JP2004331425A - Han/hn-based monopropellant and method for developing hot gas using the same - Google Patents

Han/hn-based monopropellant and method for developing hot gas using the same Download PDF

Info

Publication number
JP2004331425A
JP2004331425A JP2003126278A JP2003126278A JP2004331425A JP 2004331425 A JP2004331425 A JP 2004331425A JP 2003126278 A JP2003126278 A JP 2003126278A JP 2003126278 A JP2003126278 A JP 2003126278A JP 2004331425 A JP2004331425 A JP 2004331425A
Authority
JP
Japan
Prior art keywords
han
catalyst
monopropellant
nitrate
propellant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003126278A
Other languages
Japanese (ja)
Other versions
JP4333943B2 (en
Inventor
Masahiro Takano
雅弘 高野
Tsuneo Ayabe
統夫 綾部
Tsuneo Kasama
恒雄 笠間
Shigefumi Miyazaki
繁文 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosoya Fireworks Co Ltd
IHI Corp
IHI Aerospace Co Ltd
Original Assignee
Hosoya Fireworks Co Ltd
IHI Corp
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosoya Fireworks Co Ltd, IHI Corp, IHI Aerospace Co Ltd filed Critical Hosoya Fireworks Co Ltd
Priority to JP2003126278A priority Critical patent/JP4333943B2/en
Publication of JP2004331425A publication Critical patent/JP2004331425A/en
Application granted granted Critical
Publication of JP4333943B2 publication Critical patent/JP4333943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-toxicity monopropellant which can be easily handled, drastically reduces or eliminates the necessity of wearing protective clothing etc., at its handling and has burning characteristics comparable to those of hydrazine, and a method for developing hot gas using the same. <P>SOLUTION: The HAN/HN-based monopropellant 1 comprising an HAN/NH mixture-based oxidizer containing hydroxylammonium nitrate (HAN), hydrazinium nitrate (HN) and water and a fuel constituent is directly sprayed on a catalyst 10 which has been preheated to a prescribed temperature to generate the hot gas. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液体ロケット、小型スラスタ、タービン用ガスジェネレータ、等に用いる1液推進薬(モノプロペラント)とこれを用いた高温ガス発生方法に関する。
【0002】
【従来の技術】
1液推進薬(モノプロペラント)は、1液のみで機能を果たす推進剤であり、[特許文献1][非特許文献1][非特許文献2]等に開示されている。
また、関連する固体推進薬は、[特許文献2][特許文献3][特許文献4]に、ハイブリッド推進薬は、[特許文献5]等に開示されている。
【0003】
【非特許文献1】
ジョージP.サットン、ロケット推進工学、山海堂、第8章 液体推進薬
【非特許文献2】
E.W.Schmidt,”HYDRAZINE AND ITS DERIVATIVES−PREPARATION,PROPERTIES,APPLICATIONS−”,A WILEY−INTERSCIENCE PUBLICATION,JOHN WILEY & SONS,P515−528
【0004】
【特許文献1】
特開平11−22555号公報
【特許文献2】
特開平11−1386号公報
【特許文献3】
特表2001−506216号公報
【特許文献4】
特表2002−517376号公報
【特許文献5】
特開2002−20191号公報
【0005】
[特許文献1]の「一液推進方法および一液推進装置」は、一液推進薬により推力を得るに際し、一液推進薬としてヒドロキシンアンモニウムナイトレートと燃料を含む混合液を用い、混合液のうち一部を触媒により分解して高温ガスを発生させると共に、混合液のうち残部を燃焼空間内に直接噴射し、直接噴射した混合液を燃焼空間内で高温ガスにより点火燃焼させて推力を得る、ものである。
【0006】
[特許文献2]の「固体推進薬」は、酸化剤成分である硝酸ヒドロキシンアンモニウムと燃料成分である炭化水素系高分子ないしはゴム質材料からなるバインダーと適宜の補助剤を混合してなる、ものである。
【0007】
[特許文献3]の「固溶体乗物エアバッククリーンガス発生器の推進薬」は、a)ポリアルキルアンモニウムバインダーと、b)硝酸アンモニウム、及び第1添加剤の融点だけでなく該硝酸アンモニウムの融点よりも十分に低い温度で液体である共晶溶融物を生成する該第1添加剤からなる酸化剤混合物とからなる、ものである。
[特許文献4]の「含水組成物をベースとするガス発生用固体発火燃料」は、ゲル化効果を有する少なくとも1種の有機結合剤と、この結合剤によって吸収される液相の少なくとも1種の主酸化剤系とからなる、燃焼時に固体残留物を生じないガスを発生する発火組成物において、ゲル化効果を有する有機結合剤がポリビニルアルコール、ヒドロキシエチルセルロースおよびキサンタンガムからなる群の中から選択され、液相の主酸化剤系が水と硝酸ヒドロキシルアンモニウムとの混合物からなる、ものである。
【0008】
[特許文献5]の「液体酸化剤及びハイブリッド推進薬」は、硝酸ヒドロキシルアンモニウムと、ヒドラジニウムニトロフォルメイト、アンモニウムジニトラミド、硝酸アンモニウム、及び過酸化水素からなる群より選択された1種類以上の酸化剤とを含有する、ものである。
【0009】
【発明が解決しようとする課題】
[非特許文献1]に開示されているように、1液推進薬(モノプロペラント)として、ヒドラジン、過酸化水素、酸化エチレン、及びニトロメタンが従来から試験的に用いられている。しかし、化学的、熱的に安定で貯蔵性が良く、かつ分解/反応しやすく良好な燃焼特性を有することから、現在ではヒドラジンのみが実用され、その他は今日では使われていない。
【0010】
ヒドラジン(N)の触媒反応は、中間生成物を無視すると、式(1)で示すことができる。
3N→4(1−x)NH+(1+2x)N+6xH・・・(1)
【0011】
式(1)において、xはアンモニアの解離度であり、解離度xに応じて、ヒドラジンは、断熱反応温度900〜1600K、特性排気速度1200〜1350m/s、比推力200〜230s、等の優れた燃焼特性を有する。
【0012】
しかし、ヒドラジンは毒性が強く、取り扱い時には防護服等で身を固める必要があり、取り扱い性が悪い問題点があった。
【0013】
一方、[非特許文献1]には、HN(hydrazinium nitrate:硝酸ヒドラジン)及びHN−HO混合薬が1液推進薬として例示されている。
【0014】
HN(硝酸ヒドラジン)は、ロケットエンジンの残留物の1つとして発見されたものであり、非常に安定性が高く、大気圧下では、電気加熱線によっても燃焼しない特性を有する。
【0015】
また、表1に示すように、HN単体では、爆轟(デトネーション)が起こり得るが、HN−HO混合薬は、HNが75%未満では爆轟は起こらないことが知られている。
【0016】
【表1】

