縮機2aおよび膨張機4が、仕切板6より上の空間に配置され、発生熱による温度上昇を抑制するために、圧縮機2aの外面には一体型の圧縮機用放熱器3aが取り付けられ、膨張機4の外側面には1対の膨張機用放熱器5が取り付けられている。これらの放熱手段に効果的に冷却用の外気を流通させるために、放熱手段の外側を覆って風洞7が配置され、風洞7の一端には風洞7内に冷却用の外気を吸い込ませるためのファン8が配置されている。一体型圧縮機用放熱器3aおよび膨張機用放熱器5のフィンは圧縮機2の軸方向と同じ方向を長さ方向とし、風洞7はこの方向の両側を開口部としている。風洞7は、直射日光等によって温度上昇する筐体1からの熱が更に内部へ侵入することを抑制する働きもする。
【0015】
図3は、実施例の一体型圧縮機用放熱器3aの構造を示し、(a)は側面図、(b)は正面図である。図4は、この一体型圧縮機用放熱器3aを圧縮機2aに装着する方法を示し、(a)は装着方向を示す正面図、(b)は装着された状態を示す正面図である。
圧縮機2aの外形は、図4(a)に示すように、加工が最も容易な円筒状である。一体型圧縮機用放熱器3aは、熱伝導率の高いアルミや銅を材料とし、型による引き抜き加工等によって一体に成形される。その外面には、円筒の中心軸を含む水平面に平行でその上下に配置された10枚のフィンからなる2つの側面のフィン群と円筒の中心軸を含み水平面から45度傾いている2つの面の両側に平行に配置された4つの斜め配置のフィン群と円筒の中心軸を含む垂直面に平行でその両側に配置された10枚のフィンからなる上部のフィン群とを備え、これらのフィン群を基盤部32で一体化している。基盤部32の内面は圧縮機2aの外形に合わせた円筒状である。図3(a)では、上記のフィン群を総称してフィン部33と記している。更に、一体型圧縮機用放熱器3aは、その下部に、円周の一部を長さ方向に分離する間隔部35を有し、間隔部35を挟む両端の外側の膨張機4を接続する部分の外側に、間隔部35の間隔を調節して一体型圧縮機用放熱器3aの内面を圧縮機2aの円筒状の外面に嵌め合わせて密着・固定させるための固定用締付け部34を備えている。対向する固定用締付け部34の間隔はねじ36によって調節される。
【0016】
図4(a)に示したように、一体型圧縮機用放熱器3aが圧縮機2aの外側に嵌め合わされる際には、ねじ36を緩めて、嵌め合わせを容易にする。図4(b)に示したように嵌め合わせが完了した後、ねじ36を締めつけて、一体型圧縮機用放熱器3aの内面を圧縮機2aの円筒状の外面に密着・固定させる。なお、この嵌め合わせの際には、接触面に伝熱グリース等の伝熱材を塗布して熱抵抗をできる限り少なくする。この説明からも明らかなように、この実施例の場合には、圧縮機に放熱器を装着する作業がきわめて簡単な作業になり、しかも両者間には優れた熱伝導状態が得られる。
【0017】
上記の実施例においては、放熱器の上部にもフィンを配置しているが、装置の大きさに制限がある場合には、これを無くして放熱器の上面を風洞に接触させ、風洞に放熱フィンの機能を兼ねさせることも有効である。
【0018】
【発明の効果】
請求項1の発明においては、圧縮機の外形を円筒形としているので、圧縮機の外形加工は単純な旋盤加工となり、圧縮機の加工工数が大幅に低減する。また、放熱器の内面の形状を圧縮機の外形形状に合わせて円筒状にしており、且つ放熱器の下部に中心軸に平行な間隔部を有し、この間隔部を挟む両端部の外側に間隔部の幅を調節するための固定用締付け部を備えているので、間隔部の幅を広げることで圧縮機に放熱器を装着することが容易になり、且つ、間隔部の幅を狭めることによって、放熱器の内面を圧縮機の外面に押し付けて密着させ、熱伝導の良い状態に固定することができ、圧縮機が発生する熱を効率良くフィンに伝えることができる。更に、放熱器が一体型であるから、放熱器の取付け工数は少なくて済む。
【0019】
したがって、この発明によれば、加工工数および組立工数が少なくなるので、製造コストが安く且つ効率良く冷却できる極低温用の冷却装置を提供することができる。
請求項2の発明においては、放熱フィンを、加工が容易な平行配置のフィン群を複数箇所に配置することによって構成しているので、高いフィン密度のフィンを備えた圧縮機用放熱器を得ることができる。また、圧縮機が配置される空間の軸方向に垂直な断面形状は正方形または矩形となるので、この形状内に、平行なフィンで構成されるフィン群を配置する場合には、フィンの先端の包絡線をできるだけその形状に近づけることによって、形成できるフィンの数を多くすることができる。しかし、放熱器に必要な可撓性の確保も勘案すると、前記包絡線を八角形とするのが最も実用的である。八角形の内、圧縮機の下面には膨張機が配置されるのでフィン群を配置することはできず、上面には大きさの制限からフィンが配置されないこともあるので、少なくとも水平方向の両側および水平から45度傾いた方向の4箇所にフィン群が配置されることになる。
【0020】
したがって、この発明によれば、実用的には最も効率よく冷却できる冷却装置を得ることができる。
【図面の簡単な説明】
【図1】この発明による冷却装置の実施例の構成を示す装置上部の内部正面図
【図2】この発明による冷却装置の実施例の構成を示す装置上部の内部側面図
【図3】実施例の圧縮機用放熱器の構造を示し、(a)は側面図、(b)は正面図
【図4】実施例の圧縮機用放熱器を圧縮機に装着する方法を示し、(a)は装着方向を示す正面図、(b)は装着された状態を示す正面図
