JP2812022B2 - Multi-stage gas compressor with bypass valve device - Google Patents

Multi-stage gas compressor with bypass valve device

Info

Publication number
JP2812022B2
JP2812022B2 JP3295511A JP29551191A JP2812022B2 JP 2812022 B2 JP2812022 B2 JP 2812022B2 JP 3295511 A JP3295511 A JP 3295511A JP 29551191 A JP29551191 A JP 29551191A JP 2812022 B2 JP2812022 B2 JP 2812022B2
Authority
JP
Japan
Prior art keywords
compression
stage
pressure
chamber
stage compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3295511A
Other languages
Japanese (ja)
Other versions
JPH05133367A (en
Inventor
勝晴 藤尾
Original Assignee
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電器産業株式会社 filed Critical 松下電器産業株式会社
Priority to JP3295511A priority Critical patent/JP2812022B2/en
Publication of JPH05133367A publication Critical patent/JPH05133367A/en
Application granted granted Critical
Publication of JP2812022B2 publication Critical patent/JP2812022B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】本発明は多段圧縮機において、低
段側圧縮要素と高段側圧縮要素との間の連通路の異常圧
力上昇抑制による圧縮効率と耐久性の向上及び振動・騒
音の低減に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-stage compressor, in which compression efficiency and durability are improved by suppressing abnormal pressure rise in a communication passage between a low-stage compression element and a high-stage compression element, and vibration and noise are reduced. It is about reduction.
【0002】[0002]
【従来の技術】近年、冷凍機器分野において、低温熱源
および高温熱源確保の一環として、高圧縮比運転に適し
た冷媒圧縮機の実用化研究が盛んである。
2. Description of the Related Art In recent years, in the field of refrigeration equipment, as a part of securing a low-temperature heat source and a high-temperature heat source, research on practical use of a refrigerant compressor suitable for high compression ratio operation has been actively conducted.
【0003】とりわけ、圧縮室と吸入室との間の圧力差
を小さくして圧縮途中漏洩ガス量を低減して圧縮効率を
向上させるための方策として、種々の多段ロータリ式圧
縮機が提案されている。
In particular, various multi-stage rotary compressors have been proposed as measures for reducing the pressure difference between the compression chamber and the suction chamber to reduce the amount of gas leaking during compression and improving the compression efficiency. I have.
【0004】具体的には、ローリングピストン型ロータ
リ式2段圧縮機と同圧縮機を接続した2段圧縮冷凍サイ
クル系統図が図12〜図14の構成で提案されている
(特開昭50−72205号公報)。同図は、密閉容器
1003内の上部に駆動電動機1005を、下部に駆動
電動機1005の回転軸1005cに連結し且つ上下2
段に形成された圧縮機構(上部は低圧圧縮機構100
7、下部は高圧圧縮機構1009)を、底部に油溜を配
置し、低圧圧縮機構1007,高圧圧縮機構1009の
各シリンダを吸入室と圧縮室とに区画するベーン100
7c(1009c)の背面が密閉容器1003の内部空
間に通じており、ベーン1007c(1009c)への
背圧付勢力をバネ装置の反力と密閉容器1003内圧力
とで形成している。
Specifically, a rolling piston type rotary two-stage compressor and a two-stage compression refrigeration cycle system diagram in which the compressor is connected have been proposed in the constructions shown in FIGS. No. 72205). In the figure, a drive motor 1005 is connected to an upper portion in a closed container 1003, and a rotation shaft 1005c of the drive motor 1005 is connected to a lower portion.
The compression mechanism formed in the step (the upper part is the low-pressure compression mechanism 100
7, a high pressure compression mechanism 1009) at the bottom, an oil reservoir at the bottom, and a vane 100 that divides each cylinder of the low pressure compression mechanism 1007 and the high pressure compression mechanism 1009 into a suction chamber and a compression chamber.
The back surface of 7c (1009c) communicates with the internal space of the sealed container 1003, and the back pressure biasing force to the vane 1007c (1009c) is formed by the reaction force of the spring device and the pressure inside the sealed container 1003.
【0005】低圧圧縮機構1007の吐出冷媒ガスは、
吐出管1007eを介して外部の気液分離器1017に
接続され、連通管1009d′を介して再び密閉容器1
003の内部空間に流入して駆動電動機1005を冷却
する。
[0005] The refrigerant gas discharged from the low-pressure compression mechanism 1007 is:
It is connected to an external gas-liquid separator 1017 through a discharge pipe 1007e, and is again connected to the closed container 1 through a communication pipe 1009d '.
003 to cool the drive motor 1005.
【0006】密閉容器1003に再流入した吐出冷媒ガ
スは、吸油管1023を備えた吸入管1009dを通過
する際に密閉容器1003の底部の潤滑油を吸い込んで
高圧圧縮機構1009に導入され、潤滑油が摺動面の冷
却と圧縮室隙間の密封に供される。
[0006] The discharged refrigerant gas re-flowed into the sealed container 1003 sucks the lubricating oil at the bottom of the sealed container 1003 when passing through the suction pipe 1009d provided with the oil absorbing pipe 1023, and is introduced into the high-pressure compression mechanism 1009. Are used for cooling the sliding surface and sealing the compression chamber gap.
【0007】高圧圧縮機構1009で再圧縮された吐出
冷媒ガスは、吐出管1009eを介して外部の凝縮器1
013に送出され、第一膨張弁1015,気液分離器1
017,第二膨張弁1019,蒸発器1021を順次経
由して、吸入管1007dを通じて再び低圧圧縮機構1
007に帰還する。
[0007] The discharged refrigerant gas recompressed by the high-pressure compression mechanism 1009 is supplied to the external condenser 1 via a discharge pipe 1009e.
013, the first expansion valve 1015, the gas-liquid separator 1
017, the second expansion valve 1019, and the evaporator 1021 sequentially, and again through the suction pipe 1007d.
Return to 007.
【0008】また、実施例図示はないが説明文に記載の
如く、ローリングピストン型ロータリ式圧縮機の欠点で
ある圧縮時の大きなトルク変動を改善するために、回転
軸1005cのクランク部偏心方向を180度ずらせ、
且つ両圧縮機構(低圧圧縮要素機構1007,高圧圧縮
要素機構1009)のベーン(1007c,1009
c)の取り付け方向を高段側と低段側との間で75〜8
0度ずらせてある。それによって、ロータリ式1段圧縮
機よりもトルク変動を減じる方策が提案されている。
Further, as shown in the description, although not shown in the embodiment, in order to improve a large torque fluctuation at the time of compression which is a drawback of the rolling piston type rotary compressor, the eccentric direction of the crank part of the rotating shaft 1005c is changed. 180 degree shift,
And vanes (1007c, 1009) of both compression mechanisms (low pressure compression element mechanism 1007, high pressure compression element mechanism 1009).
The mounting direction of c) is 75 to 8 between the high step side and the low step side.
It is shifted by 0 degrees. Accordingly, measures have been proposed to reduce torque fluctuations as compared with a rotary single-stage compressor.
【0009】このような部品配置によって2段圧縮冷凍
サイクルが構成され、密閉容器1003の内部空間が冷
媒の凝縮圧力と蒸発圧力との中間圧力に保たれるように
工夫されている。
A two-stage compression refrigeration cycle is constituted by such a component arrangement, and the interior space of the closed vessel 1003 is designed so as to be maintained at an intermediate pressure between the condensing pressure and the evaporating pressure of the refrigerant.
【0010】[0010]
【発明が解決しようとする課題】しかしながら上記図1
2〜図14のような構成では、高圧圧縮要素機構100
9の吸入側に流入する冷媒ガスが駆動電動機1005の
周囲を通過する際に加熱されるので、高圧圧縮要素機構
1009における冷媒ガス吸入効率の低下および圧縮途
中冷媒ガスの異常圧力上昇に起因して圧縮効率の著しい
低下を招くという課題があった。
However, FIG.
2 to 14 , the high-pressure compression element mechanism 100
9 is heated when passing around the drive motor 1005 due to a decrease in refrigerant gas suction efficiency in the high-pressure compression element mechanism 1009 and an abnormal increase in refrigerant gas pressure during compression. There is a problem that the compression efficiency is significantly reduced.
【0011】また周知の如く、2段圧縮機における高圧
圧縮要素機構1009の吸入シリンダ容積は低圧圧縮要
素機構1007から吐出される冷媒ガス体積相当に設定
されているが、両圧縮要素機構の吸入・吐出行程過渡期
には、低圧圧縮要素機構1007から排出される冷媒ガ
ス体積と高圧圧縮要素機構1009の吸入シリンダ容積
との間で過不足が生じ、その結果、両圧縮要素の間を連
通する中間通路に圧力脈動が発生して、低圧圧縮要素機
構1007では瞬時的に吐出圧力が高くなったり、高圧
圧縮要素機構1009では吸入圧力が瞬時的に低くなっ
て圧縮比が変動して入力損失を招く。
As is well known, the suction cylinder volume of the high-pressure compression element mechanism 1009 in the two-stage compressor is set to correspond to the volume of the refrigerant gas discharged from the low-pressure compression element mechanism 1007. In the transition period of the discharge stroke, excess or deficiency occurs between the volume of the refrigerant gas discharged from the low-pressure compression element mechanism 1007 and the volume of the suction cylinder of the high-pressure compression element mechanism 1009. As a result, an intermediate portion communicating between the two compression elements is formed. A pressure pulsation occurs in the passage, and the discharge pressure instantaneously increases in the low-pressure compression element mechanism 1007, and the suction pressure instantaneously decreases in the high-pressure compression element mechanism 1009, causing a change in the compression ratio and an input loss. .
【0012】このため、両圧縮要素の間を連通する中間
通路が密閉容器の外部に配管迂回するなどして著しく長
くなる構成では、圧縮装置が大きくなると共に高圧圧縮
要素機構1009で吸入ガスの追従遅れが生じて入力損
失が増大するという課題があった。
For this reason, in a configuration in which the intermediate passage communicating between the two compression elements is extremely long, such as bypassing the pipe to the outside of the closed vessel, the size of the compression device is increased and the high pressure compression element mechanism 1009 follows the suction gas. There is a problem that a delay occurs and input loss increases.
【0013】上述のような2段圧縮機の課題を改善する
方策が図15、図16に示す如く提案されている(特開
平1ー247785号公報)。
[0013] As shown in Figs. 15 and 16, a measure for improving the above-described problem of the two-stage compressor has been proposed (Japanese Patent Laid-Open No. 1-247885).
【0014】同圧縮機は、ローリングビストン型2段圧
縮機小型化のために、低段圧縮要素2005と高段圧縮
要素2006との間を圧縮機内部で直接連通し、高段圧
縮要素2006から電動機室に排出された吐出ガスで電
動機を冷却すると共に、シリンダ内を吸入室と圧縮室に
区画するためのベーンの背面を、吐出圧力の作用する潤
滑油で主に付勢する構成である。
In order to reduce the size of the rolling piston-type two-stage compressor, the compressor directly communicates between the low-stage compression element 2005 and the high-stage compression element 2006 inside the compressor. In this configuration, the electric motor is cooled by the discharge gas discharged into the electric motor chamber, and the back surface of the vane for partitioning the inside of the cylinder into the suction chamber and the compression chamber is mainly urged by the lubricating oil acting on the discharge pressure.
【0015】図15は、同圧縮機の低段圧縮要素200
5と高段圧縮要素2006との間の圧縮タイミングの説
明図、図16は同圧縮機の部分断面図で、竪型密閉ケー
シング2001の内部に配置された低段圧縮要素200
5とそのバルブカバー2027,低段圧縮要素2005
の下部に配置された高段圧縮要素2006とそのバルブ
カバー2028,両圧縮要素(2005,2006)を
連結する中間フレーム2020,両圧縮要素(200
5,2006)を駆動するクランク軸2004,低段圧
縮要素2005の吐出側と高段圧縮要素2006の吸入
側とを連通する通路2023(図16において図示な
し)などから成り、通路2023の圧力脈動を小さくし
て入力損失を低減するために、高段圧縮要素2006の
圧縮タイミングを低段圧縮要素2005から約90度遅
延させるべく、ベーン2011,2012を90度隔て
た配置構成で、竪型密閉ケーシング2001の内部が高
段圧縮要素2006の吐出ガスで充満させてある。
FIG . 15 shows a low-stage compression element 200 of the compressor.
FIG . 16 is a partial cross-sectional view of the compressor, showing the compression timing between the first compression element 5 and the high-stage compression element 2006, and shows the low-stage compression element 200 disposed inside the vertical closed casing 2001.
5 and its valve cover 2027, low-stage compression element 2005
, A high-stage compression element 2006 and its valve cover 2028, an intermediate frame 2020 connecting the two compression elements (2005, 2006), and both compression elements (200
5, 2006), which communicates the discharge side of the low-stage compression element 2005 and the suction side of the high-stage compression element 2006 (not shown in FIG. 16 ) . In order to delay the compression timing of the high-stage compression element 2006 from the low-stage compression element 2005 by about 90 degrees in order to reduce the input loss and reduce the input loss, the vertical configuration is such that the vanes 2011 and 2012 are arranged 90 degrees apart. The inside of the casing 2001 is filled with the discharge gas of the high-stage compression element 2006.
【0016】なお、低段圧縮要素2005で圧縮された
冷媒ガスはバルブカバー2027で形成された低段吐出
室に合流の後、通路2023(図16において図示な
し)を介して高段圧縮要素2006の吸入側に流入し、
圧縮の後、バルブカバー2028で囲まれた高段吐出室
に排出の後、上部に配置された電動機室に送出される構
成である。
The refrigerant gas compressed by the low-stage compression element 2005 joins the low-stage discharge chamber formed by the valve cover 2027, and then passes through the passage 2023 (not shown in FIG. 16 ) . Flows into the suction side of
After being compressed, it is discharged into a high-level discharge chamber surrounded by a valve cover 2028, and then sent out to an electric motor room arranged above.