Figure 2004331425
【0017】
更に、図5に示すように、HN−HO−HYDRAZINE系の推進薬は、水の量が40%以下の性能の高い領域において、爆轟性があり、かつヒドラジンを含むため取り扱い性も悪い問題点があった。
【0018】
本発明は、上述した従来の状況に鑑みて成されたものある。すなわち、本発明の目的は、毒性が低く取り扱いが容易であり取り扱い時に防護服等で身を固める必要性を大幅に低減又は無くすことができ、かつヒドラジンに匹敵する燃焼特性を有する1液推進薬(モノプロペラント)とこれを用いた高温ガス発生方法を提供することにある。
【0019】
【課題を解決するための手段】
本発明によれば、ヒドロキシルアンモニウムナイトレート(HAN)、ヒドラジウムナイトレート(HN)及び水を含むHAN/HN混合系の酸化剤と燃料成分とからなる、ことを特徴とするHAN/HNベースモノプロペラントが提供される。
【0020】
HANのみでは応答性(圧力の立ち上がり特性)が悪く、インジェクションから推力発生若しくはガス発生までに時間がかかる。また、HN−HO−HYDRAZINE系では爆轟性があり、特に性能の高い水の量が40%以下の領域では爆轟する。
これに対して、本発明の構成では、両成分を含むため、応答性が高いことが後述する試験結果で確認された。また、HANの安定性が非常に高いため、爆轟性のないモノプロペラントが得られる。さらに、本発明のモノプロペラントは、毒性の高いヒドラジンを含まないので、取り扱いが容易であり防護服等の必要性を大幅に低減又は無くすことができる。
【0021】
本発明の好ましい実施形態によれば、HANとHNの合計含有量が20%以上、90%未満であり、水の含有量が10%以上、50%以下である。
【0022】
HAN−HO混合薬は、HANが90%未満では爆轟は起こらないので、HANの一部をHNに置き換えてもその合計含有量が20%以上、90%未満であり、爆轟は起こらない。従って、水の含有量を10%以上、50%以下にすることで、性能が高く爆轟性のないモノプロペラントが得られる。
【0023】
また、前記燃料成分は、トリエタノールアンモニウムナイトレート(TEAN)又はアルコール類を含む炭化水素系燃料である。
【0024】
TEANを燃料成分とすることで、燃焼効率が高く応答性に優れた1液推進薬とすることができる。またアルコール類を含む炭化水素系燃料を燃料成分とすることで、取り扱い性のよい低コストの1液推進薬とすることができる。
【0025】
また、本発明によれば、ヒドロキシルアンモニウムナイトレート(HAN)、ヒドラジウムナイトレート(HN)及び水を含むHAN/HN混合系の酸化剤と燃料成分とからなるHAN/HNベースモノプロペラントを、触媒に直接噴霧して高温ガスを発生させる、ことを特徴とする高温ガス発生方法が提供される。
【0026】
この方法によれば、HAN/HNベースモノプロペラントが、毒性の高いヒドラジンを含まないので、取り扱いが容易であり取り扱い時に防護服等で身を固める必要がない。
また、このモノプロペラントは応答性がよく、かつ性能の高い水の量が10〜50%の範囲で爆轟性がないので、触媒に直接噴霧するだけで高い応答性で高温ガスを発生させることができる。
【0027】
本発明の好ましい実施形態によれば、前記触媒は、イリジウム系触媒であり、これを50℃以上、300℃以下に予熱する。
イリジウム系触媒は入手が容易であり、これを50℃以上、300℃以下に予熱するだけで、反応遅れ時間の短い高い応答性で高温ガスを発生させることができることが、後述する試験結果により確認された。
【0028】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
【0029】
図1は、本発明の方法を実施するための試験装置の構成図である。この図において、1は1液推進薬(モノプロペラント)、2は加圧ガスタンク、4は推進薬タンク、6a,6bは電磁弁、7a,7bは手動開閉弁、8はスラスタ、9a,9bはヒータ、10は触媒、Pは圧力計測器、Tは温度計測器である。
【0030】
加圧ガスタンク2は、1液推進薬1と反応しない不活性ガス(例えば、N,Ar,He)を例えば1〜3Mpaの圧力で内蔵し、手動開閉弁7aを介して推進薬タンク4内の1液推進薬1を加圧し、手動開閉弁7bを介して電磁弁6a,6bへ加圧状態の1液推進薬1を供給する。
【0031】
電磁弁6a,6bは、この例では直列に配置され、図示しない制御装置により、2つの電磁弁の連動により、周期的に短時間だけ両方を開くパルスモードを可能にしている。ヒータ9aは、電磁弁6a,6b内の推進薬を予熱し、所定の温度に保持する。
【0032】
スラスタ8は、内蔵する触媒10により、1液推進薬1を反応/分解させ高温ガスを発生させる。ヒータ9bは、触媒10を予熱し、所定の温度に保持する。
【0033】
本発明の1液推進薬(モノプロペラント)1は、HAN/HN混合系の酸化剤と燃料成分とからなる。
酸化剤は、ヒドロキシルアンモニウムナイトレート(HAN)、ヒドラジウムナイトレート(HN)及び水を含む。また、HANとHNの合計含有量が20%以上、90%未満であり、水の含有量が10%以上、50%以下であるのがよい。
燃料成分は、好ましくはトリエタノールアンモニウムナイトレート(TEAN)であるが、炭化水素系燃料であってもよい。
【0034】
触媒10は、イリジウム系触媒であるのが好ましいが、本発明はこれに限定されず、その他の周知の触媒、例えばPt,Pd等を用いることができる。
【0035】
図2は、本発明の方法に用いるスラスターの一例を示す構成図である。この図において、触媒10は、25−30MESHの細かい粒子からなる触媒(SHELL NO.405)と、14−18MESHの粗い粒子からなる触媒(SHELL NO.405)との2層になっている。また、11は噴射装置であり、1液推進薬1を微細な液滴の状態で触媒に直接噴霧するようになっている。
【0036】
上述した装置を用い、本発明の方法では、HAN/HNベースモノプロペラント1を、所定温度に予熱した触媒に直接噴霧して高温ガスを発生させる。
この方法により、微細な液滴状態の1液推進薬(モノプロペラント)1を触媒層で補足して蒸発させるとともに、1液推進薬1を反応/分解させ高温ガスを発生させることができる。
【0037】
【実施例】
以下、上述した装置を用いた試験結果を説明する。
【0038】
この試験では、1液推進薬(モノプロペラント)として、HN/HAN/TEAN/HOの重量比率が16/47/20/17のもの(Type:A)と20/40/20/20のもの(Type:B)の2種を試験した。また、触媒10としてイリジウム系触媒を用い、初期触媒温度を200℃に保持した。
【0039】
図3は、本発明の実施例を示すパルスモード試験結果である。この試験は、2つの電磁弁6a,6bの連動により、周期的に0.1sec/ON、0.9sec/ONを繰返し、その応答性を試験したものである。0.1sec/ONによる推進薬の供給量は0.04g/パルスである。またこの図において、横軸は時間、縦軸は電磁弁6a,6bのON/OFFとこれに対応するスラスタ内の圧力変化を示している。
この図から、スラスタ内の圧力変化は、電磁弁6a,6bのON/OFFに正確に追従しており、応答性が非常に高いことが確認された。
【0040】
図4は、本発明の実施例を示す反応遅れ試験結果である。この図において、横軸は触媒温度、縦軸は反応遅れ時間である。また、図中の■は従来例(HAN−TEAN)、○は本発明の上述したType:Aである。
この図から、100℃以上の予熱温度において、本発明の1液推進薬の反応遅れ時間は、従来例よりも1桁(10倍)以上短く、応答性に優れていることがわかる。
【0041】
上述したように、本発明の1液推進薬は、従来例よりも応答性が非常に高いことが試験結果で確認された。また、HNの安定性が非常に高いため、水の含有量が反応性の高い10%以上、50%以下の範囲で爆轟性のないモノプロペラントが得られる。さらに、本発明のモノプロペラントは、毒性の高いヒドラジンを含まないので、取り扱いが容易であり防護服等の必要性を大幅に低減又は無くすことができる。
【0042】
また、本発明の1液推進薬は、その組成から、以下の燃焼特性を有することが試算できる。
燃焼温度:約900〜2400K、
比推力:180〜260s
従って、本発明の1液推進薬は、ヒドラジンに匹敵する燃焼特性を有するといえる。
【0043】
なお、本発明は上述した実施例及び実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0044】
【発明の効果】
上述したように、本発明のHAN/HNベースモノプロペラントとこれを用いた高温ガス発生方法は、毒性が低く取り扱いが容易であり取り扱い時に防護服等で身を固める必要性を大幅に低減又は無くすことができ、かつヒドラジンに匹敵する燃焼特性を有する、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明の方法を実施するための試験装置の構成図である。
【図2】本発明の方法に用いるスラスターの一例を示す構成図である。
【図3】本発明の実施例を示すパルスモード試験結果である。
【図4】本発明の実施例を示す反応遅れ試験結果である。