【図5】従来技術による冷却装置の一例の構造を示す装置上部の内部正面図
【図6】従来技術による冷却装置の一例の構造を示す装置上部の内部側面図
【符号の説明】
1 筺体
2、2a 圧縮機
21 多面体形状部
3 圧縮機用放熱ユニット
31 ねじ
3a 一体型圧縮機用放熱器
32 基盤部 33 フィン部
34 固定用締付け部 35 間隔部
36 ねじ
4 膨張機
5 膨張機用放熱器
6 仕切板
7 風洞
8 ファン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigeration apparatus that cools various sensors, communication devices, and the like to extremely low temperatures using a small refrigerator.
[0002]
[Prior art]
When the infrared sensor or the magnetic sensor is cooled to an extremely low temperature such as the temperature of liquid nitrogen, the detection sensitivity is improved. Therefore, it is expected that the use of these sensors in combination with a small refrigerator for generating cryogenic temperature and the application of these sensors to night vision devices for disaster prevention and security, biomagnetic measurement devices, and the like will be expanded in the future. In addition, when the communication device is cooled to such a very low temperature, its noise-to-noise ratio is improved, so that the size and loss of the device can be reduced. Therefore, a cooling device using a small refrigerator having such a cooling performance is also effective for improving the performance of mobile communication and submillimeter wave and millimeter wave communication devices. For these reasons, in recent years, the development of a cooling device using a small refrigerator capable of cooling various sensors, communication devices, and the like to extremely low temperatures near the temperature of liquid nitrogen has been actively promoted.
[0003]
5 and 6 show the configuration of the upper portion of a conventional example of such a cooling device. FIG. 5 is a front view of the inside of the housing, and FIG. 6 is a side view of the inside of the housing.
The housing 1 has a rain-proof structure for outdoor installation, and the inside of the housing 1 is vertically divided by a partition plate 6. FIGS. 5 and 6 are views showing only a portion above the partition plate 6. The refrigerator for generating a cryogenic temperature is composed of the compressor 2, the expander 4, and a vacuum vessel (not shown) arranged below the expander 4, and a power supply unit for operating and controlling these, and Although not shown, the control section is housed in a space below the partition plate 6. A sensor or the like to be cooled is stored in a vacuum container.