【0017】しかしながら圧縮機起動直後しばらくの間
は、圧縮機停止中に低段圧縮要素2005の吸入側に流
入・滞留した冷媒液や未蒸発冷媒が低段圧縮要素200
5のシリンダ内で加熱膨張して、高段圧縮要素2006
のシリンダ吸入容積を遥かに超える冷媒ガス量となって
バルブカバー2027内に排出されるので、通路202
3の圧力上昇が速く、その結果、低段圧縮要素2005
の圧縮トルクが大きくなるので、起動直後の振動が大き
く、電動機の大型化によるコスト上昇,起動電流増加に
よる供給電源設備の制限等の課題があった。
However, for a while immediately after the compressor is started, the refrigerant liquid and unevaporated refrigerant flowing into and staying on the suction side of the low-stage compression element 2005 while the compressor is stopped are discharged.
5, the high-stage compression element 2006
The amount of refrigerant gas far exceeding the cylinder suction volume is discharged into the valve cover 2027, so that the passage 202
3, the pressure rise of the lower stage compression element 2005
Since the compression torque of the motor becomes large, vibration immediately after the start is large, and there are problems such as an increase in cost due to an increase in the size of the motor and a limitation of a power supply facility due to an increase in a start current.
【0018】また、特に圧縮機冷時起動後しばらくの間
は、吐出側の温度が低いことに起因して竪型密閉ケーシ
ング2001内の圧力上昇が遅く、所定の圧力に到達す
るまでの高段圧縮要素2006のベーン2012の背面
に作用する付勢力が不足する。
In particular, for a while after the start of the compressor when the compressor is cold, the pressure in the vertical closed casing 2001 rises slowly due to the low temperature on the discharge side, and the high pressure rises until a predetermined pressure is reached. The biasing force acting on the back of the vane 2012 of the compression element 2006 is insufficient.
【0019】このような状態で通路2023の圧力上昇
が速いことから、高段圧縮要素2006のベーン201
2への背面付勢圧力よりも吸入圧力(通路2023の圧
力)が高くなって、ベーン2012に激しいジャンピン
グ現象を誘発させる。この結果、ベーン2012の先端
とローラ2008との間で生じる激しい衝突音とそれに
伴う振動によって、騒音・振動が大きく、ベーン201
2とローラ2008の耐久性が低下するという課題があ
った。
Since the pressure in the passage 2023 rises rapidly in such a state, the vane 201 of the high-stage compression element 2006
The suction pressure (the pressure in the passage 2023) becomes higher than the back-side urging pressure to 2, causing the vane 2012 to violently jump. As a result, due to the intense collision sound generated between the tip of the vane 2012 and the roller 2008 and the accompanying vibration, noise and vibration are large, and the vane 201
2 and the roller 2008 had a problem that the durability was reduced.
【0020】また、ベーン2012の激しいジャンピン
グ現象によって、圧縮室から吸入室への冷媒ガス漏れが
多く、冷時起動初期の圧縮効率が著しい低下を招くとい
う課題があった。
Further, there is also a problem that the refrigerant gas leaks from the compression chamber to the suction chamber due to the severe jumping phenomenon of the vane 2012, and the compression efficiency at the start of the cold start is remarkably reduced.
【0021】なお、2段圧縮・2段膨張冷凍サイクルで
冬期の給湯運転や空調暖房運転中に、吸熱機側熱交換器
の表面に着霜した際に吸熱機側への配管と放熱機側への
配管を電磁弁等で切り替えて除霜運転を開始した直後に
は、放熱機側の高圧の液冷媒が2段圧縮機の吸入側に多
量流入して低段圧縮要素2005で液圧縮が生じ、通路
2023の圧力が異常上昇する。一方、除霜運転への切
り替えによって高段圧縮要素2006の吐出側の圧力が
急低下するので、通路2023の圧力が高段圧縮要素2
006の吐出側より高くなり、上記以上のベーン201
1、2012のジャンピング現象が生じて圧縮機が破損
するという2段圧縮機特有の重要課題があった。
In a two-stage compression / two-stage expansion refrigeration cycle, during the hot water supply operation or the air conditioning / heating operation in winter, when frost forms on the surface of the heat exchanger side heat exchanger, the piping to the heat absorber side and the radiator side Immediately after the defrosting operation is started by switching the piping to the solenoid valve or the like, a large amount of high-pressure liquid refrigerant on the radiator side flows into the suction side of the two-stage compressor, and liquid compression is performed by the low-stage compression element 2005. As a result, the pressure in the passage 2023 rises abnormally. On the other hand, since the pressure on the discharge side of the high-stage compression element 2006 suddenly decreases by switching to the defrosting operation, the pressure in the passage 2023 is reduced to the high-stage compression element 2.
006, which is higher than the discharge side of
1, 2012, there is an important problem peculiar to the two-stage compressor that the jumping phenomenon occurs and the compressor is damaged.
【0022】また、上記ではローリングピストン型回転
式2段圧縮機についての課題について説明したが、ベー
ンが駆動軸と共に回転するスライドベーン型回転式2段
圧縮機や往復動式2段圧縮機,スクロール式2段圧縮機
等についても上述と同様に、起動初期の圧縮トルクが大
きくなることに起因して、振動が大きく、電動機の大型
化によるコスト上昇、起動電流増加による供給電源設備
の制限等の課題の存在が明白であろう。
In the above, the problem with the rolling piston type rotary two-stage compressor has been described. However, the slide vane type rotary two-stage compressor in which the vane rotates together with the drive shaft, the reciprocating two-stage compressor, the scroll In the same manner as described above, the two-stage compressor of the type also has large vibration due to a large compression torque at the initial stage of startup, increases costs due to an increase in the size of the motor, and limits supply power equipment due to an increase in startup current. The existence of the challenge will be clear.
【0023】本発明は、上記従来の課題に鑑み、圧縮機
起動負荷と振動・騒音の軽減を図ることを目的とするも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has as its object to reduce compressor starting load and vibration and noise.
【0024】また本発明は、一時的な圧縮負荷軽減のた
めに、低段圧縮要素と高段圧縮要素との間の連通路の気
体を一時的に、高段圧縮要素の吐出側にバイパスさせる
際に、潤滑油が圧縮機外部へ流出するのを防止すること
を目的とするものである。
Further, in the present invention, in order to temporarily reduce the compression load, the gas in the communication passage between the low-stage compression element and the high-stage compression element is temporarily bypassed to the discharge side of the high-stage compression element. In this case, it is an object to prevent the lubricating oil from flowing out of the compressor.
【0025】また本発明は、一時的な圧縮負荷軽減のた
めに、低段圧縮要素と高段圧縮要素 との間の連通路の気
体を一時的に、高段圧縮要素の吐出側にバイパスさせる
構成において、圧縮機冷時起動時の負荷軽減と、安定運
転時の吐出室側から連通路側への不要な気密漏れを改善
することによる圧縮効率の向上を図ることを目的とする
ものである。
The present invention also provides a method for temporarily reducing the compression load.
For example, the air in the communication passage between the low-stage compression element and the high-stage compression element
Temporarily bypasses the body to the discharge side of the high-stage compression element
In the configuration, load reduction at cold start of the compressor and stable operation
Improves unnecessary airtight leakage from the discharge chamber side to the communication passage side during rotation
The purpose is to improve the compression efficiency by performing
Things.
【0026】[0026]
【課題を解決するための手段】上記目的を達成するため
に本発明の多段気体圧縮機は、高段の圧縮要素のシリン
ダ容積を低段の圧縮要素のシリンダ容積の45〜65%
に設定した構成において、低段の圧縮要素の吐出弁装置
が開弁する直前の連通路の圧力が低段の圧縮要素の圧縮
室圧力よりも低くなり、且つ低段の圧縮要素の圧縮開始
後、170度前後で吐出弁装置が開弁するように、高段
の圧縮要素の圧縮タイミングを低段の圧縮要素より60
〜80度遅延させると共に、吐出弁装置の開弁特性を設
したものである。
In order to achieve the above object, a multi-stage gas compressor according to the present invention comprises a high- stage compression element syringe.
45-65% of the cylinder capacity of the low-stage compression element
In the configuration set in the above, the discharge valve device of the low-stage compression element
Compression of the compression element with low pressure in the communication passage just before the valve opens
Becomes lower than the chamber pressure and starts compression of the low-stage compression element
After that, the high-pressure stage is opened so that the discharge valve device opens around 170 degrees.
The compression timing of the compression element of
Up to 80 degrees and set the valve opening characteristics of the discharge valve device.
It is obtained by constant.
【0027】また本発明の多段気体圧縮機は、バイパス
通路を最終段圧縮要素に隣接し且つ最終段圧縮要素の圧
縮室に通じる吐出室を経由させたものである。
[0027] In the multistage gas compressor of the present invention, the bypass passage passes through the discharge chamber adjacent to the final stage compression element and communicating with the compression chamber of the final stage compression element.
【0028】また本発明の多段気体圧縮機は、バネ装置
は、それ自身の温度が上昇するとその付勢力を増し、そ
れ自身の温度が下降するとその付勢力を減少する形状記
憶特性を備えたものである。
The multistage gas compressor according to the present invention may further comprise a spring device.
Increases its bias when its own temperature rises,
The shape notation that reduces its biasing force when its own temperature falls
It has a memory characteristic.
【0029】[0029]
【作用】上記手段による作用は、以下のとおりである。The operation of the above means is as follows.
【0030】本発明は、低段圧縮要素の吐出弁装置が開
弁する直前の連通路の圧力が、低段圧縮要素の圧縮室圧
力よりも低くなり、吐出弁装置の開弁が早まる。
According to the present invention, the discharge valve device for the low-stage compression element is opened.
The pressure in the communication passage immediately before valve opening is the compression chamber pressure of the low-stage compression element.
And the opening of the discharge valve device is accelerated.
【0031】また、低段圧縮要素の圧縮開始後、170
度前後で低段圧縮要素の吐出弁装置が開弁し、低段圧縮
要素からの排出気体量と高段圧縮要素の吸入気体量との
間の 過不足量が少なくなり、連通路内気体の過不足に起
因して生じる圧力脈動が抑制される。
After the compression of the low-stage compression element is started, 170
The low-stage compression element discharge valve device opens at around
Between the amount of exhaust gas from the element and the amount of
The excess and deficiency during the operation is reduced,
The resulting pressure pulsation is suppressed.
【0032】また本発明は、圧縮機起動と同時に、低段
圧縮要素に吸入された気体が圧縮・吐出され、連通路を
介して高段圧縮要素の吸入側に送出される際に、連通路
を通過する気体が圧縮起動前の圧力に等しい密閉容器内
の吐出ガス排出空間またはそれに通じる空間の圧力より
も高いので、連通路の気体の一部がバイパス弁装置を介
して高段圧縮要素の吐出室に流入し、高段圧縮要素のシ
リンダで圧縮された吐出気体と合流して、密閉容器内の
吐出ガス排出空間に排出される。気体に含まれる潤滑油
の大部分は、そのガス空間で分離され、吐出ガス排出空
間の底部の油溜に収集される一方、残りの潤滑油は気体
と共に圧縮機の外部に排出する通常の吐出ガス流れを形
成して、潤滑油の拡散と圧縮機から外部配管系への流出
が防止される。
Also, the present invention provides a low-stage
The gas sucked into the compression element is compressed and discharged, and
Through the communication passage when delivered to the suction side of the high-stage compression element
In a closed vessel where the gas passing through
From the pressure of the discharge gas discharge space or the space leading to it
Part of the gas in the communication passage through the bypass valve device
Flows into the discharge chamber of the high-stage compression element
Merge with the discharge gas compressed by the Linda, and
It is discharged to the discharge gas discharge space. Lubricating oil contained in gas
Is separated by its gas space and discharge gas discharge air
While the remaining lubricating oil is gaseous
Together with the normal discharge gas flow discharged outside the compressor.
To spread the lubricating oil and leak from the compressor to the external piping system
Is prevented.
【0033】また本発明は、軸受部品等の摺動部への潤
滑油供給が不十分な圧縮機起動初期には、低段側圧縮要
素に流体が多量流入して連通路に送出された気体の圧力
が異常に高くなるが、バイパス通路の途中に配置された
バイパス弁装置の弁体に作用するバネ装置の付勢力が弱
いので、バイパス通路が開通し、連通路の気体の一部が
高段圧縮要素の吐出側に流出し、連通路の気体圧力が一
時的に急降下し、高段圧縮要素の圧縮負荷が軽減する。
圧縮機冷時起動後の時間経過と共にバイパス弁装置に付
勢力を与えるバネ装置の温度が上昇してその付勢力が増
加する一方、低段圧縮要素の吸入気体の量も次第に適正
安定し、連通路の気体圧力も追従して低下安定し、バイ
パス通路が遮断して、低段圧縮要素から吐出された全て
の気体を高段圧縮要素でも再び、吸入・圧縮し、高段圧
縮要素の吐出圧力を高めて、通常の高圧縮用多段圧縮機
として作動する。
Further, the present invention provides a method for lubricating a sliding part such as a bearing part.
In the early stage of compressor startup with insufficient lubricating oil supply, low stage side compression
Pressure of the gas that has flowed into the element,
Is abnormally high, but is located in the middle of the bypass passage.
The biasing force of the spring device acting on the valve element of the bypass valve device is weak.
Therefore, the bypass passage opens and some of the gas in the communication passage
The gas flows out to the discharge side of the high-stage compression element and the gas pressure in the
It drops suddenly occasionally, and the compression load of the high-stage compression element is reduced.
With the passage of time after the compressor starts cold, the bypass valve
The temperature of the spring device that gives the bias rises, and the bias increases.
In addition, the amount of intake gas of the low-stage compression element gradually becomes appropriate.
Stable, the gas pressure in the communication passage also follows and stabilizes,
All the passage discharged by the low-stage compression element
Gas is sucked and compressed again by the high-stage compression element
Multi-stage compressor for normal high compression by increasing discharge pressure of compression element
Works as
【0034】[0034]
【実施例】以下、本発明による第1の実施例のローリン
グピストン形ロータリ式2段冷媒圧縮機について、図1
〜図6を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A rolling piston type rotary two-stage refrigerant compressor according to a first embodiment of the present invention will now be described with reference to FIG.
This will be described with reference to FIG.
