JP2000001701A - Production of nickel series/zirconia series compound powder - Google Patents

Production of nickel series/zirconia series compound powder

Info

Publication number
JP2000001701A
JP2000001701A JP10185675A JP18567598A JP2000001701A JP 2000001701 A JP2000001701 A JP 2000001701A JP 10185675 A JP10185675 A JP 10185675A JP 18567598 A JP18567598 A JP 18567598A JP 2000001701 A JP2000001701 A JP 2000001701A
Authority
JP
Japan
Prior art keywords
nickel
powder
calcium
zirconia
strontium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10185675A
Other languages
Japanese (ja)
Inventor
Haruo Nishiyama
治男 西山
Koji Hyofu
浩二 表敷
Masanobu Aizawa
正信 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP10185675A priority Critical patent/JP2000001701A/en
Priority to US09/673,934 priority patent/US6692855B1/en
Priority to PCT/JP1999/002048 priority patent/WO1999054946A1/en
Priority to AU31713/99A priority patent/AU3171399A/en
Priority to EP99913694A priority patent/EP1081778A4/en
Publication of JP2000001701A publication Critical patent/JP2000001701A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain powder improved in electric conductivity and used as the fuel electrode of a solid electrolyte type fuel battery by adding calcium, strontium and magnesium to nickel series/zirconium series compound powder. SOLUTION: To the alloy powder composed of nickel and/or nickel oxide and yttria-doped zirconia (YSZ), at least one kind among calcium, strontium and magnesium is added based on a zirconium element by <=50 mol.%. The nickel series/zirconium series compound powder is the one in which, as the starting raw material, water-soluble metallic salt such as nitrate, sulfate, carbonate, chloride is used, which is synthesized by a coprecipitation method, and the synthesized powder is subjected to heat treatment at 800 to 1,600 deg.C. By adding at least one kind among calcium, strontium and magnesium to the nickel series/zirconium series compound powder, the sinterability and the electric conductivity are improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質型燃料
電池(以下SOFCとも言う)の燃料極等として好適な
ニッケル系/ジルコニウム系複合粉末の製造方法に関す
る。特には、SOFC用燃料極材料として導電性の向上
に寄与し得る、ニッケル系/ジルコニウム系複合粉末の
製造方法に関する。
The present invention relates to a method for producing a nickel-based / zirconium-based composite powder suitable as a fuel electrode of a solid oxide fuel cell (hereinafter also referred to as SOFC). In particular, the present invention relates to a method for producing a nickel-based / zirconium-based composite powder that can contribute to improvement in conductivity as a fuel electrode material for an SOFC.

【0002】[0002]

【従来の技術】SOFCの燃料極用材料としては、Ni
OとY23安定化ZrO2(YSZ)とを混合複合化し
た複合粉末の焼成層が主に用いられている(特開昭61
−153280、特開昭61−198570等)。な
お、焼成層中のNiOは、SOFCの運転中に還元され
てNiとなり、該層はNi/YSZサーメット膜とな
る。
2. Description of the Related Art As a fuel electrode material for SOFC, Ni
A baked layer of a composite powder in which O and Y 2 O 3 stabilized ZrO 2 (YSZ) are mixed and compounded is mainly used (Japanese Patent Application Laid-Open No. S61 / 1986).
153280, JP-A-61-198570). Note that NiO in the fired layer is reduced to Ni during operation of the SOFC, and the layer becomes a Ni / YSZ cermet film.

【0003】このようなNi/YSZサーメット用の原
料粉末の製造方法としては、一般的に、NiO粉末とY
SZ粉末を両者とも固体の状態で混合し、その後昇温
(仮焼)して若干焼結することにより複合化する方法
(固体混合法)が採られている。混合方法としては、ボ
ールミルを用いるものや、メカノケミカル的機械混合に
よるものが知られている。また、Ni,Zr,Yをイオ
ン状態で混合し、これを熱分解する方法も提案されてい
る(特開平7−29575)。
[0003] As a method for producing such a raw material powder for Ni / YSZ cermet, generally, NiO powder and Y
A method in which both SZ powders are mixed in a solid state and then heated (calcined) and slightly sintered to form a composite (solid mixing method) is employed. As a mixing method, a method using a ball mill and a method using mechanochemical mechanical mixing are known. A method has also been proposed in which Ni, Zr, and Y are mixed in an ionic state and thermally decomposed (Japanese Patent Laid-Open No. 7-29575).

