JP2004327278A - Electrode material for fuel cell, and solid oxide fuel cell using same - Google Patents

Electrode material for fuel cell, and solid oxide fuel cell using same Download PDF

Info

Publication number
JP2004327278A
JP2004327278A JP2003121419A JP2003121419A JP2004327278A JP 2004327278 A JP2004327278 A JP 2004327278A JP 2003121419 A JP2003121419 A JP 2003121419A JP 2003121419 A JP2003121419 A JP 2003121419A JP 2004327278 A JP2004327278 A JP 2004327278A
Authority
JP
Japan
Prior art keywords
particles
fuel cell
electrode material
particle
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003121419A
Other languages
Japanese (ja)
Other versions
JP4534188B2 (en
Inventor
Hiromi Sugimoto
博美 杉本
Itaru Shibata
格 柴田
Mitsugi Yamanaka
貢 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003121419A priority Critical patent/JP4534188B2/en
Publication of JP2004327278A publication Critical patent/JP2004327278A/en
Application granted granted Critical
Publication of JP4534188B2 publication Critical patent/JP4534188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material for a fuel cell which has little performance deterioration due to coagulation at heating of the electrode material, has many three-phase interfaces, large porosity and specific surface area of the electrode, can be manufactured at a low cost, and is easy in the control of the structure, its manufacturing method, and provide a solid oxide fuel cell using the same. <P>SOLUTION: This electrode material for the fuel cell is made by binding particles having different constituent component and a particle size of 0.1-10 μm and the ratio of particle size P1: P2: P3 of a first particle, a second particle, and a third particle is expressed as 10-100 : 1-10 : 1-10. The first particle has an ion conductivity or a mixed conductivity. After the second and third particles are mixed beforehand, the first particle is mixed and the electrode material for fuel cell is manufactured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用電極材料、その製造方法及びこれを用いた固体酸化物形燃料電池に係り、更に詳細には、長時間高温で使用した場合でもシンタリングが発生しにくい燃料電池用電極材料、その製造方法及びこれを用いた固体酸化物形燃料電池に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来から、化学エネルギーを電気化学的な反応により電気エネルギーに変換する装置として、固体酸化物形燃料電池(SOFC)が知られている。このSOFCは、燃料極、固体電解質及び空気極の各層を互いに積層した3層を燃料電池の発電部とし、外部から燃料極には水素、炭化水素等の燃料ガスを供給し、空気極には空気等の酸化剤ガスを供給して電気を発生させる。
【0003】
また、SOFCにおいて、電極性能を向上させる技術として、粒子内の構造をミクロに制御したサーメット粉体の製造方法が提案されている。この製造方法は、2種類以上の微粒子で電極を構成し、このうち1種類を外周部に偏在させること、また、ミスト状の原料を乾燥させ熱分解により反応させること、を特徴とする(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開平9−309768号公報
【0005】
しかし、外周部の微粒子が1成分の金属材料から構成されている場合、高温にて長期間使用すると、シンタリングが進行し、電極性能が劣化するという問題点があった。
【0006】
更に、多孔質酸化物粉体(YSZ等)に金属塩水溶液を含浸、熱処理し、表面に金属が担持された粒子を成型・焼成して電極とすることが提案されている。(例えば、特許文献2参照。)。
【0007】
【特許文献2】
特開平10−144337号公報
【0008】
しかし、基体となる粉体表面を金属層が全て覆ってしまうので、SOFC用電極として用いた場合は、電極反応に重要な三相界面が少なくなるという問題点があった。
【0009】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、電極材料の加熱時の凝集による性能劣化が少なく、多くの三相界面を有し、電極の気孔率・比表面積が大きく、安価に製造でき、構造制御が容易な燃料電池用電極材料、その製造方法及びこれを用いた固体酸化物形燃料電池を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、主成分と成る第1粒子に2種以上の粒子を被覆することにより、上記課題が解決できることを見出し、本発明を完成するに至った。
【0011】
【発明の実施の形態】
以下、本発明の燃料電池用電極材料について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を示す。
【0012】
上述の如く、本発明の燃料電池用電極材料は、構成成分が異なり且つ粒子径が0.1〜10μmである3種以上の粒子を結着して成る。また、上記粒子には、下記の粒子径比を満たす3つの粒子が含まれる。即ち、これらを第1粒子、第2粒子及び第3粒子としたとき、これらの粒子径比P:P:Pは10〜100:1〜10:1〜10で表される。
