JP2004325018A - Refrigerating cycle - Google Patents

Refrigerating cycle Download PDF

Info

Publication number
JP2004325018A
JP2004325018A JP2003123117A JP2003123117A JP2004325018A JP 2004325018 A JP2004325018 A JP 2004325018A JP 2003123117 A JP2003123117 A JP 2003123117A JP 2003123117 A JP2003123117 A JP 2003123117A JP 2004325018 A JP2004325018 A JP 2004325018A
Authority
JP
Japan
Prior art keywords
refrigerant
expander
compressor
main compressor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003123117A
Other languages
Japanese (ja)
Other versions
JP3998249B2 (en
Inventor
Kazuto Higa
一人 比嘉
Hirokatsu Kosokabe
弘勝 香曽我部
Kazuhiro Endo
和広 遠藤
Kenji Tojo
健司 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003123117A priority Critical patent/JP3998249B2/en
Publication of JP2004325018A publication Critical patent/JP2004325018A/en
Application granted granted Critical
Publication of JP3998249B2 publication Critical patent/JP3998249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize a device with an efficient structure, reducing the cost, and improving COP (coefficient of performance) by utilizing the conversion of expansion energy of the working fluid into mechanical energy. <P>SOLUTION: An expander 5 for converting expansion energy of the working fluid into mechanical energy, and a sub-compressor 6 driven by the expander are accommodated in one sealed container 4. The refrigerant discharged from a main compressor 2 is partially branched to flow into the container 4, and the pressure in the sealed container is kept at high pressure same as the discharge pressure. Whereby the viscosity of the lubricant is lowered, the sufficient amount of lubricant can be supplied to a sliding part of the expander and the sub-compressor by pressure difference, and the sealing performance can be improved. Further the sealed container 4 can be also used as a receiver tank for storing the liquid refrigerant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒を圧縮膨張させる蒸気圧縮式の冷凍サイクルに関し、特に冷媒の膨張エネルギを機械(回転)エネルギに変換する膨張機を有する冷凍サイクルに関する。
【0002】
【従来の技術】
従来の冷凍サイクルにおいて、膨張エネルギを回収できる圧縮・膨張システムとしては、特許文献1や特許文献2に記載のものが知られている。
【0003】
この特許文献1記載のものは、主圧縮機と膨張機を分離し、膨張機で発生した膨張エネルギを回収する副圧縮機を備えた冷凍サイクルが記載されており、冷凍サイクルの主流回路を流れる主流冷媒を膨張機で膨張させ、そのときの主流冷媒の膨張エネルギを機械エネルギに変換しながら主流冷媒を減圧している。膨張機で発生した機械エネルギにより副圧縮機は駆動される。
【0004】
特許文献2のものは、冷媒を圧縮する圧縮機構部と、冷媒を膨張させる膨張機構部を電動機を介して接続した軸直結構造とし、圧縮機構部の吸込み側が蒸発器に、吐出側がガスクーラに連通する一方、膨張機構部の吸込み側がガスクーラに、吐出側が蒸発器に連通するようにして冷凍サイクルが構成されている。
【特許文献1】特開2000−329416号公報
【特許文献2】特開2001−107881号公報
【発明が解決しようとする課題】
特許文献1においては、主圧縮機、副圧縮機、膨張機を定常的に潤滑する必要があるが、それぞれがサイクル中に別々に存在しているため、圧縮機と膨張機間で油が偏在する可能性があった。また、膨張機の周囲圧力に比べて膨張機の内圧が大きくなり、膨張機内部からのガス漏洩が発生し易い。さらに、周囲圧力が低圧であるために潤滑油への冷媒の溶け込み量が少なく、また低温であるため潤滑油の粘度が大きくなり、高粘度の潤滑油が電動機や圧縮機、膨張機の負荷になってしまう問題があった。また、膨張機や副圧縮機を用いるため、コスト上昇や設置スペースが大きくなる課題もある。
【0005】
特許文献2においては、特許文献1のような圧縮機、膨張機間の油偏在の問題は改善されるが、主圧縮機と膨張機が近接した配置になるため、室内ユニットと室外ユニットに別れたセパレートタイプの冷凍空調機器とした場合、配管が長くなり、コスト上昇や配管の圧力損失による性能低下の問題がある。また、比較的低温で動作する膨張機が、ガス圧縮作用により高温となった圧縮機及び電動機からの熱影響を受けて加熱されるため、膨張過程のエンタルピ差が減少して膨張機での動力回収が少なくなり、膨張機効率を低下させる課題があった。
【0006】
本発明の目的は、必要な部品を効率よく配置して装置の小型化、低コスト化を図ることのできる冷凍サイクルを得ることにある。
【0007】
本発明の他の目的は、作動流体の膨張過程のエネルギを機械エネルギに効率よく変換して利用できる膨張/圧縮システムを構成することにより、COP(成績係数)を向上し、汎用性の高い冷凍サイクルを得ることにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は、主圧縮機で圧縮された冷媒を冷却する放熱器、この放熱器からの冷媒を膨張させる膨張手段と、該膨張手段で膨張された冷媒を蒸発させる蒸発器を有する冷凍サイクルにおいて、前記放熱器から流出した冷媒を分岐させ、その一方の冷媒を減圧膨張させると共にそのときの膨張エネルギを機械エネルギに変換する膨張機と、前記放熱器下流で分岐された他方の冷媒を減圧膨張させる膨張弁と、前記膨張機下流側と前記膨張弁下流側を合流させ、前記蒸発器に接続される流路と、前記膨張機の吸入圧力を制御する前段膨張弁と、前記膨張機により駆動され、前記蒸発器で蒸発した冷媒を圧縮して前記主圧縮機に供給する副圧縮機と、前記膨張機と前記副圧縮機を収納すると共に内部に潤滑油を貯溜した密閉容器とを備え、該密閉容器内を前記主圧縮機の吐出圧力と同一またはほぼ同一の圧力に保つことを特徴とする。
【0009】
前記主圧縮機から吐出した冷媒の一部、或いは前記放熱器から流出した冷媒の一部を分岐させ、前記膨張機と副圧縮機を収納している前記密閉容器内に流通させることで、前記密閉容器内を主圧縮機の吐出圧力に保つようにしても良い。
【0010】
前記放熱器から流出した冷媒を分岐させ、前記膨張機と前記副圧縮機を収納している密閉容器内に導入して貯留すると共に、この密閉容器の上部側から冷媒を流出させて前記膨張機に導き、該膨張機により前記冷媒を減圧膨張させるように構成すれば、前記膨張/圧縮システムの密閉容器を液冷媒或いは液冷媒と混合している潤滑油を溜めるレシーバタンクとしての機能を持たせることができる。
【0011】
また、前記主圧縮機を、内部が該主圧縮機吸い込み圧力に保たれた密閉容器内に収納すると共に、該密閉容器内部には潤滑油を貯溜し、この潤滑油の油面上部に前記主圧縮機の吸入口を設けることもできる。
【0012】
さらに、前記主圧縮機とそのモータを収納して内部に潤滑油を貯留した密閉容器を備え、この主圧縮機密閉容器内を該主圧縮機の吐出圧力に保つと共に、主圧縮機の吐出口を前記モータ下方の前記密閉容器側面に設けるようにすることもできる。
【0013】
前記主圧縮機と前記放熱器の間に油分離器を設け、該油分離器で分離された油を、前記膨張機と副圧縮機を収納した前記密閉容器に戻すようにしても良い。
【0014】
