JP2002371974A - Hermetically sealed type rotary compressor - Google Patents

Hermetically sealed type rotary compressor

Info

Publication number
JP2002371974A
JP2002371974A JP2001183278A JP2001183278A JP2002371974A JP 2002371974 A JP2002371974 A JP 2002371974A JP 2001183278 A JP2001183278 A JP 2001183278A JP 2001183278 A JP2001183278 A JP 2001183278A JP 2002371974 A JP2002371974 A JP 2002371974A
Authority
JP
Japan
Prior art keywords
cylinder
cylindrical
peripheral surface
vane
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001183278A
Other languages
Japanese (ja)
Inventor
Takeshi Kono
雄 幸野
Hirokatsu Kosokabe
弘勝 香曽我部
Kazuhiro Endo
和広 遠藤
Akihiko Ishiyama
明彦 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001183278A priority Critical patent/JP2002371974A/en
Publication of JP2002371974A publication Critical patent/JP2002371974A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hermetically sealed type rotary compressor preventing a shortage of oil in a cylinder, poor lubrication between a sliding member and a cylindrical hole portion, and an intake air heat loss and an increase in the amount of discharged oil caused by feeding too much oil into the cylinder, even when an operating condition changes. SOLUTION: Pressure in a sealed container 6 is made to be lower than discharge pressure, an oil pocket 21 is formed on a main bearing 2 structuring a end plate of the cylinder 1 as a mechanism supplying the fixed amount of lubricating oil into a sucking chamber 11 formed by the cylinder 1. Grooves 2b, 3d are formed on the main bearing 2 and a sub bearing 3, which returns the lubricating oil leaking from a compressing chamber 10 formed by the cylinder 1 into clearances between a vane portion 8b and a sliding member 9, and between the main bearing 2 and the sub bearing 3 to the sucking chamber 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉型回転圧縮機
および冷凍・空調システムに係り、特に、密閉容器内を
吐出圧力より低い圧力とする密閉型回転圧縮機および冷
凍・空調システムに好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hermetic rotary compressor and a refrigeration / air-conditioning system, and more particularly to a hermetic rotary compressor and a refrigeration / air-conditioning system in which the pressure in an airtight container is lower than a discharge pressure. Things.

【0002】[0002]

【従来の技術】従来、冷凍・空調システム等に用いられ
ているロータリ圧縮機としては、固定子及び回転子を有
する電動要素と、この電動要素によって駆動される圧縮
要素とが密閉容器内に収納され、圧縮要素は駆動軸の偏
心部に自転自在に嵌合されたローラが、駆動軸の回転に
よってシリンダ内を偏心回転運動し、ローラに押圧され
たベーン部によってシリンダ内を吸込室と圧縮室に仕切
ることにより、吸込パイプより吸込室に吸込された冷媒
ガスを圧縮室で圧縮し、圧縮された冷媒ガスはローラに
押圧するベーン部の背圧を高圧とする為などの目的に密
閉容器内に吐出され、吐出パイプより外部の冷凍サイク
ルに吐出されるようにするものがある(従来技術1)。
2. Description of the Related Art Conventionally, as a rotary compressor used in a refrigeration / air conditioning system, an electric element having a stator and a rotor and a compression element driven by the electric element are housed in a closed container. The roller, which is rotatably fitted to the eccentric portion of the drive shaft, rotates eccentrically in the cylinder by the rotation of the drive shaft, and the inside of the cylinder is sucked and compressed by the vane pressed by the roller. By compressing the refrigerant gas sucked into the suction chamber from the suction pipe in the compression chamber, the compressed refrigerant gas is compressed in the closed vessel for the purpose of increasing the back pressure of the vane section pressed against the roller to a high pressure. Is discharged to an external refrigeration cycle through a discharge pipe (prior art 1).

【0003】また、従来の密閉容器内を吸込圧力とした
ロータリ圧縮機として、特開平2−286892号公報
に記載されたものがある(従来技術2)。このロータリ
圧縮機は、密閉容器内を圧縮機の低圧側とほぼ同じ圧力
とした低圧容器式のものであり、軸受板の内面に回転軸
が1回転する間にローリングピストンの偏心回転によっ
て、シリンダ内の低圧室と全面的に連通する区間、ロー
リングピストンの端板で閉塞される区間、およびローリ
ングピストンの内側と全面的に連通する区間の3区間と
なる位置と大きさの油溜め凹部を形成している。この圧
縮機は、圧縮機の運転による回転軸の1回転当たり、油
溜め凹部の容積で定まる油量の潤滑油が低圧室に供給さ
れ、回転軸の1回転当たり常に一定量の潤滑油を低圧室
へ供給でき、起動時などに多量の潤滑油が機外に流出す
るのを抑制することができるというものである。そし
て、この圧縮機においては、油溜め凹部によって供給さ
れた潤滑油が圧縮室と密閉容器内の低圧側との差圧によ
って、ローリングピストンと軸受板との隙間やベーンと
軸受板との隙間へ漏れてこれらの部分の潤滑およびシー
ルを行なっている。
As a conventional rotary compressor in which the suction pressure is set in the closed container, there is a rotary compressor described in Japanese Patent Application Laid-Open No. 2-286892 (prior art 2). This rotary compressor is of a low-pressure container type in which the pressure in the closed container is substantially the same as the low-pressure side of the compressor. The cylinder is rotated by the eccentric rotation of the rolling piston while the rotation shaft rotates one revolution on the inner surface of the bearing plate. An oil sump recess having a position and a size is formed of three sections: a section entirely communicating with the low-pressure chamber inside the section, a section closed by the end plate of the rolling piston, and a section completely communicating with the inside of the rolling piston. are doing. In this compressor, the amount of lubricating oil determined by the volume of the oil reservoir is supplied to the low-pressure chamber per one rotation of the rotating shaft due to the operation of the compressor, and a constant amount of lubricating oil is constantly supplied to the low-pressure chamber per one rotation of the rotating shaft. It is possible to supply a large amount of lubricating oil to the outside of the machine at the time of starting or the like. In this compressor, the lubricating oil supplied by the oil sump recess is moved into the gap between the rolling piston and the bearing plate and the gap between the vane and the bearing plate by the differential pressure between the compression chamber and the low pressure side in the closed vessel. Leaks lubricate and seal these parts.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来技術1で
は、ローラの内面の高圧側から吸込室内に差圧によって
漏れ込む油が過剰となり加熱損失等による圧縮機の性能
低下を招くと共に、圧縮された高温のガスが密閉容器内
が吐出されて電動要素のコイル温度上昇による信頼性低
下を招くという問題がある。また、この圧縮機を断続運
転する場合、圧縮機停止時に密閉容器内の高温・高圧の
ガスが冷凍サイクルの蒸発器内に逆流し、蒸発器の温度
を上昇させ、冷凍・空調システムの性能を低下させる断
続ロスを招くという問題もあった。さらに、地球温暖化
防止の観点から可燃性を有する自然系冷媒を使用する場
合、機器の冷媒使用量が制限される方向であるため、油
の雰囲気圧力が高いほど油中に溶解する冷媒量が増加
し、密閉容器内圧力が高圧の場合には冷媒使用量が多く
なり自然系冷媒の適用が難しくなるといった問題があっ
た。
However, according to the prior art 1, the oil leaking from the high pressure side of the inner surface of the roller into the suction chamber due to the differential pressure becomes excessive, which causes a decrease in the performance of the compressor due to a heat loss and the like, and also causes the compressor to be compressed. In addition, there is a problem that the high-temperature gas discharged from the closed container causes a decrease in reliability due to a rise in coil temperature of the electric element. When the compressor is operated intermittently, when the compressor is stopped, the high-temperature and high-pressure gas in the closed vessel flows back into the evaporator of the refrigeration cycle, raising the temperature of the evaporator and improving the performance of the refrigeration / air-conditioning system. There was also a problem of causing intermittent loss to decrease. Furthermore, when a natural refrigerant having flammability is used from the viewpoint of preventing global warming, the amount of refrigerant used in equipment tends to be limited. When the pressure in the closed vessel is high, the amount of the refrigerant used increases, and there is a problem that it is difficult to apply a natural refrigerant.

【0005】一方、従来技術2では、圧縮機の圧力条件
が変化すると、差圧によって圧縮室からローリングピス
トンと軸受板との隙間やベーンと軸受板との隙間へ漏れ
る潤滑油の量が変化するのに対し、油溜め凹部によって
低圧室に供給される潤滑油の量は圧力条件に関係なく一
定である。例えば、圧縮室から吐出される圧力が高くな
ると、各隙間へ漏れる潤滑油の量が増大するが、低圧室
へ供給される潤滑油の量が一定である。また、回転速度
が変化すると、時間当たりの圧縮室から各隙間へ漏れる
潤滑油の量が速度に逆比例して変化するが、油溜め凹部
によって低圧室に供給される潤滑油の量は速度に比例し
て増加する。したがって、漏れ量の少ない低圧力差や高
速の条件で最適な給油量になるように油溜め凹部の容積
を設定すると、漏れ量が多い高圧力差や低速の条件で油
溜め凹部によって低圧室に供給される潤滑油の量が不足
し、各隙間からの圧縮ガスの漏れが増加して圧縮性能が
低下してしまうという課題が発生する。また、漏れ量が
多い高圧力差や低速の条件で最適な給油量になるように
油溜め凹部の容積を設定すると、漏れ量が少ない低圧力
差や高速の条件で油溜め凹部によって低圧室に供給され
る潤滑油の量が過剰になって吸気加熱損失や圧縮機外部
に吐出される油量が増え、圧縮機性能およびサイクル性
能が低下するといった課題が発生する。
On the other hand, in the prior art 2, when the pressure condition of the compressor changes, the amount of lubricating oil leaking from the compression chamber to the gap between the rolling piston and the bearing plate or the gap between the vane and the bearing plate due to the differential pressure changes. On the other hand, the amount of the lubricating oil supplied to the low-pressure chamber by the oil reservoir recess is constant regardless of the pressure condition. For example, when the pressure discharged from the compression chamber increases, the amount of lubricating oil leaking into each gap increases, but the amount of lubricating oil supplied to the low-pressure chamber is constant. Also, when the rotation speed changes, the amount of lubricating oil leaking from the compression chamber into each gap per hour changes in inverse proportion to the speed, but the amount of lubricating oil supplied to the low-pressure chamber by the oil sump recess decreases. Increase in proportion. Therefore, if the volume of the oil reservoir recess is set so that the oil supply amount is optimal under conditions of low pressure difference and high speed with a small amount of leakage, the oil reservoir concave portion will fill the low pressure chamber under conditions of high pressure difference and low speed with a large amount of leakage. There is a problem that the amount of lubricating oil to be supplied is insufficient, the leakage of compressed gas from each gap increases, and the compression performance decreases. In addition, if the volume of the oil reservoir recess is set so that the oil supply amount is optimal under conditions of high pressure difference or low speed where the amount of leakage is large, the oil reservoir recess can be used to reduce the amount of oil in the low pressure chamber under the condition of low pressure difference or high speed where the amount of leakage is small. The amount of lubricating oil to be supplied becomes excessive and the intake heating loss and the amount of oil discharged to the outside of the compressor increase, which causes a problem that the compressor performance and the cycle performance decrease.

