JP4784973B2 - Liquid oxidant, propellant using the same, and high-temperature gas generation method - Google Patents

Liquid oxidant, propellant using the same, and high-temperature gas generation method Download PDF

Info

Publication number
JP4784973B2
JP4784973B2 JP2005206317A JP2005206317A JP4784973B2 JP 4784973 B2 JP4784973 B2 JP 4784973B2 JP 2005206317 A JP2005206317 A JP 2005206317A JP 2005206317 A JP2005206317 A JP 2005206317A JP 4784973 B2 JP4784973 B2 JP 4784973B2
Authority
JP
Japan
Prior art keywords
liquid
fuel
propellant
han
temperature gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005206317A
Other languages
Japanese (ja)
Other versions
JP2007023135A (en
Inventor
栄 長瀬
繁文 宮崎
統夫 綾部
雅弘 高野
秀文 芝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
IHI Aerospace Co Ltd
Original Assignee
IHI Corp
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, IHI Aerospace Co Ltd filed Critical IHI Corp
Priority to JP2005206317A priority Critical patent/JP4784973B2/en
Publication of JP2007023135A publication Critical patent/JP2007023135A/en
Application granted granted Critical
Publication of JP4784973B2 publication Critical patent/JP4784973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液体推進薬およびハイブリッド推進薬に用いられる安全性の高い液体酸化剤、これを用いた推進薬及び高温ガス発生方法に関する。   The present invention relates to a highly safe liquid oxidizer used for liquid propellants and hybrid propellants, a propellant using the same, and a method for generating a high temperature gas.

従来の液体酸化剤は液体酸素(LO)、四酸化ニ窒素(N)、HAN水溶液等が用いられている。
また、本出願において、「爆ごう性」とは、燃焼速度が非常に高く(例えば約450mm/s)、雷管起爆試験において、鋼管が破裂するほど、使用時に急激な圧力上昇を引き起こす反応性を意味する。
As the conventional liquid oxidant, liquid oxygen (LO 2 ), dinitrogen tetroxide (N 2 O 4 ), a HAN aqueous solution, or the like is used.
Further, in the present application, “detonability” means a reactivity that causes a rapid pressure increase at the time of use as the steel tube ruptures in a detonator initiation test because the burning rate is very high (for example, about 450 mm / s). means.

モノプロペラント(1液推進薬)は、1液のみで機能を果たす推進剤であり、[非特許文献1][特許文献1][特許文献2]等に開示されている。また、液体推進薬およびハイブリッド推進薬に用いられる液体酸化剤は、[特許文献3][特許文献4]等に開示されている。     Monopropellant (one-component propellant) is a propellant that functions with only one component, and is disclosed in [Non-patent Document 1] [Patent Document 1] [Patent Document 2] and the like. Liquid oxidizers used for liquid propellants and hybrid propellants are disclosed in [Patent Document 3] [Patent Document 4] and the like.

[特許文献1]の「一液推進方法および一液推進装置」は、一液推進薬により推力を得るに際し、一液推進薬としてヒドロキシンアンモニウムナイトレートと燃料を含む混合液を用い、混合液のうち一部を触媒により分解して高温ガスを発生させると共に、混合液のうち残部を燃焼空間内に直接噴射し、直接噴射した混合液を燃焼空間内で高温ガスにより点火燃焼させて推力を得る、ものである。   The “one-liquid propulsion method and one-liquid propulsion apparatus” of [Patent Document 1] uses a mixed liquid containing hydroxyammonium nitrate and fuel as the one-liquid propellant when the thrust is obtained by the one-liquid propellant. A part of the mixture is decomposed by a catalyst to generate high-temperature gas, and the remaining part of the mixed liquid is directly injected into the combustion space, and the directly injected mixed liquid is ignited and burned with high-temperature gas in the combustion space to generate thrust. To get.

[特許文献2]のHAN/HNベースモノプロペラントは、ヒドロキシルアンモニウムナイトレート(HAN)、ヒドラジニウムナイトレート(HN)及び水を含むHAN/HN混合系の酸化剤と燃料成分とからなる。   The HAN / HN-based monopropellant of [Patent Document 2] is composed of a HAN / HN mixed oxidant containing hydroxylammonium nitrate (HAN), hydrazinium nitrate (HN) and water and a fuel component.

[特許文献3]の「液体酸化剤及びハイブリッド推進薬」は、硝酸ヒドロキシルアンモニウムと、ヒドラジニウムニトロフォルメイト、アンモニウムジニトラミド、硝酸アンモニウム、及び過酸化水素からなる群より選択された1種類以上の酸化剤とを含有する、ものである。   [Liquid oxidizing agent and hybrid propellant] of [Patent Document 3] is one or more selected from the group consisting of hydroxylammonium nitrate, hydrazinium nitroformate, ammonium dinitramide, ammonium nitrate, and hydrogen peroxide. Containing an oxidizing agent.