本発明の他の特徴は、主圧縮機、放熱器、膨張手段、蒸発器を順次接続して構成された冷凍サイクルにおいて、前記放熱器から流出した冷媒を分岐させその分岐された冷媒を減圧膨張させると共に膨張エネルギを回転エネルギに変換する膨張機と、前記放熱器下流で分岐された他方の冷媒を減圧膨張させる膨張弁と、
前記膨張機下流側と前記膨張弁下流側を合流させ、前記蒸発器に接続される流路と、前記膨張機の吸入圧力を制御する前段膨張弁と、前記膨張機により駆動され前記蒸発器で蒸発した冷媒を圧縮して前記主圧縮機側に供給するための副圧縮機と、前記膨張機と前記副圧縮機を収納すると共に内部に潤滑油を貯溜しかつ前記主圧縮機の吐出圧力と同一またはほぼ同一の圧力に保持される密閉容器とを備えたことにある。
【0015】
上記において、前記放熱器下流で分岐された他方の冷媒を減圧膨張させる膨張弁は、放熱器からの高圧冷媒を、前記膨張機で減圧膨張されて吐出された冷媒の圧力と同程度の圧力まで減圧するように制御される構成にすると良い。
【0016】
前記膨張機と副圧縮機を収納した密閉容器内を高圧・低温に保つことで、前記膨張機、副圧縮機の摺動部に潤滑油を供給するための差圧を大きくできるから、摺動部への油供給量が増加し、シール性能を向上させることが可能となる。また、前記密閉容器内が高圧となることにより、潤滑油への冷媒の溶け込み量が増加するため、潤滑油の粘度が低下し、膨張機及び副圧縮機の粘性摩擦損失を低減することもできる。
【0017】
また、膨張機と副圧縮機を収納した前記密閉容器に、レシーバタンクの役割を兼ねさせることが可能となるから、レシーバタンクを不要にできる。
主圧縮機を密閉容器に収納し、この密閉容器内を主圧縮機吸入圧力に保り、主圧縮機吸入口をモータ下方で油面の上部に設ける構成としたものでは、副圧縮機から吐出された潤滑油が、吸入口付近まで上昇すると、冷媒の流れと共に主圧縮機容器から吐出され、放熱器を通過後、副圧縮機を収容した密閉容器に供給されるので、膨張/圧縮システムと主圧縮機間での潤滑油の偏在を防止できる。
【0018】
主圧縮機密閉容器内を主圧縮機吐出圧力に保つ場合も同様に、主圧縮機吐出口をモータ下方の容器側面に設けるようにしているから、潤滑油が吐出口付近まで上昇すると、冷媒の流れと共に主圧縮機容器から吐出され、放熱器通過後、副圧縮機密閉容器に供給されるから、膨張/圧縮システムと主圧縮機間での潤滑油の偏在を防止することが可能となる。
【0019】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳細に説明する。
図1は本発明の第1実施例を示す冷凍サイクルの模式図、図2は冷凍サイクルの作動流体として自然冷媒である二酸化炭素(R744)を使用した場合のモリエル線図、図3はR744を使用した冷凍サイクルに使用される潤滑油の粘度特性を示す線図である。なお、冷媒としての二酸化炭素は、地球温暖化係数(GWP)がフロン系冷媒の数千分の一と小さく地球環境保全の点で優れている。反面、高圧冷媒であり、モリエル線図上の理論的COP(成績係数)が低いという欠点がある。しかし、R744は膨張過程のエネルギ損失がフロン系冷媒に比べて大きいことから、この膨張過程の動力を回収することによりCOPの大幅な改善をできる可能性があり、高効率で信頼性の高い膨張機を備えた冷凍サイクルの開発が冷媒R744システムの実用化の鍵を握ると考えられている。フロン系冷媒のシステムでも改善比率は小さくなるが、COPの向上を図ることができる。ここでは、冷媒R744を使用した冷凍サイクルの例を説明する。
【0020】
図1において、3は電動機(モータ)(M)、2は主圧縮機(MC)、5は膨張機(膨張手段)(EX)、6は副圧縮機(SC)である。主圧縮機2で圧縮された高温・高圧冷媒(図2モリエル線図上の点Cの状態)は、主圧縮機2と電動機3を収納した密閉容器1に吐出され、吐出パイプ11から放熱器(ガスクーラ)7に供給され、ここで放熱し温度低下(図2の点D)した後、流入パイプ12を通って、膨張機5及び副圧縮機6を収容した膨張/圧縮システムの密閉容器4に入り、この容器4内を低温、高圧に保つ。この膨張/圧縮システム密閉容器4から流出パイプ13を通って吐出された冷媒は、前段膨張弁9を通過して膨張機5の設計圧力比に合うように予膨張される。その後、冷媒は膨張機5に流入パイプ14を通って入り、膨張動作を行って膨張エネルギを機械エネルギに変換し、流出パイプ15から低温・低圧の気液二相冷媒(図2の点E)となって吐出される。膨張機5から吐出された冷媒は、放熱器7下流側で前記流入パイプ12側から分岐され、膨張弁(膨張手段)10を通って減圧膨張された冷媒と合流し、蒸発器8に入って吸熱ガス化し、吸入パイプ26を通って副圧縮機6に吸い込まれ(図2の点A)、この副圧縮機6内で若干昇圧されて吐出パイプ16から吐出される(図2の点B)。副圧縮機6から吐出されたガス冷媒は主圧縮機2に戻り再び圧縮されて高温・高圧のガス冷媒となる。以上のサイクルが繰り返されて冷凍作用を行なう。
【0021】
なお、前記膨張弁10は、膨張機5をバイパスする回路に取り付けられ、冷凍サイクルの運転条件変化時の流量(圧力)調整等を行う。本実施例では、主圧縮機2で圧縮された高圧の冷媒を膨張/圧縮システム密閉容器4に流通させて密閉容器4内部を高圧に保つことで、潤滑油29への冷媒の溶け込み量を増加させ、その結果潤滑油29の粘度を低下させ(図3参照)、膨張機5と副圧縮機6にかかる負荷を低減させることが可能となる。また、密閉容器4には、放熱器7で放熱された冷媒を流通させることにより、主圧縮機側から比較的低温で動作する膨張機5への熱侵入を極力抑えることが可能となる。
【0022】
図4は図1に示す膨張/圧縮システム密閉容器4内の詳細構造を説明する図、図5は図4に示す膨張機5の動作説明図で、クランク軸回転角ごとの作動流体の流入過程を説明した図である。
【0023】
膨張/圧縮システムは、冷凍サイクルにおける作動流体の膨張エネルギを機械エネルギに変換する膨張機5と、この変換された機械エネルギにより仕事をする副圧縮機6から構成され、膨張機5と副圧縮機6は積層して配置され、クランク軸17を介して連結されて、密閉容器4内に収納されている。
【0024】
膨張機5は、クランク軸17の軸受を兼ねた下ベア18と中間仕切り板19により、シリンダ20の両端開口部が閉塞されている。シリンダ20には中央部に円筒状内周面20aが形成されている。クランク軸17にはシリンダ20の円筒状内周面20aにあたる部分に偏心部17aが形成されており、この偏心部17aは、揺動ピストン21のローラ部21aに圧入された軸受メタル21b円筒状内周面を摺動回転できるようになっている。
【0025】
ローラ部21aの円筒状外周面には板状のベーン部21cが一体で形成されている。シリンダ20の円筒状内周面20aの外側にはその中心軸と平行な中心軸を持つ円筒孔部20bが形成されており、円筒孔部20bの外側には逃げ孔部20cが形成されている。前記円筒孔部20bは、シリンダ20の円筒状内周面20aと、前記逃げ孔部20cにそれぞれ連通している。揺動ピストン21のベーン部21cは円筒孔部20bと逃げ孔部20cとに挿入されている。ベーン部21cと円筒孔部20bとの間には、ベーン部21cの平面部に摺動可能に当接する平面部と、円筒孔部20bの円筒面部に摺動可能に当接する円筒面部とを有するシュー22がベーン部21cを挟み込む形で組込まれている。この結果、ベーン部21cは円筒孔部20bの中心軸を通る往復運動と中心軸廻りの揺動運動を行い、シュー22は円筒孔部20b中心軸廻りの揺動運動を行う。ベーン部21cの先端部は逃げ孔部20cの中で運動し、シリンダ20と干渉することはない。密閉容器4に取り付けられる流入パイプは、シリンダ20の円筒孔部20bに開口する流入通路20dと接続される。
【0026】
図5は、クランク軸の回転角が90°毎のシリンダ20内における揺動ピストン21の位置関係を示したもので、揺動ピストン21のベーン部21cが上死点位置(ベーン部が最もシリンダ20の外周部に突き出した状態)を回転角θの0°とし、クランク軸17は時計廻りに回転する。
【0027】
まず、回転角0°の状態では、(イ)図に示すように、シリンダ20の流入通路20dとシュー22の流入孔22aとは一部連通しており、シュー22の流入孔22aと揺動ピストン21のベーン部21cに形成された流入溝21dも連通しているが、この流入溝21dのシリンダ円筒状内周面20a側端部aはシュー22により塞がれているため、蒸気圧縮冷凍サイクルの膨張過程入口にある高圧の作動流体はシリンダ20内への流入を遮断された状態にある。一方、シリンダ20の流出通路20eはシリンダ20内に連通しているため、作動流体は膨張過程出口にあたる低圧の圧力状態になっている。
【0028】
この状態からクランク軸17が時計廻りに回転すると、(ロ)図に示すように、ベーン部21cがシリンダ20内に突き出して流入溝21dがシリンダ内との連通を開始するため、高圧の作動流体がシリンダ20内に流入しはじめ、シリンダ20内の圧力差によりピストン21を介してクランク軸17を時計廻りに回転させ、機械エネルギが発生する。(ロ)図に示す回転角90°の状態では、シュー22の揺動によりシリンダ流入通路20dとシュー流入孔22aの接続部bの流路面積も拡大するため作動流体の流入が促進される。
【0029】
さらに90°回転した回転角180°の状態((ハ)図参照)では、シリンダの流入通路20dとシューの流入孔22aとは回転角0°の状態と同様に一部連通しているが、ベーン部21cのシリンダ内周面20a側への往復運動により、シュー流入孔22aとベーン流入溝21dとは連通が遮断されている。このため、高圧の作動流体の流入が遮断された状態で作動室容積が拡大することから、作動流体は膨張してクランク軸を回転させ、機械エネルギに変換される。