なお、上記第1〜3粒子の粒子径は、レーザー粒度分布測定や遠心沈降法等の一般的な方法で測定できる。
【0013】
このように第2粒子及び第3粒子の粒径を第1粒子と同等以下にすることで、第1粒子の表面には、2種以上の異種成分から成る粒子がそれぞれ分散状態で且つ適度な空孔率を保持しつつ被覆される。これより、耐熱衝撃性が向上する。また、本電極材料を用いた電極は、IR抵抗、反応抵抗が低減されるので、通電時の低温化及びシンタリング防止により電極の長期安定性が向上する。
また、第2粒子及び第3粒子の一方を金属成分とするときは、他方は焼結し難い成分とすることが望ましく、このときはシンタリングをより防止できる。更に、第2粒子、第3粒子のいずれか一方又は双方として、イオン導電性や混合導電性を有する酸化物を混在させるときは、それぞれの被覆成分で異なる電極反応機構が進行されるので、より電極性能が向上し易い。
【0014】
また、上記第1粒子は、電極基体として機能するものを使用できる。例えば、SOFC等の高温で使用されるデバイスに使用するときは、電解質層と同質のもの又は熱膨張係数の近い酸化物などを適宜選択でき、このときは耐熱衝撃性が向上し得る。一方、上記第2粒子及び第3粒子は、電極基体を修飾する機能を有するものを使用できる。
【0015】
更に、上記第1粒子としては、イオン導電性又は混合導電性を有する酸化物を使用できる。これより、電極性能を向上できるとともに電極の構造をより強化できる材料が得られる。例えば、酸素イオン伝導性などを有する従来公知の電解質材料、具体的には、酸化ネオウジム(Nd)、酸化サマリウム(Sm)、イットリア(Y)、酸化スカンジウム(Sc)及び酸化ガドリニウム(Gd)などを固溶した安定化ジルコニアや、セリア(CeO)系固溶体、酸化ビスマス固溶体及びランタンガリウム(LaGa)固溶体ぺロブスカイト、ランタンコバルト系酸化物、ランタンマンガン系酸化物等空気極材料などが挙げられる。
なお、この場合は、第2粒子及び第3粒子の少なくとも一方は、金属、金属酸化物のいずれか一方又は双方を含有することが望ましい。これより、電極に触媒活性及び導電性を付与し、電極性能を向上させ得る。また、かかる金属材料として貴金属を用いる場合は、所望の機能層を薄く配設できるので、原料の使用量及びコストを低減できる。
ここで、上記「混合導電性」とは、電子・正孔とイオン導電性を同時に有するものをいう。電極材料が混合導電性であるときは、電極反応に必要な電子・イオンを同時に供給することができるため、接触部位に三相界面を形成し易い。また、「導電性」とは、固体内で電子やイオン等の電気的キャリアとなる物質を運ぶ性質をいい、特に作動温度域で10−7S・cm−1以上の導電率を持つものを「導電体」という。
【0016】
更に、上記第1粒子としては、銀(Ag)、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、銅(Cu)、タングステン(W)、白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)又はモリブデン(Mo)、及びこれらを任意に組合せた金属、並びにその酸化物を使用することができ、これらは単独での使用に限られず、2種以上を混合して使用できる。このときは、電気デバイスに必須である集電機能を向上させ得るので、形成される電極全体のIR抵抗を低減させ得る。
但し、一般に、金属電極を用いた燃料電池を長時間高温下で運転すると、シンタリングが発生し、電極反応成分との接触面積が減少し、電極機能の低下を引き起こすことがある。そこで、かかる第1粒子を被覆する第2粒子及び第3粒子には、シンタリングを防止する観点から、焼結性の異なる微粒子を使用することが望ましい。
【0017】
一方、上記第2粒子、第3粒子のいずれか一方又は双方は、混合導電性を有する材料であることが好適である。例えば、混合伝導性を有する従来公知の電解質材料、具体的にはジルコニア系固溶体、セリア(CeO)系固溶体、酸化ビスマス固溶体、ランタンガリウム(LaGa)固溶体、ランタンコバルト系酸化物、ランタンマンガン系酸化物、サマリウムコバルト系酸化物又はサマリウムマンガン系酸化物、及びこれらを任意に組合わせたものを使用することができる。
これより、SOFCにおいては、被覆成分の1つが混合導電性を有することで、主成分(第1粒子)の表面に電極反応に必要な三相界面を効率良く均一に分布させることができ、反応サイトが増加するので電極性能が向上し得る。
【0018】
次に、本発明の燃料電池用電極材料の製造方法について詳細に説明する。
かかる製造方法は、上記第2粒子及び3粒子を予め混合しておき、その後に第1粒子を混合して燃料電池用電極材料を得ることを特徴とする。
具体的には、例えば、
(1)第2粒子として0.2〜0.4μmの平均粒子径を有するSDC粉末を20%用意し、第3粒子として0.5〜0.8μmの平均粒子径を有するNiO粉末を80%用意し、これらを混合し、平均粒子径が1.0〜1.5μmとなるように調整した造粒体を作成する。
(2)次いで、得られた造粒体に1〜2μmの平均粒子径を有する8YSZ粉末を、上記第2粒子及び第3粒子の含有量が60〜90%となるように添加して混同し、成形する。
(3)更に、得られた成形体を1100〜1300℃の温度範囲で焼成して、燃料電池用電極材料を得る。
このように、被覆成分である第2粒子及び第3粒子を予め混合させることで、第1粒子の表面に均一に多種成分が分散される。
【0019】
次に、本発明の固体酸化物形燃料電池について詳細に説明する。
かかる固体酸化物形燃料電池は、上述の燃料電池用電極材料を用いることにより、電池の長期安定性、高出力化が図られ、また低温作動型のSOFCの設計が可能となる。また、三相界面が多数点在することより電極反応が大幅に向上する。更に、第1〜3粒子の粒径比を任意に変更することで、粒子間の空隙を増加させガス拡散律速による反応抵抗を低減させることができる。例えば、図4に示すような燃料電池スタックが挙げられる。
【0020】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0021】
(実施例1)
第2粒子としてNiO、第3粒子としてSm添加セリア(以下「SDC」とする)を予めボールミルによりアルコール中で混合した。その後、第1粒子としてY添加安定化ジルコニア(以下「YSZ」とする)を同様に混合し、金属成分が重量比の3〜7割になるようにした。また、粒径は第1粒子が1μm、第2粒子が0.5μm、第3粒子が0.3μmとなるようにした。
得られた混合粉末をペースト状にし、電解質上に塗布し、所定温度・時間で焼成して、本例の電極材料を得た。この電極材料の構成を表1に、概略図を図1に示す。
【0022】
(実施例2)
第1粒子として粒径5μmのニッケル、第2粒子として粒径0.3μmのYSZ、第3粒子として粒径0.3μmのSDCを用いたこと以外は、実施例1と同様の操作を繰り返して、本例の電極材料を得た。この電極材料の構成を表1に、概略図を図2に示す。
【0023】
(実施例3)
第2粒子として粒径0.2μmのLa、Sr添加コバルト酸化物(LSC)、第3粒子として粒径0.2μmのPtを用いたこと以外は、実施例1と同様の操作を繰り返して、本例の電極材料を得た。この電極材料の構成を表1に、概略図を図1に示す。
【0024】
(比較例1)
第1粒子として粒径1μmのYSZ、第2粒子として粒径0.5μmのNiOを用い、実施例1と同様の操作により第1粒子上に第2粒子を被覆して、本例の電極材料を得た。この電極材料の構成を表1に、概略図を図3に示す。
【0025】
【表1】