[特許文献4]の「OXIDIZING AGENT」は、5〜30重量%のアンモニウムナイトレート(AN)、60〜85重量%のヒドロキシルアンモニウムナイトレート(HAN)及び10〜25重量%の水(HO)の水溶液からなる液体酸化剤である。 The “OXIDIZING AGENT” of [Patent Document 4] contains 5 to 30% by weight of ammonium nitrate (AN), 60 to 85% by weight of hydroxylammonium nitrate (HAN), and 10 to 25% by weight of water (H 2 O ) Is a liquid oxidizing agent comprising an aqueous solution.

ジョージP.サットン、ロケット推進工学、山海堂、第8章 液体推進薬George P. Sutton, Rocket Propulsion Engineering, Sankaido, Chapter 8 Liquid Propellant

特開平11−22555号公報、「一液推進方法および一液推進装置」Japanese Patent Application Laid-Open No. 11-22555, “One liquid propulsion method and one liquid propulsion apparatus” 特開2004−331425号公報、「HAN/HNベースモノプロペラントとこれを用いた高温ガス発生方法」Japanese Patent Application Laid-Open No. 2004-331425, “HAN / HN-based monopropellant and high-temperature gas generation method using the same” 特開2002−20191号公報、「液体酸化剤及びハイブリッド推進薬」JP 2002-20191 A, “Liquid oxidizing agent and hybrid propellant” 米国発明登録第H1768号公報、“OXIDIZING AGENT“US Invention Registration No. H1768, “OXIDIZING AGENT”

[非特許文献1]に開示されているように、モノプロペラント(1液推進薬)として、ヒドラジン、過酸化水素、酸化エチレン、及びニトロメタンが従来から試験的に用いられている。しかし、化学的、熱的に安定で貯蔵性が良く、かつ分解/反応しやすく良好な燃焼特性を有することから、現在ではヒドラジンのみが実用されている。     As disclosed in [Non-Patent Document 1], hydrazine, hydrogen peroxide, ethylene oxide, and nitromethane have been conventionally used as trials as monopropellants (one-component propellants). However, only hydrazine is currently in practical use because it is chemically and thermally stable, has good storage properties, is easily decomposed / reacted and has good combustion characteristics.

しかし、ヒドラジンは毒性が強く、取り扱い時には防護服等で身を固める必要があり、取り扱い性が悪い問題点があった。     However, hydrazine is highly toxic, and it is necessary to harden it with protective clothing during handling, which has a problem of poor handling.

また、従来の液体酸化剤のうち、LOは、極低温保持及び断熱機構が必要であり、Nは猛毒でヒドラジン並の防護服が必要であり、HAN水溶液は燃焼速度が速く、爆ごう、逆火の危険性がある。 Of the conventional liquid oxidizers, LO 2 requires a cryogenic temperature retention and heat insulation mechanism, N 2 O 4 is extremely toxic and requires protective clothing similar to hydrazine, and HAN aqueous solution has a high burning rate, There is a danger of explosion and flashback.

一方、ヒドロキシルアンモニウムナイトレート(HAN)と水(HO)、アンモニウムナイトレート(AN)等を混合した液体酸化剤(以下、「HANベース液体酸化剤」という)も既に知られている。 On the other hand, liquid oxidizers (hereinafter referred to as “HAN-based liquid oxidizers”) in which hydroxylammonium nitrate (HAN), water (H 2 O), ammonium nitrate (AN) and the like are mixed are already known.

しかし、HANベース液体酸化剤は、燃焼速度が非常に高く(例えば約450mm/s)、いわゆる爆ごう性があるため、使用時に急激な圧力上昇を引き起こし、緊急停止や触媒へダメージを与えることがあった。また、一旦着火すると触媒なしに燃焼を継続しかつ燃焼速度が非常に速いので、酸化剤タンクまで一瞬で逆火することがあった。     However, HAN-based liquid oxidizers have a very high burning rate (for example, about 450 mm / s) and so-called detonation, causing a sudden pressure increase during use, which may cause an emergency stop or damage to the catalyst. there were. Also, once ignited, the combustion continued without a catalyst and the combustion speed was very fast, so there was a case where the oxidant tank was flashed back in an instant.