【0030】
(ニ)図に示す回転角270°の状態では、シュー流入孔22aとベーン流入溝21dとは連通しはじめるが、シュー22が回転角90°の状態とは反対方向に揺動運動するため、シリンダの流入通路20dとシューの流入孔22aとは連通が遮断され、このため作動流体はさらに膨張して機械エネルギに変換され続ける。
【0031】
さらに回転が進むと、シリンダの流出通路20eはシリンダ20内に連通し、最初の回転角0°の状態になる。以上の動作を繰り返すことにより、作動流体の持つ膨張エネルギが機械エネルギに変換されることになる。
【0032】
一方、副圧縮機6は、クランク軸17の軸受を兼ねた上ベア27と中間仕切り板19によりシリンダ23の両端開口部が閉塞されている。シリンダ23には中央部に円筒状内周面23aが形成されている。クランク軸17には、シリンダ内周面23aにあたる部分にもう一方の偏心部17bが形成されており(この偏心部17bは、膨張機5側の偏心部17aとは回転位相が180°ずれている)、偏心部17bは円筒状ローラ24の内周面に装着されたころ軸受内に回転可能に挿入されている。ローラ24の円筒状外周面には板状のベーン25がベーンスプリング25aにより押圧されている。シリンダ内周面23aより外側のシリンダ23には、前記ベーン25が往復摺動するためのベーン溝、ベーン25がシリンダ23と干渉しないように形成された逃げ孔部23b、及びベーンスプリング25aの他端部を装着するスプリング孔部23cが形成されている。
【0033】
密閉容器4に取り付けられた吸入パイプ26は、シリンダ23の吸入通路と接続しており、吸入パイプ26から吸い込まれた冷媒ガスは、吸入通路を通ってシリンダ23内に入る。クランク軸17の回転によって、ローラ24がシリンダ内周面23aに沿って偏心回転運動して移動し、シリンダ内周面23aの一部を切り欠く形に形成された吐出切り欠き23eを通り、上ベア27に形成された吐出ポート27aから吐出パイプ16に吐き出され、外部の冷凍サイクルに流出する。
【0034】
密閉容器4の底部には、潤滑油29が貯溜されており、軸受摺動部(クランク軸17の各軸受部)に強制的に潤滑油を給油するため、クランク軸17の下端部に給油ピース28を装着し、クランク軸17内に形成した給油通路17cを通してクランク軸17の回転による遠心ポンプ作用で各軸受摺動部に潤滑油を供給するようになっている。本発明では、膨張機5及び副圧縮機6の大部分がこの潤滑油29中に侵漬された状態とし、主圧縮機2で圧縮された高圧の冷媒を膨張/圧縮システム密閉容器4に流通させ、内部を高圧に保つことで、膨張機5の揺動ピストン21及び副圧縮機6のローラ24の両端面から、各摺動部に容易に潤滑油を供給することが可能となる。
【0035】
次に、主圧縮機及び膨張/圧縮システムでの冷媒と潤滑油の状態について、図1と図6に基づいて説明する。図6の(a)図は主圧縮機密閉容器内を主圧縮機吸入圧力に保つ場合の例を、(b)図は主圧縮機密閉容器内を主圧縮機吐出圧力に保つ場合の例を、(c)図は膨張/圧縮システム密閉容器内の冷媒と潤滑油の状態をそれぞれ示したものである。
【0036】
ガスクーラ7で液化された冷媒を分岐し、流入パイプ12から膨張/圧縮システム密閉容器4に流入させると、液冷媒31は潤滑油29に比べて密度が小さく、混合することなく上部に蓄積する。本実施例では、流出パイプ13の端を潤滑油29の油面29aの上部に設けることにより、液冷媒31のみを流出することができる。冷凍サイクルでは、条件によってサイクル中の必要な冷媒量が変化するが、膨張/圧縮システム密閉容器4の液冷媒31の蓄積量を変化させるため、その液面31aを上下させることで、サイクルでの必要な冷媒量を容易に調節することが可能となる。即ち、密閉容器4はレシーバタンクとしての役割を兼ねるため、装置全体としての小型・低コスト化を実現できる。
【0037】
また、膨張機5の揺動ピストン21の両端面から差圧によって各摺動部に供給された潤滑油は、冷媒の流れと共に吐出パイプ15から流出して副圧縮機6に供給され、その潤滑油と、副圧縮機6のローラ24の両端面から差圧によって供給された潤滑油は吐出パイプ16から吐き出される。さらに、この潤滑油は吐出パイプ16から主圧縮機2へ供給され、主圧縮機密閉容器1内に吐出されて蓄積する。以上の過程から、膨張/圧縮システム密閉容器4内に貯溜された潤滑油29は、次第に主圧縮機密閉容器1内に移動して蓄積され、主圧縮機密閉容器1と膨張/圧縮システム密閉容器4の間で潤滑油が偏在する。特に、膨張/圧縮システム密閉容器4では、潤滑油29の油面29aが上下することに伴い、流出パイプ13から液冷媒31と共に、潤滑油29やガス冷媒が流出してしまう可能性があった。しかし、本実施例では、図6(a)に示すように、主圧縮機密閉容器1の内部を主圧縮機2の吸入圧力に保つ場合、密閉容器1と4間で潤滑油の偏在が無い状態での油面30aを基準として、その油面30aのすぐ上に、主圧縮機の吸入口32を設置する。これにより、油面30aが吸入口32以上の高さに上昇すると、油は冷媒と共に該吸入口32から主圧縮機2に吸い込まれ、吐出パイプ11から流出される。
【0038】
また、図6(b)に示すように、主圧縮機密閉容器1の内部を主圧縮機2の吐出圧力に保つ場合、密閉容器1と4間で潤滑油の偏在が無い状態での油面30aを基準として、その油面30aのすぐ上の密閉容器1側面に、吐出パイプ11を設置する。これにより、油面30bがそれ以上に上昇すると、油は冷媒と共に吐出パイプ11から流出される。
【0039】
吐出パイプ11から流出させた潤滑油は、ガスクーラ7で放熱させた後、流入パイプ12から再び膨張/圧縮システム密閉容器4に戻される。この結果、密閉容器1,4間での潤滑油の偏在が防止され、膨張/圧縮システム密閉容器4内の潤滑油29の油面29aが上下することも防止でき、密閉容器4のレシーバタンクとしての信頼性を向上することができる。なお、密閉容器1内の潤滑油30の油面30a,30bを電動機3よりも下方に設定することにより、潤滑油30による電動機3への負荷を防止できる。
【0040】
【発明の効果】
本発明によれば、作動流体の膨張過程のエネルギを機械エネルギに効率よく変換して利用できる膨張/圧縮システムを実現できると共に、膨張/圧縮システム密閉容器内を、主圧縮機の吐出圧力と同一またはほぼ同一の高圧力に保つようにしたから、潤滑油の粘度を低下させて膨張機と副圧縮機の摩擦損失を低減することができ、冷凍サイクルのCOP(成績係数)向上を図れる効果がある。この結果、自然冷媒である二酸化炭素を用いた冷凍空調システム等の実現が可能となる。
【0041】
また、膨張/圧縮システム密閉容器内に液冷媒を蓄積させてレシーバタンクとしての役割も兼ねさせることにより、小型・低コスト化も実現できる。
【0042】
さらに、膨張/圧縮システム密閉容器内を高圧に保つことにより、膨張機と副圧縮機のシリンダ内各摺動部に差圧により容易に潤滑油を供給することも可能になる。
【0043】
また、主圧縮機密閉容器の潤滑油を膨張/圧縮システム密閉容器に戻す構成にすることにより、密閉容器間での均油が可能となり、信頼性を向上できる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す冷凍サイクルの模式図である。
【図2】冷凍サイクルの作動流体として二酸化炭素を使用した場合ののモリエル線図である。
【図3】二酸化炭素を使用した冷凍サイクルに使用される潤滑油の粘度特性を示す線図である。
【図4】図1に示す膨張/圧縮システム密閉容器内の詳細構造を説明する縦断面図である。
【図5】図4に示す膨張機の動作説明図である。
【図6】主圧縮機密閉容器、及び膨張/圧縮システム密閉容器内の冷媒と潤滑油の状態を説明する模式図である。
【符号の説明】
1…主圧縮機密閉容器、2…主圧縮機、3…電動機(モータ)、4…膨張/圧縮システム密閉容器、5…膨張機、6…副圧縮機、7…放熱器(ガスクーラ)、8…蒸発器、9…膨張機前段膨張弁、10…流量調整用膨張弁、11…吐出パイプ、12…流入パイプ、13…流出パイプ、14…膨張機の流入パイプ、15…膨張機の吐出パイプ、16…副圧縮機の吐出パイプ、17…クランク軸、17a,17b…偏心部、17c…給油通路、18…下ベア、19…中間仕切り板、20…膨張機のシリンダ、20a…円筒状内周面(シリンダ内周面)、20b…円筒孔部、20c…逃げ孔部、20d…流入通路、20e…流出通路、21…揺動ピストン、21a…ローラ部、21b…軸受メタル、21c…ベーン部、21d…流入溝、22…シュー、22a…流入孔、23…副圧縮機のシリンダ、23a…円筒状内周面(シリンダ内周面)、23b…逃げ孔部、23c…スプリング孔部、23e…吐出切り欠き、24…ローラ、25…ベーン、25a…ベーンスプリング、26…副圧縮機の吸入パイプ、27…上ベア、28…給油ピース、29,30…潤滑油、29a,30a,30b…油面、31…液冷媒、31a…液面、32…主圧縮機の吸入口。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vapor compression refrigeration cycle for compressing and expanding a refrigerant, and more particularly to a refrigeration cycle having an expander for converting expansion energy of the refrigerant into mechanical (rotational) energy.