【図5】HN−HO−HYDRAZINE系推進薬の爆轟特性を示す図である。
【符号の説明】
1 1液推進薬(モノプロペラント)、
2 加圧ガスタンク、4 推進薬タンク、
6a,6b 電磁弁、7a,7b 手動開閉弁、
8 スラスタ、9a,9b ヒータ、10 触媒[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a one-liquid propellant (monopropellant) used for a liquid rocket, a small thruster, a gas generator for a turbine, and the like, and a high-temperature gas generating method using the same.
[0002]
[Prior art]
One-component propellants (monopropellants) are propellants that function only with one solution, and are disclosed in [Patent Document 1], [Non-Patent Document 1], [Non-Patent Document 2], and the like.
Related solid propellants are disclosed in [Patent Document 2], [Patent Document 3], and [Patent Document 4], and hybrid propellants are disclosed in [Patent Document 5].
[0003]
[Non-patent document 1]
George P. Sutton, Rocket Propulsion Engineering, Sankaido, Chapter 8 Liquid Propellants [Non-Patent Document 2]
E. FIG. W. Schmidt, "HYDRAZINE AND ITS DERIVATIVES-PREPARATION, PROPERTIES, APPLICATIONS-", A WILEY-INTERSCIENCE PUBLICATION, JOHN WILEY & SONS, P515-528.
[0004]
[Patent Document 1]
JP-A-11-22555 [Patent Document 2]
JP-A-11-1386 [Patent Document 3]
Japanese Patent Application Publication No. 2001-506216 [Patent Document 4]
JP-T-2002-517376 [Patent Document 5]
JP-A-2002-20191 [0005]
The “one-liquid propulsion method and one-liquid propulsion device” of [Patent Document 1] use a mixed liquid containing hydroxyammonium nitrate and fuel as a one-liquid propellant when obtaining thrust by one-liquid propellant, A part of the mixture is decomposed by the catalyst to generate high-temperature gas, the rest of the mixture is directly injected into the combustion space, and the directly injected mixture is ignited and burned by the high-temperature gas in the combustion space to increase thrust. Get, what is.
[0006]
The “solid propellant” of [Patent Document 2] is obtained by mixing ammonium oxynitrate as an oxidizing agent component, a binder made of a hydrocarbon polymer or a rubbery material as a fuel component, and an appropriate auxiliary. Things.
[0007]
The "propellant for a solid solution vehicle airbag clean gas generator" of [Patent Document 3] is not only the melting points of a) a polyalkylammonium binder, b) ammonium nitrate and the first additive but also more than the melting points of the ammonium nitrate. An oxidizer mixture comprising the first additive, which produces a eutectic melt that is liquid at lower temperatures.
[Patent Document 4] “Solid ignition fuel for gas generation based on a water-containing composition” includes at least one organic binder having a gelling effect and at least one liquid phase absorbed by the binder. An organic binder having a gelling effect is selected from the group consisting of polyvinyl alcohol, hydroxyethylcellulose and xanthan gum in an ignition composition that generates a gas that does not produce a solid residue when burned, comprising a main oxidizer system of , Wherein the main oxidant system in the liquid phase comprises a mixture of water and hydroxylammonium nitrate.
[0008]
“Liquid oxidizer and hybrid propellant” in [Patent Document 5] is at least one selected from the group consisting of hydroxylammonium nitrate and hydrazinium nitroformate, ammonium dinitramide, ammonium nitrate, and hydrogen peroxide. And an oxidizing agent.
[0009]
[Problems to be solved by the invention]
As disclosed in [Non-Patent Document 1], hydrazine, hydrogen peroxide, ethylene oxide, and nitromethane have been conventionally used on a trial basis as one-component propellants (monopropellants). However, since it is chemically and thermally stable, has good storage properties, and is easily decomposed / reacted and has good combustion characteristics, only hydrazine is currently practically used, and others are not used today.
[0010]
The catalytic reaction of hydrazine (N 2 H 4 ) can be represented by formula (1), ignoring the intermediate products.
3N 2 H 4 → 4 (1 -x) NH 3 + (1 + 2x) N 2 + 6xH 2 ··· (1)
[0011]