本発明は、上述した従来の問題点を解決するために創案されたものである。すなわち、本発明の目的は、(1)毒性が低く取り扱いが容易であり防護服等の必要性を無くすことができ、(2)触媒なしで自燃せず、これにより逆火のおそれがなく安全性が高く、(3)燃焼速度を抑えることができ、使用時に適正圧力で安定維持でき、これにより緊急停止の可能性と触媒のダメージが少なく、かつ(4)従来品に匹敵する性能を有する液体酸化剤、これを用いた推進薬及び高温ガス発生方法を提供することにある。     The present invention has been developed to solve the above-described conventional problems. That is, the object of the present invention is (1) low toxicity and easy handling, eliminating the need for protective clothing, etc. (2) no self-combustion without a catalyst, thereby preventing the risk of flashback and safety (3) Suppresses the burning rate, can be stably maintained at an appropriate pressure during use, thereby reducing the possibility of an emergency stop and damage to the catalyst, and (4) Comparing with conventional products The object is to provide a liquid oxidant, a propellant using the same, and a method for generating a high-temperature gas.

本発明によれば、ヒドロキシルアンモニウムナイトレート(HAN)及びヒドラジニウムナイトレート(HN)を水(HO)に溶解し、さらに1重量%以上、10重量%未満の燃料成分を含む、ことを特徴とする液体酸化剤が提供される。 According to the present invention, hydroxylammonium nitrate (HAN) and hydrazinium nitrate (HN) are dissolved in water (H 2 O), and further contain 1 to 10% by weight of fuel component. A liquid oxidant is provided.

本発明の好ましい実施形態によれば、HANの含有量が40〜60重量%であり、HNの含有量が20〜30重量%であり、残余が水(HO)と燃料成分である。
さらに前記燃料成分は、トリエタノールアンモニウムナイトレート(TEAN)又はグリシンである、ことが好ましい。
According to a preferred embodiment of the present invention, the HAN content is 40 to 60% by weight, the HN content is 20 to 30% by weight, and the balance is water (H 2 O) and fuel components.
Furthermore, the fuel component is preferably triethanolammonium nitrate (TEAN) or glycine.

また、本発明によれば、上述した液体酸化剤と固体燃料又は液体燃料からなる、ことを特徴とする推進薬が提供される。   Moreover, according to this invention, the propellant characterized by consisting of the liquid oxidant mentioned above and solid fuel or liquid fuel is provided.

前記液体燃料は、炭化水素系燃料であり、前記固体燃料は、HTPB又はGAPバインダである、ことが好ましい。
前記推進薬は、ハイブリッドロケット推進薬又は2液推進薬である、ことが好ましい。
Preferably, the liquid fuel is a hydrocarbon fuel, and the solid fuel is HTPB or a GAP binder.
The propellant is preferably a hybrid rocket propellant or a two-liquid propellant.

また、本発明によれば、上述した液体酸化剤と、固体燃料又は液体燃料を別々に保管し、使用直前に混合又は接触させて着火し高温ガスを発生させる、ことを特徴とする高温ガス発生方法が提供される。   Further, according to the present invention, the above-described liquid oxidant and solid fuel or liquid fuel are stored separately, and mixed or brought into contact immediately before use to ignite and generate a high temperature gas. A method is provided.

上述した本発明の液体酸化剤は、低毒性で、取り扱いが容易であり防護服等の必要性を無くすことができる。
また、この液体酸化剤と固体燃料又は液体燃料からなる推進薬も、燃焼速度を抑えることができ、使用時に適正圧力で安定維持でき、これにより緊急停止の可能性と触媒のダメージが少ない。
さらに、本発明の構成では、液体酸化剤が、HANとHNの両成分を含むため、応答性が高いことが後述する試験結果で確認された。
The liquid oxidizer of the present invention described above has low toxicity, is easy to handle, and can eliminate the need for protective clothing.
In addition, the propellant composed of the liquid oxidizer and the solid fuel or the liquid fuel can also suppress the combustion rate and can be stably maintained at an appropriate pressure during use, thereby reducing the possibility of an emergency stop and damage to the catalyst.
Furthermore, in the structure of this invention, since the liquid oxidizing agent contained both HAN and HN components, it was confirmed by the test results described later that the responsiveness is high.

また、本発明の高温ガス発生方法では、液体酸化剤と、液体燃料を別々に保管するので、それぞれ単独では自燃せず、仮に着火しても逆火しないので安全性が高い。
さらに、HANとHNの両成分を含む液体酸化剤は応答性がよく、触媒に直接噴霧する場合も、液体燃料と組み合わせて2液推進薬として用いる場合も、ハイブリッドロケットの液体酸化剤として使用する場合も、高い応答性が期待できる。
In the hot gas generation method of the present invention, since the liquid oxidant and the liquid fuel are stored separately, they do not self-combust independently, and even if ignited, there is no backfire, so safety is high.
Furthermore, liquid oxidizers containing both HAN and HN components are responsive and are used as liquid oxidizers for hybrid rockets, whether sprayed directly onto the catalyst or used as two-component propellants in combination with liquid fuel. Even in this case, high responsiveness can be expected.