[0002]
[Prior art]
As a compression / expansion system capable of recovering expansion energy in a conventional refrigeration cycle, those described in Patent Documents 1 and 2 are known.
[0003]
This patent document 1 describes a refrigeration cycle including a sub-compressor that separates a main compressor and an expander and recovers expansion energy generated by the expander, and flows through a mainstream circuit of the refrigeration cycle. The mainstream refrigerant is expanded by the expander, and the mainstream refrigerant is decompressed while converting the expansion energy of the mainstream refrigerant into mechanical energy at that time. The sub-compressor is driven by mechanical energy generated by the expander.
[0004]
Japanese Patent Application Laid-Open No. H11-163,197 discloses a structure in which a compression mechanism for compressing a refrigerant and an expansion mechanism for expanding the refrigerant are directly connected to a shaft via an electric motor. The suction side of the compression mechanism communicates with an evaporator, and the discharge side communicates with a gas cooler. On the other hand, the refrigeration cycle is configured such that the suction side of the expansion mechanism communicates with the gas cooler and the discharge side communicates with the evaporator.
[Patent Document 1] JP-A-2000-329416 [Patent Document 2] JP-A-2001-107881 [Problems to be Solved by the Invention]
In Patent Literature 1, the main compressor, the sub-compressor, and the expander need to be constantly lubricated, but since each exists separately in the cycle, oil is unevenly distributed between the compressor and the expander. Could be. Further, the internal pressure of the expander becomes larger than the ambient pressure of the expander, and gas leakage from inside the expander is likely to occur. In addition, the low ambient pressure reduces the amount of refrigerant that dissolves into the lubricating oil, and the low temperature increases the viscosity of the lubricating oil, causing the high-viscosity lubricating oil to load the motor, compressor, and expander. There was a problem. In addition, since an expander and a sub-compressor are used, there are also problems that the cost increases and the installation space increases.
[0005]
In Patent Literature 2, the problem of uneven distribution of oil between the compressor and the expander as in Patent Literature 1 is improved, but since the main compressor and the expander are arranged close to each other, they are divided into an indoor unit and an outdoor unit. In the case of a separate type refrigeration and air-conditioning device, the piping becomes long, and there is a problem that the cost increases and the performance decreases due to pressure loss of the piping. In addition, since the expander that operates at a relatively low temperature is heated under the influence of heat from the compressor and the electric motor that have become hot due to the gas compression action, the enthalpy difference in the expansion process is reduced, and the power generated by the expander is reduced. There was a problem that the recovery was reduced and the efficiency of the expander was reduced.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a refrigeration cycle that can efficiently arrange necessary components and reduce the size and cost of an apparatus.
[0007]
Another object of the present invention is to improve the COP (coefficient of performance) and increase the versatility of a refrigeration system by configuring an expansion / compression system capable of efficiently converting the energy of the expansion process of a working fluid into mechanical energy and using the same. Is to get the cycle.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a radiator for cooling a refrigerant compressed by a main compressor, expansion means for expanding the refrigerant from the radiator, and evaporating the refrigerant expanded by the expansion means. In a refrigeration cycle having an evaporator, a refrigerant flowing out of the radiator is branched, and one of the refrigerants is decompressed and expanded, and an expander that converts expansion energy at that time into mechanical energy is branched off downstream of the radiator. An expansion valve for decompressing and expanding the other refrigerant, a flow path connected to the evaporator for joining the downstream side of the expander and the downstream side of the expansion valve, and a pre-stage expansion valve for controlling a suction pressure of the expander. A sub-compressor driven by the expander to compress the refrigerant evaporated by the evaporator and supply the compressed refrigerant to the main compressor; and a housing for storing the expander and the sub-compressor and for storing lubricating oil therein. Made dense And a container, characterized by keeping the closed vessel to the discharge pressure and the same or substantially the same pressure of the main compressor.
[0009]
By branching a part of the refrigerant discharged from the main compressor or a part of the refrigerant flowing out of the radiator, and allowing the refrigerant to flow in the closed container containing the expander and the sub-compressor, The inside of the closed container may be maintained at the discharge pressure of the main compressor.
[0010]
The refrigerant flowing out of the radiator is branched, introduced and stored in a sealed container containing the expander and the sub-compressor, and the refrigerant is discharged from the upper side of the sealed container to expand the compressor. If the refrigerant is decompressed and expanded by the expander, the sealed container of the expansion / compression system can function as a receiver tank for storing liquid refrigerant or lubricating oil mixed with liquid refrigerant. be able to.
[0011]
Further, the main compressor is housed in a sealed container whose inside is kept at the suction pressure of the main compressor, and a lubricating oil is stored in the sealed container. A compressor inlet can also be provided.
[0012]
Further, the main compressor and its motor are housed therein and a hermetically sealed container containing lubricating oil therein is provided. The inside of the main compressor hermetic container is maintained at the discharge pressure of the main compressor, and the discharge port of the main compressor is maintained. May be provided on the side surface of the closed container below the motor.
[0013]
An oil separator may be provided between the main compressor and the radiator, and the oil separated by the oil separator may be returned to the closed container containing the expander and the sub-compressor.
[0014]
Another feature of the present invention is that, in a refrigeration cycle configured by sequentially connecting a main compressor, a radiator, expansion means, and an evaporator, the refrigerant flowing out of the radiator is branched, and the branched refrigerant is decompressed and expanded. An expander that converts expansion energy into rotational energy and an expansion valve that decompresses and expands the other refrigerant branched downstream of the radiator,
The downstream side of the expander and the downstream side of the expansion valve are joined, a flow path connected to the evaporator, a pre-stage expansion valve for controlling the suction pressure of the expander, and the evaporator driven by the expander A sub-compressor for compressing the evaporated refrigerant and supplying it to the main compressor side, storing the expander and the sub-compressor, storing lubricating oil therein and discharging pressure of the main compressor; And a closed container maintained at the same or almost the same pressure.
[0015]
In the above, the expansion valve that decompresses and expands the other refrigerant that is branched downstream of the radiator is configured to reduce the pressure of the high-pressure refrigerant from the radiator to approximately the same pressure as the pressure of the refrigerant that has been decompressed and expanded by the expander and discharged. It is preferable that the pressure be reduced.