【0004】[0004]

【発明が解決しようとする課題】Ni及び/又はNiO
とYSZの複合粉末をSOFCの燃料極として使用する
際には、YSZ基板上への成膜を行うため、微細粒子で
あると、焼成時に、焼成クラックが生じる。したがっ
て、Ni及び/又はNiOとYSZの複合粉末を粗大粒
化する必要がある。粗大粒化する方法としては、高温
(800℃〜1600℃)での熱処理を行い、一次粒子
自体を粗大粒化する必要がある。上述の従来組成のNi
O/YSZ複合粉末では、高温で熱処理して合成した場
合、導電率が低下する。
SUMMARY OF THE INVENTION Ni and / or NiO
When a composite powder of YSZ and YSZ is used as a fuel electrode of an SOFC, a film is formed on a YSZ substrate. Therefore, it is necessary to coarsen the composite powder of Ni and / or NiO and YSZ. As a method for coarsening, it is necessary to perform a heat treatment at a high temperature (800 ° C. to 1600 ° C.) to coarsen the primary particles themselves. Ni of the above-mentioned conventional composition
When the O / YSZ composite powder is synthesized by heat treatment at a high temperature, the electrical conductivity decreases.

【0005】本発明は、このような問題点に鑑みてなさ
れたもので、固体電解質型燃料電池の燃料極としてニッ
ケル系/ジルコニウム系複合粉末にカルシウム、ストロ
ンチウム、マグネシウムを少なくとも1種類以上の添加
元素を加えることにより導電性が向上した、ニッケル系
/ジルコニウム系粉末の製造方法を提供することを目的
とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and at least one of calcium, strontium, and magnesium is added to a nickel-based / zirconium-based composite powder as a fuel electrode of a solid oxide fuel cell. It is an object of the present invention to provide a method for producing a nickel-based / zirconium-based powder in which conductivity is improved by the addition of nickel.

【0006】[0006]

【課題を解決するための手段およびその作用・効果】上
記目的を達成するために、ニッケル及び/又は酸化ニッ
ケルと、イットリアドープジルコニア(YSZ)からな
る複合粉末であって、カルシウム、ストロンチウム、マ
グネシウムを少なくとも1種類以上、ジルコニウム元素
に対して50mol%以下量を、望ましくは30mol
%以下量を、添加した粉末であって、出発原料が硝酸
塩、硫酸塩、炭酸塩あるいは塩化物等の水溶性の金属塩
であり、共沈法により合成し、 上記粉末を800℃〜
1600℃の温度にて熱処理したニッケル系/ジルコニ
ア系複合粉末の製造方法とした。
Means for Solving the Problems and Actions and Effects There is provided a composite powder comprising nickel and / or nickel oxide and yttria-doped zirconia (YSZ), comprising calcium, strontium and magnesium. An amount of at least one kind, not more than 50 mol% based on the zirconium element, preferably 30 mol%
% Or less, wherein the starting material is a water-soluble metal salt such as nitrate, sulfate, carbonate or chloride, synthesized by a coprecipitation method,
A method for producing a nickel-based / zirconia-based composite powder heat-treated at a temperature of 1600 ° C. was adopted.