Figure 2004327278
【0026】
<評価試験方法>
実施例1〜3及び比較例1で得られた電極材料を30mmφ、2mmtのディスク状に成型し、その上面に電解質、電極を塗布して試験片とした。この試験片に0.5A/cmの電流密度で通電しながら、900℃に保温した炉内に、10時間保持することにより耐久試験を行った。
【0027】
実施例1〜3で得られた電極材料は、第1粒子に性状の異なる2種類の粒子を混合し被覆したものであるため、電極として長時間高温で使用した場合でもシンタリングが発生しにくいことが明らかである。特に、実施例1では、微粒子となったSDCはシンタリングし易いが、第2粒子としてNiOを混合することで、粒子表面でのシンタリングを防止できることがわかる。また、実施例2では、Niは長時間高温下でシンタリングし易いが、第2粒子及び第3粒子に互いに焼結性の異なる微粒子を用いて第1粒子を被覆することでシンタリングを防止できることがわかる。
一方、比較例1で得られた電極材料は、電極として長期間加熱されるとNiOの焼結が進行することがわかる。
【0028】
【発明の効果】
以上説明してきたように、本発明によれば、主成分と成る第1粒子に2種以上の粒子を被覆することとしたため、電極材料の加熱時の凝集による性能劣化が少なく、多くの三相界面を有し、電極の気孔率・比表面積が大きく、安価に製造でき、構造制御が容易な燃料電池用電極材料、その製造方法及びこれを用いた固体酸化物形燃料電池を提供することができる。
【図面の簡単な説明】
【図1】実施例1及び実施例3で得られた電極材料を示す概略図である。
【図2】実施例2で得られた電極材料を示す概略図である。
【図3】比較例1で得られた電極材料を示す概略図である。
【図4】燃料電池スタックの一例を示す概略図である。
【図5】従来の電極材料の一例を示す概略図である。
【図6】従来の電極材料の他の例を示す概略図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell electrode material, a method for producing the same, and a solid oxide fuel cell using the same, and more particularly, to a fuel cell electrode in which sintering hardly occurs even when used at a high temperature for a long time. The present invention relates to a material, a method for producing the same, and a solid oxide fuel cell using the same.
[0002]
Problems to be solved by the prior art and the invention
Conventionally, a solid oxide fuel cell (SOFC) has been known as a device for converting chemical energy into electric energy by an electrochemical reaction. In this SOFC, a fuel electrode, a solid electrolyte and an air electrode are stacked on top of each other to form a power generation section of a fuel cell, and a fuel gas such as hydrogen or hydrocarbon is supplied to the fuel electrode from the outside, and a fuel gas is supplied to the air electrode. An oxidizing gas such as air is supplied to generate electricity.
[0003]
As a technique for improving the electrode performance in SOFC, a method for producing a cermet powder in which the structure in the particles is controlled microscopically has been proposed. This manufacturing method is characterized in that an electrode is composed of two or more kinds of fine particles, one of which is unevenly distributed in the outer peripheral portion, and a mist-like raw material is dried and reacted by thermal decomposition (for example, And Patent Document 1.).
[0004]
[Patent Document 1]
JP-A-9-309768
However, in the case where the fine particles on the outer peripheral portion are made of a one-component metal material, there is a problem that if used at a high temperature for a long period of time, sintering proceeds and the electrode performance is deteriorated.
[0006]
Further, it has been proposed to impregnate a porous oxide powder (YSZ or the like) with an aqueous solution of a metal salt, heat-treat the particles, and form and fire particles having a metal supported on the surface to form electrodes. (For example, see Patent Document 2).
[0007]
[Patent Document 2]
Japanese Patent Application Laid-Open No. H10-144337
However, since the metal layer covers the entire surface of the powder as the substrate, there is a problem that when used as an electrode for an SOFC, the three-phase interface important for the electrode reaction is reduced.
[0009]
The present invention has been made in view of such problems of the prior art, and has as its object the purpose of the present invention is to reduce the performance degradation due to aggregation during heating of an electrode material and to have many three-phase interfaces, An object of the present invention is to provide an electrode material for a fuel cell, which has a large porosity and specific surface area of the electrode, can be manufactured at low cost, and whose structure can be easily controlled, a method for manufacturing the same, and a solid oxide fuel cell using the same.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above problems can be solved by coating the first particles, which are the main components, with two or more types of particles, and completed the present invention. I came to.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the electrode material for a fuel cell of the present invention will be described in detail. In addition, in this specification, "%" shows a mass percentage unless otherwise specified.
[0012]
As described above, the fuel cell electrode material of the present invention is formed by binding three or more types of particles having different constituent components and a particle diameter of 0.1 to 10 μm. The above particles include three particles satisfying the following particle diameter ratio. That is, when these are first particles, second particles, and third particles, their particle diameter ratios P 1 : P 2 : P 3 are represented by 10 to 100: 1 to 10: 1 to 10.
The particle diameters of the first to third particles can be measured by a general method such as laser particle size distribution measurement and centrifugal sedimentation.
[0013]
By making the particle diameters of the second particles and the third particles equal to or smaller than those of the first particles in this manner, particles composed of two or more different components are dispersed in the surface of the first particles and have an appropriate degree. It is coated while maintaining the porosity. Thereby, the thermal shock resistance is improved. Further, since the electrode using the present electrode material has reduced IR resistance and reaction resistance, long-term stability of the electrode is improved by lowering the temperature during energization and preventing sintering.
When one of the second particles and the third particles is a metal component, the other is desirably a component that is difficult to sinter, and in this case, sintering can be further prevented. Furthermore, when an oxide having ionic conductivity or mixed conductivity is mixed as one or both of the second particles and the third particles, a different electrode reaction mechanism proceeds for each coating component. Electrode performance is easily improved.
[0014]
Further, as the first particles, those that function as an electrode substrate can be used. For example, when used in a device used at a high temperature such as an SOFC, the same material as the electrolyte layer or an oxide having a similar thermal expansion coefficient can be appropriately selected, and in this case, the thermal shock resistance can be improved. On the other hand, as the second particles and the third particles, those having a function of modifying the electrode substrate can be used.
[0015]
Further, as the first particles, an oxide having ionic conductivity or mixed conductivity can be used. Thus, a material that can improve the electrode performance and further strengthen the electrode structure can be obtained. For example, a conventionally known electrolyte material having oxygen ion conductivity, specifically, neodymium oxide (Nd 2 O 3 ), samarium oxide (Sm 2 O 3 ), yttria (Y 2 O 3 ), scandium oxide (Sc) Stabilized zirconia in which 2 O 3 ) and gadolinium oxide (Gd 2 O 3 ) are dissolved, ceria (CeO 2 ) -based solid solution, bismuth oxide solid solution and lanthanum gallium (LaGa) solid solution perovskite, lanthanum cobalt-based oxide, An air electrode material such as a lanthanum manganese-based oxide may be used.
In this case, at least one of the second particles and the third particles desirably contains one or both of a metal and a metal oxide. Thereby, catalytic activity and conductivity can be imparted to the electrode, and the electrode performance can be improved. When a noble metal is used as the metal material, a desired functional layer can be thinly provided, so that the amount of raw materials used and the cost can be reduced.
Here, the “mixed conductivity” refers to a material having both electron / hole and ionic conductivity. When the electrode material is mixed conductive, electrons and ions required for the electrode reaction can be supplied simultaneously, so that a three-phase interface is easily formed at the contact site. The term “conductive” refers to a property of transporting a substance serving as an electric carrier such as an electron or an ion in a solid, and in particular, a substance having a conductivity of 10 −7 S · cm −1 or more in an operating temperature range. It is called "conductor".
[0016]
Further, as the first particles, silver (Ag), iron (Fe), chromium (Cr), nickel (Ni), copper (Cu), tungsten (W), platinum (Pt), palladium (Pd), ruthenium (Ru) or molybdenum (Mo), a metal in which these are arbitrarily combined, and an oxide thereof can be used. These are not limited to use alone, and two or more kinds can be used in combination. In this case, the current collecting function essential for the electric device can be improved, so that the IR resistance of the entire electrode formed can be reduced.
However, in general, when a fuel cell using a metal electrode is operated at a high temperature for a long time, sintering occurs, the contact area with an electrode reaction component is reduced, and the electrode function may be deteriorated. Therefore, it is desirable to use fine particles having different sintering properties as the second particles and the third particles covering the first particles from the viewpoint of preventing sintering.
[0017]
On the other hand, one or both of the second particles and the third particles are preferably a material having mixed conductivity. For example, a conventionally known electrolyte material having mixed conductivity, specifically, a zirconia-based solid solution, a ceria (CeO 2 ) -based solid solution, a bismuth oxide solid solution, a lanthanum gallium (LaGa) solid solution, a lanthanum cobalt-based oxide, a lanthanum manganese-based oxide A product, a samarium-cobalt-based oxide or a samarium-manganese-based oxide, and any combination thereof can be used.
Thus, in the SOFC, one of the coating components has mixed conductivity, so that the three-phase interface required for the electrode reaction can be efficiently and uniformly distributed on the surface of the main component (first particles), Since the number of sites increases, the electrode performance can be improved.
[0018]
Next, a method for producing an electrode material for a fuel cell according to the present invention will be described in detail.
Such a manufacturing method is characterized in that the second particles and the third particles are mixed in advance, and then the first particles are mixed to obtain a fuel cell electrode material.
Specifically, for example,
(1) 20% of SDC powder having an average particle diameter of 0.2 to 0.4 μm is prepared as second particles, and 80% of NiO powder having an average particle diameter of 0.5 to 0.8 μm is prepared as third particles. These are prepared and mixed to prepare a granulated body adjusted so that the average particle diameter is 1.0 to 1.5 μm.
(2) Next, 8YSZ powder having an average particle size of 1 to 2 μm is added to the obtained granules so that the content of the second particles and the third particles is 60 to 90% and mixed. , Molding.
(3) Further, the obtained molded body is fired in a temperature range of 1100 to 1300 ° C. to obtain a fuel cell electrode material.
As described above, by mixing the second particles and the third particles, which are the coating components, in advance, the various components are uniformly dispersed on the surface of the first particles.
[0019]
Next, the solid oxide fuel cell of the present invention will be described in detail.
In such a solid oxide fuel cell, by using the above-mentioned fuel cell electrode material, long-term stability and high output of the cell can be achieved, and a low-temperature operation type SOFC can be designed. In addition, since the three-phase interface is scattered, the electrode reaction is greatly improved. Furthermore, by arbitrarily changing the particle size ratio of the first to third particles, it is possible to increase the voids between the particles and reduce the reaction resistance due to the gas diffusion rate control. For example, there is a fuel cell stack as shown in FIG.
[0020]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0021]
(Example 1)
NiO as the second particles and Sm-added ceria (hereinafter, referred to as “SDC”) as the third particles were previously mixed in an alcohol by a ball mill. Thereafter, Y-added stabilized zirconia (hereinafter, referred to as “YSZ”) was similarly mixed as the first particles so that the metal component became 30 to 70% of the weight ratio. The particle diameter of the first particles was 1 μm, that of the second particles was 0.5 μm, and that of the third particles was 0.3 μm.
The obtained mixed powder was made into a paste, applied on an electrolyte, and fired at a predetermined temperature and time to obtain an electrode material of this example. The structure of this electrode material is shown in Table 1, and a schematic diagram is shown in FIG.
[0022]
(Example 2)
The same operation as in Example 1 was repeated except that nickel having a particle diameter of 5 μm was used as the first particle, YSZ having a particle diameter of 0.3 μm was used as the second particle, and SDC having a particle diameter of 0.3 μm was used as the third particle. Thus, an electrode material of this example was obtained. The structure of this electrode material is shown in Table 1, and a schematic diagram is shown in FIG.
[0023]
(Example 3)
The same operation as in Example 1 was repeated except that La and Sr-added cobalt oxide (LSC) having a particle diameter of 0.2 μm were used as the second particles, and Pt having a particle diameter of 0.2 μm was used as the third particles. An electrode material of this example was obtained. The structure of this electrode material is shown in Table 1, and a schematic diagram is shown in FIG.
[0024]
(Comparative Example 1)
Using YSZ having a particle diameter of 1 μm as the first particles and NiO having a particle diameter of 0.5 μm as the second particles, the second particles were coated on the first particles by the same operation as in Example 1, and the electrode material of this example was used. Got. The structure of this electrode material is shown in Table 1, and a schematic diagram is shown in FIG.
[0025]
[Table 1]
Figure 2004327278
[0026]
<Evaluation test method>
The electrode materials obtained in Examples 1 to 3 and Comparative Example 1 were molded into a disk shape of 30 mmφ and 2 mmt, and an electrolyte and an electrode were applied on the upper surface to obtain a test piece. A durability test was performed by maintaining the test piece in a furnace kept at 900 ° C. for 10 hours while supplying a current at a current density of 0.5 A / cm 2 .
[0027]
Since the electrode materials obtained in Examples 1 to 3 are obtained by mixing and coating two kinds of particles having different properties to the first particles, sintering hardly occurs even when the electrodes are used at a high temperature for a long time. It is clear that. In particular, in Example 1, it is found that the SDC that has become fine particles easily sinters, but the sintering on the particle surface can be prevented by mixing NiO as the second particles. In Example 2, Ni is easily sintered at a high temperature for a long time, but sintering is prevented by coating the second particles and the third particles with the first particles using fine particles having different sintering properties. We can see that we can do it.
On the other hand, it can be seen that when the electrode material obtained in Comparative Example 1 is heated as an electrode for a long time, sintering of NiO proceeds.
[0028]
【The invention's effect】
As described above, according to the present invention, since the first particles, which are the main components, are coated with two or more kinds of particles, performance degradation due to aggregation of the electrode material during heating is small, and many three-phase particles are formed. An electrode material for a fuel cell having an interface, a large porosity and specific surface area of the electrode, which can be manufactured at low cost, and whose structure can be easily controlled, a method for manufacturing the same, and a solid oxide fuel cell using the same. it can.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing electrode materials obtained in Examples 1 and 3.
FIG. 2 is a schematic view showing an electrode material obtained in Example 2.
FIG. 3 is a schematic view showing an electrode material obtained in Comparative Example 1.
FIG. 4 is a schematic diagram illustrating an example of a fuel cell stack.
FIG. 5 is a schematic view showing an example of a conventional electrode material.
FIG. 6 is a schematic view showing another example of a conventional electrode material.

Claims (6)

構成成分が異なり且つ粒子径が0.1〜10μmである3種以上の粒子を結着して成る燃料電池用電極材料であって、
上記粒子のうちの3つを第1粒子、第2粒子及び第3粒子としたとき、これらの粒子径比P:P:Pが10〜100:1〜10:1〜10で表されることを特徴とする燃料電池用電極材料。
An electrode material for a fuel cell comprising three or more kinds of particles having different constituent components and a particle diameter of 0.1 to 10 μm,
When three of the above particles are defined as a first particle, a second particle and a third particle, their particle diameter ratios P 1 : P 2 : P 3 are represented by 10 to 100: 1 to 10: 1 to 10 An electrode material for a fuel cell, wherein
上記第1粒子がイオン導電性又は混合導電性を有する酸化物であることを特徴とする請求項1に記載の燃料電池用電極材料。The fuel cell electrode material according to claim 1, wherein the first particles are oxides having ionic conductivity or mixed conductivity. 上記第1粒子が、銀、鉄、クロム、ニッケル、銅、タングステン、白金、パラジウム、ルテニウム及びモリブデンから成る群より選ばれた少なくとも1種の金属並びに/又はその酸化物であることを特徴とする請求項1に記載の燃料電池用電極材料。The first particles are at least one metal selected from the group consisting of silver, iron, chromium, nickel, copper, tungsten, platinum, palladium, ruthenium and molybdenum and / or an oxide thereof. The fuel cell electrode material according to claim 1. 上記第2粒子及び/又は第3粒子が混合導電性を有する材料であって、ジルコニア系固溶体、セリア系固溶体、酸化ビスマス固溶体、ランタンガリウム固溶体、ランタンコバルト系酸化物、ランタンマンガン系酸化物、サマリウムコバルト系酸化物及びサマリウムマンガン系酸化物から成る群より選ばれた少なくとも1種のものであることを特徴とする請求項1〜3のいずれか1つの項に記載の燃料電池用電極材料。The second particles and / or the third particles are materials having mixed conductivity, and are zirconia-based solid solution, ceria-based solid solution, bismuth oxide solid solution, lanthanum gallium solid solution, lanthanum cobalt-based oxide, lanthanum manganese-based oxide, samarium The fuel cell electrode material according to any one of claims 1 to 3, wherein the material is at least one selected from the group consisting of a cobalt-based oxide and a samarium-manganese-based oxide. 請求項1〜4のいずれか1つの項に記載の燃料電池用電極材料を製造するに当たり、
上記第2粒子及び第3粒子を予め混合した後に、第1粒子を混合することを特徴とする燃料電池用電極材料の製造方法。
In producing the fuel cell electrode material according to any one of claims 1 to 4,
A method for producing an electrode material for a fuel cell, wherein the first particles are mixed after previously mixing the second particles and the third particles.
請求項1〜4のいずれか1つの項に記載の燃料電池用電極材料を用いたことを特徴とする固体酸化物形燃料電池。A solid oxide fuel cell using the electrode material for a fuel cell according to claim 1.
JP2003121419A 2003-04-25 2003-04-25 Fuel cell electrode material and solid oxide fuel cell using the same Expired - Lifetime JP4534188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003121419A JP4534188B2 (en) 2003-04-25 2003-04-25 Fuel cell electrode material and solid oxide fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003121419A JP4534188B2 (en) 2003-04-25 2003-04-25 Fuel cell electrode material and solid oxide fuel cell using the same