【0006】本発明の目的は、密閉容器内を吐出圧力よ
り低圧にしても、圧縮室から圧縮機構部内部の各隙間に
漏れ込んだ潤滑油を吸込室に導き、運転条件によって圧
縮機構部内部の漏れ量が変化した場合でも常に最適な量
の潤滑油がシリンダ内に介在するようにし、シリンダ内
の油量不足による冷媒ガスの漏れの増加や滑動部材と円
筒孔部との潤滑不良およびシリンダ内への給油量過多に
よる吸気加熱損失や吐出油量増大が防止できる高性能で
信頼性の高い密閉型回転圧縮機を提供することにある。
An object of the present invention is to guide lubricating oil leaked from the compression chamber into each clearance inside the compression mechanism into the suction chamber even when the pressure in the closed vessel is lower than the discharge pressure. Even if the amount of oil leakage changes, always ensure that the optimal amount of lubricating oil is interposed in the cylinder, increasing the leakage of refrigerant gas due to insufficient oil in the cylinder, poor lubrication between the sliding member and the cylindrical hole, and the cylinder. It is an object of the present invention to provide a high-performance and highly reliable hermetic type rotary compressor capable of preventing an intake heating loss and an increase in a discharge oil amount due to an excessive oil supply amount.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する為
に、本発明の密閉型回転圧縮機は、筒状内周面を持つシ
リンダと、前記シリンダの円筒状内周面の両端部を閉塞
する複数の端板と、前記シリンダと前記複数の端板とに
囲まれた空間の中で円筒状外周面が前記シリンダの円筒
状内周面と常に微小な隙間を維持しながら公転運動をす
るローラ部と、前記ローラ部に公転運動を与える駆動機
構と、前記ローラ部の円筒状外周面から一体に半径方向
に突出して前記シリンダ内を吸込室と圧縮室とに仕切る
板状のベーン部と、前記シリンダの円筒状内周面の外側
に前記円筒状内周面の中心軸と平行な中心軸を持って形
成され前記ベーン部が挿入される円筒孔部と、前記ベー
ン部の両側の前記円筒孔部との間にできる二つの空間に
組み込まれ前記円筒孔部に滑動可能に当接する円筒面部
と前記ベーン部の平面部に滑動可能に当接する平面部と
を有する二つの滑動部材とを密閉容器内に備えた密閉型
回転圧縮機において、前記密閉容器内を吐出圧力より低
い圧力とし、前記吸込室に一定量の潤滑油を供給する機
構を備えると共に、前記圧縮室から前記ベーン部および
滑動部材と前記端板との隙間に漏れ込んだ潤滑油を前記
吸込室に戻す溝を備えたものである。
In order to achieve the above object, a hermetic rotary compressor according to the present invention comprises a cylinder having a cylindrical inner peripheral surface, and both ends of the cylindrical inner peripheral surface of the cylinder being closed. A plurality of end plates, and a cylindrical outer peripheral surface revolves while always maintaining a small gap with the cylindrical inner peripheral surface of the cylinder in a space surrounded by the cylinder and the plurality of end plates. A roller portion, a drive mechanism for giving a revolving motion to the roller portion, and a plate-shaped vane portion integrally projecting radially from a cylindrical outer peripheral surface of the roller portion to partition the cylinder into a suction chamber and a compression chamber. A cylindrical hole formed outside the cylindrical inner peripheral surface of the cylinder and having a central axis parallel to the central axis of the cylindrical inner peripheral surface, into which the vane portion is inserted, and the cylindrical hole portion on both sides of the vane portion. The cylinder is installed in two spaces formed between the cylinder and the cylinder. A hermetic type rotary compressor having two sliding members having a cylindrical surface portion slidably in contact with a portion and a flat portion slidably in contact with the flat portion of the vane portion in a closed container; A pressure lower than the discharge pressure, and a mechanism for supplying a certain amount of lubricating oil to the suction chamber, and the lubricating oil leaked from the compression chamber into the gap between the vane and the sliding member and the end plate. It is provided with a groove for returning to the suction chamber.

【0008】上記目的を達成する為に、本発明の密閉型
回転圧縮機は、筒状内周面を持つシリンダと、前記シリ
ンダの円筒状内周面の両端部を閉塞する複数の端板と、
前記シリンダと前記複数の端板とに囲まれた空間の中で
円筒状外周面が前記シリンダの円筒状内周面と常に微小
な隙間を維持しながら公転運動をするローラ部と、前記
ローラ部に公転運動を与える駆動機構と、前記ローラ部
の円筒状外周面から一体に半径方向に突出して前記シリ
ンダ内を吸込室と圧縮室とに仕切る板状のベーン部と、
前記シリンダの円筒状内周面の外側に前記円筒状内周面
の中心軸と平行な中心軸を持って形成され前記ベーン部
が挿入される円筒孔部と、前記ベーン部の両側の前記円
筒孔部との間にできる二つの空間に組み込まれ前記円筒
孔部に滑動可能に当接する円筒面部と前記ベーン部の平
面部に滑動可能に当接する平面部とを有する二つの滑動
部材とを密閉容器内に備えた密閉型回転圧縮機におい
て、前記密閉容器内を吐出圧力より低い圧力とし、前記
吸込室に一定量の潤滑油を供給する機構を備えると共
に、圧縮室から前記ローラ部と前記端板との隙間に漏れ
込んだ潤滑油を前記吸込室に戻す溝を備えたものであ
る。
In order to achieve the above object, a hermetic rotary compressor according to the present invention comprises a cylinder having a cylindrical inner peripheral surface, and a plurality of end plates for closing both ends of the cylindrical inner peripheral surface of the cylinder. ,
A roller section that revolves while a cylindrical outer peripheral surface always keeps a minute gap with the cylindrical inner peripheral surface of the cylinder in a space surrounded by the cylinder and the plurality of end plates; A driving mechanism that gives revolving motion to the plate, a plate-shaped vane portion that projects in the radial direction integrally from the cylindrical outer peripheral surface of the roller portion to partition the inside of the cylinder into a suction chamber and a compression chamber,
A cylindrical hole formed outside the cylindrical inner peripheral surface of the cylinder with a central axis parallel to the central axis of the cylindrical inner peripheral surface, into which the vane portion is inserted, and the cylinder on both sides of the vane portion The two sliding members having a cylindrical surface portion slidably in contact with the cylindrical hole portion and a flat surface portion slidably in contact with the flat surface portion of the vane portion are hermetically sealed. In the hermetic rotary compressor provided in the container, the pressure in the hermetic container is lower than the discharge pressure, and a mechanism for supplying a certain amount of lubricating oil to the suction chamber is provided. It is provided with a groove for returning the lubricating oil leaked into the gap with the plate to the suction chamber.

【0009】[0009]

【発明の実施の形態】以下、本発明の各実施形態を図を
用いて説明する。なお、第2の実施形態以降の実施形態
においては第1の実施形態と共通する構成の一部を省略
すると共に、重複する説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. In the second and subsequent embodiments, some of the components common to the first embodiment will be omitted, and redundant description will be omitted.

【0010】まず、本発明の第1の実施形態を図1から
図3を用いて説明する。図1は本発明の第1の実施形態
に係る横置き型揺動ピストン形圧縮機の縦断面図、図2
は図1のA−A断面図、図3は図1の圧縮要素の動作説
明図、図4は図1の圧縮機の要部説明図、図5は図4の
B−B断面図である。
First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of a horizontal type swinging piston type compressor according to a first embodiment of the present invention, and FIG.
1 is an AA sectional view of FIG. 1, FIG. 3 is an explanatory view of the operation of the compression element of FIG. 1, FIG. 4 is an explanatory view of a main part of the compressor of FIG. 1, and FIG. 5 is a BB sectional view of FIG. .

【0011】本発明の揺動ピストン形圧縮機は、密閉容
器6内に電動要素、圧縮要素およびこの両者を連結する
駆動軸4を配置すると共に、この密閉容器6内を吐出圧
力より低い吸込圧力としている。電動要素は、固定子7
および回転子5を有している。圧縮要素は、圧縮機構と
給油機構を有している。圧縮機構は、シリンダ1と、こ
のシリンダ1内に回転可能に配置された揺動ピストン8
と、シリンダ1の両端開口を閉塞する主軸受2および副
軸受3等によりなっている。給油機構は、シリンダ1の
孔部1c、ベーン部8b、吸込流体ダイオード17、吐
出流体ダイオード18、給油パイプ19、スパイラル溝
20および油ポケット21等よりなっている。
In the oscillating piston type compressor of the present invention, an electric element, a compression element, and a drive shaft 4 for connecting the electric element and the compression element are arranged in a closed vessel 6, and a suction pressure lower than a discharge pressure is applied to the inside of the closed vessel 6. And The electric element is the stator 7
And a rotor 5. The compression element has a compression mechanism and an oil supply mechanism. The compression mechanism includes a cylinder 1 and a swinging piston 8 rotatably disposed in the cylinder 1.
And a main bearing 2 and a sub-bearing 3 for closing the openings at both ends of the cylinder 1. The oil supply mechanism includes the hole 1c of the cylinder 1, the vane 8b, the suction fluid diode 17, the discharge fluid diode 18, the oil supply pipe 19, the spiral groove 20, the oil pocket 21, and the like.

【0012】シリンダ1には中央部に円筒状内周面1a
が形成されており、その両端開口を主軸受2と副軸受3
とで閉塞している。この主軸受2と副軸受3はシリンダ
1に対する端板を構成している。主軸受2と副軸受3に
はそれぞれ中央に軸受部2a、3aが形成されており、
駆動軸4を回転支持している。また、主軸受2と副軸受
3は回転軸である駆動軸4のシリンダ1の円筒状内周面
1aの中心軸と一致する様にシリンダ1に固定されてい
る。そして、駆動軸4には電動要素の回転子5が固定さ
れている。さらに、主軸受2の外周部は密閉容器6に固
定されており、密閉容器6には電動要素の固定子7が固
定されている。
The cylinder 1 has a cylindrical inner peripheral surface 1a at the center.
The main bearing 2 and the sub-bearing 3
And is closed. The main bearing 2 and the sub bearing 3 constitute an end plate for the cylinder 1. The main bearing 2 and the sub-bearing 3 are formed with bearing portions 2a, 3a at the center, respectively.
The drive shaft 4 is rotatably supported. The main bearing 2 and the sub-bearing 3 are fixed to the cylinder 1 so as to coincide with the central axis of the cylindrical inner peripheral surface 1a of the cylinder 1 of the drive shaft 4 which is a rotating shaft. Further, a rotor 5 of an electric element is fixed to the drive shaft 4. Further, an outer peripheral portion of the main bearing 2 is fixed to a closed container 6, and a stator 7 of an electric element is fixed to the closed container 6.