[0016]
By maintaining the inside of the sealed container containing the expander and the sub-compressor at high pressure and low temperature, the differential pressure for supplying lubricating oil to the sliding portion of the expander and the sub-compressor can be increased. The amount of oil supply to the section increases, and the sealing performance can be improved. Further, when the pressure in the closed container becomes high, the amount of the refrigerant dissolved into the lubricating oil increases, so that the viscosity of the lubricating oil decreases, and the viscous friction loss of the expander and the sub-compressor can be reduced. .
[0017]
In addition, since the sealed container containing the expander and the sub-compressor can also serve as a receiver tank, the receiver tank can be omitted.
In the case where the main compressor is housed in an airtight container and the inside of the airtight container is maintained at the main compressor suction pressure, and the main compressor suction port is provided below the motor and above the oil level, the main compressor is discharged from the sub compressor. When the lubricating oil reaches the vicinity of the suction port, it is discharged from the main compressor container together with the flow of the refrigerant, and after passing through the radiator, is supplied to the closed container containing the sub-compressor. The uneven distribution of the lubricating oil between the main compressors can be prevented.
[0018]
Similarly, in the case where the inside of the main compressor closed container is maintained at the main compressor discharge pressure, the main compressor discharge port is provided on the side of the container below the motor. Since the oil is discharged from the main compressor container along with the flow and is supplied to the sub-compressor closed container after passing through the radiator, it is possible to prevent uneven distribution of the lubricating oil between the expansion / compression system and the main compressor.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram of a refrigeration cycle showing a first embodiment of the present invention, FIG. 2 is a Mollier diagram when carbon dioxide (R744), which is a natural refrigerant, is used as a working fluid of the refrigeration cycle, and FIG. It is a diagram which shows the viscosity characteristic of the lubricating oil used for the used refrigeration cycle. In addition, carbon dioxide as a refrigerant has a global warming potential (GWP) as small as several thousandths of a chlorofluorocarbon-based refrigerant, and is excellent in preserving the global environment. On the other hand, it is a high-pressure refrigerant and has a disadvantage that the theoretical COP (coefficient of performance) on the Mollier diagram is low. However, since the energy loss of R744 in the expansion process is larger than that of the chlorofluorocarbon-based refrigerant, there is a possibility that the COP can be significantly improved by recovering the power in the expansion process. The development of a refrigeration cycle equipped with a refrigerator is considered to be the key to the practical application of the refrigerant R744 system. Although the improvement ratio becomes smaller even in a system using a chlorofluorocarbon-based refrigerant, the COP can be improved. Here, an example of a refrigeration cycle using the refrigerant R744 will be described.
[0020]
In FIG. 1, 3 is an electric motor (motor) (M), 2 is a main compressor (MC), 5 is an expander (expansion means) (EX), and 6 is a sub-compressor (SC). The high-temperature and high-pressure refrigerant (state at point C on the Mollier diagram in FIG. 2) compressed by the main compressor 2 is discharged to the hermetically sealed container 1 containing the main compressor 2 and the electric motor 3, and the radiator is discharged from the discharge pipe 11. (Gas cooler) 7, where the heat is radiated and the temperature is lowered (point D in FIG. 2), and then, through an inflow pipe 12, a sealed container 4 of the expansion / compression system containing the expander 5 and the sub-compressor 6. And the inside of the container 4 is kept at a low temperature and a high pressure. The refrigerant discharged from the expansion / compression system closed vessel 4 through the outflow pipe 13 passes through the pre-stage expansion valve 9 and is pre-expanded to match the design pressure ratio of the expander 5. Thereafter, the refrigerant enters the expander 5 through the inflow pipe 14, performs expansion operation, converts expansion energy into mechanical energy, and flows out of the outflow pipe 15 at a low-temperature and low-pressure gas-liquid two-phase refrigerant (point E in FIG. 2). And discharged. The refrigerant discharged from the expander 5 is branched off from the inflow pipe 12 downstream of the radiator 7, merges with the refrigerant decompressed and expanded through an expansion valve (expansion means) 10, and enters the evaporator 8. The gas is absorbed by the sub-compressor 6 through the suction pipe 26 (point A in FIG. 2), is slightly pressurized in the sub-compressor 6, and is discharged from the discharge pipe 16 (point B in FIG. 2). . The gas refrigerant discharged from the sub-compressor 6 returns to the main compressor 2 and is compressed again to become a high-temperature and high-pressure gas refrigerant. The above cycle is repeated to perform the refrigeration operation.
[0021]
The expansion valve 10 is attached to a circuit that bypasses the expander 5, and adjusts the flow rate (pressure) when the operating condition of the refrigeration cycle changes. In the present embodiment, the high-pressure refrigerant compressed by the main compressor 2 is circulated through the expansion / compression system closed container 4 to maintain the inside of the closed container 4 at a high pressure, thereby increasing the amount of the refrigerant dissolved into the lubricating oil 29. As a result, the viscosity of the lubricating oil 29 is reduced (see FIG. 3), and the load on the expander 5 and the sub-compressor 6 can be reduced. In addition, by allowing the refrigerant radiated by the radiator 7 to flow through the closed casing 4, it is possible to minimize heat intrusion from the main compressor into the expander 5 that operates at a relatively low temperature.
[0022]
FIG. 4 is a view for explaining the detailed structure of the expansion / compression system closed vessel 4 shown in FIG. 1, and FIG. 5 is a view for explaining the operation of the expander 5 shown in FIG. FIG.
[0023]
The expansion / compression system includes an expander 5 that converts expansion energy of a working fluid in a refrigeration cycle into mechanical energy, and a sub-compressor 6 that performs work by using the converted mechanical energy. The expander 5 and the sub-compressor 6 are stacked and connected via a crankshaft 17 and housed in a closed container 4.
[0024]
In the expander 5, openings at both ends of a cylinder 20 are closed by a lower bear 18 also serving as a bearing of a crankshaft 17 and an intermediate partition plate 19. The cylinder 20 has a cylindrical inner peripheral surface 20a formed at the center. An eccentric portion 17a is formed on the crankshaft 17 at a portion corresponding to a cylindrical inner peripheral surface 20a of the cylinder 20, and the eccentric portion 17a is formed inside a cylindrical bearing metal 21b pressed into a roller portion 21a of a swing piston 21. The peripheral surface can be slid and rotated.
[0025]
A plate-shaped vane portion 21c is integrally formed on the cylindrical outer peripheral surface of the roller portion 21a. A cylindrical hole 20b having a central axis parallel to the central axis is formed outside the cylindrical inner peripheral surface 20a of the cylinder 20, and a relief hole 20c is formed outside the cylindrical hole 20b. . The cylindrical hole 20b communicates with the cylindrical inner peripheral surface 20a of the cylinder 20 and the relief hole 20c. The vane portion 21c of the swing piston 21 is inserted into the cylindrical hole portion 20b and the escape hole portion 20c. Between the vane portion 21c and the cylindrical hole portion 20b, there is a flat portion slidably in contact with the flat portion of the vane portion 21c and a cylindrical surface portion slidably in contact with the cylindrical surface portion of the cylindrical hole portion 20b. The shoe 22 is incorporated so as to sandwich the vane portion 21c. As a result, the vane portion 21c performs a reciprocating motion passing through the central axis of the cylindrical hole portion 20b and a swinging motion around the central axis, and the shoe 22 performs a swinging motion around the central axis of the cylindrical hole portion 20b. The tip of the vane portion 21c moves in the escape hole portion 20c and does not interfere with the cylinder 20. The inflow pipe attached to the closed container 4 is connected to an inflow passage 20 d that opens into the cylindrical hole 20 b of the cylinder 20.
[0026]
FIG. 5 shows the positional relationship of the oscillating piston 21 in the cylinder 20 at every 90 ° rotation angle of the crankshaft. The vane portion 21c of the oscillating piston 21 is at the top dead center position (the 20 (a state protruding to the outer peripheral portion of 20) is set to a rotation angle θ of 0 °, and the crankshaft 17 rotates clockwise.