【0007】本発明の特徴は、燃料極粉末の合成におい
て、ニッケル系/ジルコニア系複合粉末において、カル
シウム、ストロンチウム、マグネシウムの少なくとも1
種類以上の添加元素を加えることにある。カルシウム、
ストロンチウム、マグネシウムの少なくとも1種類以上
の添加元素をニッケル系/ジルコニア系複合粉末中に添
加することにより、複合粉末の焼結性が向上することに
より、導電性を向上させようとするものである。
[0007] A feature of the present invention is that in the synthesis of an anode powder, at least one of calcium, strontium and magnesium is contained in a nickel-based / zirconia-based composite powder.
It is to add more than one kind of additional element. calcium,
By adding at least one or more additional elements of strontium and magnesium to the nickel-based / zirconia-based composite powder, the sinterability of the composite powder is improved, thereby improving the conductivity.

【0008】[0008]

【発明の実施の形態】本発明のカルシウム、ストロンチ
ウム、マグネシウムを添加したニッケル系/ジルコニア
系複合粉末を固体電解質型燃料電池に適用する場合にお
いては、固体電解質との界面においては、NiO及び/
又はNiが30〜50mol%程度とし、界面の上部の
層においては、NiO及び/又はNiが50mol%以
上とする。その理由は、固体電解質との界面において
は、固体電解質材料であるYSZとの密着性が重要であ
り、NiO及び/又はNiが50mol%以上となる
と、密着性が低下するからである。また、界面の上部の
層においては、高い導電性を必要とし、NiO及び/又
はNiが50mol%より少ないと、導電性が急激に低
下するからである。
BEST MODE FOR CARRYING OUT THE INVENTION When the nickel / zirconia-based composite powder to which calcium, strontium and magnesium of the present invention are added is applied to a solid oxide fuel cell, NiO and / or
Alternatively, Ni is about 30 to 50 mol%, and NiO and / or Ni is 50 mol% or more in the upper layer of the interface. The reason is that, at the interface with the solid electrolyte, the adhesion to YSZ, which is a solid electrolyte material, is important, and when NiO and / or Ni is 50 mol% or more, the adhesion is reduced. In addition, the upper layer of the interface requires high conductivity, and if the content of NiO and / or Ni is less than 50 mol%, the conductivity is sharply reduced.

【0009】本発明におけるニッケル系/ジルコニア系
複合粉末中のYSZのY23含有量は、望ましくは3〜
20mol%であり、より好ましくは8〜12mol%
である。その理由は、固体電解質に用いるYSZのイオ
ン導電性がこの範囲が優れているため、固体電解質と燃
料極とのマッチングの点からである。
The YSZ Y 2 O 3 content in the nickel-based / zirconia-based composite powder in the present invention is desirably 3 to 3.
20 mol%, more preferably 8 to 12 mol%
It is. The reason is that the ion conductivity of YSZ used for the solid electrolyte is excellent in this range, so that the solid electrolyte and the fuel electrode are matched.

【0010】本発明の複合粉末の製造方法としては共沈
法によることが好ましい。NiO/YSZ複合粉末の共
沈法による製造方法については、本願と同一出願人によ
る出願(特開平9−227212)に詳述されている。
共沈法によれば、均一な組織・組成の複合粉末が得ら
れ、電極(燃料電極)と固体電解質間の界面導電率を固
体混合法による複合粉末の場合と比較して数段増大でき
る。
The method for producing the composite powder of the present invention is preferably a coprecipitation method. The method for producing the NiO / YSZ composite powder by the coprecipitation method is described in detail in an application filed by the same applicant as the present application (Japanese Patent Application Laid-Open No. 9-227212).
According to the coprecipitation method, a composite powder having a uniform structure and composition can be obtained, and the interface conductivity between the electrode (fuel electrode) and the solid electrolyte can be increased by several steps as compared with the composite powder obtained by the solid mixing method.