In the formula (1), x is the degree of dissociation of ammonia. According to the degree of dissociation x, hydrazine is excellent in adiabatic reaction temperature of 900 to 1600 K, characteristic pumping speed of 1200 to 1350 m / s, specific impulse of 200 to 230 s, and the like. It has excellent combustion characteristics.
[0012]
However, hydrazine is highly toxic, and it is necessary to solidify it with protective clothing and the like at the time of handling.
[0013]
On the other hand, the Non-Patent Document 1], HN (hydrazinium nitrate: hydrazine nitrate) and HN-H 2 O mixture agent is exemplified as a liquid propellant.
[0014]
HN (hydrazine nitrate) has been discovered as one of the residues of rocket engines and is very stable and has the property that it does not burn at atmospheric pressure even with an electric heating wire.
[0015]
Further, as shown in Table 1, in the HN alone, detonation (detonation) but can occur, HN-H 2 O mixture drugs, HN It is known that detonation does not occur in less than 75%.
[0016]
[Table 1]
Figure 2004331425
[0017]
Furthermore, as shown in FIG. 5, HN-H 2 O- HYDRAZINE based propellant, at high amount of water of 40% or less of the performance area, there is a detonation properties, and also handling properties because they contain hydrazine There was a bad problem.
[0018]
The present invention has been made in view of the above-described conventional situation. That is, an object of the present invention is to provide a one-component propellant which has low toxicity and can be easily handled, can greatly reduce or eliminate the need for hardening with protective clothing and the like at the time of handling, and has a combustion characteristic comparable to hydrazine. (Monopropellant) and a high-temperature gas generation method using the same.
[0019]
[Means for Solving the Problems]
According to the present invention, there is provided a HAN / HN base material comprising a HAN / HN mixed oxidant containing hydroxylammonium nitrate (HAN), hydradium nitrate (HN) and water, and a fuel component. Propellants are provided.
[0020]
With HAN alone, the response (pressure rise characteristic) is poor, and it takes time from injection to thrust generation or gas generation. Further, there is detonation of the HN-H 2 O-HYDRAZINE system, in particular the amount of high-performance water to detonation is 40% or less regions.
On the other hand, in the configuration of the present invention, since both components were included, high responsiveness was confirmed by a test result described later. Further, since the stability of HAN is very high, a monopropellant having no detonation property can be obtained. Furthermore, since the monopropellant of the present invention does not contain highly toxic hydrazine, it is easy to handle, and the need for protective clothing and the like can be greatly reduced or eliminated.
[0021]
According to a preferred embodiment of the present invention, the total content of HAN and HN is 20% or more and less than 90%, and the water content is 10% or more and 50% or less.
[0022]
HAN-H 2 O mixture drugs, since HAN is detonation does not occur in less than 90%, the total content be replaced with HN part of HAN 20% or more and less than 90%, detonation Does not happen. Therefore, a monopropellant with high performance and no detonation can be obtained by setting the water content to 10% or more and 50% or less.
[0023]
The fuel component is a hydrocarbon fuel containing triethanol ammonium nitrate (TEAN) or alcohols.
[0024]
By using TEAN as a fuel component, a one-liquid propellant having high combustion efficiency and excellent responsiveness can be obtained. By using a hydrocarbon-based fuel containing alcohols as a fuel component, a low-cost one-liquid propellant with good handleability can be obtained.
[0025]
Further, according to the present invention, a HAN / HN-based monopropellant comprising a HAN / HN mixed oxidizing agent containing hydroxylammonium nitrate (HAN), hydradium nitrate (HN) and water and a fuel component, A hot gas generation method is provided, wherein a hot gas is generated by directly spraying a catalyst.