[0027]
First, when the rotation angle is 0 °, the inflow passage 20d of the cylinder 20 and the inflow hole 22a of the shoe 22 partially communicate with each other, as shown in FIG. Although the inflow groove 21d formed in the vane portion 21c of the piston 21 is also in communication, the end a of the inflow groove 21d on the cylinder inner peripheral surface 20a side is closed by the shoe 22, so that the vapor compression refrigeration is performed. The high-pressure working fluid at the inlet of the expansion process of the cycle is blocked from flowing into the cylinder 20. On the other hand, since the outflow passage 20e of the cylinder 20 communicates with the inside of the cylinder 20, the working fluid is in a low pressure state corresponding to the expansion process outlet.
[0028]
When the crankshaft 17 rotates clockwise from this state, the vane portion 21c protrudes into the cylinder 20 and the inflow groove 21d starts communicating with the inside of the cylinder as shown in FIG. Begins to flow into the cylinder 20, and the pressure difference in the cylinder 20 causes the crankshaft 17 to rotate clockwise through the piston 21 to generate mechanical energy. (B) When the rotation angle is 90 ° as shown in the drawing, the flow area of the connection portion b between the cylinder inflow passage 20d and the shoe inflow hole 22a is increased by the swing of the shoe 22, so that the inflow of the working fluid is promoted.
[0029]
Further, in a state of a rotation angle of 180 ° rotated by 90 ° (see FIG. 3C), the inflow passage 20d of the cylinder and the inflow hole 22a of the shoe partially communicate with each other as in the state of the rotation angle of 0 °. Due to the reciprocating motion of the vane portion 21c toward the cylinder inner peripheral surface 20a, the communication between the shoe inflow hole 22a and the vane inflow groove 21d is interrupted. For this reason, since the volume of the working chamber is expanded in a state where the inflow of the high-pressure working fluid is cut off, the working fluid expands, rotates the crankshaft, and is converted into mechanical energy.
[0030]
(D) In the state of a rotation angle of 270 ° shown in the figure, the shoe inflow hole 22a and the vane inflow groove 21d start to communicate with each other, but since the shoe 22 swings in the opposite direction to the state of the rotation angle of 90 °, The communication between the inflow passage 20d of the cylinder and the inflow hole 22a of the shoe is cut off, so that the working fluid further expands and is continuously converted into mechanical energy.
[0031]
When the rotation further proceeds, the outflow passage 20e of the cylinder communicates with the inside of the cylinder 20, and the state of the initial rotation angle is 0 °. By repeating the above operation, the expansion energy of the working fluid is converted into mechanical energy.
[0032]
On the other hand, in the sub-compressor 6, both ends of the cylinder 23 are closed by the upper bear 27 also serving as a bearing of the crankshaft 17 and the intermediate partition plate 19. The cylinder 23 has a cylindrical inner peripheral surface 23a formed at the center. The crankshaft 17 has another eccentric portion 17b formed in a portion corresponding to the cylinder inner peripheral surface 23a (the eccentric portion 17b is 180 ° out of rotation with the eccentric portion 17a on the expander 5 side). ), The eccentric portion 17b is rotatably inserted into a roller bearing mounted on the inner peripheral surface of the cylindrical roller 24. A plate-shaped vane 25 is pressed against a cylindrical outer peripheral surface of the roller 24 by a vane spring 25a. In the cylinder 23 outside the cylinder inner peripheral surface 23a, there are provided a vane groove for the vane 25 to reciprocate, a relief hole 23b formed so that the vane 25 does not interfere with the cylinder 23, and a vane spring 25a. A spring hole 23c for mounting the end is formed.
[0033]
The suction pipe 26 attached to the closed container 4 is connected to a suction passage of the cylinder 23, and the refrigerant gas sucked from the suction pipe 26 enters the cylinder 23 through the suction passage. Due to the rotation of the crankshaft 17, the roller 24 moves eccentrically and rotationally along the cylinder inner peripheral surface 23a, and passes through the discharge notch 23e formed by cutting out a part of the cylinder inner peripheral surface 23a. It is discharged from the discharge port 27a formed in the bear 27 to the discharge pipe 16, and flows out to an external refrigeration cycle.
[0034]
A lubricating oil 29 is stored at the bottom of the sealed container 4. The lubricating oil is forcibly supplied to the bearing sliding portion (each bearing of the crankshaft 17). The lubricating oil is supplied to each sliding portion of the bearing by a centrifugal pump action by rotation of the crankshaft 17 through an oil supply passage 17c formed in the crankshaft 17. In the present invention, most of the expander 5 and the sub-compressor 6 are immersed in the lubricating oil 29, and the high-pressure refrigerant compressed by the main compressor 2 flows to the expansion / compression system closed container 4. By keeping the inside at a high pressure, lubricating oil can be easily supplied to each sliding portion from both end surfaces of the oscillating piston 21 of the expander 5 and the roller 24 of the sub-compressor 6.
[0035]
Next, the state of the refrigerant and the lubricating oil in the main compressor and the expansion / compression system will be described with reference to FIGS. FIG. 6 (a) shows an example in which the inside of the main compressor closed vessel is maintained at the main compressor suction pressure, and FIG. 6 (b) shows an example in which the main compressor closed vessel is maintained at the main compressor discharge pressure. (C) shows the state of the refrigerant and the lubricating oil in the expansion / compression system closed container, respectively.
[0036]
When the refrigerant liquefied by the gas cooler 7 is branched and flows into the expansion / compression system closed container 4 from the inflow pipe 12, the liquid refrigerant 31 has a lower density than the lubricating oil 29 and accumulates at the upper portion without being mixed. In this embodiment, by providing the end of the outflow pipe 13 above the oil level 29a of the lubricating oil 29, only the liquid refrigerant 31 can flow out. In the refrigeration cycle, the required amount of refrigerant in the cycle changes depending on conditions. However, in order to change the amount of liquid refrigerant 31 stored in the expansion / compression system closed container 4, the liquid level 31a is raised and lowered to increase the amount of refrigerant in the cycle. The required amount of refrigerant can be easily adjusted. That is, since the sealed container 4 also serves as a receiver tank, the size and cost of the entire apparatus can be reduced.
[0037]
Further, the lubricating oil supplied to each sliding portion by the differential pressure from both end surfaces of the oscillating piston 21 of the expander 5 flows out of the discharge pipe 15 together with the flow of the refrigerant, and is supplied to the sub-compressor 6. Oil and lubricating oil supplied by differential pressure from both end surfaces of the roller 24 of the sub-compressor 6 are discharged from the discharge pipe 16. Further, the lubricating oil is supplied from the discharge pipe 16 to the main compressor 2 and discharged into the main compressor closed vessel 1 to accumulate. From the above process, the lubricating oil 29 stored in the expansion / compression system closed container 4 gradually moves and accumulates in the main compressor closed container 1 and the main compressor closed container 1 and the expansion / compression system closed container. 4, the lubricating oil is unevenly distributed. In particular, in the expansion / compression system closed container 4, the lubricating oil 29 and the gas refrigerant may flow out from the outflow pipe 13 together with the liquid refrigerant 31 as the oil level 29 a of the lubricating oil 29 rises and falls. . However, in this embodiment, as shown in FIG. 6A, when the inside of the main compressor closed container 1 is kept at the suction pressure of the main compressor 2, there is no uneven distribution of the lubricating oil between the closed containers 1 and 4. With the oil level 30a in the state as a reference, the suction port 32 of the main compressor is installed immediately above the oil level 30a. As a result, when the oil level 30a rises to a height equal to or higher than the suction port 32, the oil is sucked into the main compressor 2 from the suction port 32 together with the refrigerant, and flows out from the discharge pipe 11.
[0038]
As shown in FIG. 6 (b), when the inside of the main compressor closed vessel 1 is kept at the discharge pressure of the main compressor 2, the oil level between the closed vessels 1 and 4 in a state where the lubricating oil is not unevenly distributed. With reference to 30a, the discharge pipe 11 is installed on the side of the closed container 1 immediately above the oil level 30a. Thus, when the oil level 30b rises further, the oil flows out of the discharge pipe 11 together with the refrigerant.
[0039]
After the lubricating oil discharged from the discharge pipe 11 is radiated by the gas cooler 7, the lubricating oil is returned from the inflow pipe 12 to the expansion / compression system closed container 4 again. As a result, the uneven distribution of the lubricating oil between the closed containers 1 and 4 can be prevented, and the oil level 29a of the lubricating oil 29 in the expansion / compression system closed container 4 can be prevented from going up and down. Reliability can be improved. By setting the oil levels 30a and 30b of the lubricating oil 30 in the closed container 1 below the electric motor 3, a load on the electric motor 3 by the lubricating oil 30 can be prevented.
