JP2001254688A - Swinging piston type compressor and freezer using it - Google Patents

Swinging piston type compressor and freezer using it

Info

Publication number
JP2001254688A
JP2001254688A JP2000068622A JP2000068622A JP2001254688A JP 2001254688 A JP2001254688 A JP 2001254688A JP 2000068622 A JP2000068622 A JP 2000068622A JP 2000068622 A JP2000068622 A JP 2000068622A JP 2001254688 A JP2001254688 A JP 2001254688A
Authority
JP
Japan
Prior art keywords
pressure
compression element
cylinder
oil
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000068622A
Other languages
Japanese (ja)
Inventor
Hirokatsu Kosokabe
弘勝 香曽我部
Isao Hayase
功 早瀬
Kenichi Oshima
健一 大島
Shigeya Kawaminami
茂也 川南
Takeshi Kono
雄 幸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000068622A priority Critical patent/JP2001254688A/en
Publication of JP2001254688A publication Critical patent/JP2001254688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce cost, miniaturize the size, and improve the performance and the reliability in a swinging piston type compressor and freezer. SOLUTION: A compression element 1 having a low-pressure compression element 4 and a high-pressure compression element 5 is arranged in a sealed vessel 3, swinging pistons 4b and 5b integrally formed with rollers 4b1 and 5b1 and vanes 4b2 and 5b2 are used, the inside of the sealed vessel 3 is held at a pressure lower than a discharge pressure of the high-pressure compression element 5, and an oil feeding mechanism intermittently feeding lubricating oil 20 via an oil pocket 21 intermittently communicated with an operation chamber side and an oil feed side of the high-pressure compression element 5 is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、揺動ピストン形圧
縮機及びこれを用いた冷凍装置に係り、特に、低圧用圧
縮要素高圧用圧縮要素を有する揺動ピストン形圧縮機と
冷蔵庫、空気調和機等の冷凍サイクルを有する冷凍装置
とに好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oscillating piston type compressor and a refrigeration system using the same, and more particularly to an oscillating piston type compressor having a low-pressure compression element and a high-pressure compression element, a refrigerator, and an air conditioner. It is suitable for a refrigerating apparatus having a refrigerating cycle such as a refrigerator.

【0002】[0002]

【従来の技術】従来の密閉型二段回転圧縮機としては、
特開昭50−72205号公報に記載されたものがある
(従来技術1)。
2. Description of the Related Art Conventional hermetic two-stage rotary compressors include:
There is one described in JP-A-50-72205 (prior art 1).

【0003】この従来技術1のものは、ロータとベーン
が別体であり、密閉容器内の圧力を冷媒の凝縮圧力と蒸
発圧力の中間圧力に保つようにしており、潤滑油中に垂
下した吸油管の上端を高圧圧縮機構の吸入管内に開口
し、高圧圧縮機構のロータの回転によるハウジング内の
負圧を利用して、冷媒ガスを吸入すると共に吸油管より
潤滑油を引き上げて高圧圧縮機構内に導くようにしたも
のである。
In the prior art 1, the rotor and the vane are separate bodies, and the pressure in the closed vessel is maintained at an intermediate pressure between the condensing pressure and the evaporating pressure of the refrigerant. The upper end of the pipe is opened in the suction pipe of the high-pressure compression mechanism, and by utilizing the negative pressure in the housing due to the rotation of the rotor of the high-pressure compression mechanism, the refrigerant gas is sucked and the lubricating oil is pulled up from the oil suction pipe and the high-pressure compression mechanism Is to lead to.

【0004】また、従来のロータリ圧縮機としては、特
開平7−301190号公報に記載されたものがある
(従来技術2)。
A conventional rotary compressor is disclosed in Japanese Patent Application Laid-Open No. 7-301190 (prior art 2).

【0005】この従来技術2のものは、潤滑状態の厳し
い代替フロンを用いた場合でも、ベーンとローラの接触
部における摩擦・摩耗の問題を解決するために、密閉容
器内に、固定子及び回転子を有する電動要素と、この電
動要素により駆動されるクランク軸、このクランク軸の
偏心部に回転自在に嵌合されたローラ、このローラに先
端を接して往復運動し、シリンダ内を吸入室と圧縮室に
仕切るベーン、及び前記クランク軸を軸支し、かつ前記
シリンダの両端開口を閉塞する端板を有する主軸受及び
副軸受で形成される圧縮要素を収納し、ベーンが最もシ
リンダの外方向に移動したときをクランク軸回転角の0
°として、この回転角90°近傍において、シリンダの
吸入室の中に密閉容器内にたまった潤滑油をベーンとロ
ーラの接触部に向かって供給する油供給手段を備え、そ
して、密閉容器内が圧縮要素で圧縮された吐出圧力とな
っており、ベーンがこの吐出圧力及びスプリングにより
押圧されてローラに接触するようになっている。
[0005] In the prior art 2, even in the case of using a chlorofluorocarbon alternative which is strictly lubricated, in order to solve the problem of friction and abrasion at the contact portion between the vane and the roller, a stator and a rotating member are provided in a closed container. A crankshaft driven by the motor element, a roller rotatably fitted to an eccentric portion of the crankshaft, a reciprocating motion in contact with a tip of the roller, and a suction chamber in the cylinder. A vane partitioning into a compression chamber, and a compression element formed by a main bearing and an auxiliary bearing having an end plate that supports the crankshaft and closes both end openings of the cylinder are housed, and the vane is most outwardly of the cylinder. When it is moved to 0
In the vicinity of the rotation angle of 90 °, oil supply means for supplying the lubricating oil accumulated in the closed container into the suction chamber of the cylinder toward the contact portion between the vane and the roller is provided. The discharge pressure is compressed by the compression element, and the vane is pressed by the discharge pressure and the spring to come into contact with the roller.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来技術1の
ものは、高圧圧縮機構への給油が配管経路の微小な圧力
差を駆動力とするため、給油量の安定性を欠くという問
題がある。そして、高圧圧縮機構に過大に給油された場
合には、冷凍サイクル中に油が流出し、熱交換器の伝熱
性能の低下や圧縮機の密閉容器内の油不足による潤滑不
良を招くおそれがある。
However, the prior art 1 has a problem in that the oil supply to the high-pressure compression mechanism lacks stability of the oil supply amount because the driving force is a small pressure difference in the piping path. . If the oil is excessively supplied to the high-pressure compression mechanism, the oil may flow out during the refrigeration cycle, causing a decrease in the heat transfer performance of the heat exchanger and a poor lubrication due to a shortage of the oil in the sealed container of the compressor. is there.

【0007】また、従来技術1のものは、別体のベーン
とローラが接触するようになっているために、ベーンと
ローラの接触部の摩耗を全くなくすことはできないとい
う問題があると共に、ローラにベーンを押し付けるため
にスプリングを用いているので、コストアップを招くも
のである。
Further, the prior art 1 has a problem that the contact portion between the vane and the roller cannot be eliminated at all, since the separate vane and the roller come into contact with each other. Since the spring is used to press the vane against the fin, the cost is increased.

【0008】一方、従来技術2のものは、別体のベーン
とローラが接触するようになっているために、この部分
に油を供給する油供給手段を設けたとしても、ベーンと
ローラの接触部の摩耗を全くなくすことはできないとい
う問題がある。
On the other hand, in the prior art 2, since the separate vane and the roller are in contact with each other, even if oil supply means for supplying oil is provided in this portion, the contact between the vane and the roller can be prevented. There is a problem that the wear of the part cannot be eliminated at all.

【0009】また、従来技術2のものは、ローラにベー
ンを押し付けるために密閉容器内を高温、高圧の吐出圧
力にしているので、次のような問題を有するものであ
る。即ち、電動要素が高温で加熱されることにより、コ
イルが温度上昇し、信頼性が低下すると共に、モータ効
率を高めることが難しい。また、高圧のローラ内面から
低圧の吸入室内への差圧による漏れ込み油が過剰となり
やすく、圧縮機の性能が低下するおそれがある。そし
て、高圧下で冷媒が油中に溶解しやすくなるので、多量
の冷媒を必要としてコストアップを招き、特に可燃性炭
化水素系冷媒を用いた場合にはこの漏洩時の漏洩量が増
加すると共に、軸受部に供給した油から冷媒が発泡する
ことによって潤滑性能が低下し、これにより信頼性低下
を招くおそれがある。さらには、密閉容器の耐圧を高め
るために、厚い密閉容器を用いることによる重量増加及
びコストアップを招くものである。
The prior art 2 has the following problem because the inside of the closed container is set to a high temperature and a high discharge pressure in order to press the vane against the roller. That is, when the electric element is heated at a high temperature, the temperature of the coil rises, the reliability decreases, and it is difficult to increase the motor efficiency. Also, the leakage oil due to the differential pressure from the inner surface of the high-pressure roller into the low-pressure suction chamber is likely to be excessive, and the performance of the compressor may be reduced. And, since the refrigerant is easily dissolved in the oil under high pressure, a large amount of the refrigerant is required, which leads to an increase in cost, and in particular, when a flammable hydrocarbon-based refrigerant is used, the amount of leakage at the time of this leakage increases and In addition, the lubrication performance is reduced due to the foaming of the refrigerant from the oil supplied to the bearing portion, which may cause a reduction in reliability. Further, in order to increase the pressure resistance of the closed container, the use of a thick closed container causes an increase in weight and an increase in cost.

【0010】さらに、従来技術2のものは、一段圧縮で
あるために、圧縮比が大きい、例えば冷凍用の条件下で
は圧縮比の小さい条件(空気調和機用等)に比べ圧縮性
能が低下する問題がある。
Further, in the case of the prior art 2, since the compression is one-stage, the compression performance is large under the condition that the compression ratio is large, for example, under the condition of refrigeration (for the air conditioner or the like) under the condition that the compression ratio is small. There's a problem.

【0011】本発明の目的は、コストダウンが図れ、か
つ小型で高性能及び高信頼性の揺動ピストン形圧縮機及
び冷凍装置を得ることにある。
An object of the present invention is to provide a swinging piston type compressor and a refrigeration system which can be reduced in cost, and which are small, high-performance and highly reliable.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
の本発明の第1の特徴は、密閉容器内に電動要素と圧縮
要素とを駆動軸を介して連結して配置し、前記圧縮要素
は低圧用圧縮要素と高圧用圧縮要素とを有し、前記各圧
縮要素は両端面を閉塞されるシリンダとローラ及びベー
ンが一体の揺動ピストンとを有し、前記揺動ピストンは
前記シリンダ内に揺動を伴う公転可能に配置し、前記ベ
ーンは前記シリンダ内の作動室を吸込室側と圧縮室側と
に区画し、前記密閉容器内は前記高圧用圧縮要素の吐出
圧力より低い圧力に保持すると共に、前記密閉容器内の
圧力より高い圧力に圧縮する前記圧縮要素の作動室側と
油供給側とに間欠的に連通する油収納部を介して前記油
供給側から前記作動室側に潤滑油を間欠的に供給する給
油機構を設けたことにある。
A first feature of the present invention to achieve the above object is that an electric element and a compression element are connected to each other via a drive shaft in a closed container, and the compression element Has a low-pressure compression element and a high-pressure compression element, each of the compression elements has a cylinder whose both end faces are closed, and a swing piston in which rollers and vanes are integrated, and the swing piston is inside the cylinder. The vane divides the working chamber in the cylinder into a suction chamber side and a compression chamber side, and the inside of the closed vessel is set to a pressure lower than the discharge pressure of the high-pressure compression element. While holding and compressing to a pressure higher than the pressure in the closed container, from the oil supply side to the operation chamber side via an oil storage part intermittently communicating with the oil supply side and the operation chamber side of the compression element. An oil supply mechanism for intermittently supplying lubricating oil Located in.

【0013】本発明の第2の特徴は、前記密閉容器内を
前記圧縮要素の吸込圧力と吐出圧力の中間圧力にすると
共に、前記高圧用圧縮要素のシリンダ内の吸込室側と油
供給側とに間欠的に連通する油収納部を介して前記油供
給側から前記吸込室側に潤滑油を間欠的に供給する給油
機構を設けたことにある。
A second feature of the present invention is that the inside of the closed container is set at an intermediate pressure between the suction pressure and the discharge pressure of the compression element, and the suction chamber side and the oil supply side in the cylinder of the high pressure compression element are connected. And an oil supply mechanism for intermittently supplying lubricating oil from the oil supply side to the suction chamber side via an oil storage section intermittently connected to the oil supply section.

【0014】本発明の第3の特徴は、横長の密閉容器内
に電動要素と圧縮要素とを駆動軸を介して横に連結して
配置し、前記圧縮要素は、低圧用圧縮要素と高圧用圧縮
要素とを有すると共に、この各圧縮要素を前記駆動軸に
横に併設し、前記高圧用圧縮要素のシリンダ内の吸込室
側と前記密閉容器の底部の潤滑油側とに間欠的に連通す
る油ポケットを前記ベーンに形成して前記潤滑油を前記
吸込室側に間欠的に供給する給油機構を設けたことにあ
る。
A third feature of the present invention resides in that an electric element and a compression element are horizontally connected via a drive shaft in a horizontally long closed container, and the compression element is composed of a low-pressure compression element and a high-pressure compression element. A compression element, and each of the compression elements is arranged side by side with the drive shaft, and intermittently communicates with the suction chamber side in the cylinder of the high pressure compression element and the lubricating oil side at the bottom of the sealed container. An oil supply mechanism is provided in which an oil pocket is formed in the vane and the lubricating oil is intermittently supplied to the suction chamber side.

【0015】本発明の第4の特徴は、前記高圧用圧縮要
素のシリンダ内の吸込室側と前記密閉容器の底部の潤滑
油側とに間欠的に連通する角部切欠を前記ベーンに形成
して前記潤滑油を前記吸込室側に間欠的に供給する給油
機構を設けたことにある。
A fourth feature of the present invention is that a corner cutout is formed in the vane so as to intermittently communicate with the suction chamber side in the cylinder of the high-pressure compression element and the lubricating oil side at the bottom of the closed vessel. An oil supply mechanism for intermittently supplying the lubricating oil to the suction chamber.