上述したように、本発明の液体酸化剤、これを用いた推進薬及び高温ガス発生方法は、(1)毒性が低く取り扱いが容易であり防護服等の必要性を無くすことができ、(2)触媒なしで自燃せず、これにより逆火のおそれがなく安全性が高く、(3)燃焼速度を抑えることができ、使用時に適正圧力で安定維持でき、これにより緊急停止の可能性と触媒のダメージが少なく、かつ(4)従来品に匹敵する性能を有する、等の優れた効果を有する。   As described above, the liquid oxidant of the present invention, the propellant using the liquid oxidant, and the high-temperature gas generation method are (1) less toxic and easy to handle and can eliminate the need for protective clothing. ) No self-combustion without a catalyst, which makes it safe with no risk of backfire, and (3) Suppresses the combustion rate and can be stably maintained at an appropriate pressure during use. (4) It has excellent effects such as having performance comparable to conventional products.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to a common part and the overlapping description is abbreviate | omitted.

図1は、本発明の方法を実施するための試験装置の構成図である。この図において、1は液体酸化剤、2、12は加圧ガスタンク、4は原液タンク、6a,6bは電磁弁、7a,7b,17a,17bは手動開閉弁、8はリアクタ、11は液体燃料、14は液体燃料タンク、15は混合タンク、Pは圧力計測器、Tは温度計測器である。     FIG. 1 is a block diagram of a test apparatus for carrying out the method of the present invention. In this figure, 1 is a liquid oxidizer, 2 and 12 are pressurized gas tanks, 4 is a stock solution tank, 6a and 6b are solenoid valves, 7a, 7b, 17a and 17b are manual on-off valves, 8 is a reactor, and 11 is liquid fuel. , 14 is a liquid fuel tank, 15 is a mixing tank, P is a pressure measuring device, and T is a temperature measuring device.

加圧ガスタンク2、12は、液体酸化剤1及び液体燃料11と反応しない不活性ガス(例えば、N,Ar,He)を例えば1〜3Mpaの圧力で内蔵し、手動開閉弁7a、17aを介してタンク4、14内の液体酸化剤1又は液体燃料11を加圧し、手動開閉弁7b、17bを介して混合タンク15へ液体酸化剤1及び液体燃料11を供給し、両者が混合された2液推進薬13を形成する。
形成された2液推進薬13は、加圧ガスタンク2、12の圧力により電磁弁6a,6bへ加圧して供給される。
The pressurized gas tanks 2 and 12 contain an inert gas (for example, N 2 , Ar, and He) that does not react with the liquid oxidant 1 and the liquid fuel 11 at a pressure of, for example, 1 to 3 MPa, and manual open / close valves 7 a and 17 a are provided. The liquid oxidant 1 or the liquid fuel 11 in the tanks 4 and 14 is pressurized via the manual on-off valves 7b and 17b, and the liquid oxidant 1 and the liquid fuel 11 are supplied to the mixing tank 15 via the manual on-off valves 7b and 17b. A two-component propellant 13 is formed.
The formed two-liquid propellant 13 is pressurized and supplied to the electromagnetic valves 6a and 6b by the pressure of the pressurized gas tanks 2 and 12.

電磁弁6a,6bは、この例では直列に配置され、図示しない制御装置により、2つの電磁弁の連動により、両方を同時に開く連続モードと、周期的に短時間だけ両方を開くパルスモードを可能にしている。     In this example, the solenoid valves 6a and 6b are arranged in series, and by a control device (not shown), a continuous mode in which both are simultaneously opened and a pulse mode in which both are periodically opened for a short time are possible by interlocking the two solenoid valves. I have to.

リアクタ8は、図示しない着火方法により、2液推進薬13を反応/分解させ高温ガスを発生させる。     The reactor 8 reacts / decomposes the two-liquid propellant 13 to generate a high-temperature gas by an ignition method (not shown).

液体酸化剤1は、ヒドロキシルアンモニウムナイトレート(HAN)及びヒドラジニウムナイトレート(HN)を水(HO)に溶解し、さらに10重量%以下の燃料成分を含む。
この液体酸化剤1の組成は、HANの含有量が40〜60重量%であり、HNの含有量が20〜30重量%であり、さらに水(HO)と燃料成分を含む。
前記燃料成分は、1重量%以上、10重量%未満のトリエタノールアンモニウムナイトレート(TEAN)又はグリシンである。またその他の燃料成分を含んでもよい。また、性能のトレードオフにより、組成を変更することができる。
従って、1液、2液のタンクを共用できるメリットがある。
The liquid oxidizer 1 dissolves hydroxylammonium nitrate (HAN) and hydrazinium nitrate (HN) in water (H 2 O), and further contains 10% by weight or less of a fuel component.
The composition of the liquid oxidant 1 has a HAN content of 40 to 60% by weight, a HN content of 20 to 30% by weight, and further contains water (H 2 O) and a fuel component.
The fuel component is 1% by weight or more and less than 10% by weight of triethanolammonium nitrate (TEAN) or glycine. Other fuel components may also be included. Further, the composition can be changed by performance trade-off.
Therefore, there is a merit that a 1-liquid and 2-liquid tank can be shared.

また、液体燃料11は、炭化水素系燃料等であり、前記固体燃料は、HTPB又はGAPバインダ等である。     The liquid fuel 11 is a hydrocarbon fuel or the like, and the solid fuel is HTPB or a GAP binder.

着火方法として触媒を用いる場合は、イリジウム系触媒であるのが好ましいが、本発明はこれに限定されず、その他の周知の触媒、例えばPt,Pd等を用いることができる。   When a catalyst is used as the ignition method, it is preferably an iridium catalyst, but the present invention is not limited to this, and other well-known catalysts such as Pt and Pd can be used.

図2は、本発明の方法に用いるハイブリッドロケットの一例を示す構成図である。この図に示すように、ハイブリッドロケットは、酸化剤タンクと固体燃料を備える。なお、ハイブリッドロケットの代わりに、2液式の液体ロケットエンジンを用いてもよい。     FIG. 2 is a block diagram showing an example of a hybrid rocket used in the method of the present invention. As shown in this figure, the hybrid rocket includes an oxidant tank and a solid fuel. Note that a two-component liquid rocket engine may be used instead of the hybrid rocket.

上述した装置を用い、本発明の方法では、ヒドロキシルアンモニウムナイトレート(HAN)及びヒドラジニウムナイトレート(HN)を水(HO)に溶解した水溶液からなる液体酸化剤と、固体燃料又は液体燃料を別々に保管し、使用直前に混合又は接触させて着火し高温ガスを発生させる。
この方法により、液体酸化剤と、液体燃料を別々に保管し、使用直前に混合又は接触させて着火し高温ガスを発生させるので、それぞれ単独では自燃せず、仮に着火しても逆火しないので安全性が高い。
In the method of the present invention using the apparatus described above, a liquid oxidizer comprising an aqueous solution in which hydroxylammonium nitrate (HAN) and hydrazinium nitrate (HN) are dissolved in water (H 2 O), and a solid fuel or liquid Fuel is stored separately and mixed or contacted immediately before use to ignite and generate hot gas.
By this method, liquid oxidant and liquid fuel are stored separately and mixed or contacted immediately before use to ignite and generate high temperature gas, so each does not self-combust and does not backfire even if ignited temporarily. High safety.

(液体酸化剤の爆ごう性試験)
燃料成分を含まない液体酸化剤であっても、HNの添加割合によっては爆ごう性があり得る。
この実施例では、液体酸化剤1として、表1に示す4種(No.1、2、3、4)を準備し、これを雷管起爆試験として知られる爆ごう性試験を実施した。このうち、No.4が本発明の液体酸化剤である。
雷管起爆試験は、液体酸化剤1を所定の鋼管内に充填して両端を密閉し、内部の液体に電気加熱線によって着火し、鋼管が破裂するか否かで爆ごう性の有無を試験した。この結果、3回の試験すべてにおいて、No.1、2は破裂せず、爆ごう性がなく安全であるが(表で○)、No.3は必ず破裂して爆ごう性があり安全性が低い(表で×)ことが確認された。
(Detonability test of liquid oxidizer)
Even a liquid oxidizer that does not contain a fuel component may be detonable depending on the HN addition ratio.
In this example, four types (No. 1, 2, 3, 4) shown in Table 1 were prepared as the liquid oxidizer 1, and a detonation test known as a detonator initiation test was conducted. Of these, No. 4 is a liquid oxidizing agent of the present invention.
In the detonator initiation test, liquid oxidizer 1 is filled into a predetermined steel pipe, both ends are sealed, the internal liquid is ignited by an electric heating wire, and whether or not the steel pipe is ruptured is tested for detonation. . As a result, in all three tests, No. Nos. 1 and 2 do not rupture and are not explosive and safe (O in the table). It was confirmed that No. 3 always bursts and explodes and has low safety (× in the table).

また、液体酸化剤(No.4)も、HAN:HN=2:1では破裂せず、爆ごう性がなく安全である(表で○)ことが確認された。   In addition, it was confirmed that the liquid oxidant (No. 4) did not rupture when HAN: HN = 2: 1, and it was safe without detonation (◯ in the table).

Figure 0004784973
Figure 0004784973

(スラスタ試験)
上述した4種(No.1、2、3、4)の液体酸化剤1について、触媒ありの条件で、スラスタ試験を実施した。スラスタ試験では、触媒反応による立ち上がり時の応答時間(sec)と安定性を試験した。その結果を表2に示す。
この結果から、HNを加えても応答性には影響なしということがわかった。
(Thruster test)
A thruster test was performed on the above four types (No. 1, 2, 3, 4) of the liquid oxidizer 1 under conditions with a catalyst. In the thruster test, the response time (sec) and the stability at the start-up due to the catalytic reaction were tested. The results are shown in Table 2.
From this result, it was found that even if HN was added, the response was not affected.