[0026]
According to this method, since the HAN / HN-based monopropellant does not contain highly toxic hydrazine, it is easy to handle, and there is no need to solidify with a protective suit or the like at the time of handling.
In addition, since this monopropellant has good responsiveness and does not have detonation property when the amount of high-performance water is in the range of 10 to 50%, a hot gas is generated with high responsiveness only by spraying directly on the catalyst. be able to.
[0027]
According to a preferred embodiment of the present invention, the catalyst is an iridium-based catalyst, which is preheated to 50 ° C or more and 300 ° C or less.
Test results described below confirm that iridium-based catalysts are easily available, and high-temperature gas can be generated with high responsiveness with a short reaction delay time simply by preheating the iridium-based catalyst to 50 ° C or higher and 300 ° C or lower. Was done.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same reference numerals are given to the common parts in the respective drawings, and the duplicate description will be omitted.
[0029]
FIG. 1 is a configuration diagram of a test apparatus for performing the method of the present invention. In this figure, 1 is a one-component propellant (monopropellant), 2 is a pressurized gas tank, 4 is a propellant tank, 6a and 6b are solenoid valves, 7a and 7b are manual open / close valves, 8 is a thruster, 9a and 9b. Denotes a heater, 10 denotes a catalyst, P denotes a pressure measuring device, and T denotes a temperature measuring device.
[0030]
The pressurized gas tank 2 contains an inert gas (eg, N 2 , Ar, He) that does not react with the one-component propellant 1 at a pressure of, for example, 1 to 3 Mpa, and is stored in the propellant tank 4 via a manual opening / closing valve 7 a. Is supplied to the solenoid valves 6a and 6b through the manual opening / closing valve 7b.
[0031]
The solenoid valves 6a and 6b are arranged in series in this example, and a control device (not shown) enables a pulse mode in which both are periodically opened only for a short time by interlocking the two solenoid valves. The heater 9a preheats the propellant in the solenoid valves 6a and 6b and maintains the propellant at a predetermined temperature.
[0032]
The thruster 8 reacts / decomposes the one-liquid propellant 1 with a built-in catalyst 10 to generate a high-temperature gas. The heater 9b preheats the catalyst 10 and maintains it at a predetermined temperature.
[0033]
The one-component propellant (monopropellant) 1 of the present invention comprises a HAN / HN mixed oxidizer and a fuel component.
Oxidants include hydroxylammonium nitrate (HAN), hydradium nitrate (HN) and water. Further, the total content of HAN and HN is preferably 20% or more and less than 90%, and the water content is preferably 10% or more and 50% or less.
The fuel component is preferably triethanol ammonium nitrate (TEAN), but may be a hydrocarbon fuel.
[0034]
The catalyst 10 is preferably an iridium-based catalyst, but the present invention is not limited thereto, and other well-known catalysts, for example, Pt, Pd and the like can be used.
[0035]
FIG. 2 is a configuration diagram showing an example of a thruster used in the method of the present invention. In this figure, the catalyst 10 has two layers: a catalyst (SHELL No. 405) composed of fine particles of 25-30 MESH and a catalyst (SHELL No. 405) composed of coarse particles of 14-18 MESH. Reference numeral 11 denotes an injection device which directly sprays the one-liquid propellant 1 in the form of fine droplets onto the catalyst.
[0036]
In the method of the present invention using the above-described apparatus, the HAN / HN-based monopropellant 1 is directly sprayed onto a catalyst preheated to a predetermined temperature to generate a high-temperature gas.
According to this method, the one-liquid propellant (monopropellant) 1 in a fine droplet state is captured and evaporated by the catalyst layer, and the one-liquid propellant 1 is reacted / decomposed to generate a high-temperature gas.