【0016】本発明の第5の特徴は、密閉容器内に電動
要素と圧縮要素とを駆動軸を介して連結して配置し、前
記圧縮要素は低圧用圧縮要素と高圧用圧縮要素とを有
し、前記各圧縮要素は両端面を閉塞されるシリンダとロ
ーラ及びベーンが一体の揺動ピストンと有し、前記揺動
ピストンは前記シリンダ内に揺動を伴う公転可能に配置
し、前記ベーンは前記シリンダ内を前記ローラと共に吸
込室及び圧縮室とに区画し、前記密閉容器内は前記高圧
用圧縮機の吐出圧力より低い圧力に保持すると共に、前
記低圧用圧縮要素の吐出部から前記高圧用圧縮要素の吸
込部を結ぶ流路を設けたことにある。
A fifth feature of the present invention is that an electric element and a compression element are connected to each other via a drive shaft in a closed container, and the compression element has a low-pressure compression element and a high-pressure compression element. Each of the compression elements has a cylinder whose both end faces are closed, a roller and a vane, and a swinging piston integrated with the swinging piston. The swinging piston is arranged in the cylinder so as to be able to revolve with swinging, and the vane is The inside of the cylinder is partitioned into a suction chamber and a compression chamber together with the rollers, and the inside of the closed container is maintained at a pressure lower than the discharge pressure of the high-pressure compressor, and the high-pressure compressor is discharged from a discharge part of the low-pressure compression element. That is, a flow path connecting the suction portions of the compression elements is provided.

【0017】本発明の第6の特徴は、前記密閉容器内を
前記低圧用圧縮要素の吐出圧力にすると共に、前記低圧
用圧縮要素の吐出部から前記高圧用圧縮要素の吸込部を
結ぶ流路の途中に油分離機構を設けたことにある。
A sixth feature of the present invention is that the inside of the closed container is set to the discharge pressure of the low-pressure compression element, and the flow path connects the discharge part of the low-pressure compression element to the suction part of the high-pressure compression element. The oil separation mechanism was provided in the middle of the process.

【0018】本発明の第7の特徴は、圧縮機、凝縮器、
減圧機構及び蒸発器を配管で接続して冷凍サイクルを構
成し、前記圧縮機は、密閉容器内に電動要素と圧縮要素
とを駆動軸を介して連結して配置し、前記圧縮要素は低
圧用圧縮要素と高圧用圧縮要素とを有し、前記各圧縮要
素は両端面を閉塞されるシリンダとローラ及びベーンが
一体の揺動ピストンとを有し、前記揺動ピストンは前記
シリンダ内に揺動を伴う公転可能に配置し、前記ベーン
は前記シリンダ内の作動室を吸込室側と圧縮室側とに区
画し、前記密閉容器内は前記高圧用圧縮機の吐出圧力よ
り低い圧力に保持すると共に、前記高圧用圧縮要素の作
動室側と油供給側とに間欠的に連通する油収納部を介し
て前記油供給側から前記作動室側に潤滑油を間欠的に供
給する給油機構を設けたことにある。
A seventh feature of the present invention is that a compressor, a condenser,
The decompression mechanism and the evaporator are connected by piping to form a refrigeration cycle, and the compressor is arranged in a closed vessel by connecting an electric element and a compression element via a drive shaft, and the compression element is used for low pressure. A compression element and a high-pressure compression element, wherein each of the compression elements has a cylinder whose both end faces are closed, and a swing piston in which rollers and vanes are integrated, and the swing piston swings into the cylinder. The vane divides the working chamber in the cylinder into a suction chamber side and a compression chamber side, and holds the inside of the closed vessel at a pressure lower than the discharge pressure of the high-pressure compressor. And an oil supply mechanism for intermittently supplying lubricating oil from the oil supply side to the operation chamber side via an oil storage portion intermittently communicating with the operation chamber side and the oil supply side of the high-pressure compression element. It is in.

【0019】本発明の第8の特徴は、前記高圧用圧縮要
素のシリンダ内の吸込室側と油供給側とに間欠的に連通
する油収納部を介して前記油供給側から前記吸込室側に
潤滑油を間欠的に供給して前記冷凍サイクル内の油循環
率が0.1重量%〜1.0重量%にする給油機構を設け
たことにある。
An eighth feature of the present invention is that the oil supply side intermittently communicates with the oil supply side in the cylinder of the high-pressure compression element from the oil supply side. The lubricating oil is intermittently supplied to the refrigeration cycle so that the oil circulation rate in the refrigeration cycle is 0.1% by weight to 1.0% by weight.

【0020】本発明の第9の特徴は、圧縮機、凝縮器、
減圧機構及び蒸発器を配管で接続して冷凍サイクルを構
成し、前記圧縮機は、横長の密閉容器内に電動要素と圧
縮要素とを駆動軸を介して横に連結して配置し、前記圧
縮要素は、低圧用圧縮要素と高圧用圧縮要素とを有する
と共に、この各圧縮要素を前記駆動軸に横に併設し、前
記高圧用圧縮要素のシリンダ内の吸込室側と前記密閉容
器の底部の潤滑油側とに間欠的に連通する油ポケットを
介して前記底部の潤滑油側から前記吸込室側に潤滑油を
間欠的に供給して前記冷凍サイクル内の油循環率が0.
1重量%〜1.0重量%にする給油機構を設けたことに
ある。
A ninth feature of the present invention is that a compressor, a condenser,
The decompression mechanism and the evaporator are connected by a pipe to form a refrigeration cycle, and the compressor is configured such that an electric element and a compression element are laterally connected via a drive shaft in a horizontally long closed container, and the compression is performed. The element has a low-pressure compression element and a high-pressure compression element, and these compression elements are juxtaposed side by side with the drive shaft, and the suction chamber side in the cylinder of the high-pressure compression element and the bottom of the closed container are provided. The lubricating oil is intermittently supplied from the lubricating oil side at the bottom to the suction chamber side via an oil pocket intermittently communicating with the lubricating oil side, so that the oil circulation rate in the refrigeration cycle is reduced to 0.
That is, an oil supply mechanism for adjusting the weight to 1% to 1.0% by weight is provided.

【0021】本発明の第10の特徴は、圧縮機、凝縮
器、冷蔵室用減圧機構、冷蔵室用蒸発器、冷凍室用減圧
機構及び冷凍室用蒸発器を配管で接続して冷凍サイクル
を構成し、前記圧縮機は、前記高圧用圧縮要素のシリン
ダ内の吸込室側と前記密閉容器の底部の潤滑油側とに間
欠的に連通する油ポケットを介して前記底部の潤滑油側
から前記吸込室側に潤滑油を間欠的に供給して前記冷凍
サイクル内の油循環率が0.1重量%〜1.0重量%に
する給油機構を設け、前記凝縮器は前記高圧用圧縮要素
の吐出側に連通し、前記冷蔵室用減圧機構と冷蔵室用蒸
発器は、直列に接続されて前記凝縮器の出口側と前記高
圧用圧縮要素の吸込側との間に設け、前記冷凍室用減圧
機構と冷凍室用蒸発器は、直列に接続されて前記凝縮器
の出口側と前記低圧用圧縮要素の吸込側との間に設けた
ことにある。
A tenth feature of the present invention is that a compressor, a condenser, a decompression mechanism for a refrigerator, an evaporator for a refrigerator, a decompression mechanism for a freezer and an evaporator for a freezer are connected by piping to form a refrigeration cycle. The compressor is configured such that, from an oil pocket intermittently communicating with a suction chamber side in a cylinder of the high-pressure compression element and a lubricating oil side of a bottom of the closed vessel, the compressor is arranged from the lubricating oil side of the bottom part. An oil supply mechanism is provided intermittently to supply lubricating oil to the suction chamber so that the oil circulation rate in the refrigeration cycle is 0.1% by weight to 1.0% by weight. The refrigerating room pressure reducing mechanism and the refrigerating room evaporator are connected in series and provided between an outlet side of the condenser and a suction side of the high-pressure compression element, and communicate with a discharge side. The pressure reducing mechanism and the freezer evaporator are connected in series, and the outlet side of the condenser and the low pressure In that provided between the suction side of the compression element.

【0022】[0022]

【発明の実施の形態】以下、本発明の各実施例を図を用
いて説明する。なお、第2実施例以降の実施例において
は第1実施例と重複する説明を省略する。また、各実施
例の図における同一符号は同一物又は相当物を示す。
Embodiments of the present invention will be described below with reference to the drawings. In the second and subsequent embodiments, the description overlapping with the first embodiment will be omitted. The same reference numerals in the drawings of the respective embodiments indicate the same or corresponding components.

【0023】まず、本発明の第1実施例の揺動ピストン
形圧縮機を図1から図6を参照して説明する。図1は本
発明の第1実施例の揺動ピストン形圧縮機の縦断面図、
図2は図1のA−A断面図、図3は図1のB−B断面
図、図4は図1の揺動ピストン形圧縮機の給油機構の動
作説明図、図5は図1の揺動ピストン形圧縮機に用いる
油ポケットを付設した揺動ピストンの異なる変形例を示
す斜視図、図6は冷凍サイクルの油循環率と成績係数C
OPの関係を示す性能特性図である。
First, a swinging piston type compressor according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of a swinging piston type compressor according to a first embodiment of the present invention,
2 is a sectional view taken along the line AA in FIG. 1, FIG. 3 is a sectional view taken along the line BB in FIG. 1, FIG. 4 is an explanatory view of the operation of the lubrication mechanism of the oscillating piston type compressor in FIG. FIG. 6 is a perspective view showing a modified example of the oscillating piston provided with an oil pocket used in the oscillating piston type compressor. FIG.
FIG. 9 is a performance characteristic diagram showing a relationship between OPs.

【0024】図1で明らかなように、密閉容器3は、横
長筒状に形成され、本体筒部及びその両側の蓋部より構
成されている。密閉容器3内には、圧縮要素1、電動要
素2及び駆動軸6等が収納されている。このように、密
閉容器3を横長筒状とすることにより、圧縮機を冷蔵庫
の背面機械室に配置する場合等において、収納性を良好
なものとすることができる。電動要素2は、ステータ2
aとロータ2bを備え、ステータ2aが密閉容器3に固
着され、ロータ2bがステータ2a内で回転可能に配置
されている。また、圧縮要素1は、低圧用圧縮要素4と
高圧用圧縮要素5を備え、主軸受9を介して密閉容器3
に固着されている。
As is apparent from FIG. 1, the closed container 3 is formed in a horizontally long cylindrical shape, and comprises a main body cylindrical portion and lid portions on both sides thereof. In the closed container 3, the compression element 1, the electric element 2, the drive shaft 6, and the like are housed. As described above, by making the closed container 3 into a horizontally long tubular shape, it is possible to improve the storability when the compressor is arranged in the rear machine room of the refrigerator. The electric element 2 includes a stator 2
a and a rotor 2b, the stator 2a is fixed to the closed casing 3, and the rotor 2b is rotatably arranged in the stator 2a. The compression element 1 includes a low-pressure compression element 4 and a high-pressure compression element 5, and includes a closed vessel 3 through a main bearing 9.
It is stuck to.

【0025】各圧縮要素4、5は、円筒形状の内周面を
持つシリンダ4a、5aと、このシリンダ内周面に沿っ
て揺動を伴う公転運動する揺動ピストン4b、5bとを
有する。シリンダ4a、5aの両端面部は中間に仕切り
板8を挟んで、駆動軸6の軸支持を兼ねた主軸受9と副
軸受10により閉塞されている。
Each of the compression elements 4, 5 has a cylinder 4a, 5a having a cylindrical inner peripheral surface, and oscillating pistons 4b, 5b revolving with oscillation along the cylinder inner peripheral surface. Both end surfaces of the cylinders 4a and 5a are closed by a main bearing 9 and a sub bearing 10 which also serve as a shaft support for the drive shaft 6 with a partition plate 8 interposed therebetween.

【0026】揺動ピストン4b、5bは、円筒形状のロ
ーラ4b1、5b1と板状のベーン4b2、5b2がそ
れぞれ一体的に成形されており、電動要素2から延びる
駆動軸6の偏心軸部6a、6bにより駆動される。 こ
のようにローラ4b1、5b1とベーン4b2、5b2
が一体的に成形されることにより、従来のようなローラ
4b1、5b1とベーン4b2、5b2との接触部の摩
耗をなくすことができると共に、ローラ4b1、5b1
の背面を高圧で押圧する必要がなくなり、密閉容器3内
を高圧下におく必要をなくすことができる。また、ベー
ン4b2、5b2は、シリンダ4a、5a内を吸込室側
と吐出室側に区画している。
The oscillating pistons 4b, 5b are formed by integrally forming cylindrical rollers 4b1, 5b1 and plate-like vanes 4b2, 5b2, respectively, and have an eccentric shaft 6a of a drive shaft 6 extending from the electric element 2. 6b. Thus, the rollers 4b1, 5b1 and the vanes 4b2, 5b2
Are formed integrally, it is possible to eliminate the wear of the contact portions between the rollers 4b1 and 5b1 and the vanes 4b2 and 5b2 as in the related art, and at the same time, the rollers 4b1 and 5b1
There is no need to press the back of the container with high pressure, and it is possible to eliminate the need to keep the inside of the sealed container 3 under high pressure. The vanes 4b2, 5b2 divide the inside of the cylinders 4a, 5a into a suction chamber side and a discharge chamber side.

【0027】電動要素2と圧縮要素1は駆動軸6を介し
て連結されている。駆動軸6は、低圧用圧縮要素4の偏
心軸部6aと高圧用圧縮要素5の偏心軸部6bの位相が
180°ずれている。また、低圧用圧縮要素4と高圧用
圧縮要素5は低圧用圧縮要素4が電動要素2側になるよ
うに軸方向に隣りあって併設されている。このように、
低圧用圧縮要素4と高圧用圧縮要素5が軸方向に隣り合
って併設されているので、仕切り板8を兼用でき、圧縮
機をより小型のものとすることができる。
The electric element 2 and the compression element 1 are connected via a drive shaft 6. In the drive shaft 6, the phase of the eccentric shaft 6a of the low-pressure compression element 4 and the phase of the eccentric shaft 6b of the high-pressure compression element 5 are shifted by 180 °. The low-pressure compression element 4 and the high-pressure compression element 5 are provided side by side in the axial direction such that the low-pressure compression element 4 is on the electric element 2 side. in this way,
Since the low-pressure compression element 4 and the high-pressure compression element 5 are provided side by side in the axial direction, the partition plate 8 can also be used, and the compressor can be made smaller.