【0011】本発明のニッケル系/ジルコニア系複合粉
末において共沈法により合成した粉末においては、80
0℃〜1600℃の温度にて熱処理することが望まし
い。800℃より低いと、カルシウム、ストロンチウ
ム、マグネシウムを添加していないニッケル系/ジルコ
ニア系複合粉末においても、十分な焼結性を有している
ため添加元素の効果は特に、現れない。また、1600
℃よりも高いと、ニッケル系/ジルコニア系複合粉末中
の特に、ジルコニアの焼結が進行しすぎることにより、
添加元素による焼結性の向上が現れなくなる。
The powder synthesized by the coprecipitation method in the nickel / zirconia composite powder of the present invention has
It is desirable to heat-treat at a temperature of 0 ° C to 1600 ° C. If the temperature is lower than 800 ° C., the effect of the added element is not particularly exhibited even in a nickel-based / zirconia-based composite powder to which calcium, strontium, and magnesium are not added, because the powder has sufficient sinterability. Also, 1600
C., the sintering of zirconia in the nickel-based / zirconia-based composite powder in particular proceeds excessively,
No improvement in sinterability due to the added element appears.

【0012】[0012]

【実施例】以下、本発明の実施例を説明する。 実施例1:共沈法による合成 (1) 複合粉末調整:YSZ原料としての硝酸ジルコ
ニウム・イットリウム水溶液(8mol%Y23
有)、NiO原料として硝酸ニッケル水溶液を用いて、
YSZとNiOがモル比で4:6となるように調合し、
また、カルシウム、ストロンチウムおよびマグネシウム
源として硝酸カルシウム、硝酸ストロンチウムおよび硝
酸マグネシウムを用いてYSZ中のジルコニウム元素に
対して1mol%から50mol%添加し、十分撹拌を
行う。
Embodiments of the present invention will be described below. Example 1 Synthesis by Coprecipitation Method (1) Preparation of Composite Powder: Using an aqueous solution of zirconium nitrate / yttrium (containing 8 mol% Y 2 O 3 ) as a YSZ raw material and an aqueous solution of nickel nitrate as a NiO raw material,
YSZ and NiO are mixed in a molar ratio of 4: 6,
Further, calcium nitrate, strontium nitrate, and magnesium nitrate are used as calcium, strontium, and magnesium sources, and 1 to 50 mol% is added to the zirconium element in YSZ, followed by sufficient stirring.

【0013】(2) 共沈溶液調整:本実施例において
は、共沈溶液として蓚酸水溶液を用いた。容器に純水を
取り、約80℃程度に加熱する。この温水を撹拌しなが
ら蓚酸2水和物結晶を徐々に添加して溶解し、70℃〜
90℃に保持した。蓚酸水溶液の量については、共沈工
程において金属イオンが完全に沈殿するように、蓚酸量
を化学量論比よりもわずかに過剰となるようすることが
好ましい。今回の過剰量は約5mol%とした。
(2) Preparation of coprecipitation solution: In this embodiment, an oxalic acid aqueous solution was used as the coprecipitation solution. Take pure water in a container and heat to about 80 ° C. While stirring the hot water, oxalic acid dihydrate crystals are gradually added and dissolved,
It was kept at 90 ° C. Regarding the amount of the oxalic acid aqueous solution, it is preferable that the amount of the oxalic acid is slightly larger than the stoichiometric ratio so that the metal ions are completely precipitated in the coprecipitation step. The excess amount this time was about 5 mol%.

【0014】(3) 共沈反応:70℃〜90℃に加温
した原料溶液(NiO/YSZ複合溶液)を蓚酸水溶液
中に、よく撹拌しながら徐々に添加していくことで、蓚
酸共沈法による沈殿生成を行った。
(3) Coprecipitation reaction: The raw material solution (NiO / YSZ composite solution) heated to 70 ° C. to 90 ° C. is gradually added to an oxalic acid aqueous solution with good stirring, so that oxalic acid coprecipitation is performed. Precipitation by the method was performed.

【0015】(4) 乾燥:乾燥機内にポリエチレン製
容器を静置し、120℃の熱風を送り沈殿物の水分及び
硝酸を蒸発させた。
(4) Drying: A polyethylene container was allowed to stand in a dryer, and hot air at 120 ° C. was sent to evaporate water and nitric acid in the precipitate.