Publications (2)

Publication Number Publication Date
JP2004327278A true JP2004327278A (en) 2004-11-18
JP4534188B2 JP4534188B2 (en) 2010-09-01

Family

ID=33499995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003121419A Expired - Lifetime JP4534188B2 (en) 2003-04-25 2003-04-25 Fuel cell electrode material and solid oxide fuel cell using the same

Country Status (1)

Country Link
JP (1) JP4534188B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101136A1 (en) * 2005-03-23 2006-09-28 Nippon Shokubai Co., Ltd. Fuel electrode material for solid oxide fuel cell, fuel electrode using same, fuel-cell cell
JP2007087745A (en) * 2005-09-21 2007-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2007335142A (en) * 2006-06-13 2007-12-27 Nippon Shokubai Co Ltd Nickel-ceria fuel electrode material for solid oxide fuel battery
JP2008243475A (en) * 2007-03-26 2008-10-09 Nippon Shokubai Co Ltd Fuel electrode material for solid oxide fuel cell
WO2009060752A1 (en) * 2007-11-05 2009-05-14 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid oxide fuel cell, process for producing the nickel oxide powder material, and fuel electrode material, fuel electrode, and solid oxide fuel cell using the nickel oxide powder material
JP2009211830A (en) * 2008-02-29 2009-09-17 Toshiba Corp Solid oxide electrochemical cell and processes for producing the same
WO2010016569A1 (en) 2008-08-08 2010-02-11 株式会社田中化学研究所 Nickel oxide-stabilized zirconia composite oxide, process for production thereof, and anode for solid oxide type fuel cell comprising the composite oxide
JP2016534966A (en) * 2013-08-01 2016-11-10 エルジー・ケム・リミテッド Electrolyte containing inorganic oxide powder and sintered body thereof
JP2017004957A (en) * 2015-06-15 2017-01-05 国立研究開発法人物質・材料研究機構 Anode material for solid oxide type fuel battery, manufacturing method for the same and solid oxide type fuel battery
KR20180036277A (en) * 2016-09-30 2018-04-09 주식회사 엘지화학 Cathod green sheet for solid oxide fuel cell and solid oxide fuel cell
WO2023193062A1 (en) * 2022-04-06 2023-10-12 Commonwealth Scientific And Industrial Research Organisation Electrode compositions
JP7482718B2 (en) 2020-08-27 2024-05-14 日本特殊陶業株式会社 Electrochemical Cell
JP7482717B2 (en) 2020-08-27 2024-05-14 日本特殊陶業株式会社 Electrochemical Cell
JP7482716B2 (en) 2020-08-27 2024-05-14 日本特殊陶業株式会社 Electrochemical Cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213028A (en) * 1995-02-06 1996-08-20 Fujikura Ltd Fuel electrode of solid electrolyte fuel cell and its film forming method
JPH1154131A (en) * 1997-07-31 1999-02-26 Fujikura Ltd Fuel cell electrode for solid electrolyte type fuel cell, film forming method thereof, and fuel electrode material used in film formation
JPH11126617A (en) * 1997-10-23 1999-05-11 Fujikura Ltd Solid electrolyte-type fuel cell and its manufacture
JP2000001701A (en) * 1998-06-16 2000-01-07 Toto Ltd Production of nickel series/zirconia series compound powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213028A (en) * 1995-02-06 1996-08-20 Fujikura Ltd Fuel electrode of solid electrolyte fuel cell and its film forming method
JPH1154131A (en) * 1997-07-31 1999-02-26 Fujikura Ltd Fuel cell electrode for solid electrolyte type fuel cell, film forming method thereof, and fuel electrode material used in film formation
JPH11126617A (en) * 1997-10-23 1999-05-11 Fujikura Ltd Solid electrolyte-type fuel cell and its manufacture
JP2000001701A (en) * 1998-06-16 2000-01-07 Toto Ltd Production of nickel series/zirconia series compound powder