【0028】シリンダ4a、5aの円筒状内周面の外側
かつ下側には、この円筒状内周面の中心軸と平行な中心
軸を持つ第1の円筒孔部4a1、5a1が連通して形成
されている。ベーン4b2、5b2は、円筒孔部4a
1、5a1内に挿入され、この円筒孔部4a1、5a1
の中心軸を中心として揺動かつ進退運動するように両側
が滑動部材7を介して支持されている。
Outer and lower sides of the cylindrical inner peripheral surfaces of the cylinders 4a and 5a, first cylindrical holes 4a1 and 5a1 having a central axis parallel to the central axis of the cylindrical inner peripheral surface communicate with each other. Is formed. The vanes 4b2 and 5b2 are cylindrical holes 4a.
1, 5a1 and the cylindrical holes 4a1, 5a1
Both sides are supported via a sliding member 7 so as to swing and advance / retreat about the central axis of the center.

【0029】この第1の円筒孔部4a1、5a1の外側
かつ下側には、円筒孔部4a1、5a1の中心軸と平行
な中心軸を持つ第2の円筒孔部4a2、5a2が連通し
て設けられている。ベーン4b2、5b2の先端部は円
筒孔部4a2、5a2内に挿入され、揺動かつ進退運動
する。円筒孔部4a2、5a2は、密閉容器3の底部に
位置することとなり、潤滑油20で満たされることにな
る。なお、ベーン4b2、5b2の先端部は、孔部4a
2、5a2の中で運動し、シリンダ4a、5aと干渉す
ることはない。
Outside and below the first cylindrical holes 4a1, 5a1, second cylindrical holes 4a2, 5a2 having central axes parallel to the central axes of the cylindrical holes 4a1, 5a1 communicate with each other. Is provided. The tips of the vanes 4b2, 5b2 are inserted into the cylindrical holes 4a2, 5a2, and swing and move forward and backward. The cylindrical holes 4a2 and 5a2 are located at the bottom of the closed container 3, and are filled with the lubricating oil 20. In addition, the front-end | tip part of the vanes 4b2 and 5b2 is the hole 4a.
It moves in 2, 5a2 and does not interfere with the cylinders 4a, 5a.

【0030】吐出弁装置11は、主軸受9の端面に配設
され、主軸受9に形成された低圧用圧縮要素4の吐出口
(図示せず)を開閉する。吐出マフラー12は、低圧用
圧縮要素4の吐出サイレンサとして機能するように、吐
出弁装置11を覆うように吐出側に配置され、密閉容器
3内に連通する吐出口を有している。これにより、密閉
容器3内は中間圧力に保持される。吐出弁装置13は、
副軸受10の端面に配設され、副軸受10に形成された
高圧用圧縮要素5の吐出口(図示せず)を開閉する。副
軸受10と吐出カバー14で高圧用圧縮要素5の吐出空
間が区画されている。この吐出空間は吐出パイプ18に
連通している。
The discharge valve device 11 is disposed on an end face of the main bearing 9 and opens and closes a discharge port (not shown) of the low-pressure compression element 4 formed in the main bearing 9. The discharge muffler 12 is disposed on the discharge side so as to cover the discharge valve device 11 so as to function as a discharge silencer for the low-pressure compression element 4, and has a discharge port communicating with the closed container 3. Thereby, the inside of the sealed container 3 is maintained at the intermediate pressure. The discharge valve device 13 is
The discharge port (not shown) of the high-pressure compression element 5 formed on the end face of the sub-bearing 10 and formed on the sub-bearing 10 is opened and closed. A discharge space for the high-pressure compression element 5 is defined by the auxiliary bearing 10 and the discharge cover 14. This discharge space communicates with the discharge pipe 18.

【0031】副軸受10の底部には潤滑油20を駆動軸
6の摺動部等に供給するための空間10bが形成されて
いる。この空間10bは、流体ダイオード10aを介し
て密閉容器3内に連通し、一側が円筒孔部4a2、5a
2に連通し、他側が駆動軸6の摺動部等への経路に連通
されている。流体ダイオード10aは、潤滑油20が密
閉容器3内の空間側から流体ダイオード10a側に流入
しやすく、その逆方向には流出しづらく形成されたもの
である。また、円筒孔部5a2は、一側が仕切り板8に
より閉塞され、他側が空間10bに連通された閉塞空間
を構成する。給油カバー14aは、吐出カバー14の外
側に装着されて送油路を形成する。この送油路は、一側
が吐出カバー14の連通路を介して空間10bに連通さ
れ、他側が吐出カバー14の連通路を介して駆動軸6の
給油孔に連通している。
A space 10 b is formed at the bottom of the auxiliary bearing 10 for supplying the lubricating oil 20 to the sliding portion of the drive shaft 6 and the like. The space 10b communicates with the inside of the sealed container 3 via the fluid diode 10a, and one side has a cylindrical hole 4a2, 5a.
2 and the other side is connected to a path to a sliding portion of the drive shaft 6. The fluid diode 10a is formed such that the lubricating oil 20 easily flows into the fluid diode 10a from the space side in the sealed container 3 and hardly flows out in the opposite direction. Further, the cylindrical hole 5a2 forms a closed space in which one side is closed by the partition plate 8 and the other side is communicated with the space 10b. The oil supply cover 14a is mounted outside the discharge cover 14 to form an oil supply passage. One side of the oil supply passage communicates with the space 10 b through the communication passage of the discharge cover 14, and the other side communicates with the oil supply hole of the drive shaft 6 through the communication passage of the discharge cover 14.

【0032】密閉容器3内の潤滑油20は、高圧用圧縮
要素5のベーン5b2が円筒孔部5a2内で進退運動す
ることにより、円筒孔部5a2内の容積が変動し、流体
ダイオード10aを介して空間10b内に吸い込まれ、
給油カバー14aで形成される送油路を介して駆動軸6
の給油孔に供給され、駆動軸6の摺動部等に供給される
(図1の点線矢印参照)。このように、ベーン5b2の
進退運動及び流体ダイオード10aを利用することによ
り、簡単な構成で、潤滑油20を駆動軸6の摺動部等に
供給することができる。
The volume of the lubricating oil 20 in the sealed container 3 is changed by the vane 5b2 of the high-pressure compression element 5 moving forward and backward in the cylindrical hole 5a2, and the volume of the lubricating oil 20 is changed via the fluid diode 10a. Sucked into the space 10b
Drive shaft 6 through an oil supply passage formed by oil supply cover 14a
And supplied to a sliding portion of the drive shaft 6 (see dotted arrows in FIG. 1). As described above, the lubricating oil 20 can be supplied to the sliding portion of the drive shaft 6 or the like with a simple configuration by using the forward / backward movement of the vane 5b2 and the fluid diode 10a.

【0033】低圧用圧縮要素4の吸込パイプ15は密閉
容器3の底部を貫通して低圧用圧縮要素4の吸込側に連
通されている。また、吐出パイプ16は、中間圧力にな
っている密閉容器3内と連通し、密閉容器3から外側に
延びて中間冷却器19に接続されている。高圧用圧縮要
素5の吸込パイプ17は、一側が中間冷却器19に接続
され、他側が高圧用圧縮要素5の吸込側に連通してい
る。このように、中間冷却器19は低圧用圧縮要素4の
吐出パイプ16と高圧用圧縮要素5の吸込パイプ17間
に配設される。高圧用圧縮要素5の吐出パイプ18は、
密閉容器3を貫通して冷凍サイクルの凝縮器に連通され
る。
The suction pipe 15 of the low-pressure compression element 4 penetrates through the bottom of the closed vessel 3 and communicates with the suction side of the low-pressure compression element 4. Further, the discharge pipe 16 communicates with the inside of the sealed container 3 at an intermediate pressure, extends outward from the sealed container 3, and is connected to the intercooler 19. The suction pipe 17 of the high-pressure compression element 5 has one side connected to the intercooler 19 and the other side communicating with the suction side of the high-pressure compression element 5. As described above, the intercooler 19 is disposed between the discharge pipe 16 of the low-pressure compression element 4 and the suction pipe 17 of the high-pressure compression element 5. The discharge pipe 18 of the high-pressure compression element 5 is
The gas passes through the closed vessel 3 and communicates with the condenser of the refrigeration cycle.

【0034】油収納部を形成する油ポケット21は、高
圧用圧縮要素5の作動室内に間欠的に潤滑油20を給油
するために、揺動ピストン5bの吸込み側のベーン5b
2の側面部に形成されている。この給油機構の詳細は後
述する。
The oil pocket 21 forming the oil storage portion is provided with a vane 5b on the suction side of the swing piston 5b for intermittently supplying the lubricating oil 20 into the working chamber of the high-pressure compression element 5.
2 is formed on the side surface. The details of this refueling mechanism will be described later.

【0035】以上の構成において、電動要素2により駆
動軸6が回転すると、揺動ピストン4b、5bは偏心軸
部6a、6bにより公転運動を行う。図2及び図3から
明らかなように、揺動ピストン4b、5bのローラ4b
1、5b1は、一体となったベーン4b2、5b2が常
に偏心軸部6a、6bの中心を向くように揺動運動を行
いながらその中心が公転運動する。これにより、ベーン
4b2、5b2はシリンダ4a、5aの円筒孔部4a
1、5a1の中心軸に向かった進退運動と該中心軸周り
の揺動運動を行うが、ベーン4b2、5b2とシリンダ
4a、5aの円筒孔部4a1、5a1との間の隙間のシ
ールは滑動部材7が挿入されることにより保たれる。
In the above configuration, when the drive shaft 6 is rotated by the electric element 2, the oscillating pistons 4b, 5b revolve by the eccentric shaft portions 6a, 6b. As is clear from FIGS. 2 and 3, the rollers 4b of the swing pistons 4b, 5b
1, 5b1 revolves around the center while swinging so that the integrated vanes 4b2, 5b2 always face the center of the eccentric shafts 6a, 6b. As a result, the vanes 4b2, 5b2 are formed in the cylindrical holes 4a of the cylinders 4a, 5a.
The advancing / retreating motions toward the central axis of the first and fifth a1 and the swinging motion around the central axis are performed. The seal between the vanes 4b2 and 5b2 and the cylindrical holes 4a1 and 5a1 of the cylinders 4a and 5a is formed by a sliding member. 7 is maintained by being inserted.

【0036】従って、低圧用圧縮要素4と高圧用圧縮要
素5のシリンダ4a、5a、揺動ピストン4b、5b、
滑動部材7及びシリンダの両端開口を閉塞する仕切り板
8、主軸受9、副軸受10により作動空間である圧縮室
が形成され、揺動ピストン4b、5bの公転運動により
作動流体の圧縮作用が行われる。作動ガスは、図1に矢
印で示すように、吸込パイプ15を通って低圧用圧縮要
素4のシリンダ4a内に入り、駆動軸6の回転によって
揺動ピストン4bがほぼ一定半径の揺動を伴う公転運動
をすることにより圧縮され、主軸受9の端板に配設され
た吐出弁装置11を通り、吐出マフラー12を通って密
閉容器3内に吐き出される。密閉容器3内に吐出された
作動ガスは、吐出パイプ16から外部に出て中間冷却器
19により放熱して冷やされた後、吸込パイプ17を通
って高圧用圧縮要素5のシリンダ5a内に入り、揺動ピ
ストン5bが揺動を伴う公転運動をすることによりさら
に圧縮され、副軸受10の端板に配設された吐出弁装置
13を通って吐出カバー14により密閉区画された吐出
空間に入り、ここから吐出パイプ18を通って密閉容器
3外部の冷凍サイクルに流出する。
Accordingly, the cylinders 4a and 5a of the low-pressure compression element 4 and the high-pressure compression element 5, the oscillating pistons 4b and 5b,
A compression chamber, which is an operating space, is formed by the sliding member 7 and the partition plate 8, which closes both end openings of the cylinder, the main bearing 9, and the sub-bearing 10, and the reciprocating motion of the oscillating pistons 4b, 5b performs a compressing action of the working fluid. Will be The working gas enters the cylinder 4a of the low-pressure compression element 4 through the suction pipe 15 as shown by the arrow in FIG. 1, and the rotation of the drive shaft 6 causes the swing piston 4b to swing with a substantially constant radius. It is compressed by the orbital motion, passes through a discharge valve device 11 disposed on the end plate of the main bearing 9, passes through a discharge muffler 12, and is discharged into the closed container 3. The working gas discharged into the closed vessel 3 goes out of the discharge pipe 16 to be radiated and cooled by the intercooler 19, and then enters the cylinder 5 a of the high-pressure compression element 5 through the suction pipe 17. Then, the swinging piston 5b makes a revolving motion accompanied by swinging, and is further compressed, passes through a discharge valve device 13 disposed on the end plate of the sub bearing 10, and enters a discharge space which is hermetically partitioned by a discharge cover 14. From there, it flows out to the refrigeration cycle outside the closed vessel 3 through the discharge pipe 18.

【0037】次に、本発明に関わる圧縮機の潤滑機構に
ついて説明する。電動要素2により駆動軸6が回転する
と、低圧用圧縮要素4及び高圧用圧縮要素5で上記のよ
うに作動ガスの圧縮運転が行われ、密閉容器3内の圧力
は吐出圧力と吸込圧力の中間の圧力、この実施例では低
圧用圧縮要素4の吐出圧力となる。
Next, the lubrication mechanism of the compressor according to the present invention will be described. When the drive shaft 6 is rotated by the electric element 2, the compression operation of the working gas is performed by the low-pressure compression element 4 and the high-pressure compression element 5 as described above, and the pressure in the closed vessel 3 is intermediate between the discharge pressure and the suction pressure. , The discharge pressure of the low-pressure compression element 4 in this embodiment.