【0035】図1はアキュームレータ2を備えたローリ
ングピストン形ロータリ式2段冷媒圧縮機1,凝縮器1
3,第1膨張弁15,気液分離器17,第2膨張弁1
9,蒸発器21を順次接続した2段圧縮2段膨張冷凍サ
イクルの配管系統を示し、図2はローリングピストン形
ロータリ式2段圧縮機1の断面、図3は2段圧縮機構の
要部詳細を示す。
FIG. 1 shows a rolling piston type rotary two-stage refrigerant compressor provided with an accumulator 2, a condenser 1
3, the first expansion valve 15, the gas-liquid separator 17, the second expansion valve 1
9 shows a piping system of a two-stage compression two-stage expansion refrigeration cycle in which evaporators 21 are sequentially connected. FIG. 2 is a cross-sectional view of a rolling piston type rotary two-stage compressor 1, and FIG. Is shown.
【0036】密閉容器3内の上部空間の電動機室8には
電動機5、その下部には2段圧縮機構4を配置し、その
外周部および底部が油溜35として構成されている。
An electric motor 5 is arranged in an electric motor room 8 in an upper space in the closed container 3, and a two-stage compression mechanism 4 is arranged below the electric motor 5. An outer peripheral portion and a bottom portion are formed as an oil reservoir 35.
【0037】電動機5の固定子5aは密閉容器3の内壁
に焼きばめ固定されている。2段圧縮機構4は、上部の
高段圧縮要素9と下部の低段圧縮要素7と両圧縮要素
(7,9)の間に配置された平板形状の中板36とから
成り、低段圧縮要素7の吐出カバーA37と中板36の
外周部の数カ所(図示なし)で密閉容器3の内壁に溶接
固定されている。
The stator 5a of the electric motor 5 is fixed on the inner wall of the closed casing 3 by shrink fitting. The two-stage compression mechanism 4 includes an upper high-stage compression element 9, a lower low-stage compression element 7, and a flat plate-shaped middle plate 36 disposed between both compression elements (7, 9). The discharge cover A37 of the element 7 and the outer peripheral portion of the middle plate 36 are welded and fixed to the inner wall of the sealed container 3 at several places (not shown).
【0038】高段圧縮要素9のシリンダ容積は、低段圧
縮要素7のシリンダ容積の約45〜65%に設定されて
いる。
The cylinder capacity of the high-stage compression element 9 is set to about 45 to 65% of the cylinder capacity of the low-stage compression element 7.
【0039】高段圧縮要素9の第2のシリンダブロック
9aの上側面に取り付けられた上部軸受部材11と低段
圧縮要素7の第1のシリンダブロック7aの下側面に取
り付けられた下部軸受部材12とに支持された駆動軸6
は電動機5の回転子5bに連結固定されている。
An upper bearing member 11 attached to the upper surface of the second cylinder block 9a of the high-stage compression element 9 and a lower bearing member 12 attached to the lower surface of the first cylinder block 7a of the low-stage compression element 7 Drive shaft 6 supported by
Is connected and fixed to the rotor 5b of the electric motor 5.
【0040】駆動軸6の第1クランク軸6aと第2クラ
ンク軸6bは、その偏心方向が互いに180度ずらして
配置されている。
The first crankshaft 6a and the second crankshaft 6b of the drive shaft 6 are arranged such that their eccentric directions are shifted from each other by 180 degrees.
【0041】7b,9bは駆動軸6の第1クランク軸6
a,第2クランク軸6bに装着された第1ピストンおよ
び第2ピストン、38,39は第1ピストン7b,第2
ピストン9bの外周面に当接して低段圧縮要素7および
高段圧縮要素9の各シリンダ内を吸入室と圧縮室とに区
画するベーン、40,41はベーン38,39の背面を
付勢するコイルバネである。
7b and 9b are first crankshafts 6 of the drive shaft 6.
a, the first piston and the second piston mounted on the second crankshaft 6b, 38 and 39 are the first piston 7b and the second piston
Vane 40, 41 which abuts on the outer peripheral surface of piston 9b to partition the inside of each cylinder of low-stage compression element 7 and high-stage compression element 9 into a suction chamber and a compression chamber. It is a coil spring.
【0042】高段圧縮要素9のコイルバネ41の後端部
は密閉容器3の内壁に支持されているが、低段圧縮要素
7のコイルバネ40の後端部は第1のシリンダブロック
7aに密封装着されたキャップ42に支持されている。
The rear end of the coil spring 41 of the high-stage compression element 9 is supported on the inner wall of the closed casing 3, while the rear end of the coil spring 40 of the low-stage compression element 7 is hermetically mounted on the first cylinder block 7a. Supported by the closed cap 42.
【0043】高段圧縮要素9のベーン39の背面室B4
3は油溜35に開通しているが、低段圧縮要素7のベー
ン38の背面室A44はキャップ42によってその端部
を密封され、油溜35と遮断されている。
The rear chamber B4 of the vane 39 of the high-stage compression element 9
3 is open to the oil sump 35, but the rear chamber A44 of the vane 38 of the low-stage compression element 7 has its end sealed by a cap 42 and is isolated from the oil sump 35.
【0044】低段圧縮要素7の吐出カバーA37は下部
軸受部材12と共に第1のシリンダブロック7aに取付
られて低段吐出室45を形成し、その底部は吐出室油溜
46である。
The discharge cover A 37 of the low-stage compression element 7 is attached to the first cylinder block 7 a together with the lower bearing member 12 to form a low-stage discharge chamber 45, and the bottom thereof is a discharge chamber oil reservoir 46.
【0045】吐出室油溜46は吐出カバーA37に固定
され且つ複数の小穴47を有する仕切り板48によって
低段吐出室45の上部空間と区画されると共に、その底
部が吐出カバーA37と下部軸受部材12に設けられた
油戻し穴A49a,油戻し穴B49bから成る油戻し通
路49を介してベーン38の背面室A44に通じてい
る。
The discharge chamber oil reservoir 46 is fixed to the discharge cover A37 and is partitioned from the upper space of the low-stage discharge chamber 45 by a partition plate 48 having a plurality of small holes 47, and its bottom is formed by the discharge cover A37 and the lower bearing member. 12 communicates with the rear chamber A44 of the vane 38 via an oil return passage 49 formed of an oil return hole A49a and an oil return hole B49b.
【0046】制振鋼板を成形した吐出カバーB50は、
上部軸受部材11の外周を囲むように配置されて高段吐
出室51を形成している。
The discharge cover B50 formed of a damping steel plate is
The high-stage discharge chamber 51 is formed so as to surround the outer periphery of the upper bearing member 11.
【0047】電動機5の回転子5bの端部に凹設された
消音室52は、上部軸受部材11の突出部11aの外周
を囲む吐出カバーB50の突出部50aとの間の環状通
路53を介して高段吐出室51と連通すると共に、回転
子5bのエンドリング5cの内側面と吐出カバーB50
の突出部50aとの間の環状通路54を介して密閉容器
3の内部空間に通じている。
The muffler chamber 52 recessed at the end of the rotor 5b of the electric motor 5 is provided via an annular passage 53 between the muffler chamber 52 and the protrusion 50a of the discharge cover B50 surrounding the outer periphery of the protrusion 11a of the upper bearing member 11. And the inner surface of the end ring 5c of the rotor 5b and the discharge cover B50.
Through the annular passage 54 between the protrusion 50a and the inner space of the closed container 3.
【0048】低段吐出室45と高段圧縮要素9の吸入室
56とは、下部軸受部材12に設けられたガス通路A5
5a,第1のシリンダブロック7aに設けられたガス通
路B55b,中板36に設けられたガス通路C55cか
ら成る連通路55を介して通じている。
The low-stage discharge chamber 45 and the suction chamber 56 of the high-stage compression element 9 are connected to a gas passage A5 provided in the lower bearing member 12.
5a, a gas passage B55b provided in the first cylinder block 7a, and a communication passage 55 including a gas passage C55c provided in the middle plate 36.
【0049】連通路55の途中から分岐したバイパス通
路57は高段圧縮要素9の第2のシリンダブロック9a
と上部軸受部材11とに設けられたバイパス通路A57
a,バイパス通路B57bとで形成され、その下流側が
高段吐出室51に開通している。
The bypass passage 57 branched from the middle of the communication passage 55 is connected to the second cylinder block 9 a of the high-stage compression element 9.
Passage A57 provided in the upper bearing member 11 and the upper bearing member 11
a, the bypass passage B57b, and the downstream side thereof is open to the high-stage discharge chamber 51.
【0050】バイパス通路A57aには、その外周部に
切り欠き部を有する薄鋼板製の弁体58a(図4にその
外観形状を示す)とコイルバネ58bとから成るバイパ
ス弁装置58が装着され、バイパス弁装置58は連通路
55から高段吐出室51へのみの流体流れを許容する。
The bypass passage A 57a is provided with a bypass valve device 58 comprising a thin steel valve body 58a (noted in FIG. 4) and a coil spring 58b. The valve device 58 allows fluid flow only from the communication passage 55 to the high-stage discharge chamber 51.
【0051】コイルバネ58bは、それ自身が温度上昇
するとそのバネ定数が増加する形状記憶合金特性を備
え、弁体58aへの付勢力が大きくなる。
The coil spring 58b has a shape memory alloy characteristic in which the spring constant increases when the temperature of the coil spring 58b increases, and the urging force on the valve body 58a increases.
【0052】連通路55の一部を構成するガス通路B5
5bは連通管59を介して気液分離器17の下流側に通
じており、冷媒インジェクシュン通路72を形成してい
る。
The gas passage B5 constituting a part of the communication passage 55
5b communicates with the downstream side of the gas-liquid separator 17 via the communication pipe 59, and forms a refrigerant injection passage 72.
【0053】連通管59は第1のシリンダブロック7a
に挿入され、その接続部の外周は0リング66でシール
され、その端部とガス通路B55bとの間に図4と類似
形状の弁体60が配置されて逆士弁装置71を構成して
いる。
The communication pipe 59 is connected to the first cylinder block 7a.
The outer periphery of the connection portion is sealed with an O-ring 66, and a valve body 60 having a shape similar to that of FIG. 4 is arranged between the end portion and the gas passage B55b to form a check valve device 71. I have.
【0054】逆止弁装置71は、気液分離器17からガ
ス通路B55bへのみの流体流入を許容すべく構成され
ている。
The check valve device 71 is configured to allow fluid to flow only from the gas-liquid separator 17 to the gas passage B55b.
【0055】中板36には、その通路途中に絞り部を有
する油インジェクション通路61が設けられており、そ
の上流側は油溜35に、下流側はベーン38の背面室A
44と高段圧縮要素9の圧縮室とにそれぞれ間欠的に連
通すべく設けられている。
The middle plate 36 is provided with an oil injection passage 61 having a throttle portion in the middle of the passage. The oil injection passage 61 has an upstream side in the oil reservoir 35 and a downstream side in the rear chamber A of the vane 38.
44 and a compression chamber of the high-stage compression element 9 are provided to intermittently communicate with each other.
【0056】油インジェクション通路61の下流側通路
A61aと背面室A44とはベーン38が概略半分以上
の行程をピストン7bの側に前進している時に開通し、
それ以外の時に遮断すべくベーン44の摺動端面に開口
している。
The downstream side passage A61a of the oil injection passage 61 and the back chamber A44 are opened when the vane 38 is moving more than half the stroke toward the piston 7b,
Open at the sliding end surface of the vane 44 to shut off at other times.
【0057】油インジェクション通路61の下流側通路
B61bと高段圧縮要素9の圧縮室とは、ベーン39が
概略3分の1の行程までピストン7bの側に前進した時
に開通が始まり、概略3分の1の行程を後退した時にピ
ストン9bの摺動端面によって遮断が始まるべく位置に
開口している(第5図参照)。
The downstream passage B61b of the oil injection passage 61 and the compression chamber of the high-stage compression element 9 begin to open when the vane 39 advances to the piston 7b side to approximately one third of the stroke, and approximately three minutes When the first stroke is retreated, the piston 9b is opened at a position where the sliding end surface of the piston 9b starts to shut off (see FIG. 5).
【0058】駆動軸6の軸芯部には、貫通した軸穴62
が設けられ、その下部にポンプ装置63が装着されてい
る。
A shaft hole 62 penetrates through the shaft core of the drive shaft 6.
Is provided, and a pump device 63 is attached to a lower portion thereof.
【0059】上部軸受部材11と下部軸受部材12とに
支持された駆動軸5の外周面に螺旋状の油溝64,64
aが設けられ、螺旋状の油溝64の上流側は軸穴62か
ら分岐した半径方向油孔を介してポンプ装置63の下流
側に通じ、螺旋状の油溝64の下流側は消音室52に開
通していない。
Helical oil grooves 64, 64 are formed on the outer peripheral surface of the drive shaft 5 supported by the upper bearing member 11 and the lower bearing member 12.
a, the upstream side of the helical oil groove 64 communicates with the downstream side of the pump device 63 via the radial oil hole branched from the shaft hole 62, and the downstream side of the helical oil groove 64 is connected to the silencing chamber 52. Not open to traffic.
【0060】アキュームレータ2の下流側は低段圧縮要
素7の吸入室(図示なし)に連通し、密閉容器3の上部
に吐出管7eが設けられている。
The downstream side of the accumulator 2 communicates with a suction chamber (not shown) of the low-stage compression element 7, and a discharge pipe 7 e is provided above the closed casing 3.
【0061】気液分離器17の底部には第2膨張弁19
に通じる液管65が接続され、気液分離器17の胴体外
表面にはポリエチレン膜をコーテイングした後、加熱
し、5mm程度まで発泡させたポリエチレン発泡材67
で保温処理が施されている。
The second expansion valve 19 is provided at the bottom of the gas-liquid separator 17.
And a polyethylene film coated on the outer surface of the body of the gas-liquid separator 17 and then heated and foamed to about 5 mm.
Insulation treatment is applied.
【0062】図6は、圧縮機冷時起動直後のバイパス通
路57の開通状態と連通管59の端部を弁体60が閉塞
した状態、及び油インジェクション通路61の下流側通
路61aと背面室A44との間をベーン38によって遮
断した状態を示す。
FIG. 6 shows a state in which the bypass passage 57 is opened immediately after the compressor is started when the compressor is cold, a state in which the end of the communication pipe 59 is closed by the valve body 60, a downstream passage 61 a of the oil injection passage 61 and the rear chamber A 44. And a state in which the vane 38 is shut off.
【0063】図9は、油溜35と背面室A44との間を
連通する絞り通路部を有する油インジェクション通路6
1cを中板36と第1のシリンダブロック7aとの接合
面部に極浅の溝を設けて絞り通路を構成すると共に、低
段吐出室45から背面室A44への油戻し穴C49cの
開口部を背面室A44の上部に設けた本発明の第2の実
施例を示す。
FIG . 9 shows an oil injection passage 6 having a throttle passage portion communicating between the oil reservoir 35 and the rear chamber A44.
1c is provided with an extremely shallow groove at the joint surface between the middle plate 36 and the first cylinder block 7a to form a throttle passage, and the opening of the oil return hole C49c from the low-stage discharge chamber 45 to the rear chamber A44 is formed. A second embodiment of the present invention provided above the rear room A44 is shown.
【0064】次に、本発明の第3の実施例のスライドベ
ーン形ロータリ式2段冷媒圧縮機について、図9,図1
を参照しながら説明する。
Next, a slide vane type rotary two-stage refrigerant compressor according to a third embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG.
【0065】2段圧縮機構104は、第1の実施例の場
合と同様に、高段圧縮要素109を上段に、中板13
6,低段圧縮要素107を順次配置して構成されてい
る。
As in the case of the first embodiment, the two-stage compression mechanism 104 includes the high-stage compression element 109 on the upper stage and the middle plate 13
6, the low-stage compression element 107 is sequentially arranged.
【0066】電動機5の回転子5bに連結された駆動軸
106には高段圧縮要素109が低段圧縮要素107の
吸入・圧縮タイミングに対して約60度〜80度の位相
遅れで吸入・圧縮作用を開始すべく第1のロータ107
b,第2のロータ109bが配置固定され、第1のロー
タ107bに設けられたベーン溝68aにはベーン13
8が配置され、第2のロータ109bに設けられたベー
ン溝68bにはベーン139が配置されている。
On the drive shaft 106 connected to the rotor 5b of the motor 5, the high-stage compression element 109 sucks and compresses with a phase delay of about 60 to 80 degrees with respect to the suction and compression timing of the low-stage compression element 107. To start the operation, the first rotor 107
b, the second rotor 109b is arranged and fixed, and the vane 13 is inserted into a vane groove 68a provided in the first rotor 107b.
8 are arranged, and a vane 139 is arranged in a vane groove 68b provided in the second rotor 109b.
【0067】高段圧縮要素109のベーン溝68bと油
溜35とは、駆動軸106を貫通して設けた軸穴16
2,軸穴162から分岐した半径方向孔69,中板13
6の第2のロータ109b側面に設けられた環状溝70
を介して常時連通している。
The vane groove 68 b of the high-stage compression element 109 and the oil sump 35 are provided in the shaft hole 16 formed through the drive shaft 106.
2, a radial hole 69 branched from the shaft hole 162, the intermediate plate 13
6, the annular groove 70 provided on the side surface of the second rotor 109b.
Is always in communication via
【0068】中板136に設けられた絞り通路部を有す
る油インジェクション通路161の下流側通路B161
bは高段圧縮要素109の圧縮室に第1の実施例の場合
と同様に間欠的に連通し、下流側通路B161bが圧縮
室に開口する位置は、ベーン139の先端が最も前進す
る位置に相当する。
A downstream passage B 161 of the oil injection passage 161 having a throttle passage provided in the middle plate 136.
b intermittently communicates with the compression chamber of the high-stage compression element 109 in the same manner as in the first embodiment, and the position where the downstream passage B161b opens into the compression chamber is at the position where the tip of the vane 139 is most advanced. Equivalent to.
【0069】また、油インジェクション通路161の下
流側通路A161aは、低段圧縮要素107の第1のロ
ータ107bが回転するのに伴いベーン溝68aに間欠
的に連通し、そのベーン溝68aが低段圧縮要素107
の下部軸受部材112に設けられた油戻し穴B149
b,吐出カバーA37に設けられた油戻し穴A49aか
ら成る油戻し通路149を介して低段吐出室45に通じ
ている。
The downstream passage A 161a of the oil injection passage 161 intermittently communicates with the vane groove 68a as the first rotor 107b of the low-stage compression element 107 rotates, and the vane groove 68a Compression element 107
Oil return hole B149 provided in the lower bearing member 112 of FIG.
b, communicating with the low-stage discharge chamber 45 via an oil return passage 149 formed of an oil return hole A49a provided in the discharge cover A37.
【0070】その他の構成は、第1の実施例と同様であ
るので説明を省略する。次に、本発明の第4の実施例の
ローリングピストン形ロータリ式2段冷媒圧縮機の低段
側圧縮要素の吐出室の構成およびそれに通じる給油通路
の構成などについて、図11を参照しながら説明する。
The other configuration is the same as that of the first embodiment, and the description is omitted. Next, the configuration of the discharge chamber of the low-stage compression element of the rolling piston type rotary two-stage refrigerant compressor of the fourth embodiment of the present invention and the configuration of the oil supply passage leading to it will be described with reference to FIG. I do.
【0071】従来の1段圧縮機に使用されるアキューム
レータの吸入管よりも、その管内径を1.5倍程度大き
くしてアキュームレータの過給作用(圧縮機の吸入作用
に追従して吸入管内の気体圧力が脈動現象を生じ、周期
的に圧力上昇した気体が吸入室に流入しその状態で圧縮
されることにより吸入効率が高くなる現象のこと)を抑
制した吸入管202aを備えた第1のアキュームレータ
202の下流側は、第1の実施例の場合と同様に、低段
圧縮要素207の吸入側に接続されている。
The internal diameter of the suction pipe of the accumulator used in the conventional one-stage compressor is made about 1.5 times larger than that of the suction pipe, and the supercharging action of the accumulator (the suction pipe inside the suction pipe follows the suction action of the compressor). A first phenomenon in which the gas pressure causes a pulsation phenomenon, and the gas whose pressure increases periodically flows into the suction chamber and is compressed in that state, thereby increasing the suction efficiency. The downstream side of the accumulator 202 is connected to the suction side of the low-stage compression element 207 as in the case of the first embodiment.
【0072】低段圧縮要素207の低段吐出室245
は、駆動軸6を支持する下部軸受部材212を囲むよう
に第1のシリンダブロック207aに取り付けられた吐
出カバーA237と第1のシリンダブロック207aと
で形成され、且つその内容積が第1の実施例の構成より
も小型化されている。
The low-stage discharge chamber 245 of the low-stage compression element 207
Is formed by a discharge cover A 237 attached to the first cylinder block 207a so as to surround the lower bearing member 212 supporting the drive shaft 6, and the first cylinder block 207a, and the inner volume of the first cylinder block 207 is the first embodiment. It is smaller than the example configuration.
【0073】高段圧縮要素209は、低段圧縮要素20
7の吸入・圧縮タイミングに対して約60度〜80度の
位相遅れで吸入・圧縮作用を開始して低段吐出室245
内の過剰な圧力上昇を抑制することにより、低段圧縮要
素207での圧縮動力を低減すべく配置されている。
The high-stage compression element 209 is
7, the suction / compression operation is started with a phase delay of about 60 to 80 degrees from the suction / compression timing of the low-stage discharge chamber 245.
It is arranged so as to reduce the compression power in the low-stage compression element 207 by suppressing an excessive pressure rise in the inside.
【0074】背面室A244に連通している低段吐出室
245は、その上部が高段圧縮要素209の吸入側と連
通路255を介して接続され、その途中で連通路255
に接続された第2のアキュームレータ202bは、その
上流側を第1の実施例の場合と同様の気液分離器(図示
なし)に接続され、その下流側の接続部端には第1の実
施例と同様な弁体206が装着されている。
The upper part of the low-stage discharge chamber 245 communicating with the rear chamber A 244 is connected to the suction side of the high-stage compression element 209 via the communication passage 255, and the communication passage 255 is provided on the way.
The second accumulator 202b is connected at its upstream side to a gas-liquid separator (not shown) similar to that of the first embodiment, and has a downstream end connected to the first embodiment. A valve body 206 similar to the example is mounted.
【0075】弁体206には気液分離器からの接続部開
口端を塞ぐためのコイルバル270が付勢されて逆止弁
装置271を構成し、コイルバネ270はそれ自身の温
度が上昇するとバネ定数が減少して弁体206への付勢
力を小さくする形状記憶特性を備えている。
A coil valve 270 for closing the opening end of the connection portion from the gas-liquid separator is urged to the valve body 206 to constitute a check valve device 271. The coil spring 270 has a spring constant when its own temperature rises. Is reduced to reduce the urging force on the valve body 206.
【0076】その他の構成は、第1の実施例と同様であ
るので説明を省略する。以上のように構成された2段圧
縮機とその冷凍サイクルについて、その動作を説明す
る。
The other configuration is the same as that of the first embodiment, and the description is omitted. The operation of the two-stage compressor and the refrigeration cycle configured as described above will be described.
【0077】図1〜図6において、モータ5によって駆
動軸6が回転駆動すると、先ず、低段圧縮要素7が吸入
を開始してアキュームレータ2から冷媒ガスが低段圧縮
要素7の吸入室に流入する。駆動軸6のクランク角度の
進行に伴って低段吸入室容積が増加して行く一方、低段
圧縮室での圧縮作用も同時に進行し、圧縮冷媒ガス圧が
次第に昇圧する。
1 to 6, when the drive shaft 6 is driven to rotate by the motor 5, first, the low-stage compression element 7 starts suction and refrigerant gas flows from the accumulator 2 into the suction chamber of the low-stage compression element 7. I do. As the crank angle of the drive shaft 6 advances, the volume of the low-stage suction chamber increases, and at the same time, the compression action in the low-stage compression chamber also advances, and the compressed refrigerant gas pressure gradually increases.
【0078】圧縮冷媒ガスは、吸入作用開始後、低段側
クランク角度が約170度進行した頃に下部軸受部材1
2に設けられた吐出ポート(図示なし)から低段吐出室
45に吐出される。
The compressed refrigerant gas is supplied to the lower bearing member 1 when the low-stage crank angle advances by about 170 degrees after the start of the suction operation.
2 is discharged from a discharge port (not shown) provided in the lower stage discharge chamber 45.
【0079】低段吐出室45に吐出された冷媒ガスは、
油戻し穴A49aと油戻し穴B49bとから成る油戻し
通路49を介して吐出室油溜46の底部に貯溜する潤滑
油と共に背面室A44に逆流入し、ベーン38の背面を
第1のピストン7bの側に背圧付勢する。
The refrigerant gas discharged into the low-stage discharge chamber 45 is:
The lubricating oil stored at the bottom of the discharge chamber oil reservoir 46 flows back into the rear chamber A44 through the oil return passage 49 including the oil return hole A49a and the oil return hole B49b, and the back surface of the vane 38 is moved to the first piston 7b. Apply back pressure to the side.
【0080】起動直後、低段吐出室45に排出された冷
媒ガスは、ガス通路A55a,ガス通路B55b,ガス
通路C55cから成る連通路55を経由して高段圧縮要
素9の吸入室56に送出される。
Immediately after the start, the refrigerant gas discharged into the low-stage discharge chamber 45 is sent out to the suction chamber 56 of the high-stage compression element 9 via the communication passage 55 including the gas passage A 55a, the gas passage B 55b, and the gas passage C 55c. Is done.
【0081】低段圧縮要素7の吸入開始から60〜80
度遅れて高段圧縮要素9も吸入・圧縮作用を開始する。
60 to 80 from the start of suction of the low-stage compression element 7
After a delay, the high-stage compression element 9 also starts the suction / compression operation.
【0082】起動直後の低段吐出室45および連通路5
5の冷媒ガスは、密閉容器3の内部空間やローリングピ
ストン型ロータリ式2段圧縮機1に配管接続する凝縮器
13,気液分離器17よりも高い。
The low-stage discharge chamber 45 and the communication passage 5 immediately after startup
The refrigerant gas of No. 5 is higher than the condenser 13 and the gas-liquid separator 17 connected to the internal space of the closed vessel 3 and the rolling piston type rotary two-stage compressor 1 by piping.
【0083】したがって、図6に示すように、連通路5
5を通過する吐出冷媒ガスと気液分離器17との間の圧
力差によって弁体60が移動して気液分離器17の接続
管59の端部を塞ぎ、連通路55の冷媒ガスが気液分離
器17に逆流することが阻止される。
Therefore, as shown in FIG.
The valve body 60 moves due to the pressure difference between the discharged refrigerant gas passing through the gas passage 5 and the gas-liquid separator 17 to close the end of the connection pipe 59 of the gas-liquid separator 17, and the refrigerant gas in the communication path 55 Backflow to the liquid separator 17 is prevented.
【0084】また連通路55の冷媒ガス圧力は密閉容器
3の内部空間に通じる高段吐出室51の圧力よりも高
く,バイパス弁装置58の弁体58aがコイルバネ58
bの付勢力に抗してコイルバネ58bの方に移動してバ
イパス通路57を開通し、連通路55を通過する冷媒ガ
スの一部が高段吐出室51に流出して吸入室56の冷媒
ガス圧力が降下する。その結果、コイルバネ41のみの
付勢力に依存する高段圧縮要素9のベーン39は、圧力
上昇した冷媒ガスが急激に吸入室56に流入することに
よる急激な後退の際に生じるジャンピング現象を起こす
ことなく、第2のピストン9bの外周面の運動に追従し
て後退し、ベーン39と第2のピストン9bとの衝突音
や圧縮ガス漏れを生ぜずに円滑な軽負荷圧縮作用を開始
する。
The pressure of the refrigerant gas in the communication passage 55 is higher than the pressure in the high-stage discharge chamber 51 communicating with the internal space of the closed container 3, and the valve body 58 a of the bypass valve device 58
b, moves toward the coil spring 58b to open the bypass passage 57, and a part of the refrigerant gas passing through the communication passage 55 flows out into the high-stage discharge chamber 51 and flows into the suction chamber 56. The pressure drops. As a result, the vane 39 of the high-stage compression element 9 that depends on the urging force of only the coil spring 41 causes a jumping phenomenon that occurs at the time of a sudden retreat due to a sudden increase in the pressure of the refrigerant gas flowing into the suction chamber 56. Instead, it retreats following the movement of the outer peripheral surface of the second piston 9b, and starts a smooth light load compression action without generating a collision sound between the vane 39 and the second piston 9b or a compressed gas leak.
【0085】なお、図7に示す如く、低段圧縮要素7の
吸入・圧縮作用開始から60〜80度遅延して高段圧縮
要素9の吸入・圧縮作用が開始することから、低段圧縮
室から低段吐出室45に排出される冷媒ガス容積と高段
圧縮要素9の吸入室容積との間に過不足が生じ、その過
不足量は駆動軸6のクランク角度の進行と共に変化す
る。その結果、低段吐出室45に排出される冷媒ガス量
が不足するクランク角度の範囲と余剰するクランク角度
の範囲とが存在することから、低段吐出室45および連
通路55の冷媒ガスに圧力脈動が生じる。この圧力脈動
は駆動軸6の回転速度が速い程激しく生じる傾向を示
す。
As shown in FIG. 7, the suction / compression action of the high-stage compression element 9 is started with a delay of 60 to 80 degrees from the start of the suction / compression action of the low-stage compression element 7. An excess or deficiency occurs between the volume of the refrigerant gas discharged into the low-stage discharge chamber 45 and the volume of the suction chamber of the high-stage compression element 9, and the excess or deficiency changes as the crank angle of the drive shaft 6 advances. As a result, since there is a range of the crank angle in which the amount of the refrigerant gas discharged into the low-stage discharge chamber 45 is insufficient and a range of the surplus crank angle, the pressure of the refrigerant gas in the low-stage discharge chamber 45 and the communication passage 55 is increased. Pulsation occurs. This pressure pulsation tends to increase as the rotation speed of the drive shaft 6 increases.
【0086】しかしながら、高段圧縮要素9のシリンダ
容積を低段圧縮要素7のシリンダ容積の45〜65%に
設定されているので、低段圧縮要素7の吐出弁装置(図
示なし)が開弁する直前の低段吐出室45の圧力が低段
圧縮要素7の圧縮室圧力よりも低くなり、吐出弁装置
(図示なし)が開弁し易くなっている。
However, the cylinder of the high-stage compression element 9
Reduce the volume to 45-65% of the cylinder capacity of the low-stage compression element 7
Since it is set, the discharge valve device of the low-stage compression element 7 (FIG.
(Not shown), the pressure in the low-stage discharge chamber 45 immediately before the valve opens is low.
The pressure becomes lower than the pressure of the compression chamber of the compression element 7 and the discharge valve device
(Not shown) is easy to open.
【0087】また、低段圧縮要素7の圧縮開始後、17
0度前後で吐出弁装置(図示なし)が開弁するので、低
段圧縮要素7からの吐出冷媒ガス量と高段圧縮要素9の
吸入冷媒ガス量との間の過不足量が少なくなり、連通路
内冷媒ガスの過不足に起因して生じる圧力脈動が抑制さ
れ、過圧縮低減による入力損失が少なくなる。
After the compression of the low-stage compression element 7 starts, 17
Since the discharge valve device (not shown) opens around 0 degrees,
The amount of refrigerant gas discharged from the stage compression element 7 and the
The amount of excess and deficiency between the intake refrigerant gas amount is reduced, and the communication passage
Pressure pulsation caused by excess or deficiency of internal refrigerant gas is suppressed.
As a result, input loss due to reduction of overcompression is reduced.
【0088】高段吐出室51に排出された吐出冷媒ガス
は、環状通路53を経て消音室52に流入し、その後、
環状通路54を介して密閉容器3の内部空間に送出され
る。
The discharged refrigerant gas discharged into the high-stage discharge chamber 51 flows into the sound deadening chamber 52 through the annular passage 53, and thereafter,
It is sent out to the internal space of the closed container 3 via the annular passage 54.
【0089】圧縮機冷時始動後の時間経過と共に電動機
室8およびこれに通じる凝縮器13と気液分離器17の
圧力が上昇し、バイパス通路57内のバイバス弁装置5
8の弁体58aが高段吐出室51のガス圧と温度上昇に
よりそのバネ定数を増したコイルバネ58bにより付勢
されてバイパス通路57を閉じると共に、連通管59の
端部を閉塞していた弁体60が連通路55の方に移動し
て気液分離器17と連通路55との間が開通する。
With the lapse of time after the start of the compressor in a cold state, the pressures in the motor chamber 8 and the condenser 13 and the gas-liquid separator 17 communicating therewith increase, and the bypass valve device 5 in the bypass passage 57
The valve body 58a of No. 8 is urged by a coil spring 58b whose spring constant is increased by the gas pressure and temperature rise of the high-stage discharge chamber 51 to close the bypass passage 57 and close the end of the communication pipe 59. The body 60 moves toward the communication path 55, and the space between the gas-liquid separator 17 and the communication path 55 is opened.
【0090】また、吐出圧力が作用する油溜35の潤滑
油は、高段圧縮要素9のコイルバネ41と共にベーン3
9の背面を背圧付勢すると共にベーン39の摺動面を潤
滑しながら摺動面隙間を介して吸入室56と圧縮室とに
微少量流入する。また潤滑油は、絞り通路部を有する油
インジェクション通路61の下流側通路B61bを通じ
て減圧されて圧縮室に間欠的に給油され、圧縮室隙間の
油膜密封と第2のピストン39の摺動面の潤滑に供され
る。
The lubricating oil in the oil reservoir 35 to which the discharge pressure acts is supplied to the vane 3 together with the coil spring 41 of the high-stage compression element 9.
A small amount flows into the suction chamber 56 and the compression chamber via the sliding surface gap while urging the back surface of the back surface 9 and applying lubrication to the sliding surface of the vane 39. The lubricating oil is depressurized through the downstream passage B61b of the oil injection passage 61 having the throttle passage portion and is intermittently supplied to the compression chamber. The oil film seals the gap in the compression chamber and lubricates the sliding surface of the second piston 39. To be served.
【0091】また油溜35の潤滑油は、絞り通路部を有
する油インジェクション通路61の下流側通路A61a
を介して低段圧縮要素7の吐出圧力相当にまで減圧され
た後、低段圧縮要素7のベーン38が第1のピストン7
bの側に約3分の1程度に前進した時点から再び3分の
1程度にまで後退する間に、下流側通路A61aの背面
室A44への開口部が開通して背面室A44に流入す
る。
The lubricating oil in the oil reservoir 35 is supplied to a downstream passage A61a of an oil injection passage 61 having a throttle passage portion.
Is reduced to a pressure equivalent to the discharge pressure of the low-stage compression element 7 through the first piston 7.
During the retreat to about one-third from the point of time when it has advanced about one third toward the side b, the opening of the downstream passage A61a to the rear chamber A44 is opened and flows into the rear chamber A44. .
【0092】背面室A44に流入した潤滑油は、ベーン
38の摺動面を潤滑すると共に、油戻し穴B49b,油
戻し穴A49aを介して低段吐出室45に流入し、吐出
冷媒ガスに混入して高段圧縮要素9の吸入室56に流入
する。高段圧縮要素9の吸入室56に流入した潤滑油
は、背面室B43と下流側通路61bを介して流入した
潤滑油と合流して圧縮室隙間の密封と摺動面の潤滑と冷
却に供される。
The lubricating oil flowing into the rear chamber A44 lubricates the sliding surface of the vane 38, flows into the low-stage discharge chamber 45 via the oil return hole B49b and the oil return hole A49a, and mixes with the discharged refrigerant gas. Then, it flows into the suction chamber 56 of the high-stage compression element 9. The lubricating oil that has flowed into the suction chamber 56 of the high-stage compression element 9 merges with the lubricating oil that has flowed in via the rear chamber B43 and the downstream passage 61b to provide sealing for the compression chamber gap and lubrication and cooling of the sliding surface. Is done.
【0093】また油溜35の潤滑油は、駆動軸6の表面
に設けられた螺旋状の油溝64による粘性ポンプ作用と
駆動軸6の下端に設けられたポンプ装置62とによっ
て、軸穴62や半径方向孔69を介して駆動軸6を支持
する下部軸受部材12,上部軸受部材11の軸受面と第
1のピストン7b,第2のピストン9bの内側面に給油
される。螺旋状の油溝64aに供給された潤滑油は、粘
性ポンプ作用によって上部軸受部材11の軸受上端から
消音室52に排出され、高段吐出室51から排出された
2段圧縮の高圧吐出ガスと混合の後、環状通路54を経
て電動機室8に排出される。
The lubricating oil in the oil reservoir 35 is supplied to the shaft hole 62 by the viscous pumping action of the spiral oil groove 64 provided on the surface of the drive shaft 6 and the pump device 62 provided at the lower end of the drive shaft 6. Oil is supplied to the bearing surfaces of the lower bearing member 12 and the upper bearing member 11 and the inner surfaces of the first piston 7b and the second piston 9b supporting the drive shaft 6 via the radial holes 69. The lubricating oil supplied to the spiral oil groove 64a is discharged from the upper end of the bearing of the upper bearing member 11 to the muffling chamber 52 by viscous pump action, and the two-stage compressed high-pressure discharge gas discharged from the high-stage discharge chamber 51 After mixing, it is discharged to the motor room 8 through the annular passage 54.
【0094】電動機室8で潤滑油を分離した吐出冷媒ガ
スは、吐出管7eを経て圧縮機外部の冷凍サイクルに送
出される。
The discharged refrigerant gas from which the lubricating oil has been separated in the motor chamber 8 is sent to a refrigeration cycle outside the compressor via a discharge pipe 7e.
【0095】凝縮器13,第1膨張弁15を経由して減
圧の後、低段圧縮要素7の吐出圧力相当にまで膨張した
未蒸発冷媒は、気液分離器17に流入の後、気体と液体
とに分離し、液化冷媒が気液分離器17の底部に収集す
る。
After the pressure is reduced through the condenser 13 and the first expansion valve 15, the unevaporated refrigerant that has expanded to the discharge pressure of the low-stage compression element 7 flows into the gas-liquid separator 17, The liquid refrigerant is separated into a liquid and collected at the bottom of the gas-liquid separator 17.
【0096】気液分離器17内上部空間の未蒸発冷媒ガ
スは、気液分離器17内の上部空間に開口する連通管5
9を介してローリングピストン形ロータリ式2段圧縮機
1内の連通路55に流入し、低段圧縮要素7の吐出冷媒
ガスと合流して低段吐出冷媒ガス温度を低下させた後、
高段圧縮要素9の吸入室56に流入する。
The unevaporated refrigerant gas in the upper space in the gas-liquid separator 17 is supplied to the communication pipe 5 opening in the upper space in the gas-liquid separator 17.
After flowing into the communication passage 55 in the rolling piston type rotary two-stage compressor 1 through the pipe 9 and joining the discharged refrigerant gas of the low-stage compression element 7 to lower the temperature of the low-stage discharged refrigerant gas,
It flows into the suction chamber 56 of the high-stage compression element 9.
【0097】高段圧縮要素9の2段圧縮吐出冷媒ガス
は、気液分離器17の未蒸発冷媒ガスを吸入することに
よって異常温度上昇を抑制される。その結果、摺動部隙
間の縮小が少なくなると共に、電動機5の異常温度上昇
が抑制されて圧縮機入力が低減する。
The two-stage compression discharge refrigerant gas of the high-stage compression element 9 suppresses an abnormal rise in temperature by sucking the unevaporated refrigerant gas of the gas-liquid separator 17. As a result, the reduction of the sliding portion gap is reduced, and the abnormal temperature rise of the electric motor 5 is suppressed, so that the compressor input is reduced.
【0098】一方、気液分離器17の底部に収集した液
化冷媒は、液管65を介して第2膨張弁19,蒸発器2
1を順次経由して第2回目の膨張と吸熱の後、再びアキ
ュームレータ2に帰還する。
On the other hand, the liquefied refrigerant collected at the bottom of the gas-liquid separator 17 passes through the liquid pipe 65 to the second expansion valve 19 and the evaporator 2.
After returning to the accumulator 2 again after the second expansion and endothermic passing through the 1 sequentially.
【0099】なお、気液分離器17内の冷媒は、気液分
離器17の胴体外周部を囲むポリエチレン発泡部材によ
って断熱と防音がなされているので、気液分離器17に
冷媒が流入する際の冷媒と気液分離器内壁との衝突音が
外部に伝播するのを防ぐと共に、冷媒が吸熱することも
少ない。
The refrigerant in the gas-liquid separator 17 is insulated and soundproof by a polyethylene foam member surrounding the outer periphery of the body of the gas-liquid separator 17, so that the refrigerant flows into the gas-liquid separator 17. The collision noise between the refrigerant and the inner wall of the gas-liquid separator is prevented from propagating to the outside, and the refrigerant hardly absorbs heat.
【0100】次に、第2の実施例の動作を図8を参照し
ながら説明する。吐出圧力が作用する電動機室8底部の
油溜35の潤滑油は、絞り部を有する下流側通路C61
cを経由して減圧された後、低段圧縮要素7のベーン3
8の背面室A44に流入後、発泡状態でベーン38を背
面付勢すると共に、ベーン38の摺動面を潤滑する。背
面室A44の潤滑油は、常時開口する油戻し通路49
c,油戻し穴A49aを介して低段吐出室45に流出し
ていくが、その油面高さは常に(圧縮機運転中,停止中
いづれも)油戻し通路49cの上流開口端のレベルを確
保しており、潤滑油圧力は低段吐出室45の圧力に相当
している。
Next, the operation of the second embodiment will be described with reference to FIG . The lubricating oil in the oil reservoir 35 at the bottom of the motor chamber 8 to which the discharge pressure acts is supplied to the downstream passage C61 having a throttle portion.
After the pressure has been reduced via c, the vane 3 of the low-stage compression element 7
After flowing into the rear chamber A44 of FIG. 8, the rear face of the vane 38 is urged in a foamed state, and the sliding surface of the vane 38 is lubricated. The lubricating oil in the rear chamber A44 is supplied to the oil return passage 49 which is always open.
c, the oil flows out to the low-stage discharge chamber 45 through the oil return hole A49a, and the level of the oil is always equal to the level at the upstream open end of the oil return passage 49c (whether the compressor is operating or stopped). The lubricating oil pressure is equivalent to the pressure of the low-stage discharge chamber 45.
【0101】圧縮機が停止した後、再起動し、油溜35
の潤滑油圧力が再び下流側通路61cを通じて背面室A
44に差圧給油するまでの間は、圧縮機停止中に背面室
A44に残留する潤滑油に低段吐出室45からのガス圧
力が作用して、ベーン38の摺動面を潤滑する。
After the compressor is stopped, it is restarted and the oil sump 35
Of the rear chamber A through the downstream passage 61c again.
Until the differential pressure lubrication is applied to the compressor 44, the gas pressure from the low-stage discharge chamber 45 acts on the lubricating oil remaining in the rear chamber A44 while the compressor is stopped, to lubricate the sliding surface of the vane 38.
【0102】その他の動作は、第1の実施例の場合と同
様であり、その説明を省略する。次に、第3の実施例の
動作を図9,図10を参照しながら説明する。
The other operations are the same as those of the first embodiment, and the description is omitted. Next, FIG. 9 the operation of the third embodiment will be described with reference to FIG. 10.
【0103】駆動軸106の回転に追従して、第1のロ
ータ107b,第2のロータ109bのベーン溝68
a,68bに装着されたベーン138,139がその溝
内を往復運動しながら回転運動する。
The vane grooves 68 of the first rotor 107b and the second rotor 109b follow the rotation of the drive shaft 106.
The vanes 138 and 139 mounted on the a and 68b rotate while reciprocating in the grooves.
【0104】ベーン138,139の往復運動によって
ベーン溝68a,68bの潤滑油はポンプ作用を受け
る。その時の発生圧力によってベーン138,139は
半径方向外側に背圧付勢され、シリンダ内を吸入室と圧
縮室とに区画することができ、冷媒ガスが吸入・圧縮作
用をうける。
The lubricating oil in the vane grooves 68a, 68b is pumped by the reciprocating motion of the vanes 138, 139. The vanes 138 and 139 are urged radially outward by the generated pressure at that time, so that the inside of the cylinder can be partitioned into a suction chamber and a compression chamber, and the refrigerant gas is subjected to the suction / compression action.
【0105】吐出圧力の作用する油溜35の潤滑油は、
油インジェクション通路161の下流側のインジェクシ
ョン通路A161aを介して減圧された後、第1のロー
タ107bのベーン溝68aに間欠的に供給されると共
に、駆動軸106を貫通して設けられた軸穴162,半
径方向孔69,環状溝70を順次介して第2のロータ1
09bのベーン溝68bへは減圧されることもなく常時
供給される。
The lubricating oil in the oil reservoir 35 on which the discharge pressure acts is
After the pressure is reduced through the injection passage A 161a on the downstream side of the oil injection passage 161, the pressure is intermittently supplied to the vane groove 68 a of the first rotor 107 b and the shaft hole 162 provided through the drive shaft 106. , A radial hole 69 and an annular groove 70 in this order.
09b is always supplied to the vane groove 68b without being decompressed.
【0106】第1のロータ107bのベーン溝68aに
供給された冷媒ガスを含む発泡状態の潤滑油は、油戻し
穴B149b,油戻し穴A49aを介して間欠的に低段
吐出室45に流入するが、ベーン138が往復運動する
際のポンプ作用によって間欠的に適宜加圧され、ベーン
138摺動面への潤滑に供される。
The foamed lubricating oil containing the refrigerant gas supplied to the vane groove 68a of the first rotor 107b intermittently flows into the low-stage discharge chamber 45 via the oil return hole B149b and the oil return hole A49a. However, the pressure is intermittently and appropriately pressurized by a pump action when the vane 138 reciprocates, and is used for lubrication of the sliding surface of the vane 138.
【0107】なお、第2のロータ109bのベーン溝6
8bに供給された潤滑油は、油溜35と常時連通してお
り、ベーン139の往復運動によってポンプ加圧される
程度が小さい。
The vane groove 6 of the second rotor 109b
The lubricating oil supplied to 8b is always in communication with the oil reservoir 35, and the degree of pressurization of the pump by the reciprocating motion of the vane 139 is small.
【0108】また油溜35の潤滑油は、油インジェクシ
ョン通路161の下流側のインジェクション通路B16
1bを介して減圧された後、高段圧縮要素109のシリ
ンダ内に間欠的に差圧給油され、圧縮室隙間の密封と摺
動面の潤滑に供される。
Further, the lubricating oil in the oil sump 35 is supplied to the injection passage B 16 downstream of the oil injection passage 161.
After the pressure is reduced through 1b, oil is intermittently supplied with differential pressure oil into the cylinder of the high-stage compression element 109, and is used for sealing the compression chamber gap and lubricating the sliding surface.
【0109】その他の動作については、第1の実施例の
場合と同様であるので、その説明を省略する。
The other operations are the same as those in the first embodiment, and the description is omitted.
【0110】次に、第4の実施例の動作を図11を参照
しながら説明する。2段圧縮機の運転によって第1のア
キユームレータ202に流入した冷媒ガスは、周期的な
圧力脈動を抑制されて吸入管202aを介して低段圧縮
要素207の吸入室に流入し、圧縮された後、高段圧縮
要素209の吸入側に順次送出される。第1のアキュー
ムレータ202の過給作用が抑制されているので、駆動
軸6の一回転当りの低段圧縮要素207への吸入気体容
積は、圧縮機運転速度が変動してもあまり変化せず、低
段吐出ガスが高段圧縮要素209のシリンダ容積に対し
てほぼ一定割合で送出される。この結果、低段吐出ガス
圧力は圧縮機運転速度が変動した場合でも異常圧力上昇
せずにほぼ一定を保ち、低段圧縮要素207の圧縮室で
の過圧縮を少なくする。
Next, the operation of the fourth embodiment will be described with reference to FIG . The refrigerant gas flowing into the first accumulator 202 by the operation of the two-stage compressor is suppressed in the periodic pressure pulsation, flows into the suction chamber of the low-stage compression element 207 via the suction pipe 202a, and is compressed. After that, it is sequentially sent out to the suction side of the high-stage compression element 209. Since the supercharging effect of the first accumulator 202 is suppressed, the volume of the intake gas to the low-stage compression element 207 per one rotation of the drive shaft 6 does not change much even if the compressor operation speed changes. The low-stage discharge gas is delivered at a substantially constant ratio to the cylinder volume of the high-stage compression element 209. As a result, even when the compressor operating speed fluctuates, the low-stage discharge gas pressure remains substantially constant without abnormal pressure rise, and overcompression of the low-stage compression element 207 in the compression chamber is reduced.
【0111】気液分離器(図示せず)から第2のアキュ
ームレータ202bに流入した未蒸発冷媒は、逆止弁装
置271を経由して高段圧縮要素209の吸入側に低段
吐出ガスと共に流入する。
The unevaporated refrigerant flowing from the gas-liquid separator (not shown) into the second accumulator 202 b flows into the suction side of the high-stage compression element 209 together with the low-stage discharge gas via the check valve device 271. I do.
【0112】一方、小内容積を有する低段吐出室245
に排出された低段吐出冷媒ガスは、潤滑油を分離するこ
となく拡散し、隣接する背面室A244に油溜35から
油インジエクシヨン通路261を経て流入した潤滑油を
巻き込んで背面室A244の摺動面を潤滑の後、高段圧
縮要素209に送出される。
On the other hand, a low-stage discharge chamber 245 having a small internal volume
The low-stage discharged refrigerant gas discharged into the rear chamber diffuses without separating the lubricating oil, and entrains the lubricating oil flowing from the oil reservoir 35 through the oil injection passage 261 into the adjacent rear chamber A244 to slide the rear chamber A244. After lubricating the surface, it is delivered to the high-stage compression element 209.
【0113】圧縮機停止後は、コイルバネ270の温度
が低下してそのバネ定数が増加し、弁体206を第2の
アキュームレータ202bの側へ移動させてその流入路
を塞ぎ、圧縮機停止中に第2のアキュームレータ202
bを経由して液冷媒が連通路255に流入するのを防
ぐ。
After the compressor stops, the temperature of the coil spring 270 decreases and its spring constant increases, and the valve body 206 is moved to the second accumulator 202b to block its inflow path. Second accumulator 202
The liquid refrigerant is prevented from flowing into the communication path 255 via the line b.
【0114】その他の動作については、第1の実施例の
場合と類似であるので、その説明を省略する。
The other operations are similar to those of the first embodiment, and the description is omitted.
【0115】以上のように上記実施例によれば、低段圧
縮要素7の吐出側と高段圧縮要素9の吸入側とを、連通
路55を介して直列接続した2段圧縮機構を構成し、高
段圧縮要素9から電動機5を収納する密閉容器3内の電
動機室8に圧縮ガスを排出させると共にその底部に油溜
35を配置し、連通路55と電動機室8との間にバイパ
ス通路57を形成し、バイパス通路57の途中には連通
路55の圧力が電動機室8の圧力よりも高い時に連通路
55から電動機室8へのみの開通を許容するバイパス弁
装置58を配置した構成において、低段圧縮要素7の吐
出弁装置(図11参照)が開弁する直前の連通路55の
圧力が低段圧縮要素7の圧縮室圧力よりも低くなるよう
に、低段圧縮要素7と高段圧縮要素9との間の圧縮タイ
ミングを設定したことにより、圧縮機起動と同時に、低
段圧縮要素7に吸入された冷媒ガスが圧縮・吐出され、
連通路55を介して高段圧縮要素9の吸入側に送出され
る際に、連通路55を通過する冷媒ガス圧力が圧縮機起
動前の圧力に等しい密閉容器3内の電動機室8の圧力よ
りも高いので、連通路55の冷媒ガスの一部がバイパス
弁装置58を介して電動機室8に流出する一方、高段圧
縮要素9の吸入気体が圧力降下した状態で圧縮を開始さ
せるので、起動初期の圧縮負荷が軽く、円滑な起動がで
き、振動・騒音を少なくすることができる。
As described above, according to the above embodiment, a two-stage compression mechanism in which the discharge side of the low-stage compression element 7 and the suction side of the high-stage compression element 9 are connected in series via the communication passage 55 is constituted. The compressed gas is discharged from the high-stage compression element 9 to the electric motor chamber 8 in the closed casing 3 for housing the electric motor 5 and the oil reservoir 35 is disposed at the bottom thereof, and a bypass passage is provided between the communication passage 55 and the electric motor chamber 8. 57 is formed, and a bypass valve device 58 is disposed in the middle of the bypass passage 57 so as to allow only the communication passage 55 to open to the motor room 8 when the pressure of the communication passage 55 is higher than the pressure of the motor room 8. as the pressure of the communication passage 55 just before the discharge valve device of the low-stage compression element 7 (FIG. 11 see) is opened is lower than the compression chamber pressure of the low-stage compression element 7, the low-stage compression element 7 Compression timing between the high-stage compression element 9 is set. And, the compressor starts at the same time, the refrigerant gas sucked into the low-stage compression element 7 is discharged compressed and,
When the refrigerant gas is sent to the suction side of the high-stage compression element 9 via the communication passage 55, the pressure of the refrigerant gas passing through the communication passage 55 is equal to the pressure before the compressor is started. Therefore, a part of the refrigerant gas in the communication passage 55 flows out to the motor chamber 8 through the bypass valve device 58, while the high-stage compression element 9 starts the compression in a state where the pressure of the intake gas is reduced. The initial compression load is light, smooth startup is possible, and vibration and noise can be reduced.
【0116】また、2段圧縮・2段膨張冷凍サイクルで
冬期の給湯運転や空調暖房運転中に、吸熱機側熱交換器
の表面に着霜した際に吸熱機側への配管と放熱機側への
配管を電磁弁等で切り替えて除霜運転を開始した直後し
ばらくの間は、放熱機側の高圧の液冷媒が2段冷媒圧縮
機1の吸入側に多量流入して低段圧縮要素7の圧縮室で
液圧縮が生じ、連通路55の圧力が異常上昇する一方、
除霜運転への切り替えによって電動機室8の圧力が急低
下して連通路55と電動機室8との圧力が逆転する場合
も、バイパス通路57が開通して連通路55の圧力を下
げ、圧縮機の破損を回避することができる。
Further, when a frost is formed on the surface of the heat exchanger on the heat absorber side during the hot water supply operation or the air conditioning / heating operation in winter in the two-stage compression / two-stage expansion refrigeration cycle, the piping to the heat absorber and the radiator side Immediately after the defrosting operation is started by switching the piping to the solenoid valve or the like, a large amount of high-pressure liquid refrigerant on the radiator side flows into the suction side of the two-stage refrigerant compressor 1 and the low-stage compression element 7 While liquid compression occurs in the compression chamber of, the pressure of the communication path 55 abnormally rises,
Also in the case where the pressure in the motor chamber 8 suddenly drops due to the switch to the defrosting operation and the pressure in the communication passage 55 and the motor chamber 8 reverses, the bypass passage 57 is opened to reduce the pressure in the communication passage 55 and the compressor. Can be avoided.
【0117】また上記実施例によれば、低段圧縮要素7
の吐出側と高段圧縮要素9の吸入側とを、連通路55を
介して直列接続した2段圧縮機構を構成し、高段圧縮要
素9から電動機5を収納する密閉容器3内の電動機室8
に圧縮ガスを排出させると共にその底部に油溜35を配
置し、連通路55と電動機室8との間にバイパス通路5
7を形成し、バイパス通路57の途中には連通路55の
圧力が電動機室8の圧力よりも高い時に連通路55から
電動機室8へのみの開通を許容するバイパス弁装置58
を配置すると共に、低段圧縮要素7と高段圧縮要素9の
各シリンダ内を前進・後退しつつ吸入室と圧縮室とに区
画するベーン38,39の背面室A44,背面室B43
に、吐出ガス圧力の作用する油溜35の潤滑油をそれぞ
れ減圧導入および直接導入してベーン室A44には低段
吐出圧力を、ベーン室B43には高段吐出圧力を背圧付
勢させたことにより、圧縮機起動後の時間経過と共に高
段吐出圧力が上昇して、電動機室8の底部の油溜35の
潤滑油をその背面に導入したベーン38,39が、シリ
ンダ内を吸入室と圧縮室とに区画し、その密封度合を次
第に高めていくので、起動時の密封度が悪く、起動初期
の圧縮室圧力があまり高くならずに円滑な起動ができ、
振動・騒音を少なくできる。
According to the above embodiment, the low-stage compression element 7
A two-stage compression mechanism in which the discharge side of the high-stage compression element 9 and the suction side of the high-stage compression element 9 are connected in series via a communication path 55, 8
The oil reservoir 35 is disposed at the bottom thereof, and a bypass passage 5 is provided between the communication passage 55 and the motor chamber 8.
A bypass valve device 58 is formed in the middle of the bypass passage 57 to allow the communication passage 55 to open only to the motor room 8 when the pressure in the communication passage 55 is higher than the pressure in the motor room 8.
The rear chamber A44 and the rear chamber B43 of the vanes 38, 39 partitioning into the suction chamber and the compression chamber while moving forward and backward in each cylinder of the low-stage compression element 7 and the high-stage compression element 9
Then, the lubricating oil in the oil reservoir 35 on which the discharge gas pressure acts is introduced under reduced pressure and directly introduced to urge the low-stage discharge pressure to the vane chamber A44 and the high-stage discharge pressure to the vane chamber B43. As a result, the high-stage discharge pressure increases with the lapse of time after the compressor is started, and the vanes 38 and 39, which have introduced the lubricating oil in the oil reservoir 35 at the bottom of the motor chamber 8 to the rear surface, allow the inside of the cylinder to communicate with the suction chamber. Since it is divided into a compression chamber and the degree of sealing gradually increases, the degree of sealing at startup is poor, and the compression chamber pressure at the beginning of startup can be smoothly started without too high pressure,
Vibration and noise can be reduced.
【0118】また、圧縮機起動と同時に、低段圧縮要素
7に吸入された冷媒ガスが圧縮・吐出され、連通路55
を介して高段圧縮要素9の吸入側に送出される際に、連
通路55を通過する低段吐出圧力が圧縮機起動前の圧力
に等しい電動機室8の圧力よりも高いので、連通路55
の冷媒ガスの一部がバイパス弁装置58を介して電動機
室8に流出し、高段圧縮要素9の吸入気体が圧力降下し
た状態で圧縮を開始させると共に、潤滑油による背面付
勢力の小さいベーン39が圧縮室圧力によって後退し、
第2のピストン9bから僅かに離れて圧縮室の密封度合
を弱めるので、圧縮負荷を更に軽くでき、より一層静粛
な起動運転が実現できる。
At the same time when the compressor is started, the refrigerant gas sucked into the low-stage compression element 7 is compressed and discharged, and
When the low-stage discharge pressure passing through the communication passage 55 is sent to the suction side of the high-stage compression element 9 through the communication passage 55, it is higher than the pressure in the motor chamber 8 which is equal to the pressure before the compressor is started.
A part of the refrigerant gas flows out into the motor chamber 8 via the bypass valve device 58, starts the compression in a state where the pressure of the suction gas of the high-stage compression element 9 is reduced, and the vane with the small back urging force by the lubricating oil. 39 is retracted by the compression chamber pressure,
Since the degree of sealing of the compression chamber is weakened slightly away from the second piston 9b, the compression load can be further reduced, and a more quiet start-up operation can be realized.
【0119】また上記実施例によれば、低段圧縮要素7
の吐出側と高段圧縮要素9の吸入側とを、連通路55を
介して直列接続した2段圧縮機構を構成し、高段圧縮要
素9から電動機5を収納する密閉容器3内の電動機室8
に圧縮ガスを排出させると共にその底部に油溜35を配
置し、連通路55と電動機室8との間にバイパス通路5
7を形成し、バイパス通路57の途中には連通路55の
圧力が電動機室8の圧力よりも高い時に連通路55から
電動機室8へのみの開通を許容するバイパス弁装置58
を配置すると共、バイパス通路57を高段圧縮要素9の
吐出室51に連通させたことにより、連通路55の冷媒
ガスが異常圧力上昇した際にその一部がバイパス弁装置
57を介して高段圧縮要素9の吐出室51に流入し、高
段圧縮要素9のシリンダで圧縮された吐出気体と合流し
て、電動機室8に排出する通常の吐出ガス流れを形成す
るので、連通路55の異常圧力上昇を抑制して圧縮負荷
を軽減させることができると共に、バイパス通路57か
ら排出した冷媒ガスが電動機室8の底部の油溜35の潤
滑油を拡散させる事もなく、圧縮機外の配管系への潤滑
油流出を防止して潤滑油不足に起因する摺動部耐久性の
低下を防止することができる。
According to the above embodiment, the low-stage compression element 7
A two-stage compression mechanism in which the discharge side of the high-stage compression element 9 and the suction side of the high-stage compression element 9 are connected in series via a communication passage 55, and a motor room in the closed casing 3 that accommodates the electric motor 5 from the high-stage compression element 9 8
The oil reservoir 35 is disposed at the bottom thereof, and a bypass passage 5 is provided between the communication passage 55 and the motor chamber 8.
A bypass valve device 58 is formed in the middle of the bypass passage 57 to allow the communication passage 55 to open only to the motor room 8 when the pressure in the communication passage 55 is higher than the pressure in the motor room 8.
And the bypass passage 57 is communicated with the discharge chamber 51 of the high-stage compression element 9, so that when the refrigerant gas in the communication passage 55 abnormally rises in pressure, a part of the refrigerant gas becomes high through the bypass valve device 57. Since it flows into the discharge chamber 51 of the stage compression element 9 and merges with the discharge gas compressed by the cylinder of the high stage compression element 9, it forms a normal discharge gas flow to be discharged to the motor chamber 8. An abnormal pressure rise can be suppressed to reduce the compression load, and the refrigerant gas discharged from the bypass passage 57 does not diffuse the lubricating oil in the oil reservoir 35 at the bottom of the motor chamber 8, and the piping outside the compressor It is possible to prevent the lubricating oil from flowing out to the system, thereby preventing a decrease in the durability of the sliding portion due to a shortage of the lubricating oil.
【0120】また上記実施例によれば、低段圧縮要素7
の吐出側と高段圧縮要素9の吸入側とを、連通路55を
介して直列接続した2段圧縮機構を構成し、高段圧縮要
素9から電動機5を収納する密閉容器3内の電動機室8
に圧縮ガスを排出させると共にその底部に油溜35を配
置し、連通路55と電動機室8との間にバイパス通路5
7を形成し、バイパス通路57の途中には連通路55の
圧力が電動機室8の圧力よりも高い時に連通路55から
電動機室8へのみの開通を許容するバイパス弁装置58
を配置すると共に、そのバイパス弁装置58の弁体58
aを弁座の側に押圧する付勢力をコイルバネ58bによ
り作用させたことにより、連通路55の異常圧力上昇を
抑制して圧縮負荷を軽減させることができると共に、連
通路55の冷媒ガスに多少の圧力脈動が生じても、不要
なバイパス通路57の開通に起因して電動機室8から吐
出冷媒ガスが連通路55へ逆流するのを防止して、2段
圧縮運転を安定化させ、騒音・振動の低減と高効率運転
を継続させることができる。
According to the above embodiment, the low-stage compression element 7
A two-stage compression mechanism in which the discharge side of the high-stage compression element 9 and the suction side of the high-stage compression element 9 are connected in series via a communication passage 55, and a motor room in the closed casing 3 that accommodates the electric motor 5 from the high-stage compression element 9 8
The oil reservoir 35 is disposed at the bottom thereof, and a bypass passage 5 is provided between the communication passage 55 and the motor chamber 8.
A bypass valve device 58 is formed in the middle of the bypass passage 57 to allow the communication passage 55 to open only to the motor room 8 when the pressure in the communication passage 55 is higher than the pressure in the motor room 8.
And the valve element 58 of the bypass valve device 58
By applying an urging force for pressing a to the valve seat side by the coil spring 58b, an abnormal pressure rise in the communication passage 55 can be suppressed to reduce the compression load, and the refrigerant gas in the communication passage 55 Even if pressure pulsation occurs, it is possible to prevent the refrigerant gas discharged from the motor room 8 from flowing back to the communication passage 55 due to the unnecessary opening of the bypass passage 57, stabilize the two-stage compression operation, and reduce noise and noise. Vibration can be reduced and high-efficiency operation can be continued.
【0121】また上記実施例によれば、低段圧縮要素7
の吐出側と高段圧縮要素9の吸入側とを、連通路55を
介して直列接続した2段圧縮機構を構成し、高段圧縮要
素9から電動機5を収納する密閉容器3内の電動機室8
に圧縮ガスを排出させると共にその底部に油溜35を配
置し、連通路55と電動機室8との間にバイパス通路5
7を形成し、バイパス通路57の途中には連通路55の
圧力が電動機室8の圧力よりも高い時に連通路55から
電動機室8へのみの開通を許容するバイパス弁装置58
を配置すると共に、そのバイパス弁装置58の弁体58
aを弁座の側に押圧する付勢力をコイルバネ58bによ
り作用させ、且つそのコイルバネ58bには、それ自身
の温度が上昇するとその付勢力を増し、それ自身の温度
が下降するとその付勢力を減少する形状記憶特性を具備
させたことにより、冷時起動初期は弁体58aを弁座の
側に押圧するコイルバネ58bの付勢力が小さく、コイ
ルバル58bが温度上昇してその付勢力が大きいので、
冷時起動初期に連通路55が異常圧力上昇する際のバイ
パス通路57の開通を速めて圧縮負荷軽減を速くするこ
とができ、また、安定運転時には、電動機室8から吐出
冷媒ガスが連通路55へ漏洩するの阻止して、圧縮効率
の低下を防止することができる。
According to the above embodiment, the low-stage compression element 7
A two-stage compression mechanism in which the discharge side of the high-stage compression element 9 and the suction side of the high-stage compression element 9 are connected in series via a communication path 55, 8
The oil reservoir 35 is disposed at the bottom thereof, and a bypass passage 5 is provided between the communication passage 55 and the motor chamber 8.
A bypass valve device 58 is formed in the middle of the bypass passage 57 to allow the communication passage 55 to open only to the motor room 8 when the pressure in the communication passage 55 is higher than the pressure in the motor room 8.
And the valve element 58 of the bypass valve device 58
The biasing force for pressing a toward the valve seat is applied by the coil spring 58b, and the biasing force of the coil spring 58b increases when the temperature of the coil spring 58b increases, and decreases when the temperature of the coil spring 58b decreases. By providing the shape memory characteristic, the urging force of the coil spring 58b that presses the valve body 58a to the valve seat side is small in the initial stage of the cold start, and the urging force of the coil valve 58b is increased due to the temperature rise.
The opening of the bypass passage 57 when the pressure of the communication passage 55 abnormally rises in the early stage of cold start can speed up the reduction of the compression load, and the refrigerant gas discharged from the motor room 8 can be discharged from the communication room 55 during stable operation. The compression efficiency can be prevented from lowering by preventing the leakage of the compression efficiency.
【0122】また上記実施例によれば、低段圧縮要素7
の吐出側と高段圧縮要素9の吸入側とを、連通路55を
介して直列接続した2段圧縮機構を構成し、高段圧縮要
素9から電動機5を収納する密閉容器3内の電動機室8
に圧縮ガスを排出させると共にその底部に油溜35を配
置し、連通路55と電動機室8との間にバイパス通路5
7を形成し、バイパス通路57の途中には連通路55の
圧力が電動機室8の圧力よりも高い時に連通路55から
電動機室8へのみの開通を許容するバイパス弁装置58
を配置すると共に、そのバイパス弁装置58の弁体58
aの背面に高段圧縮要素9の吐出室51の圧力を作用さ
せ、弁体58aを弁座の側に押圧させたことにより、起
動初期は弁体58aを弁座の側に押圧する付勢力がコイ
ルバネ58bのみに依存し、安定運転時はコイルバル5
8bの付勢力に加えて吐出室51の圧力が弁体58aの
背面に作用するので、起動初期に連通路55が異常圧力
上昇する際のバイパス通路57の開通が速く、圧縮負荷
軽減を速くすることができると共に、圧縮機起動後の高
段吐出圧力上昇に追従して圧縮負荷軽減を漸次弱めるこ
とができるので、起動から安定運転領域までの円滑な負
荷制御が可能となり耐久性を向上することができる。特
に、高圧縮比運転時には、高圧吐出冷媒ガスが弁体58
aの背面を弁座の側に強く押圧してバイパス弁装置58
の遮断性を更に良くし、吐出室51から連通路55への
漏洩ガス量を少なくして、バイパス通路57を設けるこ
とによる圧縮効率低下を防止することができる。
According to the above embodiment, the low-stage compression element 7
A two-stage compression mechanism in which the discharge side of the high-stage compression element 9 and the suction side of the high-stage compression element 9 are connected in series via a communication passage 55, and a motor room in the closed casing 3 that accommodates the electric motor 5 from the high-stage compression element 9 8
The oil reservoir 35 is disposed at the bottom thereof, and a bypass passage 5 is provided between the communication passage 55 and the motor chamber 8.
A bypass valve device 58 is formed in the middle of the bypass passage 57 to allow the communication passage 55 to open only to the motor room 8 when the pressure in the communication passage 55 is higher than the pressure in the motor room 8.
And the valve element 58 of the bypass valve device 58
The pressure of the discharge chamber 51 of the high-stage compression element 9 is applied to the back surface of the valve body a to press the valve body 58a toward the valve seat. Depends only on the coil spring 58b.