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101136A1 (en) * 2005-03-23 2006-09-28 Nippon Shokubai Co., Ltd. Fuel electrode material for solid oxide fuel cell, fuel electrode using same, fuel-cell cell
JP2007087745A (en) * 2005-09-21 2007-04-05 Dainippon Printing Co Ltd Solid oxide fuel cell
JP2007335142A (en) * 2006-06-13 2007-12-27 Nippon Shokubai Co Ltd Nickel-ceria fuel electrode material for solid oxide fuel battery
JP2008243475A (en) * 2007-03-26 2008-10-09 Nippon Shokubai Co Ltd Fuel electrode material for solid oxide fuel cell
US8557471B2 (en) 2007-11-05 2013-10-15 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder comprising zirconium hydroxide coating layer or zirconium oxide coating layer, SOFC anode material and method of producing the same
WO2009060752A1 (en) * 2007-11-05 2009-05-14 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid oxide fuel cell, process for producing the nickel oxide powder material, and fuel electrode material, fuel electrode, and solid oxide fuel cell using the nickel oxide powder material
US8741502B2 (en) 2007-11-05 2014-06-03 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid oxide type fuel cell and method for producing the same, and anode material, anode and solid oxide type fuel cell using the same
JP5218419B2 (en) * 2007-11-05 2013-06-26 住友金属鉱山株式会社 Nickel oxide powder material for solid oxide fuel cell, method for producing the same, fuel electrode material using the same, fuel electrode, and solid oxide fuel cell
JP2009211830A (en) * 2008-02-29 2009-09-17 Toshiba Corp Solid oxide electrochemical cell and processes for producing the same
US8709300B2 (en) 2008-08-08 2014-04-29 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Process for production of nickel oxide-stabilized zirconia composite oxide
WO2010016569A1 (en) 2008-08-08 2010-02-11 株式会社田中化学研究所 Nickel oxide-stabilized zirconia composite oxide, process for production thereof, and anode for solid oxide type fuel cell comprising the composite oxide
KR20110053991A (en) 2008-08-08 2011-05-24 가부시끼가이샤 다나까 가가꾸 겡뀨쇼 Nickel oxide-stabilized zirconia composite oxide, process for production thereof, and anode for solid oxide type fuel cell comprising the composite oxide
JP2016534966A (en) * 2013-08-01 2016-11-10 エルジー・ケム・リミテッド Electrolyte containing inorganic oxide powder and sintered body thereof
US10014543B2 (en) 2013-08-01 2018-07-03 Lg Chem, Ltd. Inorganic oxide powder and electrolyte comprising sintered body of the same
JP2020202195A (en) * 2015-06-15 2020-12-17 国立研究開発法人物質・材料研究機構 Anode material of solid oxide fuel cell and solid oxide fuel cell arranged by use thereof
JP2017004957A (en) * 2015-06-15 2017-01-05 国立研究開発法人物質・材料研究機構 Anode material for solid oxide type fuel battery, manufacturing method for the same and solid oxide type fuel battery
JP7138960B2 (en) 2015-06-15 2022-09-20 国立研究開発法人物質・材料研究機構 Solid oxide fuel cell anode material and solid oxide fuel cell using this anode material
KR102129651B1 (en) * 2016-09-30 2020-07-02 주식회사 엘지화학 Cathod green sheet for solid oxide fuel cell and solid oxide fuel cell
KR20180036277A (en) * 2016-09-30 2018-04-09 주식회사 엘지화학 Cathod green sheet for solid oxide fuel cell and solid oxide fuel cell
JP7482718B2 (en) 2020-08-27 2024-05-14 日本特殊陶業株式会社 Electrochemical Cell
JP7482717B2 (en) 2020-08-27 2024-05-14 日本特殊陶業株式会社 Electrochemical Cell
JP7482716B2 (en) 2020-08-27 2024-05-14 日本特殊陶業株式会社 Electrochemical Cell
WO2023193062A1 (en) * 2022-04-06 2023-10-12 Commonwealth Scientific And Industrial Research Organisation Electrode compositions

Also Published As

Publication number Publication date
JP4534188B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
Jiang A review of wet impregnation—An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells
Lin et al. Silver-modified Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ as cathodes for a proton conducting solid-oxide fuel cell
Küngas et al. Restructuring porous YSZ by treatment in hydrofluoric acid for use in SOFC cathodes
JPWO2004102704A1 (en) Solid oxide fuel cell and manufacturing method thereof
CN111910201B (en) Hydrogen electrode of solid oxide electrolytic cell, preparation method of hydrogen electrode and solid oxide electrolytic cell
JP4211254B2 (en) Solid oxide fuel cell
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
JP2012033418A (en) Solid oxide fuel cell and method for manufacturing the same
JP2010282772A (en) Electrode material for solid oxide fuel cell, and electrode for solid oxide fuel cell
JP3565696B2 (en) Method for manufacturing electrode of solid oxide fuel cell
JP2008546161A (en) Deposition of electrodes for solid oxide fuel cells
JP4399698B2 (en) Air electrode current collector and solid electrolyte fuel cell incorporating the air electrode current collector
Khandale et al. Nd1. 8Ce0. 2CuO4+ δ: Ce0. 9Gd0. 1O2− δ as a composite cathode for intermediate-temperature solid oxide fuel cells
KR20230124539A (en) A method for synthesizing ammonia using metal nanoparticles in a fuel cell
Ishihara et al. Effects of Fe addition on the surface reaction of the anode of intermediate temperature solid oxide fuel cells
JP6889900B2 (en) Anode for solid oxide fuel cell and its manufacturing method, and solid oxide fuel cell
JP2004335131A (en) Fuel electrode for solid oxide fuel cell and its manufacturing method
Bu et al. Composites of single/double perovskites as cathodes for solid oxide fuel cells
JP4428946B2 (en) Fuel electrode for solid oxide fuel cell
KR20190028340A (en) Solid oxide fuel cell and a battery module comprising the same
KR101185323B1 (en) Solid oxidee fuel cell cathode comprising materials coated with silver nano particle and method for manufacturing the same
US20050074664A1 (en) Solid oxide fuel cell electrode and method of manufacturing the same
JP2947495B2 (en) Fuel electrode fabrication method for solid oxide fuel cells
Tamm et al. Investigation of microstructure of Sr-doped lanthanum vanadium oxide anode based on SDC electrolyte
JP7107875B2 (en) Manufacturing method of fuel electrode-solid electrolyte layer composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4534188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term