Figure 0004784973
Figure 0004784973

(自燃性試験)
上述した3種(No.1、2、4)の液体酸化剤1について、触媒なしの条件で、自燃性、燃焼速度、圧力指数、着火限界圧力を計測した。燃焼速度は4MPaの圧力下で計測した。また、圧力指数は、着火限界から4MPaの圧力までで計測した。
(Self-flammability test)
With respect to the three types (No. 1, 2, 4) of the liquid oxidizer 1 described above, the self-combustibility, the combustion rate, the pressure index, and the ignition limit pressure were measured under the conditions without a catalyst. The burning rate was measured under a pressure of 4 MPa. Further, the pressure index was measured from the ignition limit to a pressure of 4 MPa.

表3はこの試験の結果をまとめたものである。この結果から、本発明のHAN/HNにTEAN又はGLYCINE等の若干の燃料成分を加えたもの(No.4)は、自燃性が全くなく、タンクから燃焼室に至るまでの配管(推薬導管)において、従来のようにタンクまで逆火するおそれがないことがわかる。
すなわち、スラスタ性能として重要な応答時間がほぼ同等であるにもかかわらず、運用中に急激な熱や圧力が作用した場合でも、着火して逆火するおそれがなく、安全性が高いことがわかる。
しかし、触媒があれば、高い応答性を示すことから、触媒に限らず他の適性な着火方法又はこれらと触媒との併用で酸化剤としての高い性能が得られると予想される。
Table 3 summarizes the results of this test. From this result, the HAN / HN of the present invention to which some fuel components such as TEAN or GLYCINE are added (No. 4) has no self-flammability, and the piping from the tank to the combustion chamber (propellant conduit) ), It can be seen that there is no risk of backfire to the tank as in the prior art.
In other words, despite the fact that the response time, which is important for thruster performance, is almost the same, even if sudden heat or pressure is applied during operation, there is no risk of ignition and backfire, which indicates that safety is high. .
However, if a catalyst is present, it exhibits high responsiveness, and therefore, it is expected that not only a catalyst but also other suitable ignition methods or a combination of these and a catalyst can provide high performance as an oxidizing agent.

Figure 0004784973
Figure 0004784973

表4は、上述した試験結果をまとめたものである。この表では、従来のヒドラジン及びHANベースモノプロペラントと本発明によるHAN/HNベース液体酸化剤(燃料成分を若干含むHAN/HN酸化剤)を総合的に比較している。
この表から、本発明によるHAN/HNベース液体酸化剤は、毒性、爆ごう性、自燃性がなく、スラスタ性能(安定性と応答性)が高いことがわかる。
特に、本発明の液体酸化剤は、爆ごう性、自燃性が非常に低く、安全性に特に優れている。またこれに液体燃料を加えたモノプロペラントは、爆ごう性、自燃性がないままで、スラスタ性能(安定性と応答性)が特に優れていることがわかる。
Table 4 summarizes the test results described above. This table provides a comprehensive comparison of conventional hydrazine and HAN based monopropellants and HAN / HN based liquid oxidants (HAN / HN oxidants with some fuel components) according to the present invention.
From this table, it can be seen that the HAN / HN-based liquid oxidizer according to the present invention has no toxicity, detonation and self-flammability, and high thruster performance (stability and responsiveness).
In particular, the liquid oxidizer of the present invention has very low detonability and self-flammability and is particularly excellent in safety. In addition, it can be seen that the monopropellant obtained by adding liquid fuel to this is particularly excellent in thruster performance (stability and responsiveness) without being explosive and self-combustible.

Figure 0004784973
Figure 0004784973

表5は、様々な液体酸化剤を用いた場合の液体ロケット用の予測性能である。このうち、左から4つまでは従来例、残りの1つ(5番目)は本発明の液体酸化剤である。
この表から、LO液体酸素は、性能は高いが、極低温保管の必要有り、HAN/HN酸化剤は、従来のHAN/AN酸化剤より性能が向上するが、自燃性があり(表3参照)、HAN/HNベース酸化剤(本発明)は性能は2割減となるが、自燃性が全くなく安全であるというメリットがある(表3参照)。
Table 5 shows the predicted performance for liquid rockets when using various liquid oxidants. Of these, up to four from the left are conventional examples, and the remaining one (fifth) is the liquid oxidizer of the present invention.
From this table, LO 2 liquid oxygen has high performance but needs cryogenic storage, and HAN / HN oxidant improves performance over conventional HAN / AN oxidant, but is self-combustible (Table 3). The HAN / HN-based oxidizer (invention) has a 20% reduction in performance, but has a merit that it has no self-flammability and is safe (see Table 3).