[0004]
In particular, the compressor 2 and the expander 4, which generate a large amount of heat, are arranged in a space above the partition plate 6, and seven compressors are provided on the outer surface of the compressor 2 in order to suppress a rise in temperature due to the generated heat. The heat radiating unit 3 is mounted, and a pair of expander radiators 5 is mounted on the outer surface of the expander 4. In order to improve the transfer of heat to the compressor heat radiating unit 3, a polyhedron having a regular octagonal cross section perpendicular to the axial direction is provided at an axially central portion of the outer surface of the compressor 2 (a portion where the amount of heat dissipated is particularly large). A heat radiation unit 3 for a compressor having fins with high density is formed on each of the seven sides except the lower side of the polyhedral shape part 21 via a heat transfer material such as heat transfer grease. It is attached by a screw 31. A wind tunnel 7 is disposed over the heat radiating means so as to effectively circulate outside air for cooling to these heat radiating means. Is arranged. The lengths of the fins of the compressor radiator unit 3 and the expander radiator 5 are the same as the axial direction of the compressor 2, and the wind tunnel 7 has openings on both sides in this direction. The wind tunnel 7 also has a function of suppressing the heat from the housing 1 whose temperature rises due to direct sunlight or the like from further entering the inside.
[0005]
As described above, in this type of cooling device, as a device in which a compressor or the like having a large calorific value is separately arranged to forcibly cool them, for example, Japanese Patent Application Laid-Open No. 2001-304711 discloses One is known (see Patent Document 1).
[0006]
[Patent Document 1]
Prior Patent Document: Japanese Patent Application Laid-Open No. 2001-304711
[Problems to be solved by the invention]
Since the compressor of the cryogenic refrigerator is small and has a relatively large heat value, the density of the fins of the heat radiating means is maximized in order to effectively dissipate the heat value. In the above-described conventional cooling device, the external shape of the compressor is made into a polyhedral shape, and a heat radiating unit having parallel fins capable of increasing the fin density is attached to each surface with a screw. However, processing the external shape of the compressor into a polyhedral shape and drilling screw holes there requires a lot of processing man-hours, and often fixing each heat dissipation unit separately to the polyhedral shape portion with screws. Requires assembling man-hours.
[0008]
It is an object of the present invention to provide a cryogenic cooling device which does not require many processing steps and assembling steps as described above, has a low manufacturing cost, and can be efficiently cooled.
[0009]
[Means for Solving the Problems]
The invention according to claim 1 is configured such that a refrigerator including a compressor, an expander, and a vacuum container for storing a cooled body, and a power supply unit and a control unit for controlling the operation thereof are housed in the same housing. A cooling device comprising a compressor having a cylindrical outer shape as the compressor, and a radiator of the compressor having an inner surface having a diameter equivalent to the diameter of the cylindrical outer shape of the compressor. The outer surface thereof has a plurality of radiating fins parallel to the central axis of the cylindrical outer shape, and has a space portion parallel to the center axis at a lower portion thereof, and a space outside both ends sandwiching the space portion. An integrated compressor radiator made of a material having excellent thermal conductivity is provided with a fixing fastening portion for adjusting the width of the portion.
[0010]
Since the outer shape of the compressor is cylindrical, the outer shape processing of the compressor is a simple lathe processing, and the number of processing steps of the compressor is greatly reduced. In addition, the shape of the inner surface of the radiator is made cylindrical to match the outer shape of the compressor, and there is an interval parallel to the central axis at the lower part of the radiator, outside the both ends sandwiching this interval. Since the fixing fastening part for adjusting the width of the gap is provided, it is easy to mount the radiator on the compressor by widening the gap, and the width of the gap is narrowed. Thereby, the inner surface of the radiator can be pressed against and adhered to the outer surface of the compressor to fix the radiator in a state of good heat conduction, and the heat generated by the compressor can be efficiently transmitted to the fins. The width of the gap can be easily adjusted by, for example, adjusting the tightening degree of the screw of the fastening portion for fixing. Further, since the radiator is integrated, the number of steps for mounting the radiator can be reduced.
[0011]
The invention according to claim 2 is characterized in that the radiating fins are at least two sets of fin groups parallel to a horizontal plane arranged above and below the horizontal plane including the central axis, and the fin group includes the central axis and is arranged with respect to the horizontal plane. And four groups of fins parallel to two surfaces having a 45-degree inclination.