【0038】圧縮機の駆動軸6の摺動部等の潤滑(外部
潤滑)を説明する。高圧用圧縮要素5の揺動ピストン5
bのベーン5b2が進退運動することにより、潤滑油2
0中に浸かったベーン5b2の背面空間(孔部5a2の
空間)の容積が変化することを利用した給油ポンプ作用
による。すなわち、流体ダイオード10aの流路形状は
潤滑油20の貯油部からベーン5b2の背面空間方向に
向かって断面積が減少するテーパ形状にしてあり、貯油
部から入ってくる流れ(順流)の通路抵抗に比べ貯油部
に出て行く流れ(逆流)の通路抵抗が大きくなるように
してある。このため、ベーン5b2の進退運動により背
面空間の容積が増大している時に流体ダイオード10a
を通って貯油部からこの空間に流入する潤滑油の量に比
べ、背面空間の容積が減少している時に流体ダイオード
10aを通って貯油部に逆戻りする潤滑油の量は少な
く、その差が給油カバー14aの送油路を通って駆動軸
6の中心まで供給される油量となる。駆動軸6の中心に
達した油は駆動軸6内部に形成された給油穴(破線で図
示)を通って副軸受10、主軸受9及び偏心軸部6a、
6bの各軸受摺動部に供給される。
The lubrication (external lubrication) of the sliding portion of the drive shaft 6 of the compressor will be described. Swing piston 5 of high-pressure compression element 5
b vane 5b2 moves forward and backward, and lubricating oil 2
This is based on an oil supply pump operation utilizing a change in the volume of the back space (space of the hole 5a2) of the vane 5b2 immersed in the water. That is, the flow path shape of the fluid diode 10a is tapered so that the cross-sectional area decreases from the oil storage portion of the lubricating oil 20 toward the back space direction of the vane 5b2, and the passage resistance of the flow (forward flow) entering from the oil storage portion. Thus, the passage resistance of the flow (backflow) going out to the oil storage section is increased. Therefore, when the volume of the back space is increased by the reciprocating motion of the vane 5b2, the fluid diode 10a
When the volume of the back space is reduced, the amount of the lubricating oil that returns to the oil storage unit through the fluid diode 10a is smaller than the amount of the lubricating oil that flows into the space from the oil storage unit through the oil storage unit. The amount of oil supplied to the center of the drive shaft 6 through the oil supply passage of the cover 14a. The oil that has reached the center of the drive shaft 6 passes through an oil supply hole (shown by a broken line) formed inside the drive shaft 6, and has a sub bearing 10, a main bearing 9, and an eccentric shaft 6a.
6b is supplied to each bearing sliding portion.

【0039】圧縮要素作動室内の潤滑である内部潤滑を
説明する。低圧用圧縮要素4の内部潤滑では、作動室内
に供給される油量は、密閉容器3内の中間圧力と作動室
の吸込室側の圧力との差圧により漏れる量となり、その
漏れの駆動力となる圧力差が密閉容器内の圧力が吐出圧
力の場合に比べて小さくなるため、揺動ピストン4bの
端面部等の隙間を通って作動室内に漏れ込む油量を少な
くすることができ性能向上が図れる。
The internal lubrication, which is the lubrication in the compression element working chamber, will be described. In the internal lubrication of the low-pressure compression element 4, the amount of oil supplied into the working chamber becomes an amount leaked due to a differential pressure between the intermediate pressure in the closed vessel 3 and the pressure on the suction chamber side of the working chamber, and the driving force of the leak Is smaller than the case where the pressure in the closed container is the discharge pressure, so that the amount of oil leaking into the working chamber through the gap such as the end face of the oscillating piston 4b can be reduced, and the performance is improved. Can be achieved.

【0040】また、高圧用圧縮要素5の内部潤滑は、差
圧に依らずに揺動ピストン5bの吸込み側のベーン5b
2の側面部に形成された油ポケット21による容積型ポ
ンプ作用で間欠給油されるものである。図4を用いてこ
の油ポケット21の給油動作を説明する。図4は駆動軸
6が90°ずつ回転した時の高圧用圧縮要素5の揺動ピ
ストン5bの運動を示したものである。
The internal lubrication of the high-pressure compression element 5 is performed by the vane 5b on the suction side of the oscillating piston 5b regardless of the differential pressure.
The oil is intermittently supplied by the positive displacement pumping action of the oil pocket 21 formed on the side face of the second. The oil supply operation of the oil pocket 21 will be described with reference to FIG. FIG. 4 shows the movement of the oscillating piston 5b of the high-pressure compression element 5 when the drive shaft 6 rotates by 90 °.

【0041】図4(a)が揺動ピストン5bのベーン5
b2が最もシリンダ5aの外側に突き出した状態で、こ
の状態を駆動軸6の回転角(クランク角)θ=0°とす
る。この状態ではベーン5b2の側面部に形成された油
ポケット21は孔部5a2内の潤滑油20中に開口して
おり、油ポケット21内の空間は潤滑油20で満たされ
る。ここから駆動軸6が時計周りに90°回転したのが
図4(b)の状態であり、図4(a)で内部に潤滑油2
0を取り込んだ油ポケット21は滑動部材7によりその
開口部を塞がれている。さらに90°回転(θ=180
°)したのが図4(c)であり、油ポケット21はシリ
ンダ5a内の吸込室内に開口し、ガスと液の密度差によ
り油ポケット21内の潤滑油20は吸込室内に噴出し作
動ガスと置換される。ここからさらに90°回転(θ=
270°)したのが図4(d)の状態であり、内部に作
動ガスを取り込んだ油ポケット21は滑動部材7により
その開口部を塞がれている。さらに90°回転すると最
初の図4(a)の状態に戻り、油ポケット21内の作動
ガスは潤滑油20と置換され再び油ポケット21内の空
間は潤滑油20で満たされる。以上の動作を繰り返すこ
とにより高圧用圧縮要素5の作動室内に所定量の潤滑油
20を確実に供給することができる。
FIG. 4A shows the vane 5 of the oscillating piston 5b.
In a state where b2 projects most outside the cylinder 5a, this state is defined as a rotation angle (crank angle) θ = 0 ° of the drive shaft 6. In this state, the oil pocket 21 formed on the side surface of the vane 5b2 is opened in the lubricating oil 20 in the hole 5a2, and the space in the oil pocket 21 is filled with the lubricating oil 20. FIG. 4B shows the state in which the drive shaft 6 is rotated clockwise by 90 ° from this point, and in FIG.
The opening of the oil pocket 21 into which the oil pocket 21 has been taken is closed by the sliding member 7. Further 90 ° rotation (θ = 180
FIG. 4 (c) shows that the oil pocket 21 opens into the suction chamber in the cylinder 5a, and the lubricating oil 20 in the oil pocket 21 gushes out into the suction chamber due to the density difference between gas and liquid. Is replaced by A further 90 ° rotation from here (θ =
270 °) in the state shown in FIG. 4D. The opening of the oil pocket 21 in which the working gas has been taken in is closed by the sliding member 7. 4A, the working gas in the oil pocket 21 is replaced with the lubricating oil 20 and the space in the oil pocket 21 is filled with the lubricating oil 20 again. By repeating the above operation, it is possible to reliably supply a predetermined amount of the lubricating oil 20 into the working chamber of the high-pressure compression element 5.

【0042】この高圧用圧縮要素5の内部潤滑における
潤滑油20の供給量は、油ポケット21の容積を変える
ことにより容易に変えることができ、これにより各々の
圧縮要素の最適油量に制御することができ、性能・信頼
性を向上することができる。そして、図5(a)ではベ
ーン5b2の側面中央部に長円形状の油ポケット21を
形成しているが、油ポケット21の形状や形成位置はこ
れに限定されるものではなく、例えば、図5(b)のよ
うに端面の角部を一部切欠く形で形成してもよい。この
ような形状にすることにより、粉末冶金等で揺動ピスト
ン5bを成形する際に油ポケット21aも一体で組込み
成形することが可能となり機械加工が簡略化されるとと
もに高圧用圧縮要素5の組立ての際の目印になり、油ポ
ケットを逆向きに取付けるといった揺動ピストン5b組
立ての誤りを防止することができる。なお、ここでは油
ポケット21の形成位置を揺動ピストン5bのベーン5
b2の吸込作動室側の側面部としたが、本発明はこれに
限定されるものではなく、高圧用圧縮要素5の吸込作動
室内に、密閉容器内の潤滑油貯溜部と高圧用圧縮要素の
吸込作動室内とを交互に行き来する油ポケットであれば
その形成位置や形状によらない。これにより作動室のシ
ールに必要な潤滑油を差圧に依らずに間欠的な動作で適
正に供給する給油機構が実現される。
The supply amount of the lubricating oil 20 in the internal lubrication of the high-pressure compression element 5 can be easily changed by changing the volume of the oil pocket 21, whereby the optimum oil amount of each compression element is controlled. Performance and reliability can be improved. In FIG. 5A, the oval oil pocket 21 is formed at the center of the side surface of the vane 5b2. However, the shape and position of the oil pocket 21 are not limited to this. As shown in FIG. 5 (b), the corner of the end face may be partially cut out. With such a shape, the oil pocket 21a can be integrally incorporated and formed when the swing piston 5b is formed by powder metallurgy or the like, so that the machining is simplified and the high-pressure compression element 5 is assembled. This makes it possible to prevent an error in assembling the swing piston 5b, such as mounting the oil pocket in the opposite direction. Here, the formation position of the oil pocket 21 is changed to the vane 5 of the swing piston 5b.
Although the b2 is a side portion on the side of the suction working chamber, the present invention is not limited to this. The lubricating oil storage section in the closed container and the high-pressure compression element in the suction working chamber of the high-pressure compression element 5 are provided. It does not depend on the position and shape of the oil pocket as long as it is an oil pocket that alternates between the suction working chamber. As a result, an oil supply mechanism that appropriately supplies the lubricating oil necessary for the seal of the working chamber by intermittent operation without depending on the differential pressure is realized.

【0043】上述したように構成することにより、密閉
容器3内を吐出圧力より低い圧力とすることができ、密
閉容器3内を低温、低圧の圧力にしているので、次のよ
うな効果を有するものである。即ち、電動要素の温度を
下げることができ、信頼性及びモータ効率を向上するこ
とができる。また、高圧用圧縮要素4への給油量を適量
に容易に設定でき、圧縮機の性能を向上することができ
る。そして、低い圧力下で冷媒が油中に溶解しづらくな
り、冷媒封入量を低減できてコストダウンを図ることが
でき、特に可燃性炭化水素系冷媒を用いた場合には漏洩
時の冷媒漏洩量の低減による安全性の向上を図ることが
できると共に、軸受部に供給した油から冷媒が発泡する
ことによる潤滑性能の低下を抑制でき、これらにより信
頼性を高めることができる。さらには、密閉容器3の耐
圧を下げて板厚の薄い密閉容器3を用いることによる重
量低減及びコストダウンを図ることができる。
With the above-described structure, the pressure in the closed vessel 3 can be made lower than the discharge pressure, and the inside of the closed vessel 3 is kept at a low temperature and a low pressure. Things. That is, the temperature of the electric element can be lowered, and the reliability and the motor efficiency can be improved. Further, the amount of oil supplied to the high-pressure compression element 4 can be easily set to an appropriate amount, and the performance of the compressor can be improved. At low pressure, the refrigerant hardly dissolves in the oil, and the amount of refrigerant can be reduced to reduce the cost. Particularly, when a flammable hydrocarbon-based refrigerant is used, the amount of refrigerant leakage at the time of leakage is reduced. It is possible to improve safety by reducing the amount of lubrication, and it is possible to suppress a decrease in lubrication performance due to foaming of the refrigerant from the oil supplied to the bearing portion, thereby improving reliability. Further, the pressure resistance of the closed container 3 is reduced, and the weight and cost can be reduced by using the thin closed container 3.

【0044】なお、この実施例においては、密閉容器3
内を低圧用圧縮要素4の吐出圧力になるように構成して
いるが、低圧用圧縮要素4の吸込圧力になるように構成
しても良く、その場合には、低圧用圧縮要素4の内部潤
滑にも高圧用圧縮要素5の内部潤滑と同様な給油機構を
形成すればよく、密閉容器3内の圧力がさらに低くなる
ことにより、性能向上及び信頼性の向上を図ることがで
きる。
In this embodiment, the closed container 3
Although the inside is configured to be at the discharge pressure of the low-pressure compression element 4, it may be configured to be at the suction pressure of the low-pressure compression element 4. For lubrication, an oil supply mechanism similar to the internal lubrication of the high-pressure compression element 5 may be formed, and the performance and reliability can be improved by further reducing the pressure in the closed vessel 3.

【0045】さて、これまで、円筒形状のローラ4b
1、5b1と板状のベーン4b2、5b2が一体となっ
た揺動ピストン4b、5bが内面円筒形状のシリンダ4
a、5a内でほぼ一定半径の揺動を伴う公転運動をする
ことにより作動ガスを圧縮する揺動ピストン形回転圧縮
機構の性能上最適な内部潤滑の供給油量については明ら
かにされていなかった。そこで、本発明者らはこれを明
らかにすべく、密閉容器内の圧力が吸込圧力と同じ状態
で前述の図4で説明した油ポケット21による間欠給油
方式により作動室内に油を供給し、この油ポケットの体
積を種々変化させて圧縮機性能との関係を実験により調
べた。図6に実験結果の例を示す。
By the way, the cylindrical roller 4b
Oscillating pistons 4b, 5b in which plate vanes 4b2, 5b2 are integrated with plate-shaped vanes 4b2, 5b2.
The optimal amount of internal lubricating oil supply for the performance of the oscillating piston type rotary compression mechanism that compresses the working gas by making a revolving motion with oscillating with a substantially constant radius in a and 5a has not been clarified. . In order to clarify this, the present inventors supply oil into the working chamber by the intermittent oil supply method using the oil pocket 21 described with reference to FIG. 4 in a state where the pressure in the closed container is equal to the suction pressure. The relationship with the compressor performance was experimentally investigated by varying the volume of the oil pocket. FIG. 6 shows an example of the experimental result.