Figure 0004784973
Figure 0004784973

表6は、様々な液体酸化剤を用いた場合のハイブリッドロケットの予測性能である。このうち、左から5つまでは従来例、残りの1つ(6番目)は本発明の液体酸化剤である。
この表から、本発明の液体酸化剤をハイブリッドで使用した場合は、例えば、HAN/HN酸化剤より性能は1割減となるが、上述のように安全である。
Table 6 shows the predicted performance of the hybrid rocket when various liquid oxidants are used. Of these, up to five from the left are conventional examples, and the remaining one (sixth) is the liquid oxidizer of the present invention.
From this table, when the liquid oxidizer of the present invention is used in a hybrid, for example, the performance is 10% lower than that of the HAN / HN oxidizer, but it is safe as described above.

Figure 0004784973
Figure 0004784973

なお、本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。   It should be noted that the present invention is not limited to the above-described embodiment, and can be variously modified without departing from the gist of the present invention.

本発明の方法を実施するための試験装置の構成図である。It is a block diagram of the test apparatus for enforcing the method of this invention. 本発明の方法に用いるスラスタの一例を示す構成図である。It is a block diagram which shows an example of the thruster used for the method of this invention.

符号の説明Explanation of symbols

1 液体酸化剤、
2、12 加圧ガスタンク、4 原液タンク、
6a,6b 電磁弁、7a,7b,17a,17b 手動開閉弁、
8 リアクタ、11 液体燃料、14 液体燃料タンク、15 混合タンク
1 liquid oxidant,
2, 12 Pressurized gas tank, 4 Stock solution tank,
6a, 6b solenoid valve, 7a, 7b, 17a, 17b manual on-off valve,
8 Reactor, 11 Liquid fuel, 14 Liquid fuel tank, 15 Mixing tank

Claims (7)

ヒドロキシルアンモニウムナイトレート(HAN)及びヒドラジニウムナイトレート(HN)を水(HO)に溶解し、さらに1重量%以上、10重量%未満の燃料成分を含む、ことを特徴とする液体酸化剤。 Liquid oxidation characterized in that hydroxylammonium nitrate (HAN) and hydrazinium nitrate (HN) are dissolved in water (H 2 O) and further contain 1 to 10% by weight of fuel component Agent. HANの含有量が40〜60重量%であり、HNの含有量が20〜30重量%であり、残余が水(HO)と燃料成分である、ことを特徴とする請求項1に記載の液体酸化剤。 The HAN content is 40 to 60% by weight, the HN content is 20 to 30% by weight, and the balance is water (H 2 O) and a fuel component. Liquid oxidizer. 前記燃料成分は、トリエタノールアンモニウムナイトレート(TEAN)又はグリシンである、ことを特徴とする請求項1に記載の液体酸化剤。   The liquid oxidizer according to claim 1, wherein the fuel component is triethanolammonium nitrate (TEAN) or glycine. 請求項1乃至3のいずれかに記載の液体酸化剤と固体燃料又は液体燃料からなる、ことを特徴とする推進薬。   A propellant comprising the liquid oxidant according to any one of claims 1 to 3 and solid fuel or liquid fuel. 前記液体燃料は、炭化水素系燃料であり、前記固体燃料は、HTPB又はGAPバインダである、ことを特徴とする請求項4に記載の推進薬。   The propellant according to claim 4, wherein the liquid fuel is a hydrocarbon-based fuel, and the solid fuel is HTPB or a GAP binder. 前記推進薬は、ハイブリッドロケット推進薬又は2液推進薬である、ことを特徴とする請求項4又は5に記載の推進薬。   The propellant according to claim 4 or 5, wherein the propellant is a hybrid rocket propellant or a two-liquid propellant. 請求項1乃至3のいずれかに記載の液体酸化剤と、固体燃料又は液体燃料を別々に保管し、使用直前に混合又は接触させて着火し高温ガスを発生させる、ことを特徴とする高温ガス発生方法。
A high-temperature gas characterized in that the liquid oxidant according to any one of claims 1 to 3 and solid fuel or liquid fuel are stored separately, and mixed or contacted immediately before use to ignite and generate a high-temperature gas. How it occurs.
JP2005206317A 2005-07-15 2005-07-15 Liquid oxidant, propellant using the same, and high-temperature gas generation method Active JP4784973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005206317A JP4784973B2 (en) 2005-07-15 2005-07-15 Liquid oxidant, propellant using the same, and high-temperature gas generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005206317A JP4784973B2 (en) 2005-07-15 2005-07-15 Liquid oxidant, propellant using the same, and high-temperature gas generation method

Publications (2)

Publication Number Publication Date
JP2007023135A JP2007023135A (en) 2007-02-01
JP4784973B2 true JP4784973B2 (en) 2011-10-05