【0016】(5) 熱分解:乾燥後の試料を500
℃、5時間の熱処理により、残留の硝酸成分と蓚酸を除
去した。
(5) Pyrolysis: 500 samples after drying
The residual nitric acid component and oxalic acid were removed by heat treatment at 5 ° C. for 5 hours.

【0017】(6) 粉砕:熱分解により粉末化した試
料を粗粉砕機や乳鉢等により粒度調整を行う。本実験に
おいては、アルミナ質乳鉢により、二次粒子径を180
μm以下とした。
(6) Pulverization: The particle size of the sample powdered by thermal decomposition is adjusted using a coarse pulverizer or a mortar. In this experiment, the secondary particle diameter was set to 180 using an alumina mortar.
μm or less.

【0018】(7) 熱処理:得られた粉末に対して、
600℃から1800℃の熱処理を行った。
(7) Heat treatment: For the obtained powder,
A heat treatment at 600 ° C. to 1800 ° C. was performed.

【0019】(8) 再粉砕:熱処理を行った粉末に対
して、再度、アルミナ質乳鉢により、二次粒子径を18
0μm以下とした。
(8) Re-pulverization: The powder subjected to the heat treatment is again subjected to an alumina mortar to reduce the secondary particle diameter to 18%.
The thickness was set to 0 μm or less.

【0020】(9)プレス体作製:上記、熱処理・再粉
砕を行った粉末にバインダーとして、PVAを1%添加
した後、50mm×5mm×5mm程度のプレス体を作
製した。
(9) Preparation of pressed body: After adding 1% of PVA as a binder to the heat-treated / reground powder, a pressed body of about 50 mm × 5 mm × 5 mm was prepared.

【0021】実施例2:固体混合法による合成 (10)複合粉末調整:1μm以下、平均粒径0.5μ
m粒径のYSZ粉末と、5〜50μm、平均粒径15μ
mのNiO粉末がYSZとNiOがモル比で4:6とな
るように調合し、また、1μm以下、平均粒径0.3μ
m粒径のCaO粉末をYSZ中のジルコニウム元素に対
して1mol%から50mol%添加し、ボールミルに
て50時間混合を行う。
Example 2: Synthesis by solid mixing method (10) Preparation of composite powder: 1 μm or less, average particle size 0.5 μm
YSZ powder with m particle size, 5-50 μm, average particle size 15 μ
m of NiO powder is prepared so that the molar ratio of YSZ to NiO is 4: 6, and 1 μm or less, average particle diameter of 0.3 μm.
CaO powder having m particle size is added in an amount of 1 mol% to 50 mol% with respect to the zirconium element in YSZ, and the mixture is mixed by a ball mill for 50 hours.

【0022】(11)プレス体作製:上記、混合粉末に
バインダーとして、PVAを1wt%添加した後、50
mm×5mm×5mm程度のプレス体を作製した。
(11) Preparation of pressed body: After adding 1 wt% of PVA as a binder to the mixed powder, 50%
A pressed body of about mm × 5 mm × 5 mm was produced.

【0023】(12)焼成:上記(9)及び(12)で
作製したプレス体を1350℃×5時間の条件で焼結体
を得た。
(12) Firing: The pressed body produced in the above (9) and (12) was sintered at 1350 ° C. for 5 hours.

【0024】(13)還元処理:水素:窒素=1:2流
量をフローさせた雰囲気において、1000℃×10時
間の還元処理を行うことで酸化ニッケルをニッケルに還
元した。
(13) Reduction treatment: Nickel oxide was reduced to nickel by performing a reduction treatment at 1000 ° C. for 10 hours in an atmosphere in which a flow rate of hydrogen: nitrogen = 1: 2 was flowed.