【0046】図6は、冷凍サイクル中の油循環率(冷媒
中の油の質量割合で、JIS B8606の附属書Dに
記載されている方法による測定値)と圧縮機の成績係数
COP(=冷凍能力/消費電力)の関係を示す性能特性
図である。ここで、冷媒はR134aであり、実験条件
は冷蔵庫の通常運転状態に相当する吸入圧力Ps--=
0.095MPa、吐出圧力Pd=1.043MPa、
回転速度n=3000min-1である。圧縮機の成績係
数COPは密閉容器3内の圧力が吐出圧力でその吐出圧
力と吸込圧力の差圧によって供給される油で内部潤滑さ
れる時のCOPを1.0(一点鎖線で図示)とした時の
比率で表している。
FIG. 6 shows the oil circulation rate in the refrigerating cycle (mass ratio of oil in the refrigerant, measured by the method described in Annex D of JIS B8606) and the coefficient of performance COP (= refrigeration) of the compressor. FIG. 4 is a performance characteristic diagram showing a relationship of (capacity / power consumption). Here, the refrigerant is R134a, and the experimental condition is the suction pressure Ps-= corresponding to the normal operation state of the refrigerator.
0.095 MPa, discharge pressure Pd = 1.043 MPa,
The rotation speed n is 3000 min -1 . The coefficient of performance COP of the compressor is 1.0 (shown by a dashed line) when the pressure in the closed vessel 3 is the discharge pressure and the internal lubrication is performed by the oil supplied by the pressure difference between the discharge pressure and the suction pressure. It is expressed by the ratio when the time is done.

【0047】この図6から明らかなように、油循環率
0.1重量%未満では内部潤滑の給油量が不足して作動
室のシール性が低下するために吐出圧力と吸込圧力の差
圧で内部潤滑される場合よりも性能低下し、油循環率
0.1重量%以上の給油量を確保することにより、吐出
圧力と吸込圧力の差圧で内部潤滑される場合よりも性能
向上できる。一方、油循環率の上限は冷凍サイクル特性
において、熱交換器の管内熱伝達率や圧力損失といった
伝熱性能が悪化しない範囲に決められる。通常、その上
限値は1.0重量%である。油循環率が1.0%を超え
て増加すると、冷蔵庫の場合は冷却器の蒸発温度が上昇
して冷却性能が低下しはじめる。
As is apparent from FIG. 6, when the oil circulation rate is less than 0.1% by weight, the amount of internal lubrication supplied is insufficient and the sealing performance of the working chamber is reduced. The performance is lower than in the case of internal lubrication, and the performance can be improved more than in the case of internal lubrication by the differential pressure between the discharge pressure and the suction pressure by securing the oil supply rate of 0.1% by weight or more of the oil circulation rate. On the other hand, the upper limit of the oil circulation rate is determined within a range in which the heat transfer performance such as the heat transfer coefficient in the pipe of the heat exchanger and the pressure loss does not deteriorate in the refrigeration cycle characteristics. Usually, the upper limit is 1.0% by weight. When the oil circulation rate increases beyond 1.0%, in the case of a refrigerator, the evaporating temperature of the cooler increases and the cooling performance starts to decrease.

【0048】以上より、揺動ピストン形回転圧縮機の性
能上好適な内部潤滑の油量は、冷凍サイクルの油循環率
にして、0.1重量%から1.0重量%の範囲にあるこ
とが明らかになった。従って、高圧用圧縮要素5の作動
室内に、密閉容器3内の潤滑油貯溜部と高圧用圧縮要素
5の作動室内とを交互に行き来する油ポケット21によ
り間欠的に潤滑油を供給する給油機構を設けることによ
り、差圧に依らずに容積型ポンプの作用で適正量の油を
確実に供給できるため、性能・信頼性を向上することが
できる。さらに、この給油機構により冷凍サイクル中の
油循環率(冷媒中の油の質量割合)を圧縮機の性能が最
適となる0.1重量%から1.0重量%の範囲になるよ
うに給油量を制御することが可能なため、熱交換器の伝
熱性能を向上でき、圧縮機の信頼性も確保されて、高性
能で高信頼性の揺動ピストン形圧縮機及び冷凍装置を提
供することができる。
As described above, the oil amount of the internal lubrication suitable for the performance of the oscillating piston type rotary compressor is in the range of 0.1% by weight to 1.0% by weight in terms of the oil circulation rate of the refrigeration cycle. Was revealed. Accordingly, an oil supply mechanism for intermittently supplying the lubricating oil into the working chamber of the high-pressure compression element 5 by the oil pocket 21 that alternately moves between the lubricating oil reservoir in the closed vessel 3 and the working chamber of the high-pressure compression element 5. Is provided, an appropriate amount of oil can be reliably supplied by the operation of the positive displacement pump without depending on the differential pressure, so that the performance and reliability can be improved. Further, the oil supply amount is adjusted by this oil supply mechanism so that the oil circulation rate (mass ratio of oil in the refrigerant) in the refrigeration cycle is in the range of 0.1% by weight to 1.0% by weight at which the performance of the compressor is optimum. The heat transfer performance of the heat exchanger can be improved, and the reliability of the compressor can be ensured. Can be.

【0049】次に、本発明の第2実施例を図7及び図8
を用いて説明する。図7は本発明の第2実施例による揺
動ピストン形圧縮機の縦断面図、図8は図7の要部拡大
図である。
Next, a second embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. FIG. 7 is a longitudinal sectional view of a swinging piston type compressor according to a second embodiment of the present invention, and FIG. 8 is an enlarged view of a main part of FIG.

【0050】この第2実施例は、高圧用圧縮要素5の内
部潤滑のための給油量を冷凍サイクルの油循環率が0.
1%から1.0%の範囲内に保持する方法として、低圧
用圧縮要素4の内部潤滑に用いられた油を利用するもの
である。即ち、低圧用圧縮要素4には密閉容器3内の中
間圧力と作動室内の圧力との差圧により潤滑油が内部潤
滑用に供給され、その潤滑油が冷媒と共に吐出されるの
で、この潤滑油を高圧用圧縮要素5の吸込側に導いて高
圧用圧縮要素5の内部潤滑に利用するものである。
In the second embodiment, the oil supply amount for the internal lubrication of the high-pressure compression element 5 is set to a value that is equal to the oil circulation rate of the refrigeration cycle.
As a method of maintaining the pressure within the range of 1% to 1.0%, oil used for internal lubrication of the low-pressure compression element 4 is used. That is, lubricating oil is supplied to the low-pressure compression element 4 for internal lubrication by a differential pressure between the intermediate pressure in the closed vessel 3 and the pressure in the working chamber, and the lubricating oil is discharged together with the refrigerant. Is guided to the suction side of the high-pressure compression element 5 and is used for internal lubrication of the high-pressure compression element 5.

【0051】前述の第1実施例の場合には、低圧用圧縮
要素4で圧縮された作動ガスは、密閉容器3内に吐出さ
れるため、低圧用圧縮要素4の内部潤滑に供給され作動
ガスと一緒に吐出された潤滑油は、この密閉容器3内の
空間で流速が急激に減少することにより作動ガスから分
離され、高圧用圧縮要素5の吸込ガス中に含まれる油分
はほとんどなくなってしまう。そこで、第2実施例で
は、低圧用圧縮要素4の吐出ガス中の潤滑油の分離効率
を低下させることにより、高圧用圧縮要素5の吸込ガス
中に内部潤滑に必要な油分を含ませ、高圧用圧縮要素5
の内部潤滑のための給油機構を省くものである。具体的
には、低圧用圧縮要素4の吐出パイプ16は、密閉容器
3内に直接開口させず、主軸受9に形成された吐出通路
9aを通して吐出マフラー12内の吐出空間に連通して
いる。この吐出マフラー12の下部に密閉容器3内に連
通する油戻し穴12aが設けられている。従って、主に
この吐出マフラー12の内容積を変化させることにより
油分離効率を変化することができるため、高圧用圧縮要
素5の内部潤滑に必要な、冷凍サイクルの油循環率が
0.1%から1.0%の範囲になるように制御すること
ができる。しかも、高圧用圧縮要素5の内部潤滑に必要
以上の油が低圧用圧縮要素4から吐出された場合には、
吐出マフラー12内で分離され、油戻し穴12aから密
閉容器3内の潤滑油20の貯溜部にこの余分の油は戻さ
れることになる。
In the case of the first embodiment described above, the working gas compressed by the low-pressure compression element 4 is discharged into the closed vessel 3 and is supplied to the internal lubrication of the low-pressure compression element 4 to be supplied to the working gas. The lubricating oil discharged together with the oil is separated from the working gas by a rapid decrease in the flow velocity in the space inside the closed container 3, and the oil contained in the suction gas of the high-pressure compression element 5 almost disappears. . Therefore, in the second embodiment, the oil required for internal lubrication is included in the suction gas of the high-pressure compression element 5 by lowering the separation efficiency of the lubricating oil in the discharge gas of the low-pressure compression element 4, thereby reducing the pressure of the high-pressure compression element 5. Compression element 5
The oil supply mechanism for internal lubrication is omitted. Specifically, the discharge pipe 16 of the low-pressure compression element 4 does not directly open into the closed casing 3, but communicates with the discharge space in the discharge muffler 12 through the discharge passage 9 a formed in the main bearing 9. An oil return hole 12 a communicating with the inside of the closed container 3 is provided below the discharge muffler 12. Therefore, the oil separation efficiency can be changed mainly by changing the internal volume of the discharge muffler 12, so that the oil circulation rate of the refrigeration cycle required for internal lubrication of the high-pressure compression element 5 is 0.1%. To 1.0%. Moreover, if more oil than necessary for internal lubrication of the high-pressure compression element 5 is discharged from the low-pressure compression element 4,
This extra oil is separated in the discharge muffler 12 and returned to the reservoir of the lubricating oil 20 in the sealed container 3 from the oil return hole 12a.

【0052】尚、上述した低圧用圧縮要素4の吐出し部
と高圧用圧縮要素5の吸込み部を結ぶ流路の途中に設け
た油分離機構と、最初の実施形態で述べた潤滑油貯溜部
と高圧用圧縮要素の作動室内とを交互に行き来する油ポ
ケットにより高圧用圧縮要素5の作動室に間欠的に油を
供給する給油機構の二つを同時に組み合せて用いること
も可能である。
The oil separation mechanism provided in the middle of the flow path connecting the discharge section of the low-pressure compression element 4 and the suction section of the high-pressure compression element 5 described above, and the lubricating oil storage section described in the first embodiment. It is also possible to simultaneously use two oil supply mechanisms that intermittently supply oil to the working chamber of the high-pressure compression element 5 by means of an oil pocket that alternates between the working chamber of the high-pressure compression element and the working chamber of the high-pressure compression element.

【0053】以上述べた実施例では、横置きの揺動ピス
トン形圧縮機を例に挙げて説明したが、本発明はこれに
限定されるものではなく、電動要素2を密閉容器3内の
上部に、圧縮要素1を密閉容器3の下部に配設した縦置
きの揺動ピストン形圧縮機にも適用できる。縦置き型の
場合には、駆動軸6の下端が潤滑油20中に浸かる構成
になるため圧縮機の外部潤滑として駆動軸の回転による
遠心ポンプ作用が使え、ベーン5b2の進退運動を利用
した給油機構よりもより簡便な構造にすることができ
る。
In the above-described embodiment, the horizontal oscillating piston type compressor has been described as an example. However, the present invention is not limited to this. In addition, the present invention can be applied to a vertically mounted oscillating piston compressor in which the compression element 1 is disposed below the closed vessel 3. In the case of the vertical type, since the lower end of the drive shaft 6 is immersed in the lubricating oil 20, the centrifugal pump action by the rotation of the drive shaft can be used as the external lubrication of the compressor, and the lubrication utilizing the forward / backward movement of the vane 5b2. It is possible to make the structure simpler than the mechanism.

【0054】また、揺動ピストン形圧縮機の低圧用圧縮
要素と高圧用圧縮要素の押しのけ容積(理論吸込み容
積)については特に言及しなかったが、一般に、吐出圧
力Pd、吸込圧力Psとしたときに圧縮動力が最小にな
る中間圧力Pmは、各段の圧力比が等しくなる条件から
Pm=√(Ps×Pd)となることが知られており、
この中間圧力Pmに実質的に等しく設定できるように低
圧用圧縮要素と高圧用圧縮要素の押しのけ容積を決める
ことが望ましい。
Although the displacement volume (theoretical suction volume) of the low-pressure compression element and the high-pressure compression element of the oscillating piston type compressor is not particularly mentioned, generally, when the discharge pressure Pd and the suction pressure Ps are used. It is known that the intermediate pressure Pm at which the compression power is minimized becomes Pm = √ (Ps × Pd) from the condition that the pressure ratio of each stage becomes equal,
It is desirable to determine the displacement of the low-pressure compression element and the high-pressure compression element so that they can be set substantially equal to the intermediate pressure Pm.

【0055】次に、本発明の第3実施例を図9を用いて
説明する。図9は本発明の第3実施例による冷凍装置の
構成図である。この第3実施例は家庭用冷凍冷蔵庫に適
用した例である。
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 9 is a configuration diagram of a refrigeration apparatus according to a third embodiment of the present invention. This third embodiment is an example applied to a home refrigerator.