【0013】また、駆動軸4には、シリンダ1の円筒状
内周面1a内に位置する部分に偏心部4aが形成されて
いる。この偏心部4aの円筒状外周面には揺動ピストン
8のローラ部8aの円筒状内周面が回転可能に嵌入さ
れ、ローラ部8aの円筒状外周面とシリンダ1の円筒状
内周面1aとの間の隙間は微少になる様に各部寸法が決
められている。また、ローラ部8aの円筒状外周面には
ベーン部8bが一体に形成されている。シリンダ1の円
筒状内周面1aの外側には円筒状内周面1aの中心軸と
平行な中心軸を持つ円筒孔部1bが形成されており、円
筒孔部1bのシリンダ1中心側とその反対側とはそれぞ
れシリンダ1の円筒状内周面1aと円筒孔部1bの外側
に設けた別の孔部1cに連通している。ベーン部8bは
円筒孔部1bと孔部1cとに挿入されるように延びてい
るが、ベーン部8bと円筒孔部1bとの間にはベーン部
8bの平面部に摺動可能に当接する平面部と円筒孔部1
bの円筒面部に摺動可能に当接する円筒面部とを有する
滑動部材9がベーン部8bをはさみ込んで組み込まれて
おり、この結果、ベーン部8bは円筒孔部1bの中心軸
に向かう進退運動と中心軸廻りの揺動運動を行う。ベー
ン部8bの先端部は孔部1cの中で運動し、シリンダ1
と干渉することはない。
An eccentric portion 4a is formed on the drive shaft 4 at a portion located within the cylindrical inner peripheral surface 1a of the cylinder 1. The cylindrical inner peripheral surface of the roller portion 8a of the swing piston 8 is rotatably fitted to the cylindrical outer peripheral surface of the eccentric portion 4a, and the cylindrical outer peripheral surface of the roller portion 8a and the cylindrical inner peripheral surface 1a of the cylinder 1 are fitted. The dimensions of each part are determined so that the gap between them is very small. Further, a vane portion 8b is integrally formed on the cylindrical outer peripheral surface of the roller portion 8a. Outside the cylindrical inner peripheral surface 1a of the cylinder 1, a cylindrical hole 1b having a central axis parallel to the central axis of the cylindrical inner peripheral surface 1a is formed. The opposite side communicates with the cylindrical inner peripheral surface 1a of the cylinder 1 and another hole 1c provided outside the cylindrical hole 1b. The vane portion 8b extends so as to be inserted into the cylindrical hole portion 1b and the hole portion 1c. However, between the vane portion 8b and the cylindrical hole portion 1b, the vane portion 8b slidably abuts on the plane portion of the vane portion 8b. Flat part and cylindrical hole part 1
A sliding member 9 having a cylindrical surface portion slidably in contact with the cylindrical surface portion b is incorporated with the vane portion 8b interposed therebetween. As a result, the vane portion 8b moves forward and backward toward the central axis of the cylindrical hole portion 1b. And a rocking motion around the central axis. The tip of the vane 8b moves in the hole 1c, and the cylinder 1
Do not interfere with.

【0014】以上の構成とすることにより、電動要素に
より駆動軸4が回転すると、揺動ピストン8は偏心部4
aとともにシリンダ1内を揺動を伴う公転運動を行う。
図3は駆動軸4が60ーずつ回転した時の揺動ピストン
8の運動を示した図である。図3で明らかなように、ロ
ーラ部8aはベーン部8bが常に円筒孔部1bの中心軸
方向を向く様に偏心部4aの中心軸廻りに若干の角度だ
け揺動運動を行いながらその中心が公転運動をする。そ
して、ベーン部8bは円筒孔部1bの中心軸に向かった
進退運動と該中心軸廻りの揺動運動を行う。このベーン
部8bと円筒孔部1bとの間の隙間のシールは滑動部材
9が挿入されることにより保たれる。従って、シリンダ
1、揺動ピストン8、主軸受2、副軸受3及び滑動部材
9とにより密閉空間である圧縮室10(図3斜線部)と
吸込空間である吸込室11が形成され、電動要素による
駆動軸4の回転に伴い図3の様にその容積の増減を繰り
返す。
With the above configuration, when the drive shaft 4 is rotated by the electric element, the oscillating piston 8
A revolving motion accompanied with swinging is performed in the cylinder 1 together with a.
FIG. 3 is a diagram showing the movement of the swing piston 8 when the drive shaft 4 rotates by 60 degrees. As is apparent from FIG. 3, the center of the roller portion 8a while performing a swinging motion at a slight angle around the center axis of the eccentric portion 4a so that the vane portion 8b always faces the center axis direction of the cylindrical hole portion 1b. Make an orbital motion. The vane portion 8b performs a reciprocating motion toward the central axis of the cylindrical hole portion 1b and a swinging motion around the central axis. The sealing of the gap between the vane portion 8b and the cylindrical hole portion 1b is maintained by inserting the sliding member 9. Therefore, the compression chamber 10 (the hatched portion in FIG. 3) which is a closed space and the suction chamber 11 which is a suction space are formed by the cylinder 1, the oscillating piston 8, the main bearing 2, the sub-bearing 3, and the sliding member 9, and the electric element is provided. The rotation of the drive shaft 4 causes the volume to increase and decrease as shown in FIG.

【0015】係る構成により冷媒ガスは、密閉容器6に
取り付けられた吸込パイプ12より密閉容器6内に吸込
まれ、吸込通路13を通過した後、吸込室11に吸込ま
れ、圧縮室10の容積の減少と同時に圧縮され副軸受3
に形成された吐出ポート3bから副軸受3と吐出カバー
14によって形成される吐出室3cへと吐出される。そ
の後、吐出パイプ15から密閉容器6外に吐出される。
With this configuration, the refrigerant gas is sucked into the closed vessel 6 from the suction pipe 12 attached to the closed vessel 6, passes through the suction passage 13, is sucked into the suction chamber 11, and has the capacity of the compression chamber 10. Secondary bearing 3
Is discharged from the discharge port 3b formed into the discharge chamber 3c formed by the auxiliary bearing 3 and the discharge cover 14. Thereafter, the liquid is discharged from the discharge pipe 15 to the outside of the closed container 6.

【0016】このように本実施形態では、特に、吸込パ
イプ12を通過した冷媒ガスを一旦、密閉容器6内に吸
込む構造としており、密閉容器6内は吸込圧力となる。
密閉容器6内を吸込圧力とすることにより、以下のよう
な利点がある。 (1)圧縮された高温の冷媒ガスによる電動要素の加熱
が少なく、低温の冷媒ガスによって冷却されるため、回
転子5、固定子7の温度が低下し、モータ効率が向上し
て性能向上が図れる。 (2)ローラ部8a内面が吸込圧力となるので、ローラ
部8a内面から吸込室11への差圧による過剰な油の供
給がなくなり、圧縮機の性能向上が図れる。 (3)フロン等の油と相溶性のある冷媒では、圧力が低
い為、油中に溶解する冷媒ガスの割合が少なくなり、軸
受等での冷媒ガスの発泡現象が起こりにくく、信頼性を
向上することができる。また、冷媒使用量が少なくな
り、可燃性を持つ自然系冷媒(イソブタン、プロパン
等)を用いる場合には安全性を高めることができる。 (4)密閉容器6の耐圧を低くでき、密閉容器6の薄肉
・軽量化が図ることができる。
As described above, in this embodiment, in particular, the structure is such that the refrigerant gas that has passed through the suction pipe 12 is once sucked into the closed vessel 6, and the inside of the closed vessel 6 is at a suction pressure.
By setting the inside of the closed container 6 to the suction pressure, there are the following advantages. (1) Since the electric element is hardly heated by the compressed high-temperature refrigerant gas and cooled by the low-temperature refrigerant gas, the temperatures of the rotor 5 and the stator 7 are reduced, and the motor efficiency is improved and the performance is improved. I can do it. (2) Since the suction pressure is applied to the inner surface of the roller portion 8a, excessive supply of oil due to the pressure difference from the inner surface of the roller portion 8a to the suction chamber 11 is eliminated, and the performance of the compressor can be improved. (3) Refrigerant compatible with oil such as chlorofluorocarbon has a low pressure, so the proportion of refrigerant gas dissolved in oil is reduced, and it is difficult for foaming phenomenon of refrigerant gas to occur in bearings and the like, improving reliability. can do. In addition, the amount of the refrigerant used is reduced, and the safety can be enhanced when a flammable natural refrigerant (such as isobutane and propane) is used. (4) The pressure resistance of the sealed container 6 can be reduced, and the thickness and weight of the sealed container 6 can be reduced.

【0017】また、本実施形態に示した揺動ピストン形
圧縮機は、ローラ部8aとベーン部8bを一体化してい
るので、ローラとベーンとを別体にしたロータリ圧縮機
のようにローラにベーンを押圧するためにベーンに高圧
の背圧をかける必要が無く、密閉容器内を吸込圧力とし
た構造に適用し易い。
Further, in the swinging piston type compressor shown in the present embodiment, since the roller portion 8a and the vane portion 8b are integrated, the roller portion 8a and the vane portion 8b are integrated with each other. There is no need to apply a high back pressure to the vane to press the vane, and it is easy to apply to a structure in which the suction pressure is set in the closed container.

【0018】次に、圧縮機構部の給油機構について説明
する。図1において、駆動軸4の回転により、ベーン部
8bが孔部1cの中で進退運動し、孔部1cの容積が変
化する。この容積変化によるポンプ作用で(以後、ベー
ン給油ポンプと呼ぶ)、密閉容器6の底部に貯溜された
潤滑油16は、吸込流体ダイオード17から吸引され、
吐出流体ダイオード18、給油パイプ19を通って、駆
動軸4まで汲み上げられ駆動軸4の外周に設けられたス
パイラル溝20を通って副軸受3、偏心部4a、主軸受
2を潤滑し、再び密閉容器6内へ戻る。
Next, the oil supply mechanism of the compression mechanism will be described. In FIG. 1, the rotation of the drive shaft 4 causes the vane portion 8b to move forward and backward in the hole 1c, and the volume of the hole 1c changes. The lubricating oil 16 stored at the bottom of the sealed container 6 is sucked from the suction fluid diode 17 by the pumping action due to this volume change (hereinafter, referred to as a vane oil pump).
The auxiliary bearing 3, the eccentric portion 4a, and the main bearing 2 are lubricated through the discharge fluid diode 18, the oil supply pipe 19, the pumping shaft 4, and the spiral groove 20 provided on the outer periphery of the driving shaft 4, and then hermetically sealed again. Return to the inside of the container 6.