Since the heat radiation fins are configured by arranging a plurality of fin groups in a parallel arrangement that can be easily processed and can increase the fin density, a radiator for a compressor having fins with a high fin density can be obtained. . In addition, since the cross-sectional shape perpendicular to the axial direction of the space in which the compressor is disposed is a square or a rectangle, when fin groups composed of parallel fins are disposed The number of fins that can be formed can be increased by approximating the shape of the envelope at the tip of the as close as possible. However, considering the required flexibility of the radiator, it is most practical to make the envelope an octagon. Of the octagons, expanders are arranged on the lower surface of the compressor, so fin groups can not be arranged, and fins may not be arranged on the upper surface due to size restrictions, so at least both sides in the horizontal direction The fins are arranged at four positions in a direction inclined by 45 degrees from the horizontal.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The features of the cooling device according to the present invention are that the outer shape of the compressor is machined into a cylindrical shape, and that the radiator for the compressor has a cylindrical inner surface and is fitted to the outer surface of the compressor. That is, it is an integrated radiator that is tightly fixed to the compressor by tightening the gap.
Hereinafter, embodiments of the cooling device according to the present invention will be described in more detail using examples.
The parts having the same functions as those of the prior art are denoted by the same reference numerals.
[0013]
1 and 2 show an upper configuration of an embodiment of a cooling device according to the present invention. FIG. 1 is a front view of the inside of a housing, and FIG. 2 is a side view of the inside of the housing. 6 and FIG.
The housing 1 has a rain-proof structure for outdoor installation, and the inside of the housing 1 is vertically divided by a partition plate 6. FIGS. 1 and 2 are views showing only a portion above the partition plate 6. The refrigerator for generating a cryogenic temperature is composed of the compressor 2a, the expander 4, and a vacuum vessel (not shown) arranged below the expander 4, and a power supply unit for operating and controlling them, and Although not shown, the control section is housed in a space below the partition plate 6. A sensor or the like to be cooled is stored in a vacuum container.
[0014]
In particular, the compressor 2a and the expander 4, which generate a large amount of heat, are arranged in a space above the partition plate 6, and an outer surface of the compressor 2a is provided on the outer surface of the compressor 2a for suppressing an increase in temperature due to generated heat. A radiator 3 a is mounted, and a pair of expander radiators 5 is mounted on the outer surface of the expander 4. In order to allow the outside air for cooling to flow through these heat radiating means effectively, a wind tunnel 7 is arranged so as to cover the outside of the heat radiating means, and one end of the wind tunnel 7 is for sucking outside air for cooling into the wind tunnel 7. A fan 8 is provided. The length of the fins of the integrated compressor radiator 3a and the expander radiator 5 is the same as the axial direction of the compressor 2, and the wind tunnel 7 has openings on both sides in this direction. The wind tunnel 7 also has a function of suppressing the heat from the housing 1 whose temperature rises due to direct sunlight or the like from further entering the inside.
[0015]
3A and 3B show the structure of the radiator 3a for an integrated compressor of the embodiment, wherein FIG. 3A is a side view and FIG. 3B is a front view. FIGS. 4A and 4B show a method of mounting the integrated compressor radiator 3a on the compressor 2a. FIG. 4A is a front view showing a mounting direction, and FIG. 4B is a front view showing a mounted state.
As shown in FIG. 4A, the outer shape of the compressor 2a is a cylindrical shape that is most easily processed. The integrated-type compressor radiator 3a is made of aluminum or copper having high thermal conductivity, and is integrally formed by drawing with a mold. On its outer surface, there are two fin groups of 10 side fins which are parallel to the horizontal plane including the central axis of the cylinder and are arranged above and below it, and two surfaces which include the central axis of the cylinder and are inclined by 45 degrees from the horizontal plane. And four upper diagonally arranged fin groups which are parallel to the vertical plane including the center axis of the cylinder and are arranged on both sides thereof. The groups are integrated by a base 32. The inner surface of the base 32 has a cylindrical shape conforming to the outer shape of the compressor 2a. In FIG. 3A, the above-mentioned fin group is generally referred to as a fin portion 33. Further, the integrated compressor radiator 3a has, at the lower portion thereof, an interval portion 35 for separating a part of the circumference in the length direction, and connects the expanders 4 on both ends sandwiching the interval portion 35. Outside the portion, there is provided a fixing fastening portion 34 for adjusting the interval of the interval portion 35 to fit the inner surface of the integrated compressor radiator 3a to the cylindrical outer surface of the compressor 2a so as to closely adhere and fix it. ing. The distance between the opposed fixing fastening portions 34 is adjusted by screws 36.