【0025】(14)導電率測定:上記、還元処理を施
したプレス体について、3%水蒸気加湿―水素雰囲気、
1000℃条件において、直流四端子法により導電率の
測定を行った。図1、図2、及び図3は、共沈法により
カルシウム元素、ストロンチウム元素及びマグネシウム
元素を添加して合成した粉末において、各熱処理温度に
おける粉末を用いた、プレス体のカルシウム、ストロン
チウム及びマグネシウム添加量と導電率との関係を示す
グラフである。3種類の添加元素全てにおいて、熱処理
温度800℃〜1600℃においては、導電率が急激に
増加した。添加元素の添加量としては、調べた範囲であ
る50mol%以下では、添加していない場合と比べて
導電率の増加があった。特に30mol%以下の添加量
において導電率が大幅に増加した。図4は、固体混合法
によりカルシウム元素を添加した粉末を用いた、プレス
体のカルシウム添加量と導電率との関係を示す。共沈法
により合成した粉末を用いた場合と同様に、カルシウム
添加を行うことで、導電率が増加した。
(14) Conductivity measurement: 3% steam humidified-hydrogen atmosphere,
At 1000 ° C., the conductivity was measured by a DC four-terminal method. FIGS. 1, 2, and 3 show that calcium, strontium, and magnesium were added to a pressed body by using powders at each heat treatment temperature in a powder synthesized by adding calcium, strontium, and magnesium by a coprecipitation method. It is a graph which shows the relationship between quantity and conductivity. In all three types of additive elements, the electrical conductivity sharply increased at a heat treatment temperature of 800 ° C to 1600 ° C. When the amount of the additional element added was 50 mol% or less, which is the range of investigation, the conductivity increased compared to the case where no element was added. In particular, the conductivity increased significantly at an addition amount of 30 mol% or less. FIG. 4 shows the relationship between the amount of calcium added and the electrical conductivity of a pressed body using a powder to which calcium was added by the solid mixing method. As in the case of using the powder synthesized by the coprecipitation method, the conductivity was increased by adding calcium.

【0026】[0026]

【発明の効果】以上の説明から明らかなように、本発明
によれば、ニッケル系ジルコニア系複合粉末にカルシウ
ム、ストロンチウム及びマグネシウムを添加することに
より、導電率を大幅に増加させることが可能となった。
As is apparent from the above description, according to the present invention, it is possible to greatly increase the conductivity by adding calcium, strontium and magnesium to a nickel-based zirconia-based composite powder. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】共沈法による合成においてカルシウムを添加し
た場合の添加量と導電率との関係を示す図。
FIG. 1 is a graph showing the relationship between the amount of calcium added and the conductivity when calcium is added in synthesis by the coprecipitation method.

【図2】共沈法による合成においてストロンチウムを添
加した場合の添加量と導電率との関係を示す図。
FIG. 2 is a graph showing the relationship between the amount of strontium added and the electrical conductivity when strontium is added in the synthesis by the coprecipitation method.

【図3】共沈法による合成においてマグネシウムを添加
した場合の添加量と導電率との関係を示す図。
FIG. 3 is a graph showing the relationship between the amount of magnesium and the conductivity when magnesium is added in the synthesis by the coprecipitation method.