[0037]
【Example】
Hereinafter, test results using the above-described apparatus will be described.
[0038]
In this test, the one-component propellant (monopropellant) having a weight ratio of HN / HAN / TEAN / H 2 O of 16/47/20/17 (Type: A) and 20/40/20/20 (Type: B) were tested. Further, an iridium-based catalyst was used as the catalyst 10, and the initial catalyst temperature was kept at 200 ° C.
[0039]
FIG. 3 is a pulse mode test result showing an example of the present invention. In this test, 0.1 sec / ON and 0.9 sec / ON are periodically repeated by interlocking the two solenoid valves 6a and 6b to test the responsiveness. The supply amount of the propellant at 0.1 sec / ON is 0.04 g / pulse. In this figure, the horizontal axis represents time, and the vertical axis represents ON / OFF of the solenoid valves 6a and 6b and the corresponding pressure change in the thruster.
From this figure, it was confirmed that the pressure change in the thruster accurately followed ON / OFF of the solenoid valves 6a and 6b, and that the response was extremely high.
[0040]
FIG. 4 is a reaction delay test result showing an example of the present invention. In this figure, the horizontal axis is the catalyst temperature, and the vertical axis is the reaction delay time. In the figure, Δ indicates a conventional example (HAN-TEAN), and O indicates Type: A described above in the present invention.
From this figure, it can be seen that at a preheating temperature of 100 ° C. or more, the reaction delay time of the one-component propellant of the present invention is shorter than the conventional example by one digit (10 times) and the response is excellent.
[0041]
As described above, the test results confirmed that the one-component propellant of the present invention had much higher responsiveness than the conventional example. In addition, since the stability of HN is very high, a monopropellant having no detonation can be obtained when the content of water is in the range of 10% to 50%, which is highly reactive. Furthermore, since the monopropellant of the present invention does not contain highly toxic hydrazine, it is easy to handle, and the need for protective clothing and the like can be greatly reduced or eliminated.
[0042]
Further, it can be estimated from the composition that the one-component propellant of the present invention has the following combustion characteristics.
Combustion temperature: about 900-2400K,
Specific thrust: 180-260s
Therefore, it can be said that the one-component propellant of the present invention has combustion characteristics comparable to hydrazine.
[0043]
It should be noted that the present invention is not limited to the above-described examples and embodiments, and it is needless to say that various changes can be made without departing from the spirit of the present invention.
[0044]
【The invention's effect】
As described above, the HAN / HN-based monopropellant of the present invention and the method for generating a high-temperature gas using the same have low toxicity and are easy to handle, and greatly reduce the need for hardening with protective clothing or the like during handling. It has excellent effects such as being able to be eliminated and having combustion characteristics comparable to hydrazine.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a test apparatus for performing a method of the present invention.
FIG. 2 is a configuration diagram showing an example of a thruster used in the method of the present invention.
FIG. 3 is a pulse mode test result showing an example of the present invention.
FIG. 4 shows the results of a reaction delay test showing an example of the present invention.
FIG. 5 is a diagram showing the detonation characteristics of a HN—H 2 O—HYDRAZINE propellant.
[Explanation of symbols]
1 One-component propellant (monopropellant),
2 pressurized gas tank, 4 propellant tank,
6a, 6b solenoid valve, 7a, 7b manual open / close valve,
8 thrusters, 9a, 9b heaters, 10 catalysts