【0056】この冷凍装置の冷凍サイクルは、前述の第
1実施例で説明した本発明の圧縮機30、熱を放熱する
凝縮器31、サイクル内に残留している水分を吸着する
ドライヤ32、キャピラリチューブ等で構成される冷蔵
室用減圧機構35、庫内を冷却する冷蔵室用蒸発器3
3、液冷媒の一時貯溜のためのタンクであるヘッダ3
7、キャピラリチューブ等で構成される冷凍室用減圧機
構36、冷凍室用蒸発器34、及び液冷媒の一時貯溜の
ためのタンクであるヘッダ38を配管にて連通したもの
である。この冷凍サイクルにおいて、冷蔵室用減圧機構
35、冷蔵室用蒸発器33及びヘッダ37は、直列に接
続され、一側が凝縮器31側に接続され、他側が揺動ピ
ストン形圧縮機の高圧用圧縮要素5の吸込側に接続され
ている。また、冷凍室用減圧機構36、冷凍室用蒸発器
34及びヘッダ38は、直列に接続され、一側が凝縮器
31側に接続され、他側が揺動ピストン形圧縮機の低圧
用圧縮要素4の吸込側に接続されている。ファン31a
は凝縮器31aを外気と強制的に熱交換させるものであ
り、ファン33aは冷蔵室用蒸発器33を冷蔵室空気と
強制的に熱交換させるものであり、ファン34aは冷凍
室用蒸発器34を冷凍室空気と強制的に熱交換させるも
のである。なお、破線39は冷蔵室、40は冷凍室を示
す。
The refrigerating cycle of this refrigerating apparatus includes the compressor 30 of the present invention described in the first embodiment, the condenser 31 for radiating heat, the dryer 32 for adsorbing moisture remaining in the cycle, and the capillary. Refrigerator decompression mechanism 35 composed of tubes, etc., Refrigerator evaporator 3 for cooling the inside of the refrigerator
3. Header 3, which is a tank for temporarily storing liquid refrigerant
7. A freezing compartment decompression mechanism 36 composed of a capillary tube and the like, a freezing compartment evaporator 34, and a header 38 serving as a tank for temporarily storing liquid refrigerant are communicated by piping. In this refrigeration cycle, the refrigerator decompression mechanism 35, the refrigerator evaporator 33, and the header 37 are connected in series, one side is connected to the condenser 31 side, and the other side is a high-pressure compressor of a swinging piston type compressor. It is connected to the suction side of element 5. The decompression mechanism 36 for the freezer compartment, the evaporator 34 for the freezer compartment, and the header 38 are connected in series, one side is connected to the condenser 31 side, and the other side is connected to the low-pressure compression element 4 of the oscillating piston compressor. Connected to the suction side. Fan 31a
Is for forcibly exchanging the heat of the condenser 31a with the outside air, the fan 33a is for forcibly exchanging the heat of the evaporator 33 for the refrigerator compartment with the air of the refrigerator compartment, and the fan 34a is for the evaporator 34 for the freezer compartment. Is forcibly exchanged heat with the freezing room air. Note that a broken line 39 indicates a refrigeration room and 40 indicates a freezer room.

【0057】而して、圧縮機30を起動することによ
り、各圧縮要素4、5のシリンダと揺動ピストン間で作
動流体の圧縮作用が行われる。圧縮された高温・高圧の
作動ガスは、実線矢印で示すように、高圧用圧縮要素5
の吐出パイプ18から凝縮器31に流入してファン31
aの送風作用で放熱・液化し、それぞれ減圧機構35、
36で絞られ、断熱膨張して低温・低圧となり、冷蔵室
用蒸発器33とファン33aで冷蔵室39内の熱を吸熱
し、冷凍室用蒸発器34とファン34aで冷凍室40内
の熱を吸熱してガス化した後、各々のヘッダ37、38
を通り、冷蔵室用蒸発器33をでた作動ガスは高圧用圧
縮要素5の吸込パイプ17から、冷凍室用蒸発器34を
出た作動ガスは低圧用圧縮要素4の吸込パイプ15から
各々吸込まれる。尚、減圧機構35、36としては通常
キャピラリチューブと呼ばれる細長い銅管が使用され、
吸込ガスの冷却力を有効利用するとともに吸込パイプ表
面の露付きを防止するため、各吸入経路で吸込パイプと
抱き合わせて熱交換している。
By activating the compressor 30, the working fluid is compressed between the cylinders of the compression elements 4, 5 and the oscillating piston. The compressed high-temperature and high-pressure working gas is supplied to the high-pressure compression element 5 as indicated by a solid arrow.
Flows into the condenser 31 from the discharge pipe 18 of the fan 31
The heat is radiated and liquefied by the blowing action of a, and the pressure reducing mechanism 35,
At 36, the heat is adiabatically expanded to a low temperature and low pressure, and the heat in the refrigerator compartment 39 is absorbed by the refrigerator evaporator 33 and the fan 33a, and the heat in the refrigerator compartment 40 is cooled by the freezer evaporator 34 and the fan 34a. After the heat is absorbed and gasified, each header 37, 38
, The working gas exiting the refrigerator compartment evaporator 33 is sucked from the suction pipe 17 of the high-pressure compression element 5, and the working gas exiting the freezer compartment evaporator 34 is sucked from the suction pipe 15 of the low-pressure compression element 4. I will. In addition, an elongated copper tube usually called a capillary tube is used as the pressure reducing mechanisms 35 and 36.
In order to effectively utilize the cooling power of the suction gas and prevent dew on the surface of the suction pipe, heat is exchanged with the suction pipe in each suction path.

【0058】一般的に、冷蔵庫の冷凍室内の温度は−1
8℃、冷蔵室内の温度は3℃に保たれるが、それぞれの
庫内温度に対応した蒸発器を用いているため、二つの蒸
発温度レベル即ち吸込圧力レベルを持ち、これに、本発
明の圧縮機30を組合わせることにより、低圧用圧縮要
素4で吸込圧力レベルの低い冷凍室用蒸発器34からの
作動ガスを吸込んで、冷蔵室用蒸発器33の蒸発圧力レ
ベル(中間圧力)まで圧縮し、次に、高圧用圧縮要素5
で冷蔵室用蒸発器33からの作動ガスも加えて吐出圧力
(凝縮圧力)まで圧縮するようにしているため、無駄な
膨張・圧縮を無くして冷凍サイクルの成績係数COPを
単段圧縮で単一蒸発温度のサイクルに比べ約30%向上
することができるとともに、本発明の圧縮機30を搭載
しているので、エネルギー効率に優れ、高信頼性の冷凍
システムが得られる。尚、冷蔵庫内の冷却力の制御方法
としては、主に、電動要素2や蒸発器ファン33a、3
4aの回転速度をインバータ制御等によりコントロール
することによって実現される。
Generally, the temperature in the freezer compartment of a refrigerator is -1.
The temperature in the refrigerator is kept at 8 ° C. and the temperature in the refrigerator compartment is kept at 3 ° C. However, since the evaporators corresponding to the respective temperatures in the refrigerator are used, it has two evaporation temperature levels, that is, suction pressure levels. By combining the compressor 30, the low-pressure compression element 4 sucks the working gas from the freezer evaporator 34 having a low suction pressure level and compresses it to the evaporator pressure level (intermediate pressure) of the refrigerator compartment evaporator 33. And then the high-pressure compression element 5
The working gas from the refrigerating compartment evaporator 33 is also added to compress the gas to the discharge pressure (condensing pressure). The cycle can be improved by about 30% compared to the cycle of the evaporation temperature, and since the compressor 30 of the present invention is mounted, a refrigeration system having excellent energy efficiency and high reliability can be obtained. The method of controlling the cooling power in the refrigerator mainly includes the electric element 2 and the evaporator fans 33a, 3b.
This is realized by controlling the rotation speed of the motor 4a by inverter control or the like.

【0059】次に、本発明の第4実施例を図10を用い
て説明する。図10は本発明の第4実施例による冷凍装
置の構成図である。この第4実施例は空気調和機に適用
した例である。
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 10 is a configuration diagram of a refrigeration apparatus according to a fourth embodiment of the present invention. The fourth embodiment is an example applied to an air conditioner.

【0060】この冷凍装置の冷凍サイクルは、冷暖房運
転が可能なヒートポンプサイクルであり、前述の図1で
説明した本発明の圧縮機30、室外熱交換器41、二段
階の膨張を行う膨張弁42と43、二つの膨張弁42と
43の間に配設された気液分離器44、この気液分離器
44からガス冷媒のみ取出すガス抽出管44a、膨張弁
42、43、気液分離器44をひし形に取り囲む形に配
設された4個の逆止弁45a、45b、45c、45
d、室内熱交換器46、4方弁47、及び吸込アキュム
レータ48を配管にて接続して構成されている。ファン
41aは室外熱交換器41を外気と強制的に熱交換させ
るものであり、ファン46aは室内熱交換器46を室内
空気と強制的に熱交換するものである。なお、一点鎖線
49は室外ユニット、50は室内ユニットを示す。
The refrigerating cycle of this refrigerating apparatus is a heat pump cycle capable of performing a cooling and heating operation. The refrigerating cycle includes the compressor 30, the outdoor heat exchanger 41, and the expansion valve 42 for performing two-stage expansion described with reference to FIG. And 43, a gas-liquid separator 44 disposed between the two expansion valves 42 and 43, a gas extraction pipe 44a for taking out only gas refrigerant from the gas-liquid separator 44, expansion valves 42, 43, and a gas-liquid separator 44. Check valves 45a, 45b, 45c, 45 arranged so as to surround
d, the indoor heat exchanger 46, the four-way valve 47, and the suction accumulator 48 are connected by piping. The fan 41a forcibly exchanges heat between the outdoor heat exchanger 41 and the outside air, and the fan 46a forcibly exchanges heat between the indoor heat exchanger 46 and the indoor air. Note that a dashed line 49 indicates an outdoor unit, and 50 indicates an indoor unit.

【0061】密閉型二段回転圧縮機30を起動すること
により各圧縮要素4、5で作動ガス(例えばR407
C、R410A、R290等)の圧縮作用が行われる。
When the hermetic two-stage rotary compressor 30 is started, the working gas (for example, R407)
C, R410A, R290, etc.).

【0062】冷房運転の場合、高圧用圧縮要素5で圧縮
された高温・高圧の作動ガスは破線矢印で示すように、
吐出パイプ18から4方弁47を通り、室外熱交換器4
1に流入してファン41aの送風作用で放熱・液化し、
逆止弁45aを通って一段目の膨張弁42で絞られて中
温・中圧となって気液分離器44内に入り、ここでガス
冷媒と液冷媒に分けられて、ガス冷媒はガス抽出管44
aから高圧用圧縮要素5の吸込パイプ17に吸込まれ
る。一方、液冷媒は二段目の膨張弁43で再び絞られて
低温・低圧となり、逆止弁45bを通って室内熱交換器
46とファン46aで室内の熱を吸熱してガス化した
後、4方弁47、吸込アキュムレータ48を通って低圧
用圧縮要素4の吸込パイプ15に吸込まれる。
In the cooling operation, the high-temperature and high-pressure working gas compressed by the high-pressure compression element 5 is expressed as
From the discharge pipe 18 through the four-way valve 47, the outdoor heat exchanger 4
1 and radiates and liquefies by the blowing action of the fan 41a,
After passing through the check valve 45a, it is throttled by the first-stage expansion valve 42 to have a medium temperature / medium pressure and enters the gas-liquid separator 44, where it is divided into a gas refrigerant and a liquid refrigerant, and the gas refrigerant is subjected to gas extraction. Tube 44
a is sucked into the suction pipe 17 of the high-pressure compression element 5. On the other hand, the liquid refrigerant is throttled again by the second-stage expansion valve 43 and becomes low temperature and low pressure, passes through the check valve 45b, absorbs indoor heat with the indoor heat exchanger 46 and the fan 46a, and gasifies. It is sucked into the suction pipe 15 of the low-pressure compression element 4 through the four-way valve 47 and the suction accumulator 48.

【0063】また、暖房運転の場合は、4方弁47が切
り替えられることにより、実線矢印で示すように、冷房
運転とは逆に流れ、高圧用圧縮要素5で圧縮された高温
・高圧の作動ガスは、吐出パイプ18から4方弁47を
通り、室内熱交換器46に流入してファン46aの送風
作用で室内に放熱して液化し、逆止弁45cを通って一
段目の膨張弁42で絞られて中温・中圧となって気液分
離器44内に入り、ガス冷媒と液冷媒に分けられて、ガ
ス冷媒はガス抽出管44aから高圧用圧縮要素5の吸込
パイプ17に吸込まれ、液冷媒は二段目の膨張弁43で
再び絞られて低温・低圧となり、逆止弁45dを通って
室外熱交換器41とファン41aで室外の熱を吸熱して
ガス化した後、4方弁47、吸込アキュムレータ48を
通って低圧用圧縮要素4の吸込パイプ15に吸込まれ
る。
In the case of the heating operation, the four-way valve 47 is switched, so that it flows in the opposite direction to the cooling operation as indicated by the solid line arrow, and the high-temperature and high-pressure operation compressed by the high-pressure compression element 5 is performed. The gas flows from the discharge pipe 18 through the four-way valve 47 into the indoor heat exchanger 46, radiates and liquefies the room by the blowing action of the fan 46a, and passes through the check valve 45c to the first-stage expansion valve 42. The gas refrigerant enters the gas-liquid separator 44 at a medium temperature and a medium pressure and is separated into a gas refrigerant and a liquid refrigerant. The gas refrigerant is sucked into the suction pipe 17 of the high-pressure compression element 5 from the gas extraction pipe 44a. The liquid refrigerant is throttled again by the second-stage expansion valve 43 and becomes low temperature and low pressure, passes through the check valve 45d, absorbs outdoor heat with the outdoor heat exchanger 41 and the fan 41a, and gasifies. Through the one-way valve 47 and the suction accumulator 48 It sucked into the suction pipe 15 of the element 4.

【0064】この冷凍サイクルでは膨張過程の途中に気
液分離器44を配設し、冷却力に寄与しないガス冷媒を
無駄に膨張・圧縮することなくガス抽出管44aを通し
て高圧用圧縮要素5に吸込むようにしているため、冷凍
サイクルの成績係数COPが改善されるとともに、本発
明の圧縮機を搭載しているので、特に高圧力比運転とな
る低外気温時の暖房運転や高温風吹き出し時においてエ
ネルギー効率に優れ、高信頼性の空調システムが得られ
る。
In this refrigeration cycle, a gas-liquid separator 44 is provided in the middle of the expansion process, and the gas refrigerant that does not contribute to the cooling power is sucked into the high-pressure compression element 5 through the gas extraction pipe 44a without needless expansion and compression. As a result, the coefficient of performance COP of the refrigeration cycle is improved, and the compressor of the present invention is mounted. And a highly reliable air conditioning system can be obtained.

【0065】尚、本発明は図9及び図10に示した冷凍
装置に限定されるものではなく、単純に従来の単段の密
閉型圧縮機に置き換えて本発明の二段圧縮機を使用する
ことも可能である。この場合にも、密閉容器内圧を中間
圧力とし、高圧用圧縮要素の作動室に着実にかつ適正量
だけ給油する内部潤滑機構を備えた二段圧縮機構によ
り、圧縮機の高性能・高信頼性化が図れ、システムのエ
ネルギ効率を向上することができる。また、脱フロン化
対応も実現可能となる。
The present invention is not limited to the refrigerating apparatus shown in FIGS. 9 and 10, but simply uses a two-stage compressor of the present invention instead of a conventional single-stage hermetic compressor. It is also possible. In this case as well, the two-stage compression mechanism equipped with an internal lubrication mechanism that steadily and properly supplies oil to the working chamber of the high-pressure compression element by setting the internal pressure of the closed vessel to the intermediate pressure, and achieves high performance and high reliability of the compressor And the energy efficiency of the system can be improved. In addition, it becomes feasible to use CFC-free.

【0066】[0066]

【発明の効果】本発明によれば、コストダウンが図れ、
かつ小型で高性能及び高信頼性の揺動ピストン形圧縮機
及び冷凍装置を得ることができる。
According to the present invention, the cost can be reduced,
In addition, it is possible to obtain a small and high-performance and highly reliable swinging piston type compressor and refrigeration apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例の揺動ピストン形圧縮機の
縦断面図である。
FIG. 1 is a longitudinal sectional view of a swinging piston type compressor according to a first embodiment of the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 1;

【図4】図1の揺動ピストン形圧縮機の給油機構の動作
説明図である。
FIG. 4 is an operation explanatory view of an oil supply mechanism of the swinging piston type compressor of FIG. 1;

【図5】図1の揺動ピストン形圧縮機に用いる油ポケッ
トを付設した揺動ピストンの異なる変形例を示す斜視図
である。
FIG. 5 is a perspective view showing another modified example of the oscillating piston provided with an oil pocket used in the oscillating piston type compressor of FIG. 1;

【図6】冷凍サイクルの油循環率と成績係数COPの関
係を示す性能特性図である。
FIG. 6 is a performance characteristic diagram showing a relationship between an oil circulation rate of a refrigeration cycle and a coefficient of performance COP.

【図7】本発明の第2実施例による揺動ピストン形圧縮
機の縦断面図である。
FIG. 7 is a longitudinal sectional view of a swinging piston type compressor according to a second embodiment of the present invention.

【図8】図7の要部拡大図である。FIG. 8 is an enlarged view of a main part of FIG. 7;

【図9】本発明の第3実施例による冷凍装置の構成図で
ある。
FIG. 9 is a configuration diagram of a refrigeration apparatus according to a third embodiment of the present invention.

【図10】本発明の第4実施例による冷凍装置の構成図
である。
FIG. 10 is a configuration diagram of a refrigeration apparatus according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮要素、2…電動要素、3…密閉容器、4…低圧
用圧縮要素、4a…シリンダ、4a1…円筒孔部、4a
2…円筒孔部、4b…揺動ピストン、4b1…ローラ、
4b2…ベーン、5…高圧用圧縮要素、5a…シリン
ダ、5a1…円筒孔部、5a2…円筒孔部、5b…揺動
ピストン、5b1…ローラ、5b”…ベーン、6…駆動
軸、6a、6b…偏心軸部、7…滑動部材、8…仕切り
板、9…主軸受、10…副軸受、10a…流体ダイオー
ド、11…吐出弁装置、12…吐出マフラー、13…吐
出弁装置、14…吐出カバー、14a…給油カバー、1
5…吸込パイプ、16…吐出パイプ、17…吸込パイ
プ、18…吐出パイプ、19…中間冷却器、20…潤滑
油、21…油ポケット、30…密閉型二段回転圧縮機、
31…凝縮器、32…ドライヤ、33…冷蔵室用蒸発
器、34…冷凍室用蒸発器、35、36…減圧機構、3
7、38…ヘッダ、39…冷蔵室、40…冷凍室、41
…室外熱交換器、42、43…膨張弁、44…気液分離
器、45a、45b、45c、45d…逆止弁、46…
室内熱交換器、47…4方弁、48…吸込アキュムレー
タ、49…室外ユニット、50…室内ユニット。
DESCRIPTION OF SYMBOLS 1 ... Compression element, 2 ... Electric element, 3 ... Airtight container, 4 ... Low pressure compression element, 4a ... Cylinder, 4a1 ... Cylindrical hole part, 4a
2 ... Cylindrical hole, 4b ... Swinging piston, 4b1 ... Roller,
4b2: Vane, 5: High-pressure compression element, 5a: Cylinder, 5a1: Cylindrical hole, 5a2: Cylindrical hole, 5b: Swing piston, 5b1: Roller, 5b ": Vane, 6: Drive shaft, 6a, 6b ... Eccentric shaft portion, 7 ... Sliding member, 8 ... Partition plate, 9 ... Main bearing, 10 ... Sub bearing, 10a ... Fluid diode, 11 ... Discharge valve device, 12 ... Discharge muffler, 13 ... Discharge valve device, 14 ... Discharge Cover, 14a ... oiling cover, 1
5 suction pipe, 16 discharge pipe, 17 suction pipe, 18 discharge pipe, 19 intercooler, 20 lubricating oil, 21 oil pocket, 30 closed two-stage rotary compressor,
31 ... condenser, 32 ... dryer, 33 ... refrigerator evaporator, 34 ... freezer compartment evaporator, 35, 36 ... decompression mechanism, 3
7, 38: header, 39: refrigerator compartment, 40: freezer compartment, 41
... outdoor heat exchanger, 42, 43 ... expansion valve, 44 ... gas-liquid separator, 45a, 45b, 45c, 45d ... check valve, 46 ...
Indoor heat exchanger, 47: 4-way valve, 48: Suction accumulator, 49: Outdoor unit, 50: Indoor unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大島 健一 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 川南 茂也 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 幸野 雄 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 3H029 AA04 AA15 AA21 AB03 AB08 BB06 BB10 BB38 BB42 BB44 CC06 CC23 CC58  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kenichi Oshima 800, Tomita, Ohira-machi, Ohira-machi, Shimotsuga-gun, Tochigi Prefecture Inside the Cooling and Refrigerating Business Dept., Hitachi, Ltd. (72) Inventor Shigeya Kawanan 800, Tomita, Oda-machi, Ohira-cho, Shimotsuga-gun, Tochigi Stock (72) Inventor Takeshi Kono 502-Kandate-cho, Tsuchiura-shi, Ibaraki F-term (Mechanical Research Laboratory) 3H029 AA04 AA15 AA21 AB03 AB08 BB06 BB10 BB38 BB42 BB44 CC06 CC23 CC58

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器内に電動要素と圧縮要素とを駆
動軸を介して連結して配置し、前記圧縮要素は低圧用圧
縮要素と高圧用圧縮要素とを有し、前記各圧縮要素は両
端面を閉塞されるシリンダとローラ及びベーンが一体の
揺動ピストンとを有し、前記揺動ピストンは前記シリン
ダ内に揺動を伴う公転可能に配置し、前記ベーンは前記
シリンダ内の作動室を吸込室側と圧縮室側とに区画し、
前記密閉容器内は前記高圧用圧縮要素の吐出圧力より低
い圧力に保持すると共に、前記高圧用圧縮要素の作動室
側と油供給側とに間欠的に連通する油収納部を介して前
記油供給側から前記作動室側に潤滑油を間欠的に供給す
る給油機構を設けたことを特徴とする揺動ピストン形圧
縮機。
An electric element and a compression element are connected and arranged in a closed container via a drive shaft, wherein the compression element has a low-pressure compression element and a high-pressure compression element, and each of the compression elements is A cylinder whose both end surfaces are closed, a roller and a vane have an integral swinging piston, and the swinging piston is arranged in the cylinder so as to be able to revolve with swinging, and the vane is a working chamber in the cylinder. Is divided into a suction chamber side and a compression chamber side,
The inside of the closed container is maintained at a pressure lower than the discharge pressure of the high-pressure compression element, and the oil supply is performed via an oil storage unit that intermittently communicates with the working chamber side and the oil supply side of the high-pressure compression element. An oscillating piston type compressor provided with an oil supply mechanism for intermittently supplying lubricating oil from the side to the working chamber side.
【請求項2】 密閉容器内に電動要素と圧縮要素とを駆
動軸を介して連結して配置し、前記圧縮要素は低圧用圧
縮要素と高圧用圧縮要素とを有し、前記各圧縮要素は両
端面を閉塞されるシリンダとローラ及びベーンが一体の
揺動ピストンと有し、前記揺動ピストンは前記シリンダ
内に揺動を伴う公転可能に配置し、前記ベーンは前記シ
リンダ内を前記ローラと共に吸込室及び圧縮室とに区画
し、前記密閉容器内は前記圧縮要素の吸込圧力と吐出圧
力の中間圧力にすると共に、前記高圧用圧縮要素のシリ
ンダ内の吸込室側と油供給側とに間欠的に連通する油収
納部を介して前記油供給側から前記吸込室側に潤滑油を
間欠的に供給する給油機構を設けたことを特徴とする揺
動ピストン形圧縮機。
2. A motor-driven element and a compression element are connected to each other via a drive shaft in a closed container, and the compression element has a low-pressure compression element and a high-pressure compression element. A cylinder closed at both ends, a roller and a vane have an integral swing piston, and the swing piston is arranged so as to be able to revolve with oscillation in the cylinder, and the vane moves inside the cylinder together with the roller. It is divided into a suction chamber and a compression chamber, and the inside of the closed container is set at an intermediate pressure between the suction pressure and the discharge pressure of the compression element, and the pressure chamber is intermittently interposed between the suction chamber side and the oil supply side in the cylinder of the high pressure compression element. A swing piston type compressor provided with an oil supply mechanism for intermittently supplying lubricating oil from the oil supply side to the suction chamber side via an oil storage section which is in fluid communication.
【請求項3】 横長の密閉容器内に電動要素と圧縮要素
とを駆動軸を介して横に連結して配置し、前記圧縮要素
は、低圧用圧縮要素と高圧用圧縮要素とを有すると共
に、この各圧縮要素を前記駆動軸に横に併設し、前記各
圧縮要素は両端面を閉塞されるシリンダとローラ及びベ
ーンが一体の揺動ピストンとを有し、前記揺動ピストン
は前記シリンダ内に揺動を伴う公転可能に配置し、前記
ベーンは前記シリンダ内の作動室を吸込室側と圧縮室側
とに区画し、前記密閉容器内は前記高圧用圧縮機の吐出
圧力より低い圧力に保持すると共に、前記高圧用圧縮要
素のシリンダ内の吸込室側と前記密閉容器の底部の潤滑
油側とに間欠的に連通する油ポケットを前記ベーンに形
成して前記潤滑油を前記吸込室側に間欠的に供給する給
油機構を設けたことを特徴とする揺動ピストン形圧縮
機。
3. An electrically driven element and a compression element are disposed in a horizontally long sealed container by being laterally connected via a drive shaft, wherein the compression element has a low-pressure compression element and a high-pressure compression element, Each of the compression elements is provided side by side with the drive shaft, and each of the compression elements has a cylinder whose both end surfaces are closed, and a swing piston in which rollers and vanes are integrated, and the swing piston is provided in the cylinder. The vane is arranged so as to be able to revolve with swinging, the vane partitions the working chamber in the cylinder into a suction chamber side and a compression chamber side, and the inside of the closed vessel is maintained at a pressure lower than the discharge pressure of the high-pressure compressor. In addition, an oil pocket intermittently communicating with the suction chamber side in the cylinder of the high-pressure compression element and the lubricating oil side at the bottom of the hermetic container is formed in the vane so that the lubricating oil is formed on the suction chamber side. That an intermittent oil supply mechanism was provided. Oscillating piston type compressor.
【請求項4】 横長の密閉容器内に電動要素と圧縮要素
とを駆動軸を介して横に連結して配置し、前記圧縮要素
は、低圧用圧縮要素と高圧用圧縮要素とを有すると共
に、この各圧縮要素を前記駆動軸に横に併設し、前記各
圧縮要素は両端面を閉塞されるシリンダとローラ及びベ
ーンが一体の揺動ピストンとを有し、前記揺動ピストン
は前記シリンダ内に揺動を伴う公転可能に配置し、前記
ベーンは前記シリンダ内の作動室を吸込室側と圧縮室側
とに区画し、前記密閉容器内は前記高圧用圧縮機の吐出
圧力より低い圧力に保持すると共に、前記高圧用圧縮要
素のシリンダ内の吸込室側と前記密閉容器の底部の潤滑
油側とに間欠的に連通する角部切欠を前記ベーンに形成
して前記潤滑油を前記吸込室側に間欠的に供給する給油
機構を設けたことを特徴とする揺動ピストン形圧縮機。
4. A motor-driven element and a compression element are laterally connected via a drive shaft in a horizontally long closed container, and the compression element has a low-pressure compression element and a high-pressure compression element. Each of the compression elements is provided side by side with the drive shaft, and each of the compression elements has a cylinder whose both end surfaces are closed, and a swing piston in which rollers and vanes are integrated, and the swing piston is provided in the cylinder. The vane is arranged so as to be able to revolve with swinging, the vane partitions the working chamber in the cylinder into a suction chamber side and a compression chamber side, and the inside of the closed vessel is maintained at a pressure lower than the discharge pressure of the high-pressure compressor. In addition, a corner cutout is formed in the vane so as to intermittently communicate with the suction chamber side in the cylinder of the high-pressure compression element and the lubricating oil side at the bottom of the hermetic container, and the lubricating oil is supplied to the suction chamber side. That a refueling mechanism is provided intermittently Oscillating piston type compressor.
【請求項5】 密閉容器内に電動要素と圧縮要素とを駆
動軸を介して連結して配置し、前記圧縮要素は低圧用圧
縮要素と高圧用圧縮要素とを有し、前記各圧縮要素は両
端面を閉塞されるシリンダとローラ及びベーンが一体の
揺動ピストンと有し、前記揺動ピストンは前記シリンダ
内に揺動を伴う公転可能に配置し、前記ベーンは前記シ
リンダ内を前記ローラと共に吸込室及び圧縮室とに区画
し、前記密閉容器内は前記高圧用圧縮機の吐出圧力より
低い圧力に保持すると共に、前記低圧用圧縮要素の吐出
部から前記高圧用圧縮要素の吸込部を結ぶ流路を設けた
ことを特徴とする揺動ピストン形圧縮機。
5. An electric element and a compression element are connected and arranged via a drive shaft in a closed container, wherein the compression element has a low-pressure compression element and a high-pressure compression element, and each of the compression elements is A cylinder closed at both ends, a roller and a vane have an integral swing piston, and the swing piston is arranged so as to be able to revolve with oscillation in the cylinder, and the vane moves inside the cylinder together with the roller. It is partitioned into a suction chamber and a compression chamber, and the inside of the closed container is maintained at a pressure lower than the discharge pressure of the high-pressure compressor, and connects the discharge part of the low-pressure compression element to the suction part of the high-pressure compression element. An oscillating piston type compressor having a flow path.
【請求項6】 密閉容器内に電動要素と圧縮要素とを駆
動軸を介して連結して配置し、前記圧縮要素は低圧用圧
縮要素と高圧用圧縮要素とを有し、前記各圧縮要素は両
端面を閉塞されるシリンダとローラ及びベーンが一体の
揺動ピストンと有し、前記揺動ピストンは前記シリンダ
内に揺動を伴う公転可能に配置し、前記ベーンは前記シ
リンダ内を前記ローラと共に吸込室及び圧縮室とに区画
し、前記密閉容器内を前記低圧用圧縮要素の吐出圧力に
すると共に、前記低圧用圧縮要素の吐出部から前記高圧
用圧縮要素の吸込部を結ぶ流路の途中に油分離機構を設
けたことを特徴とする揺動ピストン形圧縮機。
6. A motor-driven element and a compression element are connected and arranged in a closed container via a drive shaft, wherein the compression element has a low-pressure compression element and a high-pressure compression element, and each of the compression elements is A cylinder closed at both ends, a roller and a vane have an integral swing piston, and the swing piston is arranged so as to be able to revolve with oscillation in the cylinder, and the vane moves inside the cylinder together with the roller. The suction chamber and the compression chamber are partitioned, and the inside of the closed container is set to the discharge pressure of the low-pressure compression element, and in the middle of a flow path connecting the discharge part of the low-pressure compression element to the suction part of the high-pressure compression element. An oscillating piston compressor characterized by having an oil separation mechanism provided in the compressor.
【請求項7】 圧縮機、凝縮器、減圧機構及び蒸発器を
配管で接続して冷凍サイクルを構成し、前記ピストン形
圧縮機は、密閉容器内に電動要素と圧縮要素とを駆動軸
を介して連結して配置し、前記圧縮要素は低圧用圧縮要
素と高圧用圧縮要素とを有し、前記各圧縮要素は両端面
を閉塞されるシリンダとローラ及びベーンが一体の揺動
ピストンとを有し、前記揺動ピストンは前記シリンダ内
に揺動を伴う公転可能に配置し、前記ベーンは前記シリ
ンダ内の作動室を吸込室側と圧縮室側とに区画し、前記
密閉容器内は前記高圧用圧縮機の吐出圧力より低い圧力
に保持すると共に、前記高圧用圧縮要素の作動室側と油
供給側とに間欠的に連通する油収納部を介して前記油供
給側から前記作動室側に潤滑油を間欠的に供給する給油
機構を設けたことを特徴とする冷凍装置。
7. A refrigeration cycle is configured by connecting a compressor, a condenser, a decompression mechanism, and an evaporator with piping, and the piston-type compressor includes a motor-driven element and a compression element in a closed vessel via a drive shaft. The compression elements have a low-pressure compression element and a high-pressure compression element, and each compression element has a cylinder whose both end faces are closed, and a swinging piston in which rollers and vanes are integrated. The swing piston is arranged so as to be able to revolve with swing in the cylinder, the vane divides a working chamber in the cylinder into a suction chamber side and a compression chamber side, and the high pressure From the oil supply side to the working chamber side via an oil storage part intermittently communicating with the working chamber side and the oil supply side of the high-pressure compression element while maintaining the pressure at a pressure lower than the discharge pressure of the compressor for working. That an oil supply mechanism for intermittently supplying lubricating oil Characterized refrigeration equipment.
【請求項8】 圧縮機、凝縮器、減圧機構及び蒸発器を
配管で接続して冷凍サイクルを構成し、前記圧縮機は、
密閉容器内に電動要素と圧縮要素とを駆動軸を介して連
結して配置し、前記圧縮要素は低圧用圧縮要素と高圧用
圧縮要素とを有し、前記各圧縮要素は両端面を閉塞され
るシリンダとローラ及びベーンが一体の揺動ピストンと
を有し、前記揺動ピストンは前記シリンダ内に揺動を伴
う公転可能に配置し、前記ベーンは前記シリンダ内の作
動室を吸込室側と圧縮室側とに区画し、前記密閉容器内
は前記高圧用圧縮機の吐出圧力より低い圧力に保持する
と共に、前記高圧用圧縮要素のシリンダ内の吸込室側と
油供給側とに間欠的に連通する油収納部を介して前記油
供給側から前記吸込室側に潤滑油を間欠的に供給して前
記冷凍サイクル内の油循環率が0.1重量%〜1.0重
量%にする給油機構を設けたことを特徴とする冷凍装
置。
8. A refrigeration cycle is configured by connecting a compressor, a condenser, a pressure reducing mechanism, and an evaporator with piping, wherein the compressor comprises:
An electric element and a compression element are connected and arranged in a closed container via a drive shaft, and the compression element has a low-pressure compression element and a high-pressure compression element, and each of the compression elements has both end faces closed. The cylinder, the roller and the vane have an integral swing piston, the swing piston is arranged so as to be able to revolve with the swing in the cylinder, and the vane connects the working chamber in the cylinder to the suction chamber side. And the pressure in the closed vessel is maintained at a pressure lower than the discharge pressure of the high-pressure compressor, and intermittently between the suction chamber and the oil supply side in the cylinder of the high-pressure compression element. Lubricating oil is intermittently supplied from the oil supply side to the suction chamber side through the communicating oil storage portion to make the oil circulation rate in the refrigeration cycle 0.1 to 1.0% by weight. A refrigeration apparatus comprising a mechanism.
【請求項9】 圧縮機、凝縮器、減圧機構及び蒸発器を
配管で接続して冷凍サイクルを構成し、前記圧縮機は、
密閉容器内に電動要素と圧縮要素とを駆動軸を介して連
結して配置し、前記圧縮要素は低圧用圧縮要素と高圧用
圧縮要素とを有し、前記各圧縮要素は両端面を閉塞され
るシリンダとローラ及びベーンが一体の揺動ピストンと
有し、前記揺動ピストンは前記シリンダ内に揺動を伴う
公転可能に配置し、前記ベーンは前記シリンダ内を前記
ローラと共に吸込室及び圧縮室とに区画し、前記密閉容
器内は前記高圧用圧縮機の吐出圧力より低い圧力に保持
すると共に、前記冷凍サイクル内の油循環率が0.1重
量%〜1.0重量%にするように前記低圧用圧縮要素の
吐出部から前記高圧用圧縮要素の吸込部を結ぶ流路を設
けたことを特徴とする冷凍装置。
9. A refrigeration cycle is configured by connecting a compressor, a condenser, a decompression mechanism, and an evaporator with piping, wherein the compressor comprises:
An electric element and a compression element are connected and arranged in a closed container via a drive shaft, and the compression element has a low-pressure compression element and a high-pressure compression element, and each of the compression elements has both end faces closed. The cylinder, the roller and the vane have an integral swing piston, and the swing piston is arranged in the cylinder so as to be able to revolve with the swing, and the vane moves in the cylinder together with the roller in the suction chamber and the compression chamber. And the inside of the closed container is maintained at a pressure lower than the discharge pressure of the high-pressure compressor, and the oil circulation rate in the refrigeration cycle is set to 0.1% by weight to 1.0% by weight. A refrigerating apparatus, wherein a flow path is provided from a discharge part of the low-pressure compression element to a suction part of the high-pressure compression element.
【請求項10】 圧縮機、凝縮器、冷蔵室用減圧機構、
冷蔵室用蒸発器、冷凍室用減圧機構及び冷凍室用蒸発器
を配管で接続して冷凍サイクルを構成し、前記圧縮機
は、横長の密閉容器内に電動要素と圧縮要素とを駆動軸
を介して横に連結して配置し、前記圧縮要素は、低圧用
圧縮要素と高圧用圧縮要素とを有すると共に、この各圧
縮要素を前記駆動軸に横に併設し、前記各圧縮要素は両
端面を閉塞されるシリンダとローラ及びベーンが一体の
揺動ピストンとを有し、前記揺動ピストンは前記シリン
ダ内に揺動を伴う公転可能に配置し、前記ベーンは前記
シリンダ内の作動室を吸込室側と圧縮室側とに区画し、
前記密閉容器内は前記低圧用圧縮要素の吐出圧力にする
と共に、前記高圧用圧縮要素のシリンダ内の吸込室側と
前記密閉容器の底部の潤滑油側とに間欠的に連通する油
ポケットを介して前記底部の潤滑油側から前記吸込室側
に潤滑油を間欠的に供給して前記冷凍サイクル内の油循
環率が0.1重量%〜1.0重量%にする給油機構を設
け、前記凝縮器は前記高圧用圧縮要素の吐出側に連通
し、前記冷蔵室用減圧機構と冷蔵室用蒸発器は、直列に
接続されて前記凝縮器の出口側と前記高圧用圧縮要素の
吸込側との間に設け、前記冷凍室用減圧機構と冷凍室用
蒸発器は、直列に接続されて前記凝縮器の出口側と前記
低圧用圧縮要素の吸込側との間に設けたことを特徴とす
る冷凍装置。
10. A compressor, a condenser, a decompression mechanism for a refrigerator,
The refrigerating compartment evaporator, the freezing compartment decompression mechanism and the freezing compartment evaporator are connected by piping to constitute a refrigerating cycle, and the compressor has a drive shaft including an electric element and a compression element in a horizontally long closed container. The compression elements include a low-pressure compression element and a high-pressure compression element, and each of the compression elements is provided side by side with the drive shaft, and each of the compression elements has an end face. The cylinder and the roller and the vane, which are closed, have an integral swing piston, and the swing piston is arranged so as to be able to revolve with oscillation in the cylinder, and the vane sucks the working chamber in the cylinder. Partitioned into a chamber side and a compression chamber side,
The inside of the closed container is set at the discharge pressure of the low-pressure compression element, and an oil pocket intermittently communicating with the suction chamber side in the cylinder of the high-pressure compression element and the lubricating oil side at the bottom of the closed container. And an oil supply mechanism for intermittently supplying lubricating oil from the lubricating oil side at the bottom to the suction chamber side so that an oil circulation rate in the refrigeration cycle is 0.1% by weight to 1.0% by weight. The condenser communicates with the discharge side of the high-pressure compression element, and the refrigerating-room depressurizing mechanism and the refrigerating-room evaporator are connected in series, and the outlet side of the condenser and the suction side of the high-pressure compression element are connected. Wherein the decompression mechanism for the freezing room and the evaporator for the freezing room are connected in series and provided between the outlet side of the condenser and the suction side of the low-pressure compression element. Refrigeration equipment.
JP2000068622A 2000-03-08 2000-03-08 Swinging piston type compressor and freezer using it Pending JP2001254688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000068622A JP2001254688A (en) 2000-03-08 2000-03-08 Swinging piston type compressor and freezer using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000068622A JP2001254688A (en) 2000-03-08 2000-03-08 Swinging piston type compressor and freezer using it

Publications (1)

Publication Number Publication Date
JP2001254688A true JP2001254688A (en) 2001-09-21

Family

ID=18587652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000068622A Pending JP2001254688A (en) 2000-03-08 2000-03-08 Swinging piston type compressor and freezer using it

Country Status (1)

Country Link
JP (1) JP2001254688A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078842A1 (en) * 2002-03-18 2003-09-25 Daikin Industries,Ltd. Rotary compressor
JP2010101331A (en) * 2006-03-03 2010-05-06 Daikin Ind Ltd Rotary compressor
JP2011214511A (en) * 2010-03-31 2011-10-27 Daikin Industries Ltd Rotary compressor
JPWO2014083900A1 (en) * 2012-11-30 2017-01-05 三菱電機株式会社 Compressor, refrigeration cycle device and heat pump hot water supply device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003078842A1 (en) * 2002-03-18 2003-09-25 Daikin Industries,Ltd. Rotary compressor
US7029252B2 (en) 2002-03-18 2006-04-18 Dakin Industries, Ltd Rotary compressor
CN100400879C (en) * 2002-03-18 2008-07-09 大金工业株式会社 Rotary compressor
JP2010101331A (en) * 2006-03-03 2010-05-06 Daikin Ind Ltd Rotary compressor
JP2011214511A (en) * 2010-03-31 2011-10-27 Daikin Industries Ltd Rotary compressor
JPWO2014083900A1 (en) * 2012-11-30 2017-01-05 三菱電機株式会社 Compressor, refrigeration cycle device and heat pump hot water supply device

Similar Documents

Publication Publication Date Title
JP4837094B2 (en) Refrigeration cycle apparatus and fluid machine used therefor
WO2009136488A1 (en) Fluid machine
WO2009096167A1 (en) Expander-integrated compressor and refrigeration cycle device using the same
JP2008163894A (en) Multiple stage compressor
JP2005320927A (en) Rotary compressor
WO2008038366A1 (en) Scroll expander
JP4696530B2 (en) Fluid machinery
JP2007023993A (en) Two-stage compressor
JP4381532B2 (en) Swing piston type compressor
JP2001254688A (en) Swinging piston type compressor and freezer using it
JP3969840B2 (en) Electric compressor
JP2004325018A (en) Refrigerating cycle
JP4013552B2 (en) Hermetic compressor
JP2012107568A (en) Rotary compressor and refrigerating cycle device
US11953005B2 (en) Compressor having orbiting scroll supply hole to lubricate thrust surface
JP4018908B2 (en) Refrigeration air conditioner
CN211623711U (en) Swing rotor type expansion compressor
JP4384368B2 (en) Hermetic rotary compressor and refrigeration / air conditioner
JP4074760B2 (en) Hermetic rotary compressor and refrigeration / air conditioner
JP7541257B1 (en) Rotary compressor and refrigeration device
KR100711637B1 (en) Compressor
CN214403986U (en) Oil circuit structure, horizontal scroll compressor and refrigeration equipment
JP2003206877A (en) Closed rotary compressor
CN100465446C (en) Geared compressor
JP5181463B2 (en) Fluid machinery