【図4】固体混合法による合成においてカルシウムを添
加した場合の添加量と導電率との関係を示す図。
FIG. 4 is a graph showing the relationship between the amount of calcium added and the electrical conductivity when calcium is added in the synthesis by the solid mixing method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 35/48 H01M 4/88 T H01M 4/88 C04B 35/48 B Fターム(参考) 4G031 AA03 AA04 AA05 AA08 AA12 AA23 BA03 GA01 GA05 4G048 AA05 AB02 AB05 AC06 AD03 AE05 4K017 AA06 BA03 BA10 BB11 BB18 DA01 EJ02 4K018 BA04 BA20 BC12 CA11 DA14 DA21 FA09 KA38 5H018 AA06 BB01 EE02 EE04 HH05──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 35/48 H01M 4/88 T H01M 4/88 C04B 35/48 B F term (Reference) 4G031 AA03 AA04 AA05 AA08 AA12 AA23 BA03 GA01 GA05 4G048 AA05 AB02 AB05 AC06 AD03 AE05 4K017 AA06 BA03 BA10 BB11 BB18 DA01 EJ02 4K018 BA04 BA20 BC12 CA11 DA14 DA21 FA09 KA38 5H018 AA06 BB01 EE02 EE04 HH05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル及び/又は酸化ニッケルと、イ
ットリアドープジルコニア(YSZ)からなる複合粉末
であって、カルシウム、ストロンチウム、マグネシウム
を少なくとも1種類以上添加して粉末を合成することを
特徴とするニッケル系/ジルコニア系複合粉末。
1. A composite powder comprising nickel and / or nickel oxide and yttria-doped zirconia (YSZ), wherein at least one of calcium, strontium and magnesium is added to synthesize the powder. -Based / zirconia-based composite powder.
【請求項2】 上記カルシウム、ストロンチウム、マグ
ネシウムを少なくとも1種類以上を、ジルコニウム元素
に対して50mol%以下量を添加して粉末を合成する
ことを特徴とする請求項1記載のニッケル系/ジルコニ
ア系複合粉末。
2. The nickel-based / zirconia-based powder according to claim 1, wherein at least one of calcium, strontium and magnesium is added in an amount of 50 mol% or less based on zirconium element. Composite powder.
【請求項3】 上記カルシウム、ストロンチウム、マグ
ネシウムを少なくとも1種類以上を、ジルコニウム元素
に対して30mol%以下量を添加して粉末を合成する
ことを特徴とする請求項1記載のニッケル系/ジルコニ
ア系複合粉末。
3. The nickel-based / zirconia-based powder according to claim 1, wherein at least one of calcium, strontium and magnesium is added in an amount of 30 mol% or less based on zirconium element. Composite powder.
【請求項4】 上記粉末の出発原料が硝酸塩、硫酸塩、
炭酸塩あるいは塩化物等の水溶性の金属塩であり、共沈
法により合成した請求項1〜3記載のニッケル系/ジル
コニア系複合粉末の製造方法。
4. The method according to claim 1, wherein the starting material of the powder is nitrate, sulfate,
The method for producing a nickel-based / zirconia-based composite powder according to any one of claims 1 to 3, which is a water-soluble metal salt such as a carbonate or a chloride and is synthesized by a coprecipitation method.
【請求項5】 上記粉末を800℃〜1600℃の温度
にて熱処理することを特徴とする請求項1〜4記載のニ
ッケル系/ジルコニア系複合粉末の製造方法。
5. The method for producing a nickel-based / zirconia-based composite powder according to claim 1, wherein said powder is heat-treated at a temperature of 800 ° C. to 1600 ° C.
JP10185675A 1998-04-21 1998-06-16 Production of nickel series/zirconia series compound powder Pending JP2000001701A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10185675A JP2000001701A (en) 1998-06-16 1998-06-16 Production of nickel series/zirconia series compound powder
US09/673,934 US6692855B1 (en) 1998-04-21 1999-04-19 Solid electrolyte type fuel cell and method of producing the same
PCT/JP1999/002048 WO1999054946A1 (en) 1998-04-21 1999-04-19 Solid electrolyte fuel cell and method of producing the same
AU31713/99A AU3171399A (en) 1998-04-21 1999-04-19 Solid electrolyte fuel cell and method of producing the same
EP99913694A EP1081778A4 (en) 1998-04-21 1999-04-19 Solid electrolyte fuel cell and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10185675A JP2000001701A (en) 1998-06-16 1998-06-16 Production of nickel series/zirconia series compound powder

Publications (1)

Publication Number Publication Date
JP2000001701A true JP2000001701A (en) 2000-01-07

Family

ID=16174910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10185675A Pending JP2000001701A (en) 1998-04-21 1998-06-16 Production of nickel series/zirconia series compound powder

Country Status (1)