[0040]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while being able to implement | achieve the expansion / compression system which can convert the energy of the expansion process of a working fluid into mechanical energy efficiently, and can utilize it, the inside of an expansion / compression system closed container is equal to the discharge pressure of a main compressor. Alternatively, since the same high pressure is maintained, the viscosity of the lubricating oil can be reduced to reduce the friction loss between the expander and the sub-compressor, thereby improving the COP (coefficient of performance) of the refrigeration cycle. is there. As a result, a refrigeration / air-conditioning system using carbon dioxide, which is a natural refrigerant, can be realized.
[0041]
In addition, by accumulating the liquid refrigerant in the expansion / compression system closed container and also serving as a receiver tank, downsizing and cost reduction can be realized.
[0042]
Further, by maintaining the inside of the expansion / compression system closed vessel at a high pressure, lubricating oil can be easily supplied to each sliding portion in the cylinder of the expander and the sub-compressor by differential pressure.
[0043]
Further, by employing a configuration in which the lubricating oil in the main compressor closed container is returned to the expansion / compression system closed container, the oil can be equalized between the closed containers, and the reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic view of a refrigeration cycle showing a first embodiment of the present invention.
FIG. 2 is a Mollier diagram when carbon dioxide is used as a working fluid of a refrigeration cycle.
FIG. 3 is a diagram showing a viscosity characteristic of a lubricating oil used in a refrigeration cycle using carbon dioxide.
FIG. 4 is a longitudinal sectional view illustrating a detailed structure inside the expansion / compression system closed container shown in FIG. 1;
FIG. 5 is an operation explanatory view of the expander shown in FIG. 4;
FIG. 6 is a schematic diagram illustrating a state of a refrigerant and a lubricating oil in a main compressor closed container and an expansion / compression system closed container.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Main compressor closed container, 2 ... Main compressor, 3 ... Electric motor (motor), 4 ... Expansion / compression system closed container, 5 ... Expander, 6 ... Subcompressor, 7 ... Radiator (gas cooler), 8 ... Evaporator, 9 ... Expansion machine pre-stage expansion valve, 10 ... Flow rate adjustment expansion valve, 11 ... Discharge pipe, 12 ... Inflow pipe, 13 ... Outflow pipe, 14 ... Expansion machine inflow pipe, 15 ... Expansion machine discharge pipe , 16: Discharge pipe of sub-compressor, 17: Crank shaft, 17a, 17b: Eccentric part, 17c: Oil supply passage, 18: Lower bear, 19: Intermediate partition plate, 20: Cylinder of expander, 20a: Inside cylindrical shape Peripheral surface (cylinder inner peripheral surface), 20b: cylindrical hole, 20c: relief hole, 20d: inflow passage, 20e: outflow passage, 21: swing piston, 21a: roller portion, 21b: bearing metal, 21c: vane Part, 21d ... inflow groove, 22 ... sh , 22a ... inflow hole, 23 ... cylinder of sub-compressor, 23a ... cylindrical inner peripheral surface (cylinder inner peripheral surface), 23b ... escape hole, 23c ... spring hole, 23e ... discharge notch, 24 ... roller, Reference numeral 25: vane, 25a: vane spring, 26: suction pipe of the sub-compressor, 27: upper bear, 28: oil supply piece, 29, 30: lubricating oil, 29a, 30a, 30b: oil surface, 31: liquid refrigerant, 31a ... Liquid level, 32 ... Suction port of main compressor.

Claims (9)

主圧縮機で圧縮された冷媒を冷却する放熱器、この放熱器からの冷媒を膨張させる膨張手段と、該膨張手段で膨張された冷媒を蒸発させる蒸発器を有する冷凍サイクルにおいて、
前記放熱器から流出した冷媒を分岐させ、その一方の冷媒を減圧膨張させると共にそのときの膨張エネルギを機械エネルギに変換する膨張機と、
前記放熱器下流で分岐された他方の冷媒を減圧膨張させる膨張弁と、
前記膨張機下流側と前記膨張弁下流側を合流させ、前記蒸発器に接続される流路と、
前記膨張機の吸入圧力を制御する前段膨張弁と、
前記膨張機により駆動され、前記蒸発器で蒸発した冷媒を圧縮して前記主圧縮機に供給する副圧縮機と、
前記膨張機と前記副圧縮機を収納すると共に内部に潤滑油を貯溜した密閉容器とを備え、
該密閉容器内を前記主圧縮機の吐出圧力と同一またはほぼ同一の圧力に保つことを特徴とする冷凍サイクル。
A radiator that cools the refrigerant compressed by the main compressor, an expansion unit that expands the refrigerant from the radiator, and a refrigeration cycle having an evaporator that evaporates the refrigerant expanded by the expansion unit.
An expander that branches the refrigerant flowing out of the radiator, decompresses and expands one of the refrigerants, and converts expansion energy at that time into mechanical energy.
An expansion valve for decompressing and expanding the other refrigerant branched downstream of the radiator,
Merging the expander downstream and the expansion valve downstream, a flow path connected to the evaporator,
A pre-stage expansion valve for controlling the suction pressure of the expander;
A sub-compressor driven by the expander and compressing the refrigerant evaporated by the evaporator and supplying the compressed refrigerant to the main compressor,
A sealed container containing the expander and the sub-compressor and storing lubricating oil therein,
A refrigeration cycle, wherein the inside of the closed vessel is maintained at the same or substantially the same pressure as the discharge pressure of the main compressor.
請求項1において、前記主圧縮機から吐出した冷媒の一部を分岐させ、前記膨張機と副圧縮機を収納している密閉容器内に流通させたことを特徴とする冷凍サイクル。2. The refrigeration cycle according to claim 1, wherein a part of the refrigerant discharged from the main compressor is branched and circulated in a closed vessel containing the expander and the sub-compressor. 請求項1において、前記放熱器から流出した冷媒を分岐させ、前記膨張機と前記副圧縮機を収納している一つの密閉容器内に流通させたことを特徴とする冷凍サイクル。2. The refrigeration cycle according to claim 1, wherein the refrigerant that has flowed out of the radiator is branched and circulated in one closed container containing the expander and the sub-compressor. 請求項1において、前記放熱器から流出した冷媒を分岐させ、前記膨張機と前記副圧縮機を収納している密閉容器内に導入して貯留すると共に、この密閉容器の上部側から冷媒を流出させて前記膨張機に導き、該膨張機により前記冷媒を減圧膨張させることを特徴とする冷凍サイクル。2. The refrigerant according to claim 1, wherein the refrigerant flowing out of the radiator is branched, introduced and stored in a closed container containing the expander and the sub-compressor, and the refrigerant flows out from an upper side of the closed container. The refrigerant is led to the expander, and the refrigerant is decompressed and expanded by the expander. 請求項1〜4の何れかにおいて、前記主圧縮機を、内部が該主圧縮機吸い込み圧力に保たれた密閉容器内に収納すると共に、該密閉容器内部には潤滑油を貯溜し、この潤滑油の油面上部に前記主圧縮機の吸入口を設けたことを特徴とする冷凍サイクル。5. The main compressor according to claim 1, wherein the main compressor is housed in a closed container whose inside is maintained at the suction pressure of the main compressor, and a lubricating oil is stored inside the closed container. A refrigeration cycle, wherein an inlet of the main compressor is provided above an oil level of the oil. 請求項1〜4の何れかにおいて、前記主圧縮機とそのモータを収納して内部に潤滑油を貯留した密閉容器を備え、この主圧縮機密閉容器内を該主圧縮機の吐出圧力に保つと共に、主圧縮機の吐出口を前記モータ下方の前記密閉容器側面に設けたことを特徴とする冷凍サイクル。5. A sealed container in which the main compressor and its motor are housed and lubricating oil is stored therein according to any one of claims 1 to 4, wherein the inside of the main compressor sealed container is maintained at the discharge pressure of the main compressor. A refrigerating cycle, wherein a discharge port of a main compressor is provided on a side surface of the closed container below the motor. 請求項1〜6の何れかにおいて、前記主圧縮機と前記放熱器の間に油分離器を設け、該油分離器で分離された油を、前記膨張機と副圧縮機を収納した前記密閉容器に戻すことを特徴とする冷凍サイクル。An oil separator according to any one of claims 1 to 6, wherein an oil separator is provided between the main compressor and the radiator, and the oil separated by the oil separator is sealed in the expansion device and the sub-compressor. A refrigeration cycle characterized by returning to a container. 主圧縮機、放熱器、膨張手段、蒸発器を順次接続して構成された冷凍サイクルにおいて、
前記放熱器から流出した冷媒を分岐させその分岐された冷媒を減圧膨張させると共に膨張エネルギを回転エネルギに変換する膨張機と、
前記放熱器下流で分岐された他方の冷媒を減圧膨張させる膨張弁と、
前記膨張機下流側と前記膨張弁下流側を合流させ、前記蒸発器に接続される流路と、
前記膨張機の吸入圧力を制御する前段膨張弁と、
前記膨張機により駆動され前記蒸発器で蒸発した冷媒を圧縮して前記主圧縮機側に供給するための副圧縮機と、
前記膨張機と前記副圧縮機を収納すると共に内部に潤滑油を貯溜しかつ前記主圧縮機の吐出圧力と同一またはほぼ同一の圧力に保持される密閉容器と
を備えたことを特徴とする冷凍サイクル。
In the refrigeration cycle configured by sequentially connecting the main compressor, radiator, expansion means, and evaporator,
An expander that branches the refrigerant flowing out of the radiator, decompresses and expands the branched refrigerant, and converts expansion energy into rotational energy;
An expansion valve for decompressing and expanding the other refrigerant branched downstream of the radiator,
Merging the expander downstream and the expansion valve downstream, a flow path connected to the evaporator,
A pre-stage expansion valve for controlling the suction pressure of the expander;
A sub-compressor for compressing the refrigerant driven by the expander and evaporating in the evaporator and supplying the compressed refrigerant to the main compressor side;
A refrigerating machine, comprising: a closed container that houses the expander and the sub-compressor, stores lubricating oil therein, and is maintained at the same or substantially the same pressure as the discharge pressure of the main compressor. cycle.