[0016]
As shown in FIG. 4A, when the integrated compressor radiator 3a is fitted to the outside of the compressor 2a, the screw 36 is loosened to facilitate the fitting. After the fitting is completed as shown in FIG. 4 (b), the screw 36 is tightened, and the inner surface of the integrated compressor radiator 3a is brought into close contact with and fixed to the cylindrical outer surface of the compressor 2a. At the time of this fitting, a heat transfer material such as heat transfer grease is applied to the contact surface to reduce the thermal resistance as much as possible. As is apparent from this description, in the case of this embodiment, the operation of mounting the radiator on the compressor is extremely simple, and an excellent heat conduction state is obtained between the two.
[0017]
In the above embodiment, the fins are also arranged on the upper part of the radiator. However, when the size of the device is limited, the fins are eliminated and the upper surface of the radiator is brought into contact with the wind tunnel to radiate heat to the wind tunnel. It is also effective to have the function of the fin.
[0018]
【The invention's effect】
According to the first aspect of the present invention, since the outer shape of the compressor is a cylindrical shape, the outer shape processing of the compressor is simple lathe processing, and the number of processing steps of the compressor is greatly reduced. In addition, the shape of the inner surface of the radiator is made cylindrical to match the outer shape of the compressor, and there is an interval parallel to the central axis at the lower part of the radiator, outside the both ends sandwiching this interval. Since the fixing fastening part for adjusting the width of the gap is provided, it is easy to mount the radiator on the compressor by widening the gap, and the width of the gap is narrowed. Thereby, the inner surface of the radiator can be pressed against and adhered to the outer surface of the compressor to fix the radiator in a state of good heat conduction, and the heat generated by the compressor can be efficiently transmitted to the fins. Further, since the radiator is integrated, the number of steps for mounting the radiator can be reduced.
[0019]
Therefore, according to the present invention, since the number of processing steps and the number of assembling steps are reduced, it is possible to provide a cryogenic cooling device that can be efficiently cooled at a low manufacturing cost.
According to the second aspect of the present invention, since the heat radiation fins are formed by arranging a plurality of fin groups in a parallel arrangement that are easy to process, a radiator for a compressor having fins with a high fin density is obtained. be able to. In addition, since the cross-sectional shape perpendicular to the axial direction of the space in which the compressor is disposed is a square or a rectangle, when a fin group including parallel fins is disposed in this shape, By making the envelope as close as possible to its shape, the number of fins that can be formed can be increased. However, considering the required flexibility of the radiator, it is most practical to make the envelope an octagon. Of the octagons, a fin group cannot be arranged because an expander is arranged on the lower surface of the compressor, and fins may not be arranged on the upper surface due to size restrictions, so at least both sides in the horizontal direction The fin groups are arranged at four positions in a direction inclined by 45 degrees from the horizontal.
[0020]
Therefore, according to the present invention, it is possible to obtain a cooling device that can cool the most efficiently practically.