【0019】この偏心部4aを潤滑した潤滑油16の一
部はローラ部8a内面に流出し、吸込室11とローラ部
8a内面を交互に行き来する主軸受2の端面に設けられ
た油ポケット21によって図3の実線矢印に示すように
吸込室11に供給される。この油ポケット21による給
油は、差圧に依らずに容積型ポンプの作用で適正量の潤
滑油を吸込室に供給できるので、過剰給油による吸気加
熱損失等を低減できる。ここで、油ポケット21は副軸
受3の端面側に、スパイラル溝20は主軸受2、副軸受
3側に設けても同一の作用は得られる。
A portion of the lubricating oil 16 that has lubricated the eccentric portion 4a flows out into the inner surface of the roller portion 8a, and is provided in an oil pocket 21 provided on the end surface of the main bearing 2 which alternately moves between the suction chamber 11 and the inner surface of the roller portion 8a. As a result, the air is supplied to the suction chamber 11 as shown by the solid arrow in FIG. In the refueling by the oil pocket 21, an appropriate amount of lubricating oil can be supplied to the suction chamber by the action of the positive displacement pump without depending on the differential pressure, so that intake heating loss due to excessive refueling can be reduced. Here, the same effect can be obtained even if the oil pocket 21 is provided on the end face side of the sub bearing 3 and the spiral groove 20 is provided on the main bearing 2 and the sub bearing 3 side.

【0020】また、スパイラル溝20を通る潤滑油16
から発泡した冷媒ガスはガス抜き孔4bを通って、また
圧縮室10からローラ部8a内面に漏れ込んだ高圧の冷
媒ガスは連通孔4eを通って、駆動軸4の内部に形成さ
れたガス排出穴4cにより密閉容器6内へと排出され
る。
The lubricating oil 16 passing through the spiral groove 20
The high-pressure refrigerant gas leaked from the compression chamber 10 into the inner surface of the roller portion 8a passes through the communication hole 4e, and the gas discharged from the drive shaft 4 is discharged through the gas vent hole 4b. It is discharged into the closed container 6 through the hole 4c.

【0021】一方、圧縮機構内部では、図4および図5
の矢印に示すように、圧縮室10から冷媒ガスと内部シ
ールのための潤滑油16がベーン部8bおよび滑動部材
9と主軸受2、副軸受3との微少な隙間に漏れ込み、主
軸受2側では主軸受2に形成された油戻し溝2bと吸込
ポート1dと連通する穴1eを通り、また副軸受3側で
は副軸受3に形成された油戻し溝3dを通って吸込ポー
ト1dから吸込室11に流出し、潤滑油16は再び内部
シールに利用される。
4 and 5 inside the compression mechanism.
As shown by arrows, the refrigerant gas and the lubricating oil 16 for the internal seal leak from the compression chamber 10 into the vane portion 8b and the minute gap between the sliding member 9 and the main bearing 2 and the sub bearing 3, and the main bearing 2 On the side, the oil passes through the hole 1e communicating with the oil return groove 2b formed in the main bearing 2 and the suction port 1d, and on the sub bearing 3 side, the oil flows from the suction port 1d through the oil return groove 3d formed in the sub bearing 3. After flowing into the chamber 11, the lubricating oil 16 is again used for the internal seal.

【0022】以上の構成とすることにより、圧縮室10
からベーン部8bおよび滑動部材9と主軸受2、副軸受
3との微少な隙間に漏れ込んだ潤滑油16を吸込室11
に導き、再び内部シールに利用することができるので、
運転条件によって圧縮機構部内部の漏れ量が変化した場
合でも常に最適な量の潤滑油16がシリンダ1内に介在
するようなり、シリンダ1内の油量不足による内部漏れ
や滑動部材9と円筒孔部1bとの潤滑不良およびシリン
ダ1内への給油量過多による吸気加熱損失や吐出油量の
増大が防止できる高性能で信頼性の高い密閉型回転圧縮
機を提供することができる。
With the above configuration, the compression chamber 10
The lubricating oil 16 that has leaked from the vane portion 8b and the minute gap between the sliding member 9 and the main bearing 2 and the sub bearing 3 from the suction chamber 11
Can be used again for the inner seal,
Even when the amount of leakage inside the compression mechanism changes due to operating conditions, an optimal amount of lubricating oil 16 always intervenes in the cylinder 1, and internal leakage due to lack of oil in the cylinder 1 and the sliding member 9 and the cylindrical hole It is possible to provide a high-performance and highly reliable hermetic rotary compressor capable of preventing intake heating loss and discharge oil amount increase due to poor lubrication with the portion 1b and excessive oil supply to the cylinder 1.

【0023】また、漏れ量が少ない低圧力差や高速の条
件で内部シールを行うための最適な給油量に油ポケット
21の容積を設定すれば、吸込室11への過剰給油によ
る吸気加熱損失や圧縮機外部に吐出される油量増大によ
るサイクル性能の低下を回避しつつ、漏れ量が多い高圧
力差や低速の条件においてもシリンダ1内の油量不足に
よる内部漏れや滑動部材9と円筒孔部1bとの潤滑不良
を防止でき、圧縮機の運転条件が広範囲にわたるインバ
ータ駆動の冷凍・空調システムの性能向上を図ることが
できる。
Further, if the volume of the oil pocket 21 is set to an optimum oil supply amount for performing internal sealing under a low pressure difference and a high speed condition with a small amount of leakage, the intake heating loss due to excessive oil supply to the suction chamber 11 and the heat loss can be reduced. While avoiding a decrease in cycle performance due to an increase in the amount of oil discharged to the outside of the compressor, internal leakage due to a shortage of oil in the cylinder 1 and a sliding member 9 and a cylindrical hole even under conditions of high pressure difference and low speed with a large amount of leakage. Poor lubrication with the part 1b can be prevented, and the performance of the inverter-driven refrigeration / air-conditioning system can be improved over a wide range of operating conditions of the compressor.

【0024】さらに、冷媒ガスも油戻し溝2b、3dに
より吸込ポート1dに導くので、孔部1cへの冷媒ガス
の漏れを抑制でき、孔部1c内への冷媒ガス混入による
ベーン給油ポンプ能力の低下を防止できるので、軸摺動
部への安定した給油が可能となる。
Further, since the refrigerant gas is also guided to the suction port 1d by the oil return grooves 2b and 3d, the leakage of the refrigerant gas into the hole 1c can be suppressed, and the capacity of the vane refueling pump due to the mixture of the refrigerant gas into the hole 1c can be reduced. Since lowering can be prevented, stable lubrication of the shaft sliding portion can be achieved.

【0025】次に、本発明の第2の実施形態を図6を用
いて説明する。図6は本発明の第2の実施形態に係る揺
動ピストン形圧縮機の要部説明図である。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 6 is an explanatory view of a main part of a swinging piston type compressor according to a second embodiment of the present invention.

【0026】密閉容器6内を吸込圧力とした揺動ピスト
ン形圧縮機において、吐出ポート3b側の滑動部材9は
太線矢印の方向に荷重が作用し、滑動部材9は円筒孔部
1b内でこの荷重方向に寄せられ、この結果、滑動部材
9と円筒孔部1bとの間には圧縮室10と連通し、圧縮
室10側に近くなる程大きくなる隙間9aができる。通
常、滑動部材9の組立性を考えると、滑動部材9と円筒
孔部1bとの隙間9aは滑動部材9と主軸受2および副
軸受3との隙間より大きくすることが望ましい。このよ
うにした場合に、油戻し溝2b、3dが隙間9aの大き
い箇所で連通させてしまうと、冷媒ガスが圧縮室10か
ら隙間9aを介し油戻し溝2b、3dを通って吸込室1
1に過剰に流出し、圧縮機性能を低下させてしまうこと
が考えられる。
In the oscillating piston type compressor in which the suction pressure is set in the closed container 6, a load acts on the sliding member 9 on the discharge port 3b side in the direction of the thick arrow, and the sliding member 9 is moved in the cylindrical hole portion 1b. As a result, a gap 9a is formed between the sliding member 9 and the cylindrical hole 1b, which communicates with the compression chamber 10 and increases as it approaches the compression chamber 10. Normally, in consideration of the assemblability of the sliding member 9, it is desirable that the gap 9a between the sliding member 9 and the cylindrical hole 1b is larger than the gap between the sliding member 9 and the main bearing 2 and the sub bearing 3. In such a case, if the oil return grooves 2b and 3d communicate with each other at a location where the gap 9a is large, the refrigerant gas flows from the compression chamber 10 through the oil return grooves 2b and 3d through the gap 9a and into the suction chamber 1.
It is conceivable that the oil may excessively flow out to 1 and degrade the compressor performance.

【0027】そこで、本実施形態では主軸受2および副
軸受3に形成した油戻し溝2b、3dを滑動部材9と円
筒孔部1bとの隙間9aが最小となる位置近傍を通るよ
うに設けているので、圧縮室10から隙間9a介し油戻
し溝2b、3dに流出する冷媒ガスを滑動部材9と円筒
孔部1bとの隙間9aが最小となる所で絞ることがで
き、圧縮室10から吸込室11への過剰な冷媒ガスの漏
れ込みを抑制することができる。
Therefore, in the present embodiment, the oil return grooves 2b and 3d formed in the main bearing 2 and the sub bearing 3 are provided so as to pass near the position where the gap 9a between the sliding member 9 and the cylindrical hole 1b is minimized. Therefore, the refrigerant gas flowing out of the compression chamber 10 into the oil return grooves 2b and 3d via the gap 9a can be throttled at a place where the gap 9a between the sliding member 9 and the cylindrical hole 1b is minimized. Excessive leakage of the refrigerant gas into the chamber 11 can be suppressed.

【0028】次に、本発明の第3の実施形態を図7から
図8を用いて説明する。図7は本発明の第3の実施形態
に係る縦置き型揺動ピストン形圧縮機の縦断面図、図8
は図7のC−C断面図、図9は図7の圧縮機の要部説明
図である。本実施形態の縦置き型揺動ピストン形圧縮機
の圧縮動作は、図1ないし図2で示した横置き型揺動ピ
ストン形圧縮機の場合と同様だが、密閉容器6下部に貯
溜した潤滑油16を駆動軸4まで汲み上げるまでの給油
構造が異なっている。
Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a vertical sectional view of a vertically mounted swinging piston type compressor according to a third embodiment of the present invention.
7 is a sectional view taken along the line CC of FIG. 7, and FIG. 9 is an explanatory view of a main part of the compressor of FIG. The compression operation of the vertical oscillating piston type compressor of this embodiment is the same as that of the horizontal oscillating piston type compressor shown in FIGS. The lubrication structure before pumping 16 to the drive shaft 4 is different.