Country Link
JP (1) JP2000001701A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346820A (en) * 2002-05-30 2003-12-05 Sulzer Hexis Ag Ink manufacturing method
JP2004327278A (en) * 2003-04-25 2004-11-18 Nissan Motor Co Ltd Electrode material for fuel cell, and solid oxide fuel cell using same
KR100921218B1 (en) 2009-03-26 2009-10-09 재단법인 구미전자정보기술원 Method for manufacturing an anode for solid oxide fuel cell
KR101176795B1 (en) 2009-04-09 2012-08-27 연세대학교 산학협력단 M/Ni-YSZ composite for fuel cell, the method of preparing the same, fuel cell using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346820A (en) * 2002-05-30 2003-12-05 Sulzer Hexis Ag Ink manufacturing method
JP4603773B2 (en) * 2002-05-30 2010-12-22 ヘクシス アクチェンゲゼルシャフト Ink production method
JP2004327278A (en) * 2003-04-25 2004-11-18 Nissan Motor Co Ltd Electrode material for fuel cell, and solid oxide fuel cell using same
JP4534188B2 (en) * 2003-04-25 2010-09-01 日産自動車株式会社 Fuel cell electrode material and solid oxide fuel cell using the same
KR100921218B1 (en) 2009-03-26 2009-10-09 재단법인 구미전자정보기술원 Method for manufacturing an anode for solid oxide fuel cell
KR101176795B1 (en) 2009-04-09 2012-08-27 연세대학교 산학협력단 M/Ni-YSZ composite for fuel cell, the method of preparing the same, fuel cell using the same

Similar Documents

Publication Publication Date Title
JP5306726B2 (en) Fuel cell electrode-electrolyte composite powder and preparation method thereof
RU2521874C2 (en) Solid oxide cell and battery containing same
JPH1053463A (en) Lanthanide ceramic material
KR101220586B1 (en) A Method for Preparing NiO/YSZ Composite for a Solid Oxide Fuel Cell
JP3457320B2 (en) Method for producing electrode layer on solid oxide electrolyte of solid fuel cell
JP6456241B2 (en) Method for producing lithium-containing composite oxide powder
JP2000511507A (en) LaMO lower 3 type compound in powder form or sintered form, its production method and its use as oxygen conductor
JP2000034167A (en) Nickel-/zirconia based composite powder and its production
JP5175154B2 (en) Production method of nickel composite oxide, nickel composite oxide obtained by the method, nickel oxide-stabilized zirconia composite oxide using the nickel composite oxide, and nickel oxide-stabilized zirconia composite oxide Fuel electrode for solid oxide fuel cell
JP3620800B2 (en) Method for producing solid electrolyte sintered body
JP2000001701A (en) Production of nickel series/zirconia series compound powder
Chick et al. Synthesis of air-sinterable lanthanum chromite powders
JP2000353530A (en) MANUFACTURE OF NiO AND/OR Ni/YSZ COMPOSITE POWDER AND MANUFACTURE OF SOLID ELECTROLYTE FUEL CELL USING THEREOF
KR100800289B1 (en) The processing method of co-synthesis nanosized LSM-YSZ composites with enhanced electrochanmical property for solid oxide fuel cell, and the nanosized LSM-YSZ composites synthesized by the above processing method
JP3121993B2 (en) Method for producing conductive ceramics
JP4889166B2 (en) Low-temperature sinterable solid electrolyte material, electrolyte electrode assembly and solid oxide fuel cell using the same
JPH11343123A (en) Production of ni or nio/ysz composite powder, and formation of fuel electrode membrane using the same
JP2000044340A (en) Sintered lanthanum gallate, its production and fuel cell produced by using the gallate as solid electrolyte
JPH0773891A (en) Highly sintering solid electrolyte material
JP3604210B2 (en) Method for producing NiO / YSZ composite powder
JPH0365517A (en) Lanthanum chromite-based compound oxide and use thereof
Anokhin et al. Influence of additives of aluminum, magnesium and calcium on synthesis and sintering of lanthanum chromite
WO2023032787A1 (en) Oxide ion conductive solid electrolyte
JP3199546B2 (en) Current collector for solid oxide fuel cell and method for producing conductive ceramics
JP2004067489A (en) Zirconia sintered compact