Claims (5)

ヒドロキシルアンモニウムナイトレート(HAN)、ヒドラジウムナイトレート(HN)及び水を含むHAN/HN混合系の酸化剤と燃料成分とからなる、ことを特徴とするHAN/HNベースモノプロペラント。A HAN / HN-based monopropellant comprising a HAN / HN mixed oxidant containing hydroxylammonium nitrate (HAN), hydradium nitrate (HN) and water and a fuel component. HANとHNの合計含有量が20%以上、90%未満であり、水の含有量が10%以上、50%以下である、ことを特徴とする請求項1に記載のHAN/HNベースモノプロペラント。The HAN / HN-based monopropeller according to claim 1, wherein the total content of HAN and HN is 20% or more and less than 90%, and the content of water is 10% or more and 50% or less. And 前記燃料成分は、トリエタノールアンモニウムナイトレート(TEAN)又はアルコール類を含む炭化水素系燃料である、ことを特徴とする請求項1に記載のHAN/HNベースモノプロペラント。The HAN / HN-based monopropellant according to claim 1, wherein the fuel component is a hydrocarbon fuel containing triethanol ammonium nitrate (TEAN) or alcohols. ヒドロキシルアンモニウムナイトレート(HAN)、ヒドラジウムナイトレート(HN)及び水を含むHAN/HN混合系の酸化剤と燃料成分とからなるHAN/HNベースモノプロペラントを、触媒に直接噴霧して高温ガスを発生させる、ことを特徴とする高温ガス発生方法。A HAN / HN-based monopropellant comprising a HAN / HN mixed oxidant containing OH / HN, hydrazinium nitrate (HN) and water and a fuel component is sprayed directly onto the catalyst to produce a hot gas. Generating a high-temperature gas. 前記触媒は、イリジウム系触媒であり、これを50℃以上、300℃以下に予熱する、ことを特徴とする請求項4に記載の高温ガス発生方法。The high-temperature gas generation method according to claim 4, wherein the catalyst is an iridium-based catalyst, and preheats the catalyst to 50C or more and 300C or less.
JP2003126278A 2003-05-01 2003-05-01 High-temperature gas generation method using HAN / HN-based monopropellant Expired - Lifetime JP4333943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003126278A JP4333943B2 (en) 2003-05-01 2003-05-01 High-temperature gas generation method using HAN / HN-based monopropellant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003126278A JP4333943B2 (en) 2003-05-01 2003-05-01 High-temperature gas generation method using HAN / HN-based monopropellant

Publications (2)

Publication Number Publication Date
JP2004331425A true JP2004331425A (en) 2004-11-25
JP4333943B2 JP4333943B2 (en) 2009-09-16

Family

ID=33503255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003126278A Expired - Lifetime JP4333943B2 (en) 2003-05-01 2003-05-01 High-temperature gas generation method using HAN / HN-based monopropellant

Country Status (1)

Country Link
JP (1) JP4333943B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126397A1 (en) * 2005-05-26 2006-11-30 National University Corporation Kyushu Institute Of Technology Two-liquid type liquid propellant, method of propelling flight vehicle and propelling machinery
JP2007023135A (en) * 2005-07-15 2007-02-01 Masahiro Takano Liquid oxidizing agent, propellant, and method for forming high-temperature gas
JP2009085155A (en) * 2007-10-02 2009-04-23 Ihi Aerospace Co Ltd Bi-propellant thruster
JP2009274505A (en) * 2008-05-13 2009-11-26 Ihi Aerospace Co Ltd Propellant tank pressure regulation system
KR100973581B1 (en) * 2007-09-10 2010-08-02 한국기계연구원 pneumatics occurring devise using the monopropellant
JP2010229852A (en) * 2009-03-26 2010-10-14 Japan Aerospace Exploration Agency Catalyst decomposition type thruster for space vehicle
JP2010229851A (en) * 2009-03-26 2010-10-14 Japan Aerospace Exploration Agency Catalyst decomposition type thruster for space vehicle
JP2010229853A (en) * 2009-03-26 2010-10-14 Japan Aerospace Exploration Agency Catalyst decomposition type thruster for space vehicle
JP2013155105A (en) * 2012-01-27 2013-08-15 Centre National D'etudes Spatiales New ionic monopropellant based on n2o for space propulsion
JP2015107895A (en) * 2013-12-05 2015-06-11 株式会社Ihiエアロスペース Han/hn-based monopropellant
JP2015517620A (en) * 2012-05-09 2015-06-22 イーシーエイピーエス・アクチボラグ Improved reactor for ammonium dinitramide based liquid monopropellant and a thruster including such a reactor
WO2018021493A1 (en) * 2016-07-29 2018-02-01 株式会社Ihi Han-based propellant decomposition catalyst, production method therefor, and monopropellant thruster using same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126397A1 (en) * 2005-05-26 2006-11-30 National University Corporation Kyushu Institute Of Technology Two-liquid type liquid propellant, method of propelling flight vehicle and propelling machinery
JP2007023135A (en) * 2005-07-15 2007-02-01 Masahiro Takano Liquid oxidizing agent, propellant, and method for forming high-temperature gas
KR100973581B1 (en) * 2007-09-10 2010-08-02 한국기계연구원 pneumatics occurring devise using the monopropellant
JP2009085155A (en) * 2007-10-02 2009-04-23 Ihi Aerospace Co Ltd Bi-propellant thruster
JP2009274505A (en) * 2008-05-13 2009-11-26 Ihi Aerospace Co Ltd Propellant tank pressure regulation system
JP2010229852A (en) * 2009-03-26 2010-10-14 Japan Aerospace Exploration Agency Catalyst decomposition type thruster for space vehicle
JP2010229851A (en) * 2009-03-26 2010-10-14 Japan Aerospace Exploration Agency Catalyst decomposition type thruster for space vehicle
JP2010229853A (en) * 2009-03-26 2010-10-14 Japan Aerospace Exploration Agency Catalyst decomposition type thruster for space vehicle
JP2013155105A (en) * 2012-01-27 2013-08-15 Centre National D'etudes Spatiales New ionic monopropellant based on n2o for space propulsion
JP2015517620A (en) * 2012-05-09 2015-06-22 イーシーエイピーエス・アクチボラグ Improved reactor for ammonium dinitramide based liquid monopropellant and a thruster including such a reactor
JP2015107895A (en) * 2013-12-05 2015-06-11 株式会社Ihiエアロスペース Han/hn-based monopropellant
WO2018021493A1 (en) * 2016-07-29 2018-02-01 株式会社Ihi Han-based propellant decomposition catalyst, production method therefor, and monopropellant thruster using same

Also Published As

Publication number Publication date
JP4333943B2 (en) 2009-09-16

Similar Documents

Publication Publication Date Title
JP4536262B2 (en) Dinitramide liquid monopropellant
JP4113333B2 (en) Rocket motor assembly
US20210387927A1 (en) High density hybrid rocket motor
JP6081452B2 (en) Catalyst, gas generator, and method for converting a propellant into a reaction product containing a gas
JP4333943B2 (en) High-temperature gas generation method using HAN / HN-based monopropellant
Florczuk et al. Performance evaluation of the hypergolic green propellants based on the HTP for a future next generation spacecrafts
JP4784973B2 (en) Liquid oxidant, propellant using the same, and high-temperature gas generation method
US20090007541A1 (en) Thruster using nitrous oxide
CA2367197A1 (en) Liquid/solid fuel hybrid propellant system for a rocket
US6849247B1 (en) Gas generating process for propulsion and hydrogen production
JPH06234588A (en) Gas generating substance for gas generator and method for generating effective or pressurized gas
EP2158395B1 (en) Hydroxy amine based staged combustion hybrid rocket motor
WO2001009063A2 (en) Premixed liquid monopropellant solutions and mixtures
KR20160013922A (en) Oxidizer-rich liquid monopropellants for a dual mode chemical rocket engine
US20070280865A1 (en) Electrically induced propellant decomposition
FR2986229A1 (en) NEW IONIC MONERGOLS BASED ON N2O FOR SPACE PROPULSION
JP2004257318A (en) Propulsion apparatus and flying object including the same and method for igniting propulsion apparatus
Wilson et al. Catalytic Decomposition of Nitrous Oxide Monopropellant for Hybrid Motor Re-Ignition
DeGroot et al. Chemical microthruster options
JP2009085155A (en) Bi-propellant thruster
WO2006126397A1 (en) Two-liquid type liquid propellant, method of propelling flight vehicle and propelling machinery
JP5250873B2 (en) Catalytic decomposition thruster for spacecraft
JP2015107895A (en) Han/hn-based monopropellant
JPH1122555A (en) One-liquid propulsion method and one-liquid propulsion device
Eloirdi et al. Catalytic decomposition of different monopropellants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4333943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term