Family

ID=37784342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005206317A Active JP4784973B2 (en) 2005-07-15 2005-07-15 Liquid oxidant, propellant using the same, and high-temperature gas generation method

Country Status (1)

Country Link
JP (1) JP4784973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107725216A (en) * 2017-08-30 2018-02-23 北京控制工程研究所 One kind premix hydrogen-oxygen thruster

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2915528B1 (en) * 2007-04-25 2012-07-06 Astrium Sas METHOD AND DEVICE FOR FEEDING A SPACE PROPULSION ENGINE IN LIQUID CRYOGENIC ERGOLS.
US7966805B2 (en) * 2007-05-15 2011-06-28 Raytheon Company Hydroxyl amine based staged combustion hybrid rocket motor
JP4915868B2 (en) * 2007-10-02 2012-04-11 株式会社Ihiエアロスペース 2-component thruster
JP5484796B2 (en) * 2009-06-19 2014-05-07 三菱重工業株式会社 Hybrid rocket engine
FR2954411B1 (en) * 2009-12-21 2012-11-02 Snpe Materiaux Energetiques PROPULSION METHOD AND DEVICE
KR101167558B1 (en) 2010-01-14 2012-07-27 한국과학기술원 Green Thruster System
JP5721371B2 (en) * 2010-08-27 2015-05-20 三菱重工業株式会社 Thruster propellant
JP2015107895A (en) * 2013-12-05 2015-06-11 株式会社Ihiエアロスペース Han/hn-based monopropellant
JP6895255B2 (en) * 2014-02-21 2021-06-30 エアロジェット ロケットダイン インコーポレイテッド Hydroxyammonium nitrate unit propellant with combustion rate regulator
KR102468746B1 (en) * 2020-11-18 2022-11-18 한국항공우주연구원 Combustor inclduing heat exchanging structure and rocket including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111386A (en) * 1997-06-12 1999-01-06 Hosoya Kako Kk Solid propellant
JP4537543B2 (en) * 2000-07-03 2010-09-01 細谷火工株式会社 Liquid oxidizers and hybrid propellants
JP2003089590A (en) * 2001-09-11 2003-03-28 Hosoya Fireworks Co Ltd Solid fuel and hybrid propellant
JP4333943B2 (en) * 2003-05-01 2009-09-16 株式会社Ihi High-temperature gas generation method using HAN / HN-based monopropellant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107725216A (en) * 2017-08-30 2018-02-23 北京控制工程研究所 One kind premix hydrogen-oxygen thruster

Also Published As

Publication number Publication date
JP2007023135A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4784973B2 (en) Liquid oxidant, propellant using the same, and high-temperature gas generation method
Wucherer et al. Assessment of high performance HAN-monopropellants
US6230491B1 (en) Gas-generating liquid compositions (persol 1)
Anflo et al. Development and testing of ADN-based monopropellants in small rocket engines
Florczuk et al. Performance evaluation of the hypergolic green propellants based on the HTP for a future next generation spacecrafts
US7966805B2 (en) Hydroxyl amine based staged combustion hybrid rocket motor
Freudenmann et al. ADN and HAN‐Based Monopropellants–A Minireview on Compatibility and Chemical Stability in Aqueous Media
KR20160013922A (en) Oxidizer-rich liquid monopropellants for a dual mode chemical rocket engine
KR20160011656A (en) Dual mode chemical rocket engine, and dual mode propulsion system comprising the rocket engine
Natan et al. Hypergolic ignition by fuel gellation and suspension of reactive or catalyst particles
Cong et al. Propulsive performance of hypergolic H202/kerosene bipropellant
US9598323B2 (en) Oxidizer compound for rocket propulsion
Mayer et al. Green propulsion research at TNO the Netherlands
FR2986229A1 (en) NEW IONIC MONERGOLS BASED ON N2O FOR SPACE PROPULSION
Lauck et al. Selection of ionic liquids and characterization of hypergolicy with hydrogen peroxide
US2645079A (en) Method of operating jet propulsion motors
JP4333943B2 (en) High-temperature gas generation method using HAN / HN-based monopropellant
Wilson et al. Catalytic Decomposition of Nitrous Oxide Monopropellant for Hybrid Motor Re-Ignition
JP4537543B2 (en) Liquid oxidizers and hybrid propellants
US2994191A (en) Operation of reaction motors
Mehendiratta et al. A review on different propellant materials for space vehicles and their characterisation
US20140109551A1 (en) Solid chemical rocket propulsion system
US6328831B1 (en) Gas-generating liquid compositions (Perhan)
US2993334A (en) Ignition delay reducing agents for hypergolic rocket fuels
US6331220B1 (en) Gas-generating liquid compositions (PERSOL 2)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

R150 Certificate of patent or registration of utility model

Ref document number: 4784973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250