[Brief description of the drawings]
FIG. 1 is an internal front view of an upper portion of a cooling device according to an embodiment of the present invention. FIG. 2 is an internal side view of an upper portion of the cooling device showing an embodiment of a cooling device according to the present invention. (A) is a side view, (b) is a front view, and (a) shows a method of mounting the compressor radiator of the embodiment to the compressor. FIG. 5B is a front view showing a mounted state. FIG. 5 is a front view showing an example of a structure of a conventional cooling device. FIG. Internal side view of the upper part of the device showing an example structure [Explanation of reference numerals]
DESCRIPTION OF SYMBOLS 1 Housing 2, 2a Compressor 21 Polyhedral shape part 3 Radiator unit 31 for compressor Thread 3a Radiator for integrated compressor 32 Base part 33 Fin part 34 Fastening part for fixing 35 Interval part 36 Screw 4 Expander 5 Expander Radiator 6 Partition plate 7 Wind tunnel 8 Fan

Claims (2)

圧縮機と膨張機と被冷却体を収納する真空容器とを備える冷凍機と、これらを運転制御する電源部および制御部と、を同一筐体内に収納して構成される冷却装置であって、
前記圧縮機として円筒状の外形を有する圧縮機を備え、
この圧縮機の放熱器として、その内面が圧縮機の円筒状の外形の直径と同等の直径を有する円筒状であり、その外面には円筒状の外形の中心軸に平行な複数の放熱フィンを備え、その下部に前記中心軸に平行な間隔部を有し、この間隔部を挟む両端部の外側に間隔部の幅を調節するための固定用締付け部を備え、且つ熱伝導性に優れた材料からなる一体型の圧縮機用放熱器を備えている、
ことを特徴とする冷却装置。
A refrigerator including a compressor, an expander, and a vacuum container that stores a body to be cooled, and a power supply unit and a control unit that control the operation of the refrigerator and a cooling device configured to be housed in the same housing,
With a compressor having a cylindrical outer shape as the compressor,
As a radiator of this compressor, the inner surface is a cylindrical shape having a diameter equivalent to the diameter of the cylindrical outer shape of the compressor, and a plurality of radiating fins parallel to the central axis of the cylindrical outer shape are formed on the outer surface thereof. It has an interval parallel to the central axis at its lower part, and has a fixing fastening portion for adjusting the width of the interval outside the both ends sandwiching the interval, and has excellent heat conductivity. Equipped with an integrated compressor radiator made of material,
A cooling device characterized by the above-mentioned.
前記放熱フィンを、少なくとも、前記中心軸を含む水平面を中心としてその上下に配した水平面に平行な2組のフィン群と、前記中心軸を含み且つ前記水平面に対して45度の傾きをもつ2つの面に平行な4組のフィン群と、で構成する、
ことを特徴とする請求項1に記載の冷却装置。
The radiating fins are at least two sets of fin groups parallel to a horizontal plane arranged above and below a horizontal plane including the central axis, and two fin groups including the central axis and having a 45 degree inclination with respect to the horizontal plane. And four sets of fins parallel to one surface,
The cooling device according to claim 1, wherein:
JP2003129791A 2003-05-08 2003-05-08 Cooling device Pending JP2004333015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003129791A JP2004333015A (en) 2003-05-08 2003-05-08 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003129791A JP2004333015A (en) 2003-05-08 2003-05-08 Cooling device

Publications (1)

Publication Number Publication Date
JP2004333015A true JP2004333015A (en) 2004-11-25

Family

ID=33505494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003129791A Pending JP2004333015A (en) 2003-05-08 2003-05-08 Cooling device

Country Status (1)

Country Link
JP (1) JP2004333015A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297981A (en) * 2006-04-28 2007-11-15 Hitachi Ltd Reciprocating compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297981A (en) * 2006-04-28 2007-11-15 Hitachi Ltd Reciprocating compressor

Similar Documents

Publication Publication Date Title
EP3558820B1 (en) Systems, methods, and apparatus for passive cooling of uavs
JP3105270U (en) Heat sink device
US6360816B1 (en) Cooling apparatus for electronic devices
US20020126450A1 (en) Cooling device for hard disc
US20050081532A1 (en) Computer cooling apparatus
US20040108104A1 (en) Axial heat-dissipating device
US20040246677A1 (en) Computer cooling apparatus
US20060162340A1 (en) Chip-based CPU cooler and cooling method thereof
US20030184972A1 (en) Computer having cooling device
US5992511A (en) Cooling apparatus for electronic element
EP2440987A2 (en) Heat-dissipating device and electronic apparatus having the same
JP2548124B2 (en) Heat sink device
TW201213760A (en) Heat dissipation device with multiple heat pipes
JP3449604B2 (en) Cooling fins
US6816374B2 (en) High efficiency heat sink/air cooler system for heat-generating components
JP2004333015A (en) Cooling device
JPH1092985A (en) Heat sink
JP2787803B2 (en) Electronic cooling device
JPS6255000A (en) Heat sink apparatus
JP2003309238A (en) Tower-type heat sink
JP2003008274A (en) Electronic apparatus system
KR100356398B1 (en) Refrigerated system with thermo electric module and heat pipe
KR20030061315A (en) Personal Computer Cooling Apparatus
JPH088493A (en) Heat radiating structure for semiconductor laser device
CN211349185U (en) Android system industrial control computer