請求項1〜8の何れかにおいて、前記放熱器下流で分岐された他方の冷媒を減圧膨張させる膨張弁は、放熱器からの高圧冷媒を、前記膨張機で減圧膨張されて吐出された冷媒の圧力と同程度の圧力まで減圧するように制御されるものであることを特徴とする冷凍サイクル。The expansion valve according to any one of claims 1 to 8, wherein the expansion valve for decompressing and expanding the other refrigerant branched downstream of the radiator is configured to reduce a pressure of a high-pressure refrigerant from the radiator and a refrigerant discharged after being decompressed and expanded by the expander. A refrigeration cycle controlled to reduce the pressure to a pressure approximately equal to the pressure.
JP2003123117A 2003-04-28 2003-04-28 Refrigeration cycle Expired - Fee Related JP3998249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123117A JP3998249B2 (en) 2003-04-28 2003-04-28 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123117A JP3998249B2 (en) 2003-04-28 2003-04-28 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2004325018A true JP2004325018A (en) 2004-11-18
JP3998249B2 JP3998249B2 (en) 2007-10-24

Family

ID=33501093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123117A Expired - Fee Related JP3998249B2 (en) 2003-04-28 2003-04-28 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP3998249B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232322A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Refrigerating cycle device and control method for refrigerating cycle device
WO2007123085A1 (en) * 2006-04-20 2007-11-01 Daikin Industries, Ltd. Refrigeration device
JP2007285674A (en) * 2006-04-20 2007-11-01 Daikin Ind Ltd Refrigerating appliance
JP2007285677A (en) * 2006-04-20 2007-11-01 Daikin Ind Ltd Refrigerating appliance
JP2007285676A (en) * 2006-04-20 2007-11-01 Daikin Ind Ltd Refrigerating appliance
WO2008038366A1 (en) 2006-09-28 2008-04-03 Mitsubishi Electric Corporation Scroll expander
JP2009204201A (en) * 2008-02-27 2009-09-10 Panasonic Corp Refrigeration cycle device
EP2154330A1 (en) * 2007-05-16 2010-02-17 Panasonic Corporation Refrigeration cycle device and fluid machine used therefor
WO2010113158A1 (en) * 2009-04-01 2010-10-07 Linum Systems, Ltd. Waste heat air conditioning system
CN101865124A (en) * 2010-06-18 2010-10-20 浙江工业大学 Control method capable of improving COP value of direct current variable-frequency compressor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232322A (en) * 2006-03-03 2007-09-13 Matsushita Electric Ind Co Ltd Refrigerating cycle device and control method for refrigerating cycle device
KR100990782B1 (en) 2006-04-20 2010-10-29 다이킨 고교 가부시키가이샤 Refrigeration device
WO2007123085A1 (en) * 2006-04-20 2007-11-01 Daikin Industries, Ltd. Refrigeration device
JP2007285675A (en) * 2006-04-20 2007-11-01 Daikin Ind Ltd Refrigerating appliance
JP2007285674A (en) * 2006-04-20 2007-11-01 Daikin Ind Ltd Refrigerating appliance
JP2007285677A (en) * 2006-04-20 2007-11-01 Daikin Ind Ltd Refrigerating appliance
JP2007285676A (en) * 2006-04-20 2007-11-01 Daikin Ind Ltd Refrigerating appliance
US7918096B2 (en) 2006-04-20 2011-04-05 Daikin Industries, Ltd. Refrigeration system
JP4591402B2 (en) * 2006-04-20 2010-12-01 ダイキン工業株式会社 Refrigeration equipment
US8128388B2 (en) 2006-09-28 2012-03-06 Mitsubishi Electric Corporation Scroll-type expansion machine
WO2008038366A1 (en) 2006-09-28 2008-04-03 Mitsubishi Electric Corporation Scroll expander
EP2154330A1 (en) * 2007-05-16 2010-02-17 Panasonic Corporation Refrigeration cycle device and fluid machine used therefor
EP2154330A4 (en) * 2007-05-16 2012-11-21 Panasonic Corp Refrigeration cycle device and fluid machine used therefor
US8316664B2 (en) 2007-05-16 2012-11-27 Panasonic Corporation Refrigeration cycle apparatus and fluid machine used therefor
JP2009204201A (en) * 2008-02-27 2009-09-10 Panasonic Corp Refrigeration cycle device
WO2010113158A1 (en) * 2009-04-01 2010-10-07 Linum Systems, Ltd. Waste heat air conditioning system
CN102365499A (en) * 2009-04-01 2012-02-29 莱内姆系统有限公司 Waste heat air conditioning system
US8726677B2 (en) 2009-04-01 2014-05-20 Linum Systems Ltd. Waste heat air conditioning system
CN101865124A (en) * 2010-06-18 2010-10-20 浙江工业大学 Control method capable of improving COP value of direct current variable-frequency compressor
CN101865124B (en) * 2010-06-18 2013-03-20 浙江工业大学 Control method capable of improving COP value of direct current variable-frequency compressor

Also Published As

Publication number Publication date
JP3998249B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP2812022B2 (en) Multi-stage gas compressor with bypass valve device
US7914267B2 (en) Multistage compressor for a CO2 cycle that includes a rotary compressing mechanism and a scroll compressing mechanism
AU2005240929B2 (en) Rotary compressor
EP2765369B1 (en) Refrigeration cycle device
AU2005288061B2 (en) Positive displacement expander
WO2009136488A1 (en) Fluid machine
JPWO2008050654A1 (en) Refrigeration cycle equipment
US9222706B2 (en) Refrigeration cycle apparatus and operating method of same
KR20070118963A (en) Displacement fluid machine
JP4055902B2 (en) Refrigeration equipment with an expander
JP3998249B2 (en) Refrigeration cycle
JP2006220143A (en) Displacement fluid machine and refrigerating cycle by use of it
JP4991255B2 (en) Refrigeration cycle equipment
JP2699723B2 (en) Two-stage compression refrigeration system with check valve device
JP2006266171A (en) Positive displacement fluid machine
JP5824664B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2009063247A (en) Refrigeration cycle device, and fluid machine using it
US11953005B2 (en) Compressor having orbiting scroll supply hole to lubricate thrust surface
JP2004324595A (en) Positive displacement fluid machine
WO2012104934A1 (en) Scroll expander, and refrigeration cycle with the scroll expander
JP2002250292A (en) Closed type rotary compressor and refrigeration/air- conditioning device
JP2001254688A (en) Swinging piston type compressor and freezer using it
JP2003206877A (en) Closed rotary compressor
JP2024048814A (en) Sealing type rotary compressor and refrigerator including the same
JP2010096417A (en) Scroll expansion device and refrigerating cycle device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

R150 Certificate of patent or registration of utility model

Ref document number: 3998249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees