JP2003206877A - Closed rotary compressor - Google Patents

Closed rotary compressor

Info

Publication number
JP2003206877A
JP2003206877A JP2002004030A JP2002004030A JP2003206877A JP 2003206877 A JP2003206877 A JP 2003206877A JP 2002004030 A JP2002004030 A JP 2002004030A JP 2002004030 A JP2002004030 A JP 2002004030A JP 2003206877 A JP2003206877 A JP 2003206877A
Authority
JP
Japan
Prior art keywords
roller
cylinder
lubricating oil
oil
rotary compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002004030A
Other languages
Japanese (ja)
Other versions
JP4110781B2 (en
Inventor
Takeshi Kono
雄 幸野
Hirokatsu Kosokabe
弘勝 香曽我部
Akihiko Ishiyama
明彦 石山
Yuugo Mukai
有吾 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002004030A priority Critical patent/JP4110781B2/en
Priority to CNB021424470A priority patent/CN1237313C/en
Priority to KR1020020071822A priority patent/KR100557373B1/en
Publication of JP2003206877A publication Critical patent/JP2003206877A/en
Application granted granted Critical
Publication of JP4110781B2 publication Critical patent/JP4110781B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0238Hermetic compressors with oil distribution channels
    • F04B39/0246Hermetic compressors with oil distribution channels in the rotating shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an internal leakage from occurring due to insufficient oil volume in a cylinder in a low speed range and a suction air heating loss and an increase in discharge oil volume from occurring due to defective lubrication of sliding parts and an excessive amount of oil supplied to the cylinder in a high speed range, even when the volume of supply oil in a roller part is varied by a rotational speed. <P>SOLUTION: This rotary compressor comprises motors controlled at different rotational speeds. The inside of a closed container is under a suction pressure. A front part allowing lubricating oil supplied to the inner surface of the roller part to flow therein and a rear part alternately reciprocating between the front part and a suction side and temporarily holding the lubricating oil in the front part are provided on an end plate closing a roller in the cylinder. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、密閉型回転式圧縮
機および冷凍又は空調装置及びヒートポンプ装置にかか
り、特に、広範囲の回転速度条件下で高性能で高い信頼
性を備える密閉型回転式圧縮機および冷凍システムを備
えた装置に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hermetic rotary compressor, a refrigerating or air conditioning system and a heat pump system, and in particular, a hermetic rotary compressor having high performance and high reliability under a wide range of rotation speed conditions. It is suitable for an apparatus including a machine and a refrigeration system.

【0002】[0002]

【従来の技術】従来、冷凍又は空調システム等に用いら
れている回転式圧縮機であるロータリ圧縮機は、密閉容
器内に固定子及び回転子を有する電動要素と、この電動
要素によって駆動される圧縮要素が収納されいる。圧縮
要素は、駆動軸の偏心部に自転自在に嵌合されたローラ
が、電動要素から回転力を伝える駆動軸の回転によって
シリンダ内を偏心回転運動して作動流体である冷媒を圧
縮する。
2. Description of the Related Art A rotary compressor, which is a rotary compressor conventionally used in a refrigeration or air-conditioning system, is driven by an electric element having a stator and a rotor in a hermetic container, and the electric element. A compression element is stored. In the compression element, a roller that is rotatably fitted to the eccentric portion of the drive shaft eccentrically rotates in the cylinder by the rotation of the drive shaft that transmits the rotational force from the electric element, and compresses the refrigerant that is the working fluid.

【0003】圧縮の行程について更に述べると、ローラ
に押圧されるベーンによってシリンダ内を吸込室と圧縮
室に仕切ることで、吸込パイプより吸込室に吸込された
冷媒ガスを圧縮室で圧縮する。圧縮された冷媒ガスは密
閉容器内に吐出され、吐出パイプより外部の冷凍サイク
ルに吐出される。
To further describe the compression process, the inside of the cylinder is divided into a suction chamber and a compression chamber by a vane pressed by a roller, so that the refrigerant gas sucked into the suction chamber by the suction pipe is compressed in the compression chamber. The compressed refrigerant gas is discharged into the closed container and then discharged from the discharge pipe to the external refrigeration cycle.

【0004】このように構成されたロータリ圧縮機は、
ローラを押圧するベーンの背圧を高圧とする為に密閉容
器内を吐出圧力とする場合が多い。潤滑油のシリンダ内
への供給は、ローラの内側に設けられた潤滑油供給部か
ら、ローラと端板との隙間を介して、シリンダ内に供給
を通常行っている。端板とは、筒状の形状を備えるロー
ラの端部に対して対向配置された板状部材であって、シ
リンダとローラと共同して吸込室若しくは圧縮室を構成
する。
The rotary compressor configured as described above is
In order to increase the back pressure of the vane that presses the roller, it is often the case that the discharge pressure is set in the closed container. Lubricating oil is normally supplied into the cylinder from a lubricating oil supply portion provided inside the roller through a gap between the roller and the end plate. The end plate is a plate-shaped member that is arranged to face the end of a roller having a tubular shape, and forms a suction chamber or a compression chamber in cooperation with the cylinder and the roller.

【0005】密閉容器内を吐出圧力にしたときにベーン
へ背圧をかける場合、上述の潤滑油供給機構を用いてい
ると、吸込室内に差圧によって漏れ込む潤滑油が過剰と
なることがある。吸込室内への潤滑油の供給が過剰にな
ると、加熱損失等による圧縮機の性能低下や電動要素の
コイル温度上昇による信頼性低下の問題が生じる。
When the back pressure is applied to the vane when the pressure in the closed container is changed to the discharge pressure, if the above-mentioned lubricating oil supply mechanism is used, the lubricating oil leaking into the suction chamber due to the differential pressure may be excessive. . If the supply of lubricating oil into the suction chamber becomes excessive, there will be problems such as deterioration of compressor performance due to heat loss and the like, and deterioration of reliability due to a rise in coil temperature of the electric element.

【0006】また、圧縮機を断続運転する場合、圧縮機
停止時に密閉容器内の高温・高圧のガスが蒸発器内に逆
流し、蒸発器の温度を上昇させ、冷凍・空調システムの
性能を低下させる断続ロスの問題もあった。
Further, when the compressor is operated intermittently, when the compressor is stopped, the high-temperature, high-pressure gas in the closed container flows back into the evaporator, raising the temperature of the evaporator and degrading the performance of the refrigeration / air-conditioning system. There was also the problem of intermittent loss.

【0007】さらに、地球温暖化防止の観点から将来の
冷媒として自然系冷媒が有力視されている。しかし、自
然系冷媒は地球温暖化係数は小さいが可燃性を有してい
るもの(例としてイソブタン)がある。この可燃性を有
する冷媒を使用する場合、安全性の面から機器への封入
量(冷媒使用量)が制限される可能性が高い。
Further, from the viewpoint of preventing global warming, natural refrigerants are considered to be promising as future refrigerants. However, some natural refrigerants have a low global warming potential but are flammable (eg, isobutane). When this flammable refrigerant is used, there is a high possibility that the amount enclosed in the device (the amount of refrigerant used) will be limited in terms of safety.

【0008】一般に、密閉容器内の雰囲気圧力が高いほ
ど、密閉容器下部に貯留される潤滑油中に溶け込む冷媒
量が増える。そのため、この冷媒の溶け込み量を補う
分、機器内へ封入する冷媒量が多くなる。
In general, the higher the atmospheric pressure in the closed container, the greater the amount of the refrigerant dissolved in the lubricating oil stored in the lower part of the closed container. Therefore, the amount of the refrigerant to be sealed in the device increases in order to compensate for the melting amount of the refrigerant.

【0009】これらより、密閉容器内を吐出圧力とする
タイプの圧縮機は、機器への冷媒封入量が多くなる方向
であるため、可燃性を有する自然系冷媒の適用が困難で
あるといった問題が存在する。
As described above, in the compressor of the type in which the discharge pressure is in the closed container, the amount of refrigerant to be enclosed in the device tends to increase, so that there is a problem that it is difficult to apply a natural refrigerant having flammability. Exists.

【0010】以上の問題に対して、密閉容器内を圧縮機
の低圧側とほぼ同じ圧力(吸込圧力)とした低圧容器式
のロータリ圧縮機として、特公平07−72547号公
報に開示されたロータリ圧縮機がある。
In order to solve the above problems, a rotary compressor disclosed in Japanese Patent Publication No. 07-72547 as a low-pressure container type rotary compressor in which the pressure in the hermetically sealed container is substantially the same as the low-pressure side (suction pressure) of the compressor. There is a compressor.

【0011】そこで開示されるロータリ圧縮機の軸受板
の内面(シリンダ側)には、ローリングピストン(ロー
ラ)の偏心回転が1回転する間に、シリンダ内の低圧室
と全面的に連通する区間、ローリングピストンの端板で
閉塞される区間、およびローリングピストンの内側と全
面的に連通する区間の3区間となる位置と大きさの油溜
め凹部を備えている。この構成により、圧縮機の運転に
伴う回転軸が1回転する間に、凹部の容積に比例した油
量の潤滑油が、圧力条件に関係なく、回転軸の1回転当
たり常に一定量の潤滑油を低圧室へ供給でき、起動時な
どに多量の潤滑油が機外に流出するのを抑制することが
できると記載されている。
The inner surface (cylinder side) of the bearing plate of the rotary compressor disclosed therein has a section in which the rolling piston (roller) fully communicates with the low pressure chamber in the cylinder while the eccentric rotation of the rolling piston makes one rotation. It is provided with an oil sump concave portion having a position and a size which are three sections of a section closed by the end plate of the rolling piston and a section which is in full communication with the inside of the rolling piston. With this configuration, during one rotation of the rotating shaft due to the operation of the compressor, the lubricating oil having an oil amount proportional to the volume of the recess is always a constant amount per one rotation of the rotating shaft regardless of the pressure condition. It is described that the oil can be supplied to the low-pressure chamber, and a large amount of lubricating oil can be prevented from flowing out of the machine at the time of starting.

【0012】[0012]

【発明が解決しようとする課題】油溜め凹部へ供給され
る油は次のメカニズムで供給される。まず駆動軸の偏心
部の摺動面を潤滑した油がローリングピストンの内側に
供給された後、このローリングピストン内側に供給され
た潤滑油が回転軸の遠心作用により偏心方向に寄せられ
ローリングピストン内側に油膜を形成する。この油膜厚
さはローリングピストン内側への給油量に依存する。そ
のため給油量が少なくなる条件、すなわち装置内のモー
タ回転速度が低速になる条件ほどその油膜厚さは薄くな
る。特にロータリ圧縮機が横置き形の場合、潤滑油の油
溜め凹部の開口部を覆う面積が小さくなり、油溜め部凹
部の潤滑油を取り込む容積効率が低くなることが考えら
れる。
The oil supplied to the oil sump recess is supplied by the following mechanism. First, oil that lubricates the sliding surface of the eccentric part of the drive shaft is supplied to the inside of the rolling piston, and then the lubricating oil that is supplied to the inside of this rolling piston is eccentrically moved by the centrifugal action of the rotating shaft and inside the rolling piston. An oil film is formed on. This oil film thickness depends on the amount of oil supplied to the inside of the rolling piston. Therefore, the oil film thickness becomes thinner under the condition that the amount of oil supply decreases, that is, the condition that the motor rotation speed in the device decreases. In particular, when the rotary compressor is a horizontal type, it is considered that the area covering the opening of the oil sump recess of the lubricating oil becomes small and the volumetric efficiency of taking in the lubricating oil in the oil sump recess becomes low.

【0013】以上から、上記公知例では油膜の薄くなる
モータの低速条件のときほど、潤滑油を取り込む油溜め
凹部の容積効率が低下する。また、モータの低速条件下
で内部潤滑に必要な油量を供給できる容積に油溜め凹部
の容積を設定すると、油膜が厚くなる条件となるモータ
回転速度の高速条件下で油溜め凹部に取り込む油量が増
加する。するとシリンダ内への給油量が過剰になり、吸
気加熱損失や圧縮機外部に吐出される油量が増え、圧縮
機性能およびサイクル性能が低下するといった問題があ
る。
From the above, in the above-mentioned known example, the volume efficiency of the oil sump concave portion for taking in the lubricating oil becomes lower as the speed of the motor becomes lower when the oil film becomes thinner. Also, if the volume of the oil sump recess is set to a volume that can supply the amount of oil required for internal lubrication under the low speed condition of the motor, the oil taken into the oil sump recess under the high speed condition of the motor rotation speed will be the condition that the oil film becomes thick. The amount increases. Then, there is a problem that the amount of oil supplied to the cylinder becomes excessive, the intake heating loss and the amount of oil discharged to the outside of the compressor increase, and the compressor performance and cycle performance deteriorate.

【0014】また、モータの高速条件下で、サイクル性
能を低下させない油吐出量になるように油溜め凹部の容
積を設定すると、油膜の薄くなる低速の条件で油溜め凹
部に取り込む油量が不足し、内部漏れやベーンとローリ
ングピストン間の潤滑不良の問題が生じてしまう。
Further, if the volume of the oil sump recess is set so that the amount of oil discharged does not deteriorate cycle performance under high speed conditions of the motor, the amount of oil taken into the oil sump recess is insufficient under low speed conditions where the oil film becomes thin. However, problems such as internal leakage and poor lubrication between the vane and the rolling piston occur.

【0015】本発明の目的は、密閉型回転式圧縮機の回
転速度の変動によるローラ部の内側への給油量が変化し
た場合でも、圧縮機の電動要素が低速でも高速でも、一
回転あたり一定量の油が吸込室に供給できるようにする
ことである。
The object of the present invention is to maintain a constant value per revolution even when the amount of oil supplied to the inside of the roller portion changes due to fluctuations in the rotation speed of the hermetic rotary compressor, regardless of whether the electric element of the compressor is low speed or high speed. To allow a quantity of oil to be delivered to the suction chamber.

【0016】[0016]

【課題を解決するための手段】上記目的を達成する為
に、本発明の密閉型回転式圧縮機は、密閉容器内に、固
定子と回転子を有する電動要素と、この電動要素による
回転を伝える偏心部を有する駆動軸と、駆動軸の偏心部
の回転により作動流体を圧縮する圧縮要素と、を備え、
この圧縮要素は、両端が開口した円筒状内周面を有する
シリンダと、シリンダ内で駆動軸の偏心部に嵌合するロ
ーラと、このローラの偏心運動に伴いシリンダ内を吸込
室と圧縮室に仕切るベーンと、シリンダの開口を閉塞す
る端板と、駆動軸を経由してローラ内に潤滑油を給油す
る給油機構と、ローラの内側に給油された潤滑油を取り
込む前部とローラの内側の空間と吸込室とを交互に連通
し前部からの潤滑油を保持する後部とを有する潤滑油供
給機構と、を備えるとことにより達成される。
In order to achieve the above object, a hermetic rotary compressor according to the present invention includes an electric element having a stator and a rotor in a hermetic container, and rotation by the electric element. A drive shaft having an eccentric part for transmitting, and a compression element for compressing the working fluid by rotation of the eccentric part of the drive shaft,
This compression element includes a cylinder having a cylindrical inner peripheral surface with both ends open, a roller fitted into the eccentric portion of the drive shaft in the cylinder, and the eccentric movement of the roller into a suction chamber and a compression chamber inside the cylinder. A partitioning vane, an end plate that closes the opening of the cylinder, an oil supply mechanism that supplies lubricating oil into the roller via the drive shaft, and a front part that takes in the lubricated oil inside the roller and the inside of the roller. And a rear part that holds the lubricating oil from the front part and that alternately communicates the spaces and the suction chambers.

【0017】[0017]

【発明の実施の形態】以下、本発明の各実施形態を図を
用いて説明する。なお、第2の実施形態以降の実施形態
においては第1の実施形態と共通する構成の一部を省略
すると共に、重複する説明を省略する。
DETAILED DESCRIPTION OF THE INVENTION Each embodiment of the present invention will be described below with reference to the drawings. In addition, in the second and subsequent embodiments, a part of the configuration common to the first embodiment will be omitted, and redundant description will be omitted.

【0018】まず、本発明の第1の実施形態を図1から
図5を用いて説明する。 本実施形態の密閉型回転式圧
縮機は、密閉容器6内に電動要素、圧縮要素およびこの
両者を連結する駆動軸4を配置する。また本実施形態で
は、この密閉容器6内を吐出圧力より低い吸込圧力とす
る。
First, a first embodiment of the present invention will be described with reference to FIGS. In the hermetic rotary compressor of this embodiment, an electric element, a compression element, and a drive shaft 4 that connects the electric element and the compression element are arranged in a hermetic container 6. Further, in the present embodiment, the suction pressure in the closed container 6 is lower than the discharge pressure.

【0019】電動要素は、固定子7および回転子5を有
している。圧縮要素は、圧縮機構と給油機構を有してい
る。圧縮機構は、円筒状内周面1aを備えたシリンダ1
と、このシリンダ1内に回転可能に配置された揺動ピス
トン8と、シリンダ1の両端開口を閉塞する主軸受2お
よび副軸受3によりなっている。駆動軸4は電動要素の
回転子5に固定してあり圧縮要素に駆動力を伝える。駆
動軸4の偏心部4aが偏心回転することで、揺動ピスト
ン8はシリンダ1の内部で偏心回転する。
The electric element has a stator 7 and a rotor 5. The compression element has a compression mechanism and an oil supply mechanism. The compression mechanism is a cylinder 1 having a cylindrical inner peripheral surface 1a.
And a swinging piston 8 rotatably arranged in the cylinder 1, and a main bearing 2 and a sub bearing 3 that close the openings at both ends of the cylinder 1. The drive shaft 4 is fixed to the rotor 5 of the electric element and transmits the drive force to the compression element. When the eccentric portion 4a of the drive shaft 4 rotates eccentrically, the swing piston 8 rotates eccentrically inside the cylinder 1.

【0020】給油機構は、追って詳述するが、ベーン部
8bの端部が出入りすることによるシリンダ1の孔部1
cの容積変化に伴い、吸込流体ダイオード17より流入
した潤滑油が吐出流体ダイオード18を通じて給油パイ
プ19に送られる。給油パイプ19を通じて供給された
潤滑油は、副軸受3内に進入して、駆動軸4の表面に設
けられたスパイラル溝20により、各軸受内に供給され
る。
The oil supply mechanism will be described in detail later, but the hole portion 1 of the cylinder 1 due to the end portion of the vane portion 8b coming in and out.
The lubricating oil flowing from the suction fluid diode 17 is sent to the oil supply pipe 19 through the discharge fluid diode 18 as the volume of c changes. The lubricating oil supplied through the oil supply pipe 19 enters the auxiliary bearing 3 and is supplied into each bearing by the spiral groove 20 provided on the surface of the drive shaft 4.

【0021】圧縮機構の構成を詳述する。主軸受2と副
軸受3とが、少なくともシリンダ1の円筒状内周面1a
の両端部にある開口部を閉塞する。本実施形態では主軸
受2にシリンダ1が固定されている。主軸受2と副軸受
3は、それぞれシリンダ1の円筒状内周面1aに対応す
る部分の中央に軸受部2a、3aを備えており、駆動軸
4を回転可能に支持している。また、主軸受2と副軸受
3は駆動軸4の回転軸(偏心部4a以外の部分)が、シ
リンダ1の円筒状内周面1aの中心軸と一致する様にシ
リンダ1に固定されている。そして、主軸受2の外周部
は密閉容器6に固定されており、密閉容器6には電動要
素の固定子7が固定されている。
The configuration of the compression mechanism will be described in detail. The main bearing 2 and the sub bearing 3 have at least the cylindrical inner peripheral surface 1a of the cylinder 1.
The openings at both ends are closed. In this embodiment, the cylinder 1 is fixed to the main bearing 2. The main bearing 2 and the sub bearing 3 are respectively provided with bearing portions 2a and 3a at the centers of the portions corresponding to the cylindrical inner peripheral surface 1a of the cylinder 1, and rotatably support the drive shaft 4. Further, the main bearing 2 and the sub bearing 3 are fixed to the cylinder 1 such that the rotary shaft of the drive shaft 4 (a portion other than the eccentric portion 4a) coincides with the central axis of the cylindrical inner peripheral surface 1a of the cylinder 1. . The outer peripheral portion of the main bearing 2 is fixed to the closed container 6, and the stator 7 of the electric element is fixed to the closed container 6.

【0022】駆動軸4には、シリンダ1の円筒状内周面
1a内に位置する部分に偏心部4aが設けられている。
つまり、この偏心部4aの円筒状外周面には揺動ピスト
ン8のローラ部8aの円筒状内周面が回転可能に嵌入さ
れる。ローラ部8aの円筒状外周面とシリンダ1の円筒
状内周面1aとの間の隙間は微少になる様に各部寸法が
決められている。
The drive shaft 4 is provided with an eccentric portion 4a at a portion located inside the cylindrical inner peripheral surface 1a of the cylinder 1.
That is, the cylindrical inner peripheral surface of the roller portion 8a of the swing piston 8 is rotatably fitted into the cylindrical outer peripheral surface of the eccentric portion 4a. The dimensions of each part are determined so that the gap between the cylindrical outer peripheral surface of the roller portion 8a and the cylindrical inner peripheral surface 1a of the cylinder 1 is very small.

【0023】また、ローラ部8aの円筒状外周面にはベ
ーン部8bが設けられている。シリンダ1の円筒状内周
面1aの外側には円筒状内周面1aの中心軸と平行な中
心軸を持つ円筒孔部1bが設けられている。円筒孔部1
bのシリンダ1中心側とその反対側とはそれぞれシリン
ダ1の円筒状内周面1aと円筒孔部1bの外側に設けた
別の孔部1cに連通している。ベーン部8bは円筒孔部
1bと孔部1cとに挿入されているが、ベーン部8bと
円筒孔部1bとの間にはベーン部8bの平面部に摺動可
能に当接する平面部と円筒孔部1bの円筒面部に摺動可
能に当接する円筒面部とを有する滑動部材9がベーン部
8bをはさみ込んで組み込まれている。この結果、ベー
ン部8bは円筒孔部1bの中心軸に向かう進退運動と中
心軸廻りの揺動運動を行う。ベーン部8bの先端部は孔
部1cの中で運動し、円筒孔部1bから抜けてシリンダ
1と干渉することはない。
A vane portion 8b is provided on the cylindrical outer peripheral surface of the roller portion 8a. A cylindrical hole portion 1b having a central axis parallel to the central axis of the cylindrical inner peripheral surface 1a is provided outside the cylindrical inner peripheral surface 1a of the cylinder 1. Cylindrical hole 1
The center side and the opposite side of the cylinder 1 of b communicate with the cylindrical inner peripheral surface 1a of the cylinder 1 and another hole portion 1c provided outside the cylindrical hole portion 1b, respectively. The vane portion 8b is inserted into the cylindrical hole portion 1b and the hole portion 1c, but between the vane portion 8b and the cylindrical hole portion 1b, a flat portion slidably abutting on the flat portion of the vane portion 8b and a cylinder are provided. A sliding member 9 having a cylindrical surface portion slidably abutting on the cylindrical surface portion of the hole portion 1b is incorporated with the vane portion 8b sandwiched therebetween. As a result, the vane portion 8b performs a forward / backward movement toward the central axis of the cylindrical hole portion 1b and a swinging movement around the central axis. The tip of the vane 8b moves in the hole 1c and does not come out of the cylindrical hole 1b and interfere with the cylinder 1.

【0024】以上の構成を有することで、電動要素によ
り駆動軸4が回転すると、揺動ピストン8は偏心部4a
とともにシリンダ1内を揺動を伴う公転運動を行う。図
3は駆動軸4が60°ずつ回転した時の揺動ピストン8
の運動を示した図である。ローラ部8aは、偏心部4a
の回転運動に伴い、その中心が公転運動をする。ベーン
部8bは、常に円筒孔部1bの中心軸方向を向き、偏心
部4aの中心軸廻りに若干の角度だけ揺動運動を行う。
ベーン部8bの運動、すなわち円筒孔部1bの中心軸に
向かった進退運動とその中心軸廻りの揺動運動を行うと
きの、ベーン部8bと円筒孔部1bとの間の隙間のシー
ルは、ベーン部8bと円筒孔部1bとの間に挿入された
滑動部材9がシールすることにより保たれる。
With the above structure, when the drive shaft 4 is rotated by the electric element, the oscillating piston 8 moves the eccentric portion 4a.
At the same time, an orbital motion involving rocking is performed in the cylinder 1. FIG. 3 shows the swing piston 8 when the drive shaft 4 rotates by 60 °.
It is a figure showing the exercise of. The roller portion 8a includes the eccentric portion 4a.
Along with the rotational movement of, the center makes an orbital movement. The vane portion 8b always faces the central axis direction of the cylindrical hole portion 1b and swings around the central axis of the eccentric portion 4a by a slight angle.
When the movement of the vane portion 8b, that is, the forward / backward movement toward the central axis of the cylindrical hole portion 1b and the swinging movement around the central axis, are performed, the seal of the gap between the vane portion 8b and the cylindrical hole portion 1b is The sliding member 9 inserted between the vane portion 8b and the cylindrical hole portion 1b is kept by sealing.

【0025】したがって、シリンダ1、揺動ピストン
8、主軸受2、副軸受3及び滑動部材9との組み合わせ
により、密閉空間である圧縮室10(図3斜線部)と吸
込空間である吸込室11が構成される。電動要素による
駆動軸4の回転に伴い図3の様にその容積の増減を繰り
返す。図3においては、図3(a)から(f)の全てに
圧縮室10が形成されている。
Therefore, the combination of the cylinder 1, the oscillating piston 8, the main bearing 2, the auxiliary bearing 3 and the sliding member 9 makes the compression chamber 10 (hatched portion in FIG. 3) which is a closed space and the suction chamber 11 which is a suction space. Is configured. As the drive shaft 4 is rotated by the electric element, its volume is repeatedly increased and decreased as shown in FIG. In FIG. 3, the compression chamber 10 is formed in all of FIGS.

【0026】係る構成により、作動流体である冷媒ガス
は次に述べるように圧縮される。まず冷媒ガスは、密閉
容器6に取り付けられた吸込パイプ12より密閉容器6
内に吸込まれ、吸込通路13を通過した後、吸込室11
に吸込まれる。(吸込室11は、図3における(a)θ
=0°を越え(b)θ=60°に示されるように吸込み
ポート1dがローラ部8aによって塞がった状態から、
(f)θ=300°を越えて(a)θ=0°のように吐
出ポート3bが閉じた状態まで存在する。)圧縮室10
の容積の減少と同時に冷媒ガスは圧縮される。副軸受3
に設けられた吐出ポート3bから吐出された冷媒ガス
は、副軸受3と吐出カバー14によって設けられる吐出
室3cへと吐出される。その後、圧縮された冷媒ガスは
密閉容器6を貫通する吐出パイプ15から密閉容器6外
に吐出される。
With such a configuration, the refrigerant gas as the working fluid is compressed as described below. First, the refrigerant gas is supplied from the suction pipe 12 attached to the closed container 6 to the closed container 6
After being sucked in and passing through the suction passage 13, the suction chamber 11
Is sucked into. (The suction chamber 11 is (a) θ in FIG.
= 0 ° (b) θ = 60 ° As shown in θ = 60 °, from the state where the suction port 1d is blocked by the roller portion 8a,
(F) Exceeds θ = 300 °, and exists until the discharge port 3b is closed as in (a) θ = 0 °. ) Compression chamber 10
The refrigerant gas is compressed at the same time as the volume of the refrigerant decreases. Secondary bearing 3
The refrigerant gas discharged from the discharge port 3b provided in the discharge port 3b is discharged into the discharge chamber 3c provided by the auxiliary bearing 3 and the discharge cover 14. Then, the compressed refrigerant gas is discharged to the outside of the closed container 6 through the discharge pipe 15 penetrating the closed container 6.

【0027】このように本実施例では特に、吸込パイプ
12を通過した冷媒ガスを一旦、密閉容器内に吸込む構
造としており、密閉容器6内は吸込圧力となる。このと
き、圧縮室10で圧縮された冷媒ガスは密閉容器6内に
直接吐出されずに吐出室3cを介して吐出パイプ15を
通じて密閉容器6外に吐出される。
As described above, particularly in this embodiment, the refrigerant gas having passed through the suction pipe 12 is temporarily sucked into the closed container, and the closed container 6 has a suction pressure. At this time, the refrigerant gas compressed in the compression chamber 10 is not directly discharged into the closed container 6 but is discharged to the outside of the closed container 6 through the discharge pipe 3 through the discharge chamber 3c.

【0028】密閉容器6内を吸込圧力とすることにより
以下のような利点がある。 (1)圧縮された高温の冷媒ガスによる電動要素の加熱
が少なく、低温の冷媒ガスによって冷却されるため、回
転子5、固定子7の温度が低下し、モータ効率が向上し
て性能向上が図れる。 (2)ローラ部8a内側が吸込圧力となるので、ローラ
部8a内面から吸込室11への差圧による過剰な油の供
給がなくなり、圧縮機の性能向上が図れる。 (3)潤滑油と相溶性のあるフロン等の冷媒では、圧力
が低い為、油中に溶解する冷媒ガスの割合が少なく、軸
受等での冷媒ガスの発泡現象が起こりにくいので信頼性
を向上することができる。また、将来的な新冷媒として
有力である可燃性を持つ自然系冷媒(イソブタン、プロ
パン等)では、冷媒使用量が少なくなり安全性を高める
ことができる。 (4)密閉容器6の耐圧を低くでき、薄肉・軽量化が図
ることができる。また、本実施形態に示した揺動ピスト
ン形圧縮機は、密閉容器内を吸込圧力とした構造に適用
し易い。なぜならばローラとベーンを一体化しているの
で、ローラとベーンとを別体にしたロータリ圧縮機のよ
うにローラにベーンを押圧するためにベーンに高圧の背
圧をかける必要が無い。次に圧縮機構部の給油機構につ
いて詳述する。図1において、駆動軸4の回転により、
ベーン部8bが孔部1cの中で進退運動し、孔部1cの
容積が変化する。この容積変化によるポンプ作用で(以
後、ベーン給油ポンプと呼ぶ)、密閉容器6の底部に貯
溜された潤滑油16は吸込流体ダイオード17から吸引
され、吐出流体ダイオード18、給油パイプ19を通っ
て、駆動軸4まで汲み上げられる。さらに汲み上げられ
た潤滑油16は、駆動軸4の外周に設けられたスパイラ
ル溝20を通って副軸受3、偏心部4a、主軸受2を潤
滑し再び密閉容器6内へ戻る。
The following advantages can be obtained by setting the suction pressure in the closed container 6. (1) Since the electric element is less heated by the compressed high-temperature refrigerant gas and is cooled by the low-temperature refrigerant gas, the temperatures of the rotor 5 and the stator 7 are lowered, the motor efficiency is improved, and the performance is improved. Can be achieved. (2) Since the suction pressure is applied to the inside of the roller portion 8a, excess oil is not supplied from the inner surface of the roller portion 8a to the suction chamber 11 due to the differential pressure, and the performance of the compressor can be improved. (3) Refrigerant that is compatible with lubricating oil, such as CFC, has a low pressure, so the proportion of the refrigerant gas that dissolves in the oil is small, and the foaming phenomenon of the refrigerant gas in bearings etc. is unlikely to occur, improving reliability. can do. In addition, the use of flammable natural refrigerants (isobutane, propane, etc.), which are promising new refrigerants in the future, will reduce the amount of refrigerant used and improve safety. (4) The pressure resistance of the closed container 6 can be lowered, and the thin wall and light weight can be achieved. Further, the oscillating piston type compressor shown in the present embodiment can be easily applied to a structure in which the closed container has a suction pressure. Because the roller and the vane are integrated, it is not necessary to apply a high back pressure to the vane in order to press the vane against the roller unlike a rotary compressor in which the roller and the vane are provided separately. Next, the oil supply mechanism of the compression mechanism section will be described in detail. In FIG. 1, by the rotation of the drive shaft 4,
The vane 8b moves back and forth in the hole 1c, and the volume of the hole 1c changes. Due to the pumping action due to this volume change (hereinafter referred to as a vane oil supply pump), the lubricating oil 16 stored in the bottom portion of the closed container 6 is sucked from the suction fluid diode 17, passes through the discharge fluid diode 18, and the oil supply pipe 19, Pumped up to the drive shaft 4. Further, the pumped lubricating oil 16 passes through the spiral groove 20 provided on the outer periphery of the drive shaft 4, lubricates the sub bearing 3, the eccentric portion 4a, and the main bearing 2, and returns to the sealed container 6 again.

【0029】偏心部4aを潤滑した潤滑油16はローラ
部8a内面側に流出する。例えスパイラル溝20を通る
潤滑油16から冷媒ガスが発泡しても、発泡した冷媒ガ
スは、ローラ部8aの内面に対向した偏心部4aの外周
面に開口するガス抜き孔4bから、駆動軸4の内部に設
けられたガス排出穴4cを通じて排出される。
The lubricating oil 16 that has lubricated the eccentric portion 4a flows out to the inner surface side of the roller portion 8a. Even if the refrigerant gas foams from the lubricating oil 16 passing through the spiral groove 20, the foamed refrigerant gas is discharged from the drive shaft 4 through the gas vent hole 4b opening on the outer peripheral surface of the eccentric portion 4a facing the inner surface of the roller portion 8a. The gas is exhausted through the gas exhaust hole 4c provided inside.

【0030】また、圧縮室10からローラ部8a内側に
漏れ込んだ高圧の冷媒ガスは、偏心部4aの主軸受2及
び副軸受3に対向する面に開口部を有しガス排出孔4c
に連通する連通孔4eを通って、駆動軸4の内部に設け
られたガス排出穴4cにより密閉容器6へと排出され
る。
The high-pressure refrigerant gas leaking from the compression chamber 10 to the inside of the roller portion 8a has an opening on the surface of the eccentric portion 4a facing the main bearing 2 and the sub bearing 3, and the gas discharge hole 4c.
The gas is discharged into the closed container 6 through a gas discharge hole 4c provided inside the drive shaft 4 through a communication hole 4e communicating with the.

【0031】ここで、ローラ部8a内面上に供給された
潤滑油16がシリンダ1内に安定して供給される構成に
ついて説明する。図3において、ローラ部8a端面に
は、ローラ部8aの内側に開口する切欠部8cが設けら
れている。副軸受3の端板上の、ローラ部8aの内側の
空間と連通するローラ部8aの端面の切欠部8cと吸込
室とを交互に行き来する位置には、端板の平面が窪んだ
凹部である油ポケット21が設けられている。ローラ部
8a端面の切欠部8cと吸込室とを交互に行き来する副
軸受3の端板上の位置は、シリンダ1内の吐出ポート3
d側ではなく、吸込ポート1d側である。つまり、その
副軸受3の端板上の位置は、ローラ部8aの内側の空間
と吸込室11とに連通する位置である。
Here, a structure in which the lubricating oil 16 supplied on the inner surface of the roller portion 8a is stably supplied into the cylinder 1 will be described. In FIG. 3, a cutout portion 8c that opens inside the roller portion 8a is provided on the end surface of the roller portion 8a. On the end plate of the sub-bearing 3, at the position where the notch portion 8c of the end surface of the roller portion 8a communicating with the space inside the roller portion 8a and the suction chamber alternate, there is a recess in which the plane of the end plate is depressed. An oil pocket 21 is provided. The position on the end plate of the auxiliary bearing 3 which alternates between the cutout portion 8c of the end face of the roller portion 8a and the suction chamber is determined by the discharge port 3 in the cylinder 1.
It is not the d side but the suction port 1d side. That is, the position of the sub bearing 3 on the end plate is a position where the space inside the roller portion 8 a communicates with the suction chamber 11.

【0032】ローラ部8a内面上に供給された潤滑油1
6は、切欠部8cに導かれ、切欠部8cと対向する位置
で副軸受3の油ポケット21に供給される。その後、油
ポケット21が吸込室11に開口すると油ポケット21
内の潤滑油16が吸込室11へと供給される。
Lubricating oil 1 supplied on the inner surface of the roller portion 8a
6 is supplied to the oil pocket 21 of the sub bearing 3 at a position facing the notch 8c. After that, when the oil pocket 21 opens into the suction chamber 11, the oil pocket 21
The lubricating oil 16 therein is supplied to the suction chamber 11.

【0033】図4及び図5を用いて更に述べる。ローラ
部8aと駆動軸4の偏心部4aとの間に供給される潤滑
油16は、ローラ部8aの内面を覆うだけでなく、偏心
部4aが副軸受3に対向する面上にも、潤滑油16が駆
動軸4の回転に伴う遠心作用により集積される。その溜
まった潤滑油16を切欠部8cが油ポケット21へ導
く。切欠部8cの範囲に応じて切欠部8cが油ポケット
21を覆っている状態が変わる。
Further description will be given with reference to FIGS. 4 and 5. The lubricating oil 16 supplied between the roller portion 8a and the eccentric portion 4a of the drive shaft 4 not only covers the inner surface of the roller portion 8a, but also lubricates the surface of the eccentric portion 4a that faces the sub bearing 3. The oil 16 is accumulated by the centrifugal action associated with the rotation of the drive shaft 4. The cutout portion 8c guides the accumulated lubricating oil 16 to the oil pocket 21. The state in which the cutout portion 8c covers the oil pocket 21 changes depending on the range of the cutout portion 8c.

【0034】以上の構成とすることにより、油ポケット
21はローラ部8a端面に設けられた切欠部8cと連通
することで潤滑油16が供給されるので、ローラ部8a
内周に供給された潤滑油16の油量が少なくても、油ポ
ケット21が、その前部にあたる切欠部8cに集められ
導かれた潤滑油16に全面的に覆われることで、油ポケ
ット21への潤滑油16の取り込みを円滑にして油ポケ
ット21が潤滑油を取り込む容積効率が向上する。この
結果、回転速度によってローラ部8a内の油量が変化し
た場合でも、一回転あたりに一定量の潤滑油が吸込室に
供給できるようになる。つまり、低速域でのシリンダ1
内の油量不足による内部漏れや滑動部材と円筒孔部との
潤滑不良、及び高速域での吸込室内への給油量過多によ
る吸気加熱損失や吐出油量増大を防止でき、広範囲の回
転速度条件において高性能で信頼性の高い密閉型回転式
圧縮機を提供することができる。
With the above structure, the oil pocket 21 communicates with the notch 8c provided on the end face of the roller portion 8a to supply the lubricating oil 16, and thus the roller portion 8a.
Even if the amount of the lubricating oil 16 supplied to the inner circumference is small, the oil pocket 21 is entirely covered with the lubricating oil 16 which is collected and guided in the notch 8c corresponding to the front portion thereof, so that the oil pocket 21 The lubricating oil 16 is smoothly taken into the oil pocket 21, and the volumetric efficiency of taking the lubricating oil into the oil pocket 21 is improved. As a result, even when the amount of oil in the roller portion 8a changes depending on the rotation speed, a certain amount of lubricating oil can be supplied to the suction chamber per one rotation. That is, cylinder 1 in the low speed range
It is possible to prevent internal leakage due to insufficient oil amount in the interior, lubrication failure between the sliding member and the cylindrical hole, and intake heat loss and increase in discharge oil amount due to excessive oil supply to the suction chamber in the high speed range. It is possible to provide a high performance and highly reliable hermetic rotary compressor.

【0035】切欠部8cは、圧縮室の圧力が上昇してい
ない時(ほぼ吸込圧力)に油ポケット21と連通するの
で、ローラ部8aの端面のシール性を劣化させることは
ない。
Since the notch portion 8c communicates with the oil pocket 21 when the pressure in the compression chamber does not rise (almost suction pressure), the sealability of the end face of the roller portion 8a is not deteriorated.

【0036】次に、本発明の第2の実施形態を図6及び
図7を用いて説明する。本実施形態では、ローラ部8a
の端面であって偏心部4aに対向する面の角部を全周に
渡って窪ませ段状の環状溝8dを設けた。環状溝8d
は、ローラ部8aの偏心部4aに対する接触面積を減ら
し、接触抵抗を軽減する作用がある。図7に示されたよ
うに、ローラ部8aの副軸受3側だけでなく、主軸受2
側に対しても、環状溝8dを設けると、さらに接触抵抗
が減る。
Next, a second embodiment of the present invention will be described with reference to FIGS. 6 and 7. In the present embodiment, the roller portion 8a
The stepped annular groove 8d is provided by denting the corner portion of the end surface of the surface facing the eccentric portion 4a over the entire circumference. Annular groove 8d
Has the effect of reducing the contact area of the roller portion 8a with respect to the eccentric portion 4a and reducing the contact resistance. As shown in FIG. 7, not only the sub bearing 3 side of the roller portion 8a but also the main bearing 2
The contact resistance is further reduced by providing the annular groove 8d on the side as well.

【0037】この環状溝8dにより、ローラ部8a内面
に供給された潤滑油16は、駆動軸4の回転に伴う遠心
作用により、環状溝8d内の偏心方向に導かれて集ま
る。副軸受3の端板上であって環状溝8dと吸込室11
を交互に行き来する位置に設けられた油ポケット21が
環状溝8dと連通した際に、環状溝8dに導かれた潤滑
油16は、油ポケット21に供給される。その後、油ポ
ケット21が吸込室11に開口すると油ポケット21内
の潤滑油16が吸込室11へと供給される。
By the annular groove 8d, the lubricating oil 16 supplied to the inner surface of the roller portion 8a is guided and gathered in the eccentric direction in the annular groove 8d by the centrifugal action accompanying the rotation of the drive shaft 4. On the end plate of the auxiliary bearing 3, the annular groove 8d and the suction chamber 11
When the oil pockets 21 provided at positions that alternately come and go communicate with the annular groove 8d, the lubricating oil 16 guided to the annular groove 8d is supplied to the oil pocket 21. After that, when the oil pocket 21 opens into the suction chamber 11, the lubricating oil 16 in the oil pocket 21 is supplied to the suction chamber 11.

【0038】以上の構成とすることにより、ローラ部8
a内周に供給された潤滑油16の油量が少なくても、油
ポケット21が、その前部にあたる切欠部8cに集めら
れ導かれた潤滑油16に全面的に覆われることで、油ポ
ケット21が潤滑油を取り込む容積効率が向上する。ま
た、ローラ部8aの端面の両側に環状溝8dを設け、主
・副軸受端面との接触面積を小さくしているので、ロー
ラ部8a円筒部の肉厚が厚くなるタイプ(例えば、同一
のシリンダ形状でローラ部の内外径と駆動軸の偏心部外
径及び偏心量を変更し圧縮機の押しのけ容積を小さくす
る場合)の圧縮機において、第1の実施形態と同一の作
用効果が得られるとともに、ローラ部8a端面の摺動ロ
スを低減できる。
With the above configuration, the roller portion 8
Even if the amount of the lubricating oil 16 supplied to the inner periphery of the a is small, the oil pocket 21 is entirely covered with the lubricating oil 16 that is collected and guided in the notch 8c corresponding to the front portion of the oil pocket 21. 21 improves the volumetric efficiency of taking in the lubricating oil. Further, since the annular groove 8d is provided on both sides of the end face of the roller portion 8a to reduce the contact area with the end faces of the main and auxiliary bearings, the roller portion 8a is of a type having a large wall thickness (for example, the same cylinder). In the compressor of which the inner and outer diameters of the roller portion, the outer diameter of the eccentric portion of the drive shaft, and the eccentric amount are changed to reduce the displacement volume of the compressor), the same effects as those of the first embodiment can be obtained. The sliding loss on the end face of the roller portion 8a can be reduced.

【0039】次に、本発明の第3の実施形態を図8乃至
図10を用いて説明する。本実施形態において、副軸受
3の端板上のローラ部8a内側に開放、且つローラ部8
aの偏心運動に伴い吸込室の一部となる位置に凹部22
を設ける。凹部22は、副軸受3の断面(図9参照)か
ら見て深さhがシリンダ1の半径方向で外側から中心方
向に向かって減少する形状を備える。
Next, a third embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the roller portion 8a is opened inside the roller portion 8a on the end plate of the auxiliary bearing 3, and
With the eccentric movement of a, the concave portion 22 is formed at a position which becomes a part of the suction chamber.
To provide. The recess 22 has a shape in which the depth h is reduced from the outside toward the center in the radial direction of the cylinder 1 when viewed from the cross section of the sub bearing 3 (see FIG. 9).

【0040】このような凹部22を備えることで、ロー
ラ部8a内側に供給された潤滑油16は、副軸受3のシ
リンダ1側端面上のローラ部8aの内側と吸込室11を
交互に行き来する位置に設けられた凹部22が、ローラ
部8a内側と連通した際に、凹部22に供給される。そ
の後、凹部22が吸込室11に開口すると凹部22内の
潤滑油16が吸込室11へと供給される。
By providing such a concave portion 22, the lubricating oil 16 supplied to the inside of the roller portion 8a alternates between the inside of the roller portion 8a and the suction chamber 11 on the end surface of the auxiliary bearing 3 on the cylinder 1 side. The concave portion 22 provided at the position is supplied to the concave portion 22 when communicating with the inside of the roller portion 8a. Then, when the recess 22 opens into the suction chamber 11, the lubricating oil 16 in the recess 22 is supplied to the suction chamber 11.

【0041】ここで、凹部22は、潤滑油16が入り込
む前部に対してその深さhが変化する貯油部を備える。
ローラ部8a内の油膜厚さが厚くなるとともに深さhが
浅くなる、すなわちローラ部8aの遠心作用で寄せ集め
られたローラ部8a内の潤滑油16の厚さが厚くなる方
向に深さhが小さくなることにより、以下に述べる作用
を有するため、回転速度の増加よってローラ部8a内の
油量が増え油膜厚さが厚くなるときに、凹部22に供給
される油量変化を深さhが変化しない凹部に比べて小さ
くすることができる。
Here, the concave portion 22 is provided with an oil storage portion whose depth h changes with respect to the front portion into which the lubricating oil 16 enters.
As the oil film thickness in the roller portion 8a increases, the depth h decreases, that is, the depth h increases in the direction in which the thickness of the lubricating oil 16 in the roller portion 8a collected by the centrifugal action of the roller portion 8a increases. Has a function to be described below. Therefore, when the amount of oil in the roller portion 8a increases and the oil film thickness increases due to the increase in rotation speed, the change in the amount of oil supplied to the recess 22 is reduced to the depth h. It can be made smaller than the concave portion in which is constant.

【0042】この貯油部の作用は、ローラ部8aの内面
と、凹部22の底部(図9において、シリンダ1の半径
方向で外側の面)とが、シリンダ1の半径方向の位置が
ほぼ同じ位置である。凹部22の前部である開口部に比
べて後部となる貯油部(副軸受3の端板表面から窪んだ
部分)の断面形状が変わることで、開口部を油取り込み
に有利に大きく設け、貯油部は油膜の厚さに応じた容積
に設けることができる。開口部が狭く深さhが大きな形
状の凹部では、凹部の中に残る潤滑油が多くなり当初の
目的を達することができない。したがって、本実施形態
のように開口部に対して潤滑油の膜厚さ方向に貯油部の
容積を変えることにより、高速域での吸込室内への給油
量過多による吸気加熱損失や吐出される油量増大による
サイクル性能の低下を防止できる。
The function of this oil storage portion is that the inner surface of the roller portion 8a and the bottom portion of the recess 22 (the outer surface in the radial direction of the cylinder 1 in FIG. 9) are located at substantially the same radial position of the cylinder 1. Is. By changing the cross-sectional shape of the oil storage portion (the portion recessed from the end plate surface of the auxiliary bearing 3) that is the rear portion of the recessed portion 22 as compared to the opening portion that is the front portion, the opening portion is provided large in favor of oil intake, and The part can be provided in a volume corresponding to the thickness of the oil film. In a recess having a narrow opening and a large depth h, a large amount of lubricating oil remains in the recess, failing to achieve the original purpose. Therefore, by changing the volume of the oil reservoir in the film thickness direction of the lubricating oil with respect to the opening as in the present embodiment, the intake heating loss and the discharged oil due to an excessive amount of oil supplied to the suction chamber in the high speed range. It is possible to prevent deterioration of cycle performance due to an increase in the amount.

【0043】凹部22の容積を、低速域の内部潤滑を行
うための最小必要給油量に設定することで、低速域での
吸込室11内の油量不足による内部漏れや滑動部材9と
円筒孔部1bとの潤滑不良を回避することができる。
By setting the volume of the concave portion 22 to the minimum required oil supply amount for performing internal lubrication in the low speed region, internal leakage due to insufficient oil amount in the suction chamber 11 in the low speed region and the sliding member 9 and the cylindrical hole. Poor lubrication with the portion 1b can be avoided.

【0044】以上により、この実施形態を適用した密閉
型圧縮機は広範囲の回転速度条件において高性能で信頼
性を高くすることができる。
As described above, the hermetic compressor to which this embodiment is applied can have high performance and high reliability under a wide range of rotation speed conditions.

【0045】上述の凹部22は深さ方向に断面積が変化
する形状としたが、この他、深さと垂直な方向に断面積
が変化する等、油膜が厚くなるとともに凹部に供給され
る油量の増加率が少なくなる形状であれば同一の作用効
果が得られる。
Although the above-described recess 22 has a shape in which the cross-sectional area changes in the depth direction, in addition to this, the cross-sectional area changes in the direction perpendicular to the depth, and the oil film becomes thicker and the amount of oil supplied to the recess is increased. The same action and effect can be obtained if the shape is such that the rate of increase of is small.

【0046】次に、本発明の第4の実施形態を図11を
用いて説明する。図11において、ローラ部8aの内側
と吸込室11とを交互に行き来する副軸受3の端板上の
位置に、ローラ部8aの内周方向に長い形状を有する凹
部23が設けられている。
Next, a fourth embodiment of the present invention will be described with reference to FIG. In FIG. 11, a recess 23 having a shape elongated in the inner circumferential direction of the roller portion 8a is provided at a position on the end plate of the sub bearing 3 which alternates between the inside of the roller portion 8a and the suction chamber 11.

【0047】ローラ部8a内側に供給された潤滑油16
は凹部23に供給される。その後、凹部23の前部が吸
込室11に開口すると、凹部23内の潤滑油16が吸込
室11へと供給される。
Lubricating oil 16 supplied to the inside of the roller portion 8a
Is supplied to the recess 23. Then, when the front part of the recess 23 opens into the suction chamber 11, the lubricating oil 16 in the recess 23 is supplied to the suction chamber 11.

【0048】凹部23の開口部である前部の幅bは、密
閉型圧縮機の定格運転における回転速度以下である低速
域でローラ部8a内に溜まる潤滑油の油膜厚さ以下であ
る。幅bは偏心部4aの中心に対する角度αを、適切に
設定することによって凹部23の容積を最適に設定す
る。
The width b of the front portion which is the opening of the recess 23 is equal to or less than the oil film thickness of the lubricating oil accumulated in the roller portion 8a in the low speed region which is equal to or lower than the rotation speed in the rated operation of the hermetic compressor. The width b appropriately sets the angle α with respect to the center of the eccentric portion 4a to optimally set the volume of the recess 23.

【0049】凹部23の開口部の幅bが密閉型圧縮機の
低速域での油膜厚さ以下となっているので、たとえ圧縮
機の電動機が低速で回転しても、凹部23が潤滑油16
に全面的に覆われて、凹部23の潤滑油を取り込む容積
効率が向上する。この結果、回転速度によってローラ部
8a内の油量が変化した場合でも、低速域でのシリンダ
1内の油量不足によるシリンダ内部の冷媒ガス漏れや滑
動部材と円筒孔部との潤滑不良を防ぐことができるよう
になる。
Since the width b of the opening of the recess 23 is equal to or smaller than the oil film thickness in the low speed range of the hermetic compressor, even if the electric motor of the compressor is rotated at a low speed, the recess 23 is filled with the lubricating oil 16.
The entire volume of the recess 23 is covered, and the volumetric efficiency of taking in the lubricating oil in the recess 23 is improved. As a result, even when the amount of oil in the roller portion 8a changes depending on the rotation speed, leakage of refrigerant gas inside the cylinder and poor lubrication between the sliding member and the cylindrical hole portion due to insufficient amount of oil in the cylinder 1 in the low speed range can be prevented. Will be able to.

【0050】また、圧縮機の低速域での回転に合わせて
一回転あたりに一定量の潤滑油を取り込む前部開口部を
備えることで、その前部が高速域の回転速度では流路抵
抗となり、吸込室内への給油量過多による吸気加熱損失
や吐出される潤滑油量の増大を防止できる。したがって
本実施形態を適用する密閉型回転式圧縮機は、広範囲の
回転速度条件において高性能で高い信頼性を得ることが
できる。
Further, by providing a front opening portion for taking in a fixed amount of lubricating oil per one rotation in accordance with the rotation of the compressor in the low speed region, the front portion becomes a flow path resistance at the rotation speed in the high speed region. In addition, it is possible to prevent intake heating loss and increase in the amount of lubricating oil discharged due to an excessive amount of oil supply into the suction chamber. Therefore, the hermetic rotary compressor to which the present embodiment is applied can obtain high performance and high reliability under a wide range of rotation speed conditions.

【0051】次に、本発明の第5の実施形態を図12を
用いて説明する。本実施形態では、貯油部となる油ポケ
ット21がローラ部8a内側と吸込室11を交互に行き
来する副軸受3の端板上の位置に設けられ、油ポケット
21の前部には偏心部4aが副軸受3側に隙間δで位置
し偏心部4aとローラ部8aとからなる前方供給部を有
する。
Next, a fifth embodiment of the present invention will be described with reference to FIG. In the present embodiment, an oil pocket 21 serving as an oil storage portion is provided at a position on the end plate of the sub bearing 3 which alternates between the inside of the roller portion 8a and the suction chamber 11, and the eccentric portion 4a is provided at the front portion of the oil pocket 21. Has a front supply portion located on the side of the sub bearing 3 with a gap δ and including an eccentric portion 4a and a roller portion 8a.

【0052】ローラ部8a内側に供給された潤滑油16
は、油ポケット21がローラ部8a内側と連通した際
に、副軸受3から隙間δ離れた偏心部4aとローラ部8
aとによる前方供給部から油ポケット21に供給され
る。そして油ポケット21が吸込室11に開口すると油
ポケット21内の潤滑油16が吸込室11へと供給され
る。
Lubricating oil 16 supplied to the inside of the roller portion 8a
When the oil pocket 21 communicates with the inside of the roller portion 8a, the eccentric portion 4a and the roller portion 8 which are separated from the sub bearing 3 by a gap δ.
The oil is supplied to the oil pocket 21 from the front supply part by a. When the oil pocket 21 opens in the suction chamber 11, the lubricating oil 16 in the oil pocket 21 is supplied to the suction chamber 11.

【0053】偏心部4aの副軸受3に対向する面の位置
は、偏心部4aの厚みの中心線がローラ部8aの高さの
中心線に対して油ポケット21側に位置しており、例え
ば、偏心部4aと副軸受3間との隙間δと油ポケット2
1の深さhがほぼ等しくなるようになっている。
Regarding the position of the surface of the eccentric portion 4a facing the sub bearing 3, the center line of the thickness of the eccentric portion 4a is located on the oil pocket 21 side with respect to the center line of the height of the roller portion 8a. , The gap δ between the eccentric portion 4a and the auxiliary bearing 3 and the oil pocket 2
The depth h of 1 is almost equal.

【0054】ローラ部8a内側であって油ポケット21
側の空間の容積が小さくなり、ローラ部8aの内側に供
給された潤滑油の油面が偏心部4a中心方向に高くなる
ので、ローラ部8a内側であって油ポケット21側の潤
滑油16が少ししか供給されなくても、油ポケット21
が潤滑油16に覆われる。そのため油ポケット21の潤
滑油を取り込む容積効率が向上する。
The oil pocket 21 inside the roller portion 8a
Since the volume of the space on the side becomes smaller and the oil surface of the lubricating oil supplied to the inside of the roller portion 8a becomes higher toward the center of the eccentric portion 4a, the lubricating oil 16 on the inside of the roller portion 8a and on the oil pocket 21 side is Oil pocket 21 even if only a small amount is supplied
Are covered with the lubricating oil 16. Therefore, the volumetric efficiency of taking in the lubricating oil in the oil pocket 21 is improved.

【0055】この結果、回転速度によってローラ部8a
内の油量が変化した場合でも、一回転あたりに一定量の
潤滑油が吸込室に供給できるようになる。つまり、密閉
型圧縮機の電動機が低速域で運転したときのシリンダ1
内の油量不足が軽減し、シリンダ1の内部での圧縮され
た冷媒ガスの漏れや滑動部材と円筒孔部との潤滑不良を
防ぐことができる。また、高速域で運転したときの吸込
室内への給油量過多を前部供給部が吸収することにより
吸気加熱損失や吸込室内及び圧縮室内に吐出される潤滑
油量の増大が防止できる。したがって本実施形態を適用
する密閉型回転式圧縮機は、広範囲の回転速度条件にお
いて高性能で高い信頼性を得ることができる。
As a result, depending on the rotation speed, the roller portion 8a
Even if the amount of oil inside changes, a certain amount of lubricating oil can be supplied to the suction chamber per one rotation. In other words, the cylinder 1 when the electric motor of the hermetic compressor operates in the low speed range
The shortage of the amount of oil in the inside can be reduced, and the leakage of the compressed refrigerant gas inside the cylinder 1 and the poor lubrication between the sliding member and the cylindrical hole can be prevented. Further, the intake air heating loss and the increase in the amount of lubricating oil discharged into the suction chamber and the compression chamber can be prevented by the front supply portion absorbing an excessive amount of oil supply to the suction chamber when operating in the high speed range. Therefore, the hermetic rotary compressor to which the present embodiment is applied can obtain high performance and high reliability under a wide range of rotation speed conditions.

【0056】以上の実施形態では1シリンダタイプの圧
縮機において副軸受3の端面に油ポケット21、凹部2
2、凹部23を設けた形態としたが、主軸受2側に設け
ても同様の作用効果が得られることは言うまでもない。
また2シリンダタイプの密閉型回転式圧縮機にも、共通
する構成を備えることで容易に適用できる。
In the above embodiment, in the one-cylinder type compressor, the oil pocket 21 and the recess 2 are formed on the end surface of the auxiliary bearing 3.
2, the concave portion 23 is provided, but it is needless to say that the same effect can be obtained by providing the concave portion 23 on the main bearing 2 side.
Further, it can be easily applied to a two-cylinder type hermetic rotary compressor by providing a common configuration.

【0057】次に、本発明の第6の実施形態を図13を
用いて説明する。このサイクルは冷凍(冷房)専用のサ
イクルである。本発明の一実施形態を適用した密閉型回
転式圧縮機27を起動することにより、圧縮された高温
・高圧の作動ガス(冷媒ガス)は、実線矢印で示すよう
に吐出パイプ15から凝縮器24に流入して、凝縮器フ
ァン24aの送風作用で放熱、液化する。この液化した
冷媒は、膨張弁25で絞られ、断熱膨張して低温・低圧
となる。低温・低圧となった液体冷媒は、蒸発器26で
蒸発器ファン26aで供給された空気からの熱により吸
熱して、ガス化された後、吸込パイプ12を経て密閉型
回転式圧縮機27に吸込される。
Next, a sixth embodiment of the present invention will be described with reference to FIG. This cycle is a cycle dedicated to freezing (cooling). By activating the hermetic rotary compressor 27 to which the embodiment of the present invention is applied, the compressed high-temperature / high-pressure working gas (refrigerant gas) flows from the discharge pipe 15 to the condenser 24 as indicated by the solid arrow. And is radiated and liquefied by the blowing action of the condenser fan 24a. The liquefied refrigerant is throttled by the expansion valve 25 and adiabatically expanded to a low temperature and low pressure. The low-temperature, low-pressure liquid refrigerant absorbs heat from the air supplied by the evaporator fan 26a in the evaporator 26, is gasified, and then passes through the suction pipe 12 to the hermetic rotary compressor 27. Inhaled.

【0058】ここで図13に示した冷凍システムは本発
明の一実施形態を適用した密閉型回転式圧縮機を搭載し
ているので、全運転範囲にわたりエネルギ効率に優れた
冷凍システムが得られる。以下、詳細に述べる。
Since the refrigeration system shown in FIG. 13 is equipped with the hermetic rotary compressor to which the embodiment of the present invention is applied, a refrigeration system excellent in energy efficiency can be obtained over the entire operating range. The details will be described below.

【0059】図13において、速度制御回路50は、温
度センサ51で検知した温度に対して冷凍システムが目
標とする温度を決めて、その目標温度に応じて圧縮機2
7に備えられた電動機の回転速度を制御する。この冷凍
システムが冷蔵庫などの冷凍装置に適用される場合は、
温度センサ51は温度を検知したい庫内の温度を検知可
能な場所に設ける。また、この冷凍システムがエアコン
などの空気調和機に適用される場合は、室内に配置され
る熱交換器の傍に設ける。空気調和機の場合、湿度セン
サをシステムに設け、速度制御回路50は湿度センサの
出力値を加味して電動機の回転速度を制御することも有
効である。さらに、この冷凍システムが給湯装置に適用
される場合は、熱交換されて熱せられた水の温度を測定
するために温度センサを設ける。
In FIG. 13, the speed control circuit 50 determines the temperature targeted by the refrigeration system with respect to the temperature detected by the temperature sensor 51, and the compressor 2 according to the target temperature.
7 controls the rotation speed of the electric motor. When this refrigeration system is applied to refrigeration equipment such as refrigerators,
The temperature sensor 51 is provided at a place where the temperature inside the refrigerator whose temperature is desired to be detected can be detected. Further, when this refrigeration system is applied to an air conditioner such as an air conditioner, the refrigeration system is installed near a heat exchanger arranged indoors. In the case of an air conditioner, it is also effective to provide a humidity sensor in the system and control the rotation speed of the electric motor by taking the output value of the humidity sensor into consideration by the speed control circuit 50. Furthermore, when this refrigeration system is applied to a hot water supply device, a temperature sensor is provided to measure the temperature of water that has been heat exchanged and heated.

【0060】速度制御回路50は、冷凍システムの目標
温度にシステムを制御するために、システムの圧縮機2
7が有する電動機の回転速度を制御する。システムのエ
ネルギー効率を高めるために圧縮機の回転速度を制御す
る場合に、圧縮機は異なる回転速度に対して効率が低下
しないようにする必要がある。
The speed control circuit 50 controls the system compressor 2 in order to control the system to the target temperature of the refrigeration system.
7 controls the rotation speed of the electric motor. When controlling the rotational speed of the compressor in order to increase the energy efficiency of the system, the compressor should not lose efficiency for different rotational speeds.

【0061】本発明の実施形態を適用した密閉型回転式
圧縮機27を構成要素とする冷凍システムとすることに
より、回転速度を変動させてローラ部内部への潤滑油の
給油量が変化した場合でも、常に一回転あたり一定量の
油が吸込室に供給できる。
When the refrigeration system having the hermetic rotary compressor 27 to which the embodiment of the present invention is applied as a constituent element is used to change the rotational speed and change the amount of lubricating oil supplied to the inside of the roller portion. However, a constant amount of oil can always be supplied to the suction chamber per revolution.

【0062】目標温度に対して能力を必要としない条件
下では、圧縮機の電動機(モータ)を高速に回転させる
必要は無く、冷凍システムは圧縮機を低速で回転させる
制御を行う。このような場合、本発明の実施形態を適用
した密閉型回転式圧縮機は低速域でのシリンダ内の油量
不足による内部漏れや滑動部材と円筒孔部との潤滑不良
を生じることはない。
Under the condition that the capacity is not required with respect to the target temperature, it is not necessary to rotate the electric motor (motor) of the compressor at high speed, and the refrigeration system performs control to rotate the compressor at low speed. In such a case, the hermetic rotary compressor to which the embodiment of the present invention is applied does not cause internal leakage or insufficient lubrication between the sliding member and the cylindrical hole due to insufficient oil amount in the cylinder in the low speed range.

【0063】また、目標温度に対して能力を必要とする
条件下では、圧縮機のモータを高速に回転させる必要が
あり、冷凍システムは圧縮機を高速で回転させる制御を
行う。このような場合、本発明の実施形態を適用した密
閉型回転式圧縮機は高速域でのシリンダ内への給油量過
多による吸気加熱損失や吐出油量増大が防止できる。
Further, under the condition that the capacity is required for the target temperature, it is necessary to rotate the motor of the compressor at high speed, and the refrigeration system performs control to rotate the compressor at high speed. In such a case, the hermetic rotary compressor to which the embodiment of the present invention is applied can prevent an intake heating loss and an increase in the discharge oil amount due to an excessive amount of oil supply to the cylinder in the high speed range.

【0064】特に、本発明の実施形態を適用した密閉型
回転式圧縮機では、密閉容器6内を吐出圧力以下にして
いるので、断続運転時に高温・高圧の冷媒が蒸発器内に
流入する量を少なくでき、断続エネルギロスを低減でき
る。
Particularly, in the hermetic rotary compressor to which the embodiment of the present invention is applied, since the pressure inside the hermetic container 6 is set to be equal to or lower than the discharge pressure, the amount of the high temperature / high pressure refrigerant flowing into the evaporator during the intermittent operation. Can be reduced, and intermittent energy loss can be reduced.

【0065】ここで、冷凍システムや空調システムに応
じて適宜その実施形態を修正しても本発明の実施形態の
範囲内であることは明らかである。また、単段圧縮機を
用いて説明したが、2段圧縮機でも本発明の実施形態を
適用できることは言うまでもない。その一例を次に述べ
る。
Here, it is obvious that even if the embodiment is modified appropriately according to the refrigeration system or the air conditioning system, it is within the scope of the embodiment of the present invention. Further, although the description has been given using the single-stage compressor, it goes without saying that the embodiment of the present invention can be applied to the two-stage compressor. An example will be described below.

【0066】次に、本発明の第7の実施形態を図14と
図15を用いて説明する。ここで、図1ないし図13と
同一符号を付したものは、同一部品であり同一の作用を
なす。
Next, a seventh embodiment of the present invention will be described with reference to FIGS. 14 and 15. Here, the components denoted by the same reference numerals as those in FIGS. 1 to 13 are the same components and have the same operation.

【0067】図14及び図15において、圧縮要素28
は低圧用圧縮要素28aと高圧用圧縮要素28bを備え
る。駆動軸29の軸支持を兼ねた主軸受30と副軸受3
1、及び仕切り板32は、各圧縮要素のシリンダの両端
開口部を閉塞する。本実施例の揺動ピストン形圧縮機の
圧縮動作は、図1および図3で示した揺動ピストン形圧
縮機の場合と同様だが、冷媒ガスの流れが異なる。
14 and 15, the compression element 28
Includes a low pressure compression element 28a and a high pressure compression element 28b. Main bearing 30 and sub bearing 3 which also serve as shaft support for drive shaft 29
The partition plate 1 and the partition plate 32 close the openings at both ends of the cylinder of each compression element. The compression operation of the oscillating piston compressor of this embodiment is the same as that of the oscillating piston compressor shown in FIGS. 1 and 3, but the flow of the refrigerant gas is different.

【0068】冷媒ガスは、密閉容器6に取り付けられた
吸入パイプ33をとおって低圧圧縮要素28aのシリン
ダ1‘内に入り圧縮され、圧縮された冷媒ガスは主軸受
30に形成された吐出ポート34aを通り、吐出サイレ
ンサ35を通って密閉容器6内に吐き出される。
The refrigerant gas enters the cylinder 1'of the low-pressure compression element 28a through the suction pipe 33 attached to the closed container 6 and is compressed. The compressed refrigerant gas is discharged to the discharge port 34a formed in the main bearing 30. Through the discharge silencer 35 and is discharged into the closed container 6.

【0069】密閉容器6内に吐き出された冷媒ガスは吐
出パイプ36から外部に出て、中間冷却器37により放
熱して冷やされた後、吸入パイプ38を通って高圧用圧
縮要素28bのシリンダ1''内に入り、圧縮された冷媒
ガスは副軸受31に配設された吐出ポート34bを通っ
て吐出室39にはいり、ここから吐出パイプ40を取っ
て外部に流出する。
The refrigerant gas discharged into the airtight container 6 is discharged from the discharge pipe 36 to the outside, radiated by the intercooler 37 to be cooled, and then passes through the suction pipe 38 to the cylinder 1 of the high pressure compression element 28b. '', The compressed refrigerant gas enters the discharge chamber 39 through the discharge port 34b provided in the auxiliary bearing 31, and the discharge pipe 40 is taken from there to flow out.

【0070】次に圧縮機構部の給油機構について説明す
る。図14及び図15において、駆動軸29の回転によ
り、高圧用圧縮要素28bのベーン部8b''が孔部1c
の中で進退運動し、孔部1cの容積が変化する。この容
積変化によるポンプ作用で、密閉容器6の底部に貯留さ
れた潤滑油16は、流体ダイオード41から吸引され、
給油パイプ19を通って、駆動軸29まで食い挙げら
れ、駆動軸29の外周に設けられたスパイラル溝20を
とおって副軸受31、偏心部41a、41b、主軸受3
0を潤滑し、再び密閉容器内へ戻る。
Next, the oil supply mechanism of the compression mechanism section will be described. 14 and 15, the rotation of the drive shaft 29 causes the vane portion 8b ″ of the high pressure compression element 28b to move into the hole portion 1c.
It moves back and forth in the space, and the volume of the hole 1c changes. Due to the pumping action due to this volume change, the lubricating oil 16 stored at the bottom of the closed container 6 is sucked from the fluid diode 41,
The auxiliary bearing 31, the eccentric portions 41a and 41b, and the main bearing 3 are bitten up to the drive shaft 29 through the oil supply pipe 19 and pass through the spiral groove 20 provided on the outer periphery of the drive shaft 29.
Lubricate 0 and return to the closed container again.

【0071】低圧用圧縮要素28aの偏心部42aを潤
滑した潤滑油16の一部は、ローラ部8a'内面と吸入
室の差圧により吸入室に供給され、高圧用圧縮要素28
bの偏心部42bを潤滑した潤滑油16の一部は、図4
で示した油ポケット方式と同じ要領で吸入室に供給され
る。
A part of the lubricating oil 16 that lubricates the eccentric portion 42a of the low pressure compression element 28a is supplied to the suction chamber by the differential pressure between the inner surface of the roller portion 8a 'and the suction chamber, and the high pressure compression element 28a.
part of the lubricating oil 16 that lubricates the eccentric part 42b of FIG.
It is supplied to the suction chamber in the same way as the oil pocket method shown in.

【0072】ここで、油ポケットは、副軸受31の端
面、仕切り板32の端面のいずれに設けても同一の効果
を得ることができる。
Here, the same effect can be obtained regardless of whether the oil pocket is provided on the end surface of the sub bearing 31 or the end surface of the partition plate 32.

【0073】スパイラル溝20を通る潤滑油16から発
泡した冷媒ガスはガス抜き孔43a、43bから、高圧
用圧縮要素28bの圧縮室からローラ部8a''内面に漏
れ込んだ高圧の冷媒ガスはガス抜き孔43bを取って駆
動軸29の内部に形成されたガス排出孔4cにより密閉
容器6へと排出される。
The refrigerant gas foamed from the lubricating oil 16 passing through the spiral groove 20 is discharged through the gas vent holes 43a and 43b from the compression chamber of the high pressure compression element 28b to the inner surface of the roller portion 8a ''. The vent hole 43b is taken and the gas is discharged into the closed container 6 through the gas discharge hole 4c formed inside the drive shaft 29.

【0074】ここで、高圧用圧縮要素28bのローラ部
8a''の内面は圧縮室10からもれこんだ冷媒ガスと偏
心部42bを潤滑した潤滑油16が共存しており、駆動
軸29の回転による遠心力によって潤滑油と冷媒ガスの
密度差から、密度の高い潤滑油は外側に、密度の低い冷
媒ガスが内側に位置するようになるので、ほぼ冷媒ガス
のみをガス抜き孔43bを通して駆動軸29の内部の形
成されたガス排出孔4cより排出することができる。ま
た、内部シールに必要な吸入室への油ポケットによる給
油を阻害することがなく内部漏れを抑制できる。
Here, the refrigerant gas leaking from the compression chamber 10 and the lubricating oil 16 lubricating the eccentric portion 42b coexist on the inner surface of the roller portion 8a '' of the high-pressure compression element 28b, and the drive shaft 29 Due to the difference in density between the lubricating oil and the refrigerant gas due to the centrifugal force caused by the rotation, the lubricating oil having a high density is located on the outside and the refrigerant gas having a low density is located on the inside, so that only the refrigerant gas is driven through the gas vent hole 43b. The gas can be discharged from the gas discharge hole 4c formed inside the shaft 29. Also, internal leakage can be suppressed without obstructing oil supply by the oil pocket to the suction chamber, which is necessary for the internal seal.

【0075】以上のように本実施形態の横置き形揺動ピ
ストン形2段圧縮機は図4に示した油ポケット21と切
欠部8cを備えているので広範囲の回転速度条件におい
て高性能で高い信頼性を確保できる。
As described above, the horizontal oscillating piston type two-stage compressor of this embodiment is provided with the oil pocket 21 and the cutout portion 8c shown in FIG. 4, so that it is high in performance and high in a wide range of rotational speed conditions. The reliability can be secured.

【0076】[0076]

【発明の効果】以上詳細に説明したように、本発明にお
ける密閉型回転式圧縮機は、広範囲の回転速度条件にお
いて高性能で高い信頼性を得ることができる。
As described in detail above, the hermetic rotary compressor according to the present invention can obtain high performance and high reliability under a wide range of rotation speed conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態に係る横置き型揺動ピ
ストン形圧縮機の縦断面図。
FIG. 1 is a vertical cross-sectional view of a horizontal oscillating piston compressor according to a first embodiment of the present invention.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1の圧縮要素の動作説明図。FIG. 3 is an operation explanatory diagram of the compression element in FIG. 1.

【図4】本発明の第1の実施形態に係る揺動ピストン形
圧縮機の要部説明図。
FIG. 4 is an explanatory view of a main part of the oscillating piston type compressor according to the first embodiment of the present invention.

【図5】図4のB−B断面図。5 is a sectional view taken along line BB of FIG.

【図6】本発明の第2の実施形態に係る揺動ピストン形
圧縮機の要部説明図。
FIG. 6 is an explanatory view of a main part of an oscillating piston type compressor according to a second embodiment of the present invention.

【図7】図6のC−C断面図。7 is a sectional view taken along line CC of FIG.

【図8】本発明の第3の実施形態に係る揺動ピストン形
圧縮機の要部説明図。
FIG. 8 is an explanatory view of a main part of a swing piston compressor according to a third embodiment of the present invention.

【図9】図8のC−C断面図。9 is a sectional view taken along line CC of FIG.

【図10】図9の凹部まわりの拡大図。FIG. 10 is an enlarged view around the recess of FIG.

【図11】本発明の第4の実施形態に係る揺動ピストン
形圧縮機の要部説明図。
FIG. 11 is an explanatory view of a main part of a swing piston compressor according to a fourth embodiment of the present invention.

【図12】本発明の第5の実施形態に係る揺動ピストン
形圧縮機の要部説明図。
FIG. 12 is an explanatory view of a main part of a swing piston compressor according to a fifth embodiment of the present invention.

【図13】本発明の第6の実施形態に係る冷凍装置の冷
凍サイクル構成図。
FIG. 13 is a refrigeration cycle configuration diagram of a refrigeration apparatus according to a sixth embodiment of the present invention.

【図14】本発明の第7の実施形態に係る横置き型揺動
ピストン形2段圧縮機の縦断面図。
FIG. 14 is a vertical cross-sectional view of a horizontal oscillating piston type two-stage compressor according to a seventh embodiment of the present invention.

【図15】図14に示す横置き型揺動ピストン形2段圧
縮機の給油機構拡大図。
FIG. 15 is an enlarged view of an oil supply mechanism of the horizontal oscillating piston type two-stage compressor shown in FIG.

【符号の説明】[Explanation of symbols]

1…シリンダ、1a…円筒状内周面、1b…円筒孔部、
1c…孔部、1d…吸込ポート、2…主軸受、2a…軸
受部、3…副軸受、3a…軸受部、3b…吐出ポート、
3c…吐出室、4…駆動軸、4a…偏心部、4b…ガス
抜き孔、4c…ガス排出穴、4e…連通孔、5…回転
子、6…密閉容器、7…固定子、8…揺動ピストン、8
a…ローラ部、8b…ベーン部、8c…切欠部、8d…
環状溝、9…滑動部材、10…圧縮室、11…吸込室、
12…吸込パイプ、13…吸込通路、14…吐出カバ
ー、15…吐出パイプ、16…潤滑油、17…吸込流体
ダイオード、18…吐出流体ダイオード、19…給油パ
イプ、20…スパイラル溝、21…油ポケット、22…
凹部、23…凹部、24…凝縮器、24a…凝縮器用フ
ァン、25…膨張弁、26…蒸発器、26a…蒸発器用
ファン、27…密閉型回転式圧縮機。
1 ... Cylinder, 1a ... Cylindrical inner peripheral surface, 1b ... Cylindrical hole,
1c ... hole, 1d ... suction port, 2 ... main bearing, 2a ... bearing part, 3 ... sub bearing, 3a ... bearing part, 3b ... discharge port,
3c ... Discharge chamber, 4 ... Drive shaft, 4a ... Eccentric part, 4b ... Gas vent hole, 4c ... Gas discharge hole, 4e ... Communication hole, 5 ... Rotor, 6 ... Sealed container, 7 ... Stator, 8 ... Shake Dynamic piston, 8
a ... roller portion, 8b ... vane portion, 8c ... notch portion, 8d ...
Annular groove, 9 ... sliding member, 10 ... compression chamber, 11 ... suction chamber,
12 ... Suction pipe, 13 ... Suction passage, 14 ... Discharge cover, 15 ... Discharge pipe, 16 ... Lubricating oil, 17 ... Suction fluid diode, 18 ... Discharge fluid diode, 19 ... Oil supply pipe, 20 ... Spiral groove, 21 ... Oil Pocket, 22 ...
Recesses, 23 ... Recesses, 24 ... Condenser, 24a ... Condenser fan, 25 ... Expansion valve, 26 ... Evaporator, 26a ... Evaporator fan, 27 ... Hermetic rotary compressor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石山 明彦 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 (72)発明者 向井 有吾 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 Fターム(参考) 3H029 AA01 AA15 AB03 BB01 BB08 BB41 CC04 CC05 CC33 CC35   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akihiko Ishiyama             800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi             Hitachi Co., Ltd., Cooling & Heat Division (72) Inventor Yugo Mukai             800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi             Hitachi Co., Ltd., Cooling & Heat Division F term (reference) 3H029 AA01 AA15 AB03 BB01 BB08                       BB41 CC04 CC05 CC33 CC35

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】密閉容器内に、固定子と回転子を有する電
動要素と、この電動要素による回転を伝える偏心部を有
する駆動軸と、その駆動軸の偏心部の回転により作動流
体を圧縮する圧縮要素と、を備え、この圧縮要素は、両
端が開口した円筒状内周面を有するシリンダと、そのシ
リンダ内で前記駆動軸の偏心部に嵌合するローラと、そ
のローラの偏心運動に伴い前記シリンダ内を吸込室と圧
縮室に仕切るベーンと、シリンダの開口を閉塞する端板
と、前記駆動軸を経由してローラ内に潤滑油を給油する
給油機構と、ローラの内側に給油された潤滑油を取り込
む取込部とローラの内側の空間と吸込室とに交互に連通
し前記取込部からの潤滑油を保持する保持部とを有する
潤滑油供給機構と、を備える密閉型回転式圧縮機。
1. An electric element having a stator and a rotor, a drive shaft having an eccentric portion for transmitting rotation by the electric element, and a rotation of the eccentric portion of the drive shaft compresses a working fluid. A compression element, the compression element including a cylinder having a cylindrical inner peripheral surface with both ends open, a roller fitted in the eccentric portion of the drive shaft in the cylinder, and an eccentric movement of the roller. A vane that partitions the inside of the cylinder into a suction chamber and a compression chamber, an end plate that closes the opening of the cylinder, an oil supply mechanism that supplies lubricating oil into the roller via the drive shaft, and an oil supply inside the roller. A hermetically sealed rotary system including a lubricating oil supply mechanism having an intake portion for taking in the lubricating oil, a holding portion for alternately communicating with the space inside the roller and the suction chamber for holding the lubricating oil from the intake portion. Compressor.
【請求項2】前記圧縮室で圧縮された作動流体を、前記
密閉容器を貫通して前記密閉容器の外部に吐出する吐出
パイプを有し、前記密閉容器内を吐出圧力よりも低い圧
力とする請求項1記載の密閉型回転式圧縮機。
2. A discharge pipe for discharging the working fluid compressed in the compression chamber to the outside of the closed container by penetrating the closed container, wherein the pressure in the closed container is lower than the discharge pressure. The hermetic rotary compressor according to claim 1.
【請求項3】前記取込部は前記ローラの端面に設けられ
た切欠であり、前記保持部は前記端板に設けられた凹部
である請求項1記載の密閉型回転式圧縮機。
3. The hermetic rotary compressor according to claim 1, wherein the intake portion is a notch provided in an end surface of the roller, and the holding portion is a recess provided in the end plate.
【請求項4】前記取込部は前記ローラの端面に設けられ
た環状溝であり、前記保持部は前記端板に設けられた凹
部である請求項1記載の密閉型回転式圧縮機。
4. The hermetic rotary compressor according to claim 1, wherein the intake portion is an annular groove provided on the end surface of the roller, and the holding portion is a recess provided on the end plate.
【請求項5】前記取込部は前記ローラ部、端板及び偏心
部とからなる空間であり、前記偏心部の軸方向の中心が
前記ローラの回転軸方向の中心に対して前記保持部側に
位置している請求項1記載の密閉型回転式圧縮機。
5. The take-in portion is a space composed of the roller portion, the end plate and an eccentric portion, and the center of the eccentric portion in the axial direction is on the side of the holding portion with respect to the center of the roller in the rotational axis direction. The hermetic rotary compressor according to claim 1, wherein the hermetic rotary compressor is located at.
【請求項6】前記保持部は前記端板に設けられた凹部で
あり、前記取込部の前記偏心部と前記保持部が設けられ
た前記端板との隙間の幅が前記保持部の凹み深さと略同
一となる請求項5記載の密閉型回転式圧縮機。
6. The holding portion is a recess provided in the end plate, and a width of a gap between the eccentric portion of the intake portion and the end plate provided with the holding portion is a recess of the holding portion. The hermetic rotary compressor according to claim 5, which has substantially the same depth.
【請求項7】前記取込部は前記ローラ、端板及び偏心部
とからなる空間であり、前記保持部は前記端板に設けら
れた凹部であってその凹みの深さ方向に断面積が変化す
る凹部である請求項1記載の密閉型回転式圧縮機。
7. The take-in portion is a space composed of the roller, the end plate and an eccentric portion, and the holding portion is a concave portion provided in the end plate and has a sectional area in the depth direction of the concave portion. The hermetic rotary compressor according to claim 1, wherein the hermetic rotary compressor is a concave portion that changes.
【請求項8】前記取込部は前記ローラ、端板及び偏心部
とからなる空間であり、前記保持部は前記端板に設けら
れた凹部であってその凹みの深さ方向と垂直な方向に断
面積が変化する凹部である請求項1記載の密閉型回転式
圧縮機。
8. The take-in portion is a space composed of the roller, the end plate, and an eccentric portion, and the holding portion is a recess provided in the end plate, the direction being perpendicular to the depth direction of the recess. The hermetic rotary compressor according to claim 1, wherein the hermetically sealed rotary compressor is a recess whose cross-sectional area changes.
【請求項9】前記取込部は前記ローラの内周方向に沿っ
た形状の開口部であり、前記保持部は前記端板に設けら
れた凹部である請求項1記載の密閉型回転式圧縮機。
9. The hermetic rotary compression system according to claim 1, wherein the intake portion is an opening having a shape along the inner peripheral direction of the roller, and the holding portion is a recess provided in the end plate. Machine.
【請求項10】吸込パイプを通じて吸込んだ作動流体を
電動機の駆動力で圧縮する密閉型回転式圧縮機と、圧縮
された作動流体を吐出パイプを通じて取り入れ凝縮する
凝縮器と、その凝縮機で凝縮された作動流体を断熱膨張
させる膨張機構と、その膨張機構からの作動流体を取り
込む蒸発器と、センサで検知した情報に基づいて目標と
する温度を決めてその目標温度に応じて前記密閉型回転
式圧縮機の電動機の回転速度を制御する速度制御回路と
を備え、前記密閉型回転式圧縮機は、密閉容器内に、前
記速度制御回路の制御に基づき回転速度が変化する電動
機を備えた電動要素と、前記電動機の回転を伝える偏心
部を有する駆動軸と、その駆動軸の偏心部の回転により
作動流体を圧縮する圧縮要素とを有し、この圧縮要素
は、両端が開口した円筒状内周面を有するシリンダと、
そのシリンダ内で前記駆動軸の偏心部に嵌合するローラ
と、そのローラの偏心運動に伴い前記シリンダ内を吸込
室と圧縮室に仕切るベーンと、シリンダの開口を閉塞す
る端板と、前記駆動軸を経由してローラ内に潤滑油を給
油する給油機構と、ローラの内側に給油された潤滑油を
取り込む取込部とローラの内側の空間と吸込室とに交互
に連通し前記取込部からの潤滑油を保持する保持部とを
有する潤滑油供給機構と、を備える冷凍システム。
10. A hermetic rotary compressor for compressing a working fluid sucked through a suction pipe by a driving force of an electric motor, a condenser for taking in and condensing the compressed working fluid through a discharge pipe, and a condenser for condensing the condenser. Expansion mechanism that adiabatically expands the working fluid, an evaporator that takes in the working fluid from the expansion mechanism, the target temperature is determined based on the information detected by the sensor, and the sealed rotary type is selected according to the target temperature. And a speed control circuit for controlling the rotation speed of the electric motor of the compressor, wherein the hermetic rotary compressor is an electric element including an electric motor in a hermetic container whose rotational speed changes based on the control of the speed control circuit. And a drive shaft having an eccentric part for transmitting the rotation of the electric motor, and a compression element for compressing the working fluid by the rotation of the eccentric part of the drive shaft. The compression element has both ends opened. A cylinder having a cylindrical inner peripheral surface,
A roller that fits into the eccentric portion of the drive shaft in the cylinder, a vane that partitions the inside of the cylinder into a suction chamber and a compression chamber due to the eccentric movement of the roller, an end plate that closes the opening of the cylinder, and the drive An oil supply mechanism for supplying lubricating oil into the roller via a shaft, an intake part for taking in the lubricating oil supplied to the inside of the roller, and an intake part for alternately communicating with the space inside the roller and the suction chamber A lubricating oil supply mechanism having a holding portion for holding the lubricating oil from the refrigeration system.
JP2002004030A 2002-01-11 2002-01-11 Hermetic rotary compressor Expired - Lifetime JP4110781B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002004030A JP4110781B2 (en) 2002-01-11 2002-01-11 Hermetic rotary compressor
CNB021424470A CN1237313C (en) 2002-01-11 2002-09-19 Enclosed rotary compressor
KR1020020071822A KR100557373B1 (en) 2002-01-11 2002-11-19 Closed and Rotary Type Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002004030A JP4110781B2 (en) 2002-01-11 2002-01-11 Hermetic rotary compressor

Publications (2)

Publication Number Publication Date
JP2003206877A true JP2003206877A (en) 2003-07-25
JP4110781B2 JP4110781B2 (en) 2008-07-02

Family

ID=19190943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002004030A Expired - Lifetime JP4110781B2 (en) 2002-01-11 2002-01-11 Hermetic rotary compressor

Country Status (3)

Country Link
JP (1) JP4110781B2 (en)
KR (1) KR100557373B1 (en)
CN (1) CN1237313C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299527A (en) * 2008-06-11 2009-12-24 Daikin Ind Ltd Rotary compressor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4380734B2 (en) * 2007-06-25 2009-12-09 ダイキン工業株式会社 Rotary compressor
JP5150564B2 (en) * 2009-06-22 2013-02-20 日立アプライアンス株式会社 Horizontal hermetic compressor
CN110848138A (en) * 2019-11-11 2020-02-28 珠海格力节能环保制冷技术研究中心有限公司 Sliding vane surface structure, sliding vane and compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299527A (en) * 2008-06-11 2009-12-24 Daikin Ind Ltd Rotary compressor

Also Published As

Publication number Publication date
KR100557373B1 (en) 2006-03-10
JP4110781B2 (en) 2008-07-02
KR20030061294A (en) 2003-07-18
CN1237313C (en) 2006-01-18
CN1431401A (en) 2003-07-23

Similar Documents

Publication Publication Date Title
US8087260B2 (en) Fluid machine and refrigeration cycle apparatus
EP2123996B1 (en) Refrigerating device
JP4777217B2 (en) Refrigeration cycle equipment
JP4381532B2 (en) Swing piston type compressor
JP4013552B2 (en) Hermetic compressor
JP2011012630A (en) Scroll compressor
JP2003206877A (en) Closed rotary compressor
WO2023144953A1 (en) Compressor and refrigeration cycle device
JP4384368B2 (en) Hermetic rotary compressor and refrigeration / air conditioner
JPH07301190A (en) Rotary compressor
JP2009063247A (en) Refrigeration cycle device, and fluid machine using it
JP4018908B2 (en) Refrigeration air conditioner
JPH0681786A (en) Two-stage compression type rotary compressor
JPH08247062A (en) Rotary compressor
WO2020144728A1 (en) Refrigeration cycle device
JP2001207983A (en) Gas compressor
JP2024048814A (en) Hermetic rotary compressor and refrigerator equipped with same
KR100711637B1 (en) Compressor
JP2002371974A (en) Hermetically sealed type rotary compressor
US20240003348A1 (en) Compressor with Oil Pump
JP2023136791A (en) Hermetic rotary compressor and refrigerator with the same
JP2001254688A (en) Swinging piston type compressor and freezer using it
JP2003097477A (en) Sealed rotary compressor
JP2003206876A (en) Closed rotary compressor and refrigerating and air conditioning equipment
KR200351087Y1 (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080331

R151 Written notification of patent or utility model registration

Ref document number: 4110781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term