【0029】図7および図8において、給油ピース4d
は、駆動軸4の下端に装着され、密閉容器6内の潤滑油
16中に浸っている。各摺動部への給油は、駆動軸4の
回転による遠心ポンプ作用により、密閉容器6の底部に
貯溜された潤滑油16が給油ピース4dより吸引され、
駆動軸4に形成されたスパイラル溝20を通って各摺動
部の潤滑がなされる。そして、スパイラル溝20を通る
潤滑油16から発泡した冷媒ガスはガス抜き孔4bを通
り、圧縮室10からローラ部8a内面に漏れ込んだ高圧
の冷媒ガスは連通孔4eを通って、駆動軸4の内部に形
成されたガス排出穴4cにより密閉容器6へと排出され
る。
7 and 8, the lubrication piece 4d
Is mounted on the lower end of the drive shaft 4 and is immersed in the lubricating oil 16 in the sealed container 6. The lubricating oil 16 stored at the bottom of the sealed container 6 is sucked from the lubrication piece 4d by the centrifugal pump action by the rotation of the drive shaft 4 to lubricate each sliding portion,
Each sliding portion is lubricated through a spiral groove 20 formed in the drive shaft 4. The refrigerant gas foamed from the lubricating oil 16 passing through the spiral groove 20 passes through the gas vent hole 4b, and the high-pressure refrigerant gas leaked from the compression chamber 10 into the inner surface of the roller portion 8a passes through the communication hole 4e, and The gas is discharged to the closed container 6 through the gas discharge hole 4c formed inside the container.

【0030】一方、圧縮機構内部では、図9の矢印に示
すように、圧縮室10から冷媒ガスと内部シールのため
の潤滑油16がローラ部8a、ベーン部8bおよび滑動
部材9と主軸受2、副軸受3との微少な隙間に漏れ込
む。そして、ベーン部8bおよび滑動部材9と主軸受2
と副軸受3との隙間に漏れ込んだ冷媒ガスと潤滑油16
は、第1の実施形態に記載された通り、主軸受2および
副軸受3に形成された油戻し溝2b、3dから吸込室1
1に戻される。また、ローラ部8aと主軸受2、副軸受
3との微少な隙間に漏れ込んだ冷媒ガスと潤滑油16
は、ローラ部8aの主軸受2側と副軸受3側の両側に形
成され吸込室11と連通する連通溝8cを通って吸込室
11に流出される。このようにして吸込室11に戻され
た潤滑油16は再び上述した内部シールに利用される。
なお、連通溝8cは、油ポケット21および吐出ポート
3bと連通することがなく、圧縮室10から過剰に冷媒
ガスが漏れ込まないようにするためと、ローラ部8aと
主軸受2、副軸受3との微少な隙間のシール性を確保の
ために、ローラ部8aの内面寄りに形成されている。ま
た、本実施形態ではローラ部8aと圧縮室10の圧力差
が大きくなる圧縮行程後半のシール点から形成している
が、環状溝でも構わない。
On the other hand, inside the compression mechanism, as shown by an arrow in FIG. 9, the refrigerant gas and the lubricating oil 16 for internal sealing are supplied from the compression chamber 10 to the roller portion 8a, the vane portion 8b, the sliding member 9 and the main bearing 2 as shown in FIG. Leaks into a minute gap with the auxiliary bearing 3. The vane portion 8b, the sliding member 9, and the main bearing 2
Refrigerant gas and lubricating oil 16 that have leaked into the gap between
As described in the first embodiment, the suction chamber 1 is formed from oil return grooves 2b and 3d formed in the main bearing 2 and the sub-bearing 3.
Returned to 1. Further, the refrigerant gas and the lubricating oil 16 leaking into the minute gaps between the roller portion 8a and the main bearing 2 and the sub-bearing 3
Is discharged to the suction chamber 11 through a communication groove 8c formed on both sides of the roller portion 8a on the main bearing 2 side and the sub bearing 3 side and communicating with the suction chamber 11. The lubricating oil 16 thus returned to the suction chamber 11 is again used for the above-mentioned internal seal.
The communication groove 8c does not communicate with the oil pocket 21 and the discharge port 3b, so that the refrigerant gas does not leak from the compression chamber 10 excessively. Is formed near the inner surface of the roller portion 8a in order to ensure the sealing performance of a minute gap between the roller portion 8a and the roller portion 8a. Further, in the present embodiment, the seal portion is formed from the seal point in the latter half of the compression stroke in which the pressure difference between the roller portion 8a and the compression chamber 10 becomes large.

【0031】以上の構成とすることにより、圧縮室10
からベーン部8bおよび滑動部材9と主軸受2および副
軸受3との微少な隙間に漏れ込んだ潤滑油に加え、ロー
ラ部8aと主軸受2および副軸受3との隙間に漏れ込ん
だ潤滑油も吸込室11に導き、再び内部シールに利用す
ることができるので、運転条件によって圧縮機構部内部
の漏れ量が変化した場合でも常に最適な量の潤滑油がシ
リンダ1内に介在するようになり、シリンダ1内の油量
不足による内部漏れや滑動部材9と円筒孔部1bとの潤
滑不良およびシリンダ1内への給油量過多による吸気加
熱損失や吐出油量増大がより効果的に防止できる高性能
で信頼性の高い密閉型回転圧縮機を提供することができ
る。
With the above configuration, the compression chamber 10
In addition to the lubricating oil leaked into the minute gap between the vane portion 8b and the sliding member 9 and the main bearing 2 and the sub bearing 3, the lubricating oil leaked into the gap between the roller portion 8a and the main bearing 2 and the sub bearing 3 Can be guided to the suction chamber 11 and used again for the internal seal. Therefore, even when the leakage amount inside the compression mechanism changes depending on the operating conditions, the optimal amount of lubricating oil always intervenes in the cylinder 1. In addition, it is possible to more effectively prevent internal leakage due to an insufficient amount of oil in the cylinder 1, poor lubrication between the sliding member 9 and the cylindrical hole portion 1b, and intake air heating loss and discharge oil amount increase due to excessive oil supply into the cylinder 1. A hermetic rotary compressor with high performance and high reliability can be provided.

【0032】また、漏れ量が少ない低圧力差や高速の条
件で内部シールを行うための最適な給油量に油ポケット
21の容積を設定すれば、吸込室11への過剰給油によ
る吸気加熱損失や圧縮機外部に吐出される油量増加によ
るサイクル性能の低下を回避しつつ、漏れ量が多い高圧
力差や低速の条件においてもシリンダ1内の油量不足に
よる内部漏れをより効果的に抑制でき、圧縮機の運転条
件が広範囲にわたるインバータ駆動の冷凍空調システム
の性能向上を図ることができる。
Further, if the volume of the oil pocket 21 is set to an optimum oil supply amount for performing the internal sealing under a low pressure difference or a high speed condition with a small amount of leakage, the intake heating loss due to the excessive oil supply to the suction chamber 11 is reduced. While avoiding a decrease in cycle performance due to an increase in the amount of oil discharged to the outside of the compressor, internal leakage due to a shortage of oil in the cylinder 1 can be more effectively suppressed even under conditions of high pressure difference and low speed where the amount of leakage is large. In addition, it is possible to improve the performance of the inverter-driven refrigeration and air conditioning system in which the operating conditions of the compressor are wide.

【0033】次に、本発明の第4の実施形態を図10お
よび図11を用いて説明する。図10は本発明の第4の
実施形態に係る横置き型揺動ピストン形2段圧縮機の縦
断面図、図11は図10のD−D断面図である。
Next, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 10 is a longitudinal sectional view of a horizontal type swinging piston type two-stage compressor according to a fourth embodiment of the present invention, and FIG. 11 is a sectional view taken along line DD of FIG.

【0034】図10および図11において、圧縮要素2
2は、低圧用圧縮要素22aと高圧用圧縮要素22bか
らなり、駆動軸23の軸支持を兼ねた主軸受24と副軸
受25及び仕切り板26により各圧縮要素のシリンダ2
7、28の両端開口部が閉塞されている。この主軸受2
4と副軸受25及び仕切り板26は、シリンダ27、2
8の端板を構成するものである。本実施形態の揺動ピス
トン形圧縮機の圧縮動作は、第1の実施形態の揺動ピス
トン形圧縮機の場合と同様であるが、冷媒ガスの流れが
大きく異なる。
In FIG. 10 and FIG.
Reference numeral 2 denotes a low pressure compression element 22a and a high pressure compression element 22b, and a main bearing 24, a sub bearing 25 and a partition plate 26, which also serve as a shaft support for a drive shaft 23, and a cylinder 2 of each compression element.
Openings at both ends of 7, 28 are closed. This main bearing 2
4 and the auxiliary bearing 25 and the partition plate 26
8 constitute an end plate. The compression operation of the oscillating piston type compressor of the present embodiment is the same as that of the oscillating piston type compressor of the first embodiment, but the flow of the refrigerant gas is greatly different.

【0035】冷媒ガスは、密閉容器6に取り付けられた
低圧用吸込パイプ29を通って低圧用シリンダ27内に
入り、低圧用圧縮要素22aで圧縮される。この圧縮さ
れた冷媒ガスは、主軸受24に形成された低圧用吐出ポ
ート24aを通り、吐出サイレンサ30を通って密閉容
器6内に吐き出される。密閉容器6内に吐き出された冷
媒ガスは低圧用吐出パイプ31から外部にでて中間冷却
器32により放熱して冷やされた後、高圧用吸込パイプ
33を通って高圧用シリンダ28内に入り、高圧用圧縮
要素22bにより圧縮される。この圧縮された冷媒ガス
は、副軸受25に配設された高圧用吐出ポート25aを
通って吐出室34に入り、ここから高圧用吐出パイプ3
5を通って外部に流出する。したがって、密閉容器6内
は、高圧圧縮要素22bの吐出圧力より低く、低圧用圧
縮要素22bの吸込圧力より高い中間圧力(低圧用圧縮
要素の吐出圧力で、高圧用圧縮要素の吸込圧力)となっ
ている。
The refrigerant gas enters the low-pressure cylinder 27 through the low-pressure suction pipe 29 attached to the closed vessel 6, and is compressed by the low-pressure compression element 22a. The compressed refrigerant gas passes through a low-pressure discharge port 24 a formed in the main bearing 24 and is discharged into the closed casing 6 through the discharge silencer 30. The refrigerant gas discharged into the closed container 6 is discharged from the low-pressure discharge pipe 31 to the outside, is radiated and cooled by the intercooler 32, and then enters the high-pressure cylinder 28 through the high-pressure suction pipe 33. It is compressed by the high-pressure compression element 22b. The compressed refrigerant gas enters the discharge chamber 34 through the high-pressure discharge port 25a provided in the sub-bearing 25, from which the high-pressure discharge pipe 3
It flows out through 5. Therefore, the inside of the sealed container 6 has an intermediate pressure (a discharge pressure of the low-pressure compression element and a suction pressure of the high-pressure compression element) lower than the discharge pressure of the high-pressure compression element 22b and higher than the suction pressure of the low-pressure compression element 22b. ing.

【0036】次に、係る圧縮機構部の給油機構について
説明する。図10および図11において、駆動軸23の
回転により、高圧用揺動ピストン36のベーン部36b
が孔部1cの中で進退運動し、孔部1cの容積が変化す
る。この容積変化によるポンプ作用で、密閉容器6の底
部に貯溜された潤滑油16は、流体ダイオード37から
吸引され、給油パイプ19を通って、駆動軸23まで汲
み上げられ、さらに駆動軸23の外周に設けられたスパ
イラル溝20を通って副軸受25、偏心部23a、23
b、主軸受24を潤滑し、再び密閉容器内へ戻る。低圧
用圧縮要素22aの低圧用偏心部23aを潤滑した潤滑
油16の一部は、低圧用揺動ピストン38のローラ部3
8a内面と吸込室の差圧により吸込室11に供給され
る。また、高圧用圧縮要素22bの高圧用偏心部23b
を潤滑した潤滑油16の一部は、第1の実施形態で説明
した油ポケット方式と同じ要領で吸込室11に供給され
る。
Next, an oil supply mechanism of the compression mechanism will be described. 10 and 11, the rotation of the drive shaft 23 causes the vane portion 36b of the high-pressure swing piston 36 to rotate.
Moves forward and backward in the hole 1c, and the volume of the hole 1c changes. The lubricating oil 16 stored at the bottom of the sealed container 6 is sucked from the fluid diode 37 by the pump action due to the volume change, is pumped up to the drive shaft 23 through the oil supply pipe 19, and is further pumped to the outer periphery of the drive shaft 23. The auxiliary bearing 25, the eccentric parts 23a, 23 pass through the spiral groove 20 provided.
b) Lubricate the main bearing 24 and return to the closed container again. Part of the lubricating oil 16 that has lubricated the low-pressure eccentric portion 23a of the low-pressure compression element 22a is supplied to the roller portion 3 of the low-pressure oscillating piston 38.
The suction chamber 11 is supplied to the suction chamber 11 by a differential pressure between the inner surface of the suction chamber 8a and the suction chamber. The high-pressure eccentric part 23b of the high-pressure compression element 22b
Is supplied to the suction chamber 11 in the same manner as in the oil pocket system described in the first embodiment.

【0037】そして、スパイラル溝20を通る潤滑油1
6から発泡した冷媒ガスはガス抜き孔23cから、また
高圧用圧縮要素22bの圧縮室10から高圧用ローラ部
36a内面に漏れ込んだ高圧の冷媒ガスは連通穴23d
を通って、駆動軸23の内部に形成されたガス排出穴4
cにより密閉容器6へと排出される。
Then, the lubricating oil 1 passing through the spiral groove 20
The high-pressure refrigerant gas leaked into the inner surface of the high-pressure roller portion 36a from the gas vent hole 23c and from the compression chamber 10 of the high-pressure compression element 22b passes through the communication hole 23d.
Through the gas discharge hole 4 formed inside the drive shaft 23.
It is discharged to the closed container 6 by c.

【0038】ここで、係る横置き型揺動ピストン形2段
圧縮機は、圧縮室内圧力が密閉容器1内圧力より高くな
る高圧用圧縮要素22bにおいて、本発明の第1ないし
第3の実施形態のいずれかに示した油戻し溝2b、3d
もしくは連通溝8cを設けている。これによって、運転
条件によって高圧用圧縮要素22bの圧縮機構部内部の
漏れ量が変化した場合でも、常に最適な量の潤滑油がシ
リンダ28内に介在するようになり、シリンダ28内の
油量不足による内部漏れや滑動部材9と円筒孔部1bと
の潤滑不良およびシリンダ28内への給油量過多による
吸気加熱損失や吐出油量増大が防止できる高性能で信頼
性の高い揺動ピストン形2段圧縮機を提供することがで
きる。
Here, in the horizontal type swinging piston type two-stage compressor, the first to third embodiments of the present invention are applied to a high-pressure compression element 22b in which the pressure in the compression chamber is higher than the pressure in the closed vessel 1. Oil return grooves 2b, 3d shown in any of
Alternatively, a communication groove 8c is provided. As a result, even when the amount of leakage inside the compression mechanism of the high-pressure compression element 22b changes due to operating conditions, an optimal amount of lubricating oil always intervenes in the cylinder 28, and the amount of oil in the cylinder 28 becomes insufficient. High-performance and highly reliable swinging piston type two-stage that can prevent internal leakage due to oil, poor lubrication between the sliding member 9 and the cylindrical hole portion 1b, and intake heat loss and discharge oil amount increase due to excessive oil supply into the cylinder 28. A compressor can be provided.

【0039】また、漏れ量が少ない低圧力差や高速の条
件で内部シールを行うための最適な給油量に油ポケット
21(図3参照)の容積を設定すれば、吸込室11への
過剰給油による吸気加熱損失や圧縮機外部に吐出される
油量増加によるサイクル性能の低下を回避しつつ、漏れ
量が多い高圧力差や低速の条件においてもシリンダ内の
油量不足による内部漏れや滑動部材9と円筒孔部1bと
の潤滑不良を抑制できる。
Also, if the volume of the oil pocket 21 (see FIG. 3) is set to an optimum oil supply amount for performing internal sealing under a condition of a low pressure difference and a high speed with a small amount of leakage, excessive oil supply to the suction chamber 11 can be achieved. In addition to avoiding deterioration of cycle performance due to intake heating loss due to oil leakage and increase in the amount of oil discharged to the outside of the compressor, internal leakage and sliding members due to lack of oil in the cylinder even under conditions of high pressure difference and low speed where leakage is large. 9 and the poor lubrication between the cylindrical hole 1b can be suppressed.

【0040】次に、本発明の第5の実施形態を図12を
用いて説明する。図12は本発明の第5の実施形態に係
る冷凍システムの冷凍サイクル構成図である。この冷凍
サイクルは冷凍(冷房)専用の冷凍サイクルである。図
12において、39は凝縮器、39aは凝縮器ファン、
40は膨張弁、41は蒸発器、41aは蒸発器ファン、
42は上述した第1から第3の実施形態の密閉型回転圧
縮機である。
Next, a fifth embodiment of the present invention will be described with reference to FIG. FIG. 12 is a configuration diagram of a refrigeration cycle of a refrigeration system according to a fifth embodiment of the present invention. This refrigeration cycle is a refrigeration cycle dedicated to refrigeration (cooling). In FIG. 12, 39 is a condenser, 39a is a condenser fan,
40 is an expansion valve, 41 is an evaporator, 41a is an evaporator fan,
Reference numeral 42 denotes a hermetic rotary compressor according to the first to third embodiments described above.

【0041】本発明の密閉型回転圧縮機42を起動する
ことにより圧縮された高温・高圧の作動ガスは実線矢印
で示すように吐出パイプ15から凝縮器39に流入し
て、ファン39aの送風作用で放熱、液化し、膨張弁4
0で絞られ、断熱膨張して低温・低圧となり、蒸発器4
1で吸熱、ガス化された後、吸込パイプ12を経て密閉
型回転圧縮機42に吸込される。ここで図12に示した
冷凍システムは本発明の密閉型回転圧縮機を搭載してい
るので、エネルギー効率に優れた冷凍システムが得られ
る。特に、本発明の密閉型回転圧縮機42は密閉容器6
内を吐出圧力以下にしているので、断続運転時に高温・
高圧の冷媒が蒸発器内に流入する量を少なくでき、断続
エネルギーロスを低減できる。
The high-temperature and high-pressure working gas compressed by activating the hermetic rotary compressor 42 of the present invention flows into the condenser 39 from the discharge pipe 15 as shown by a solid line arrow, and the blowing action of the fan 39a. Radiates and liquefies with the expansion valve 4
0, adiabatic expansion and low temperature / low pressure.
After the heat is absorbed and gasified in step 1, it is sucked into the hermetic rotary compressor 42 via the suction pipe 12. Here, since the refrigeration system shown in FIG. 12 is equipped with the hermetic rotary compressor of the present invention, a refrigeration system excellent in energy efficiency can be obtained. In particular, the closed rotary compressor 42 of the present invention is
Pressure is lower than the discharge pressure.
The amount of high-pressure refrigerant flowing into the evaporator can be reduced, and intermittent energy loss can be reduced.

【0042】本実施の形態では、単段圧縮機を用いて説
明したが、2段圧縮機も搭載でき、冷凍システムだけで
なく空調システムにも適用可能である。
Although the present embodiment has been described using a single-stage compressor, a two-stage compressor can also be mounted, and is applicable not only to a refrigeration system but also to an air conditioning system.

【0043】[0043]

【発明の効果】以上詳細に説明したように、本発明によ
れば、密閉容器内を吐出圧力より低圧にしても、圧縮室
から圧縮機構部内部の各隙間に漏れ込んだ潤滑油を吸込
室に導き、運転条件によって圧縮機構部内部の漏れ量が
変化した場合でも常に最適な量の潤滑油がシリンダ内に
介在するようにし、シリンダ内の油量不足による冷媒ガ
スの漏れの増加や滑動部材と円筒孔部との潤滑不良およ
びシリンダ内への給油量過多による吸気加熱損失や吐出
油量増大が防止できる高性能で信頼性の高い密閉型回転
圧縮機を提供することができる。
As described above in detail, according to the present invention, even if the pressure in the closed container is lower than the discharge pressure, the lubricating oil leaked from the compression chamber into the respective gaps inside the compression mechanism is sucked into the suction chamber. Even if the amount of leakage inside the compression mechanism changes due to operating conditions, the optimal amount of lubricating oil is always interposed in the cylinder, increasing the leakage of refrigerant gas due to insufficient oil in the cylinder and the sliding member. It is possible to provide a high-performance and highly reliable hermetic rotary compressor capable of preventing intake heating loss and discharge oil amount increase due to poor lubrication between the cylinder and the cylindrical hole and excessive oil supply into the cylinder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る横置き型揺動ピ
ストン形圧縮機の縦断面図である。
FIG. 1 is a longitudinal sectional view of a horizontally mounted swinging piston type compressor according to a first embodiment of the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1の圧縮要素の動作説明図である。FIG. 3 is an operation explanatory diagram of the compression element of FIG. 1;

【図4】図1の圧縮機の要部説明図である。FIG. 4 is an explanatory view of a main part of the compressor of FIG. 1;

【図5】図4のB−B断面図である。FIG. 5 is a sectional view taken along line BB of FIG. 4;

【図6】本発明の第2の実施形態に係る揺動ピストン形
圧縮機の要部説明図である。
FIG. 6 is an explanatory view of a main part of a swinging piston type compressor according to a second embodiment of the present invention.

【図7】本発明の第3の実施形態に係る縦置き型揺動ピ
ストン形圧縮機の縦断面図である。
FIG. 7 is a longitudinal sectional view of a vertically mounted swinging piston type compressor according to a third embodiment of the present invention.

【図8】図7のC−C断面図である。FIG. 8 is a sectional view taken along the line CC of FIG. 7;

【図9】図7の圧縮機の要部説明図である。FIG. 9 is an explanatory view of a main part of the compressor of FIG. 7;

【図10】本発明の第4の実施形態に係る横置き型揺動
ピストン形2段圧縮機の縦断面図である。
FIG. 10 is a longitudinal sectional view of a horizontal type swinging piston type two-stage compressor according to a fourth embodiment of the present invention.

【図11】図10のD−D断面図である。FIG. 11 is a sectional view taken along the line DD in FIG. 10;

【図12】本発明の第5の実施形態に係る冷凍システム
の冷凍サイクル構成図である。
FIG. 12 is a configuration diagram of a refrigeration cycle of a refrigeration system according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…シリンダ、1a…円筒状内周面、1b…円筒孔部、
1c…孔部、1d…吸込ポート、1e…穴、2…主軸
受、2a…軸受部、2b…油戻し溝、3…副軸受、3a
…軸受部、3b…吐出ポート、3c…吐出室、3d…油
戻し溝、4…駆動軸、4a…偏心部、4b…ガス抜き
孔、4c…ガス排出穴、4d…給油ピース、4e…連通
孔、5…回転子、6…密閉容器、7…固定子、8…揺動
ピストン、8a…ローラ部、8b…ベーン部、8c…連
通溝、9…滑動部材、9a…隙間、10…圧縮室、11
…吸込室、12…吸込パイプ、13…吸込通路、14…
吐出カバー、15…吐出パイプ、16…潤滑油、17…
吸込流体ダイオード、18…吐出流体ダイオード、19
…給油パイプ、20…スパイラル溝、21…油ポケッ
ト、22…圧縮要素、22a…低圧用圧縮要素、22b
…高圧用圧縮要素、23…駆動軸、23a…低圧用偏心
部、23b…高圧用偏心部、23c…ガス抜き孔、23
d…連通穴、24…主軸受、24a…低圧用吐出ポー
ト、25…副軸受、25a…高圧用吐出ポート、26…
仕切板、27…低圧用シリンダ、28…高圧用シリン
ダ、29…低圧用吸込パイプ、30…吐出サイレンサ、
31…低圧用吐出パイプ、32…中間冷却器、33…高
圧用吸込パイプ、34…吐出室、35…高圧用吐出パイ
プ、36…高圧用揺動ピストン、36a…高圧用ローラ
部、36b…高圧用ベーン部、37…流体ダイオード、
38…低圧用揺動ピストン、38a…低圧用ローラ部、
39…凝縮器、39a…凝縮器用ファン、40…膨張
弁、41…蒸発器、41a…蒸発器用ファン、42…密
閉型回転圧縮機。
DESCRIPTION OF SYMBOLS 1 ... Cylinder, 1a ... Cylindrical inner peripheral surface, 1b ... Cylindrical hole part,
1c: hole, 1d: suction port, 1e: hole, 2: main bearing, 2a: bearing, 2b: oil return groove, 3: sub-bearing, 3a
... bearing part, 3b ... discharge port, 3c ... discharge chamber, 3d ... oil return groove, 4 ... drive shaft, 4a ... eccentric part, 4b ... gas vent hole, 4c ... gas discharge hole, 4d ... oil supply piece, 4e ... communication Hole 5 Rotor 6 Closed container 7 Stator 8 Swing piston 8a Roller part 8b Vane part 8c Communication groove 9 Sliding member 9a Gap 10 Compression Room, 11
... Suction chamber, 12 ... Suction pipe, 13 ... Suction passage, 14 ...
Discharge cover, 15 ... Discharge pipe, 16 ... Lubricating oil, 17 ...
Suction fluid diode, 18 ... discharge fluid diode, 19
... oil supply pipe, 20 ... spiral groove, 21 ... oil pocket, 22 ... compression element, 22a ... low-pressure compression element, 22b
... high-pressure compression element, 23 ... drive shaft, 23a ... low-pressure eccentric part, 23b ... high-pressure eccentric part, 23c ... gas vent hole, 23
d: communication hole, 24: main bearing, 24a: low pressure discharge port, 25: sub bearing, 25a: high pressure discharge port, 26:
Partition plate, 27: Low pressure cylinder, 28: High pressure cylinder, 29: Low pressure suction pipe, 30: Discharge silencer,
31: low pressure discharge pipe, 32: intercooler, 33: high pressure suction pipe, 34: discharge chamber, 35: high pressure discharge pipe, 36: high pressure swing piston, 36a: high pressure roller part, 36b: high pressure Vane part, 37 ... fluid diode,
38: Low pressure swing piston, 38a: Low pressure roller section,
39: condenser, 39a: condenser fan, 40: expansion valve, 41: evaporator, 41a: evaporator fan, 42: hermetic rotary compressor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 遠藤 和広 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 石山 明彦 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 Fターム(参考) 3H029 AA04 AA15 AA21 AB03 BB01 BB03 BB05 BB12 BB44 CC04 CC06 CC09 CC25 CC32 CC33 CC48 CC66  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kazuhiro Endo 502, Kunitachi-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratory, Hitachi, Ltd. (72) Inventor Akihiko Ishiyama 800, Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Hitachi, Ltd. 3H029 AA04 AA15 AA21 AB03 BB01 BB03 BB05 BB12 BB44 CC04 CC06 CC09 CC25 CC32 CC33 CC48 CC66

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】筒状内周面を持つシリンダと、前記シリン
ダの円筒状内周面の両端部を閉塞する複数の端板と、前
記シリンダと前記複数の端板とに囲まれた空間の中で円
筒状外周面が前記シリンダの円筒状内周面と常に微小な
隙間を維持しながら公転運動をするローラ部と、前記ロ
ーラ部に公転運動を与える駆動機構と、前記ローラ部の
円筒状外周面から一体に半径方向に突出して前記シリン
ダ内を吸込室と圧縮室とに仕切る板状のベーン部と、前
記シリンダの円筒状内周面の外側に前記円筒状内周面の
中心軸と平行な中心軸を持って形成され前記ベーン部が
挿入される円筒孔部と、前記ベーン部の両側の前記円筒
孔部との間にできる二つの空間に組み込まれ前記円筒孔
部に滑動可能に当接する円筒面部と前記ベーン部の平面
部に滑動可能に当接する平面部とを有する二つの滑動部
材とを密閉容器内に備えた密閉型回転圧縮機において、 前記密閉容器内を吐出圧力より低い圧力とし、前記吸込
室に一定量の潤滑油を供給する機構を備えると共に、前
記圧縮室から前記ベーン部および滑動部材と前記端板と
の隙間に漏れ込んだ潤滑油を前記吸込室に戻す溝を備え
たことを特徴とする密閉型回転圧縮機。
1. A cylinder having a cylindrical inner peripheral surface, a plurality of end plates for closing both ends of the cylindrical inner peripheral surface of the cylinder, and a space surrounded by the cylinder and the plurality of end plates. A roller part that revolves around the cylindrical outer peripheral surface while always maintaining a small gap with the cylindrical inner peripheral surface of the cylinder, a drive mechanism that gives the roller part a revolving motion, and a cylindrical part of the roller part. A plate-shaped vane portion integrally projecting radially from the outer peripheral surface to partition the inside of the cylinder into a suction chamber and a compression chamber, and a central axis of the cylindrical inner peripheral surface outside the cylindrical inner peripheral surface of the cylinder. A cylindrical hole formed with a parallel central axis and into which the vane is inserted, and incorporated into two spaces formed between the cylindrical holes on both sides of the vane so as to be slidable in the cylindrical hole. Slidably abuts the cylindrical surface that comes into contact with the flat surface of the vane. A hermetic rotary compressor provided with two sliding members having a flat surface portion in a closed container, a mechanism for supplying a fixed amount of lubricating oil to the suction chamber by setting the inside of the closed container to a pressure lower than a discharge pressure. And a groove for returning the lubricating oil leaked from the compression chamber into the gap between the vane portion and the sliding member and the end plate to the suction chamber.
【請求項2】円筒状内周面と吸込ポートを持つシリンダ
と、前記シリンダの円筒状内周面の両端部を閉塞する複
数の端板と、前記シリンダと前記複数の端板とに囲まれ
た空間の中で円筒状外周面が前記シリンダの円筒状内周
面と常に微小な隙間を維持しながら公転運動をするロー
ラ部と、前記ローラ部に公転運動を与える駆動機構と、
前記ローラ部の円筒状外周面から一体に半径方向に突出
して前記シリンダ内を吸込室と圧縮室とに仕切る板状の
ベーン部と、前記シリンダの円筒状内周面の外側に前記
円筒状内周面の中心軸と平行な中心軸を持って形成され
前記ベーン部が挿入される円筒孔部と、前記ベーン部の
両側の前記円筒孔部との間にできる二つの空間に組み込
まれ前記円筒孔部に滑動可能に当接する円筒面部と前記
ベーン部の平面部に滑動可能に当接する平面部とを有す
る二つの滑動部材とを密閉容器内に備えた密閉型回転圧
縮機において、 前記密閉容器内を吐出圧力より低い圧力とし、前記吸込
室に一定量の潤滑油を供給する機構を備えると共に、前
記ベーン部および前記滑動部材と前記両側の端板との隙
間と前記吸込ポートとを連通する溝を前記両側の端板に
形成したことを特徴とする密閉型回転圧縮機。
2. A cylinder having a cylindrical inner peripheral surface and a suction port, a plurality of end plates closing both ends of the cylindrical inner peripheral surface of the cylinder, and the cylinder and the plurality of end plates. A roller portion that makes a revolving motion while maintaining a small gap between the cylindrical outer circumferential surface and the cylindrical inner circumferential surface of the cylinder in the space, and a drive mechanism that gives the roller portion a revolving motion,
A plate-like vane portion integrally projecting radially from a cylindrical outer peripheral surface of the roller portion to partition the inside of the cylinder into a suction chamber and a compression chamber; and a cylindrical inner portion provided outside the cylindrical inner peripheral surface of the cylinder. The cylinder is installed in two spaces formed between a cylindrical hole formed with a central axis parallel to the central axis of the peripheral surface and into which the vane is inserted, and the cylindrical holes on both sides of the vane. A hermetically sealed rotary compressor including two sliding members having a cylindrical surface portion slidably in contact with a hole portion and a flat portion slidably in contact with a flat portion of the vane portion in a closed container; A pressure lower than the discharge pressure, a mechanism for supplying a certain amount of lubricating oil to the suction chamber, and a communication between the suction port and the gap between the vane and the sliding member and the end plates on both sides. Grooves are formed on both end plates A hermetic rotary compressor characterized by the fact that it is formed.
【請求項3】請求項1または2に記載された密閉型回転
圧縮機において、前記密閉容器内を吸込圧力としたこと
を特徴とする密閉型回転圧縮機。
3. The hermetic rotary compressor according to claim 1, wherein the pressure inside the hermetic container is set to a suction pressure.
【請求項4】請求項2に記載された密閉型回転圧縮機に
おいて、前記一側の端板に形成した溝は、前記吸込ポー
トと連通する穴に開口するように形成されたことを特徴
とする密閉型回転圧縮機。
4. The hermetic rotary compressor according to claim 2, wherein a groove formed in said one end plate is formed to open to a hole communicating with said suction port. Hermetic rotary compressor.
【請求項5】請求項2に記載された密閉型回転圧縮機に
おいて、前記溝は、前記滑動部材と前記ベーン部をまた
がるように形成したことを特徴とする密閉型回転圧縮
機。
5. The hermetic rotary compressor according to claim 2, wherein said groove is formed so as to straddle said sliding member and said vane portion.
【請求項6】請求項2に記載された密閉型回転圧縮機に
おいて、前記ベーン部に対して圧縮機側に位置する前記
滑動部材が自身にかかる荷重により前記円筒孔部内で荷
重方向に寄せられた時の前記滑動部材と前記円筒孔部と
の隙間が最も小さくなる付近を通るように前記端板の溝
を形成したことを特徴とする密閉型回転圧縮機。
6. The hermetic rotary compressor according to claim 2, wherein the sliding member located on the compressor side with respect to the vane portion is moved in the load direction within the cylindrical hole portion by a load applied to the sliding member. Wherein the groove of the end plate is formed so as to pass through the vicinity where the gap between the sliding member and the cylindrical hole at the time of the sliding is minimized.
【請求項7】筒状内周面を持つシリンダと、前記シリン
ダの円筒状内周面の両端部を閉塞する複数の端板と、前
記シリンダと前記複数の端板とに囲まれた空間の中で円
筒状外周面が前記シリンダの円筒状内周面と常に微小な
隙間を維持しながら公転運動をするローラ部と、前記ロ
ーラ部に公転運動を与える駆動機構と、前記ローラ部の
円筒状外周面から一体に半径方向に突出して前記シリン
ダ内を吸込室と圧縮室とに仕切る板状のベーン部と、前
記シリンダの円筒状内周面の外側に前記円筒状内周面の
中心軸と平行な中心軸を持って形成され前記ベーン部が
挿入される円筒孔部と、前記ベーン部の両側の前記円筒
孔部との間にできる二つの空間に組み込まれ前記円筒孔
部に滑動可能に当接する円筒面部と前記ベーン部の平面
部に滑動可能に当接する平面部とを有する二つの滑動部
材とを密閉容器内に備えた密閉型回転圧縮機において、 前記密閉容器内を吐出圧力より低い圧力とし、前記吸込
室に一定量の潤滑油を供給する機構を備えると共に、圧
縮室から前記ローラ部と前記端板との隙間に漏れ込んだ
潤滑油を前記吸込室に戻す溝を備えたことを特徴とする
密閉型回転圧縮機。
7. A cylinder having a cylindrical inner peripheral surface, a plurality of end plates for closing both ends of the cylindrical inner peripheral surface of the cylinder, and a space surrounded by the cylinder and the plurality of end plates. A roller part that revolves around the cylindrical outer peripheral surface while always maintaining a small gap with the cylindrical inner peripheral surface of the cylinder, a drive mechanism that gives the roller part a revolving motion, and a cylindrical part of the roller part. A plate-shaped vane portion integrally projecting radially from the outer peripheral surface to partition the inside of the cylinder into a suction chamber and a compression chamber, and a central axis of the cylindrical inner peripheral surface outside the cylindrical inner peripheral surface of the cylinder. A cylindrical hole formed with a parallel central axis and into which the vane is inserted, and incorporated into two spaces formed between the cylindrical holes on both sides of the vane so as to be slidable in the cylindrical hole. Slidably abuts the cylindrical surface that comes into contact with the flat surface of the vane. A hermetic rotary compressor provided with two sliding members having a flat surface portion in a closed container, a mechanism for supplying a fixed amount of lubricating oil to the suction chamber by setting the inside of the closed container to a pressure lower than a discharge pressure. And a groove for returning the lubricating oil leaked from the compression chamber into the gap between the roller portion and the end plate to the suction chamber.
【請求項8】筒状内周面を持つシリンダと、前記シリン
ダの円筒状内周面の両端部を閉塞する複数の端板と、前
記シリンダと前記複数の端板とに囲まれた空間の中で円
筒状外周面が前記シリンダの円筒状内周面と常に微小な
隙間を維持しながら公転運動をするローラ部と、前記ロ
ーラ部に公転運動を与える駆動機構と、前記ローラ部の
円筒状外周面から一体に半径方向に突出して前記シリン
ダ内を吸込室と圧縮室とに仕切る板状のベーン部と、前
記シリンダの円筒状内周面の外側に前記円筒状内周面の
中心軸と平行な中心軸を持って形成され前記ベーン部が
挿入される円筒孔部と、前記ベーン部の両側の前記円筒
孔部との間にできる二つの空間に組み込まれ前記円筒孔
部に滑動可能に当接する円筒面部と前記ベーン部の平面
部に滑動可能に当接する平面部とを有する二つの滑動部
材とを密閉容器内に備えた密閉型回転圧縮機において、 前記密閉容器内を吐出圧力より低い圧力とし、前記吸込
室に一定量の潤滑油を供給する機構を備えると共に、前
記ローラ部と前記端板との隙間と前記吸込室とを連通す
る溝を前記ローラ部に形成したことを特徴とする密閉型
回転圧縮機。
8. A cylinder having a cylindrical inner peripheral surface, a plurality of end plates for closing both ends of the cylindrical inner peripheral surface of the cylinder, and a space surrounded by the cylinder and the plurality of end plates. A roller portion that revolves around while the cylindrical outer peripheral surface always keeps a minute gap with the cylindrical inner peripheral surface of the cylinder, a drive mechanism that gives revolving motion to the roller portion, and a cylindrical shape of the roller portion. A plate-shaped vane portion integrally projecting radially from an outer peripheral surface to partition the inside of the cylinder into a suction chamber and a compression chamber, and a central axis of the cylindrical inner peripheral surface outside the cylindrical inner peripheral surface of the cylinder. A cylindrical hole formed with a parallel central axis, into which the vane is inserted, and two spaces formed between the cylindrical holes on both sides of the vane are slidable into the cylindrical hole. Slidably abuts the cylindrical surface that comes into contact with the flat surface of the vane. A hermetic rotary compressor provided with two sliding members having a flat surface portion in a hermetic container, wherein the inside of the hermetic container is set at a pressure lower than a discharge pressure and a fixed amount of lubricating oil is supplied to the suction chamber. A hermetic rotary compressor, wherein a groove communicating the gap between the roller section and the end plate and the suction chamber is formed in the roller section.
【請求項9】請求項8に記載された密閉型回転圧縮機に
おいて、前記溝は前記圧縮室との距離より前記ローラ部
の内面との距離の方が近くなるように形成したことを特
徴とする密閉型回転圧縮機。
9. The hermetic rotary compressor according to claim 8, wherein the groove is formed such that a distance from an inner surface of the roller portion is shorter than a distance from the compression chamber. Hermetic rotary compressor.
【請求項10】請求項1から9のいずれかに記載の溝を
備えた密閉型2段回転圧縮機。
10. A hermetic two-stage rotary compressor provided with a groove according to claim 1.
【請求項11】請求項1から10のいずれかに記載の密
閉型回転圧縮機を搭載した冷凍・空調システム。
11. A refrigeration / air conditioning system equipped with the hermetic rotary compressor according to any one of claims 1 to 10.
JP2001183278A 2001-06-18 2001-06-18 Hermetically sealed type rotary compressor Pending JP2002371974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001183278A JP2002371974A (en) 2001-06-18 2001-06-18 Hermetically sealed type rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001183278A JP2002371974A (en) 2001-06-18 2001-06-18 Hermetically sealed type rotary compressor

Publications (1)

Publication Number Publication Date
JP2002371974A true JP2002371974A (en) 2002-12-26

Family

ID=19023253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001183278A Pending JP2002371974A (en) 2001-06-18 2001-06-18 Hermetically sealed type rotary compressor

Country Status (1)

Country Link
JP (1) JP2002371974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085363A (en) * 2019-11-27 2021-06-03 パナソニックIpマネジメント株式会社 Internal intermediate pressure-type multi-stage compression compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085363A (en) * 2019-11-27 2021-06-03 パナソニックIpマネジメント株式会社 Internal intermediate pressure-type multi-stage compression compressor
JP7378044B2 (en) 2019-11-27 2023-11-13 パナソニックIpマネジメント株式会社 Internal medium pressure multistage compression compressor

Similar Documents

Publication Publication Date Title
US8087260B2 (en) Fluid machine and refrigeration cycle apparatus
JP2005299632A (en) Fluid machine
JP5905005B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
JP4777217B2 (en) Refrigeration cycle equipment
JP4381532B2 (en) Swing piston type compressor
JP6118702B2 (en) Scroll compressor and refrigeration equipment
CN107893758B (en) Scroll compressor and air conditioner with same
JP4384368B2 (en) Hermetic rotary compressor and refrigeration / air conditioner
JP4110781B2 (en) Hermetic rotary compressor
JP2002371974A (en) Hermetically sealed type rotary compressor
JP2003201963A (en) Hermetically sealed compressor
JPH07301190A (en) Rotary compressor
JP2012189002A (en) Compressor
JP2004225578A (en) Rotary compressor
WO2022004027A1 (en) Rotary compressor and refrigeration cycle device
JP2024048814A (en) Hermetic rotary compressor and refrigerator equipped with same
JP7358674B1 (en) Compressors and air conditioners
JP2002371973A (en) Rocking piston type compressor
JP2023136791A (en) Hermetic rotary compressor and refrigerator with the same
US20240003348A1 (en) Compressor with Oil Pump
KR100531279B1 (en) rotary type compressor
JP2003206876A (en) Closed rotary compressor and refrigerating and air conditioning equipment
JP2009019591A (en) Expander-integrated compressor and refrigerating cycle device
JP2014238062A (en) Rotary compressor
JP2001050179A (en) Rotary compressor, refrigerating cycle using the compressor, and refrigerator using the compressor