Since the pressure of the discharge chamber 51 acts on the back surface of the valve body 58a in addition to the urging force of 8b, the opening of the bypass passage 57 when the communication passage 55 abnormally rises in the early stage of startup is quick, and the compression load is reduced quickly. And the compression load reduction can be gradually reduced following the rise of the high-stage discharge pressure after the compressor is started, so that the load can be smoothly controlled from the start to the stable operation range and the durability can be improved. Can be. In particular, during high compression ratio operation, the high pressure discharge refrigerant gas
a is strongly pressed against the valve seat, and the bypass valve device 58
Can be further improved, the amount of gas leaking from the discharge chamber 51 to the communication passage 55 can be reduced, and a decrease in compression efficiency due to the provision of the bypass passage 57 can be prevented.
【0123】また上記実施例によれば、低段圧縮要素7
の吐出側と高段圧縮要素9の吸入側とを、連通路55を
介して直列接続した2段圧縮機構を構成し、高段圧縮要
素9から電動機5を収納する密閉容器3内の電動機室8
に圧縮ガスを排出させると共にその底部に油溜35を配
置し、連通路55と電動機室8との間にバイパス通路5
7を形成し、バイパス通路57の途中には連通路55の
圧力が電動機室8の圧力よりも高い時に連通路55から
電動機室8へのみの開通を許容するバイパス弁装置58
を配置すると共に、そのバイパス通路57に続く下流側
に高段圧縮要素9の吐出室51を配置したことにより、
連通路55の異常圧力上昇を抑制して圧縮負荷を軽減さ
せることができると共に、連通路55の冷媒ガスがバイ
パスする際の膨張音はバイパス冷媒ガスが吐出室51を
経由する間に減衰するので、電動機室8への伝播音が少
なくなり、その結果、圧縮負荷軽減のためのバイパス作
用に起因する騒音発生を抑制することができる。
According to the above embodiment, the low-stage compression element 7
A two-stage compression mechanism in which the discharge side of the high-stage compression element 9 and the suction side of the high-stage compression element 9 are connected in series via a communication passage 55, and a motor room in the closed casing 3 that accommodates the electric motor 5 from the high-stage compression element 9 8
The oil reservoir 35 is disposed at the bottom thereof, and a bypass passage 5 is provided between the communication passage 55 and the motor chamber 8.
A bypass valve device 58 is formed in the middle of the bypass passage 57 to allow the communication passage 55 to open only to the motor room 8 when the pressure in the communication passage 55 is higher than the pressure in the motor room 8.
And by disposing the discharge chamber 51 of the high-stage compression element 9 downstream of the bypass passage 57,
The compression load can be reduced by suppressing the abnormal pressure rise in the communication path 55, and the expansion noise when the refrigerant gas in the communication path 55 bypasses is attenuated while the bypass refrigerant gas passes through the discharge chamber 51. In addition, the sound transmitted to the motor room 8 is reduced, and as a result, it is possible to suppress the generation of noise due to the bypass effect for reducing the compression load.
【0124】なお、上記実施例では2段圧縮機について
説明したが、3段圧縮以上の圧縮機についても実施例図
を応用展開した構成で同様の作用・効果が期待できる。
In the above embodiment, a two-stage compressor has been described. However, a similar operation and effect can be expected for a compressor having three or more stages of compression by applying the configuration of the embodiment.
【0125】また、上記実施例では高段吐出ガス圧力の
作用する潤滑油を密閉容器内部に収集する構成とした
が、密閉容器の大きさや油分離能力等の都合によって、
圧縮機外に設けた吐出側の油分離装置に潤滑油を収集
し、そこから圧縮機内部に導入する給油通路を構成して
もよい。
In the above embodiment, the lubricating oil acting on the high-stage discharge gas pressure is collected in the closed container.
A lubricating oil may be collected in a discharge-side oil separation device provided outside the compressor, and an oil supply passage may be configured to be introduced into the compressor from there.
【0126】また、上記実施例では冷媒圧縮機について
説明したが、他の気体(例えば、酸素,窒素,ヘリウ
ム,空気など)を圧縮する多段気体圧縮機の場合も同様
な作用・効果を生じるものである。
In the above embodiment, the refrigerant compressor has been described. However, a multistage gas compressor for compressing other gases (for example, oxygen, nitrogen, helium, air, etc.) produces the same operation and effect. It is.
【0127】[0127]
【発明の効果】上記実施例より明らかなように本発明
は、連通路が複数の圧縮要素の内の一つの圧縮要素の吐
出側とその圧縮要素より高段の圧縮要素の吸入側とを順
次に連通して多段圧縮機構を構成し、多段圧縮機構の駆
動軸に連結する電動機と多段圧縮機構とを密閉容器内に
収納し、電動機を収納する電動機室に多段圧縮機構の最
終段圧縮要素から圧縮ガスを排出させ、電動機室の底部
に油溜を配置し、高段の圧 縮要素のシリンダ容積を低段
の圧縮要素のシリンダ容積の45〜65%に設定した構
成において、低段の圧縮要素の吐出弁装置が開弁する直
前の連通路の圧力が低段の圧縮要素の圧縮室圧力よりも
低くなり、且つ低段の圧縮要素の圧縮開始後、170度
前後で吐出弁装置が開弁するように、高段の圧縮要素の
圧縮タイミングを低段の圧縮要素より60〜80度遅延
させると共に、吐出弁装置の開弁特性を設定したことに
より、低段の圧縮要素の吐出弁装置が開弁する直前の連
通路の圧力が、低段の圧縮要素の圧縮室圧力よりも低く
なるので、吐出弁装置の開弁が早まり、低段過圧縮入力
を低減することができる。
As is clear from the above embodiment, according to the present invention, the communication passage has a discharge passage of one of a plurality of compression elements.
Order the discharge side and the suction side of the compression element higher than the compression element.
Next, a multi-stage compression mechanism is configured to communicate with the motor, and the motor connected to the drive shaft of the multi-stage compression mechanism and the multi-stage compression mechanism are housed in an airtight container. is discharged compressed gas from place oil reservoir in the bottom of the motor chamber, the low-stage cylinder volume of compression elements of the high stage
Set to 45 to 65% of the cylinder volume of the compression element
Immediately after the discharge valve device of the low-stage compression element opens.
The pressure in the front communication passage is lower than the pressure in the compression chamber of the lower stage compression element.
170 degrees after the compression of the lower and lower compression elements starts
Before and after the discharge valve device opens, the high-stage compression element
The compression timing is delayed by 60 to 80 degrees from the lower stage compression element.
And set the valve opening characteristics of the discharge valve device.
Thus, the connection immediately before the discharge valve device of the low-stage compression element opens.
The pressure in the passage is lower than the pressure in the compression chamber of the lower stage compression element.
As a result, the valve of the discharge valve device opens earlier, and
Can be reduced.
【0128】また、低段の圧縮要素の圧縮開始後、17
0度前後で低段の圧縮要素の吐出弁装置が開弁するの
で、低段の圧縮要素からの排出気体量と高段圧縮要素の
吸入気体量との間の過不足量が少なくなり、連通路内気
体の過不足に起因して生じる圧力脈動が抑制され、過圧
縮低減による入力損失を少なくできる。
Further, after the compression of the low-stage compression element starts, 17
At around 0 degrees, the discharge valve device of the low-stage compression element opens.
And the amount of exhaust gas from the low-stage compression element
The amount of excess or deficiency between the intake gas amount and the
Pressure pulsation caused by excessive or insufficient body is suppressed,
The input loss due to reduction in compression can be reduced.
【0129】また、連通路内圧力脈動に起因して生じる
異常騒音・異常振動発生を低減できる。
Further , the pressure pulsation occurs due to the pressure pulsation in the communication passage.
Abnormal noise and abnormal vibration can be reduced.
【0130】また本発明は、多段気体圧縮機のバイパス
通路を最終段圧縮要素に隣接し且つ最終段圧縮要素の圧
縮室に通じる吐出室を経由させたことにより、連通路の
気体が異常圧力上昇した際にその一部がバイパス弁装置
を介して高段圧縮要素の吐出室に流入し、高段圧縮要素
のシリンダで圧縮された吐出気体と合流して、吐出ガス
排出空間またはそれに通じる空間に排出する通常の吐出
ガス流れを形成するので、連通路の異常圧力上昇を抑制
して圧縮負荷を軽減させることができると共に、バイパ
ス通路から排出した気体が吐出ガス排出空間の底部の油
溜の潤滑油を拡散させる事もなく、圧縮機外の配管系へ
の潤滑油流出を防止して潤滑油不足に起因する摺動部耐
久性の低下を防止することができる。
Further, according to the present invention, by causing the bypass passage of the multistage gas compressor to pass through the discharge chamber which is adjacent to the final stage compression element and communicates with the compression chamber of the final stage compression element, the gas in the communication passage rises abnormally. A part of the gas flows into the discharge chamber of the high-stage compression element via the bypass valve device, and merges with the discharge gas compressed by the cylinder of the high-stage compression element to form a discharge gas discharge space or a space communicating therewith. Since a normal discharge gas flow to be discharged is formed, abnormal pressure rise in the communication passage can be suppressed to reduce the compression load, and the gas discharged from the bypass passage lubricates the oil reservoir at the bottom of the discharge gas discharge space. It is possible to prevent the lubricating oil from flowing out to the piping system outside the compressor without diffusing the oil, and to prevent a decrease in the durability of the sliding portion due to a shortage of the lubricating oil.
【0131】また本発明は、多段気体圧縮機のバイパス
弁装置の弁体を弁座の側に押圧する付勢力をバネ装置に
より作用させると共に、バネ装置が、それ自身の温度が
上昇するとその付勢力を増し、それ自身の温度が下降す
るとその付勢力を減少する形状記憶特性を備えたことに
より、冷時起動初期は弁体を弁座の側に押圧するバネ装
置の付勢力が小さく、バネ装置が温度上昇してその付勢
力が大きいので、冷時起動初期に連通路が異常圧力上昇
する際のバイパス通路の開通を速めて圧縮負荷軽減を速
くすることができ、また、安定運転時には、吐出ガス排
出空間から吐出気体が連通路へ漏洩するの阻止して、
縮効率の低下を防止することができる。
The present invention also relates to a multi-stage gas compressor with a bypass.
The biasing force that presses the valve element of the valve device toward the valve seat is applied to the spring device.
The spring device has a shape memory characteristic of increasing its urging force when its own temperature rises, and decreasing its urging force when its own temperature falls, so that the valve at the beginning of cold start The urging force of the spring device that presses the body toward the valve seat is small, and the spring device rises in temperature and the urging force is large. This speeds up the reduction of the compression load, and during stable operation, prevents the discharge gas from leaking from the discharge gas discharge space to the communication passage, and reduces the pressure.
It is possible to prevent a reduction in compression efficiency.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の第1の実施例における2段冷媒圧縮機
を使用した2段圧縮冷凍サイクルの配管系統図
FIG. 1 is a piping diagram of a two-stage compression refrigeration cycle using a two-stage refrigerant compressor according to a first embodiment of the present invention.
【図2】同圧縮機の縦断面図FIG. 2 is a longitudinal sectional view of the compressor.
【図3】同圧縮機における圧縮要部断面図FIG. 3 is a sectional view of a main part of the compressor in the compressor.
【図4】同圧縮機に使用するバイパス弁の外観図FIG. 4 is an external view of a bypass valve used in the compressor.
【図5】図3におけるA−A線に沿った部分平面図FIG. 5 is a partial plan view taken along line AA in FIG. 3;
【図6】同圧縮機におけるバイパス弁装置と逆止弁装置
の作動状態を示した圧縮要部断面図
FIG. 6 is a sectional view of a main part of the compressor, showing an operation state of a bypass valve device and a check valve device in the compressor.
【図7】FIG. 7 同圧縮機における吐出気体量変化と吸入気体量Change in discharge gas amount and suction gas amount in the compressor
変化との関係特性図Characteristic diagram of relationship with change
【図8】 本発明の第2の実施例の2段冷媒圧縮機の圧縮
要部断面図
FIG. 8 is a sectional view of a main part of compression of a two-stage refrigerant compressor according to a second embodiment of the present invention.
【図9】 本発明の第3の実施例の2段冷媒圧縮機の縦断
面図
FIG. 9 is a longitudinal sectional view of a two-stage refrigerant compressor according to a third embodiment of the present invention.
【図10】 図9に おけるB−B線に沿った部分断面図 Figure 10 is a partial cross-sectional view taken along a definitive line B-B in FIG. 9
【図11】 本発明の第4の実施例の2段冷媒圧縮機の縦
断面図
FIG. 11 is a longitudinal sectional view of a two-stage refrigerant compressor according to a fourth embodiment of the present invention.
【図12】 従来の2段冷媒圧縮機を使用した2段圧縮冷
凍サイクルの配管系統図
FIG. 12 is a piping diagram of a two-stage compression refrigeration cycle using a conventional two-stage refrigerant compressor.
【図13】 同圧縮機における圧縮機構の平面説明図 FIG. 13 is an explanatory plan view of a compression mechanism in the compressor.
【図14】 同圧縮機における潤滑装置の詳細図 FIG. 14 is a detailed view of a lubrication device in the compressor.
【図15】 他の従来の2段圧縮機における圧縮タイミン
グの説明図
FIG. 15 is an explanatory diagram of compression timing in another conventional two-stage compressor.
【図16】 同圧縮機における圧縮要部断面図 FIG. 16 is a sectional view of a main part of the compressor of the compressor.
【符号の説明】[Explanation of symbols]
3 密閉容器 5 電動機 7 低段圧縮要素 8 電動機室 9 高段圧縮要素 35 油溜 38,39 ベーン 43 背面室B 44 背面室A 51 吐出室 55 連通路 57 バイパス通路 58 バイパス弁装置 58a 弁体 58b コイルバネ Reference Signs List 3 Closed container 5 Electric motor 7 Low-stage compression element 8 Motor room 9 High-stage compression element 35 Oil reservoir 38, 39 Vane 43 Back room B 44 Back room A 51 Discharge chamber 55 Communication passage 57 Bypass passage 58 Bypass valve device 58a Valve body 58b Coil spring
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F04C 29/10 311 F04C 29/10 311R ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F04C 29/10 311 F04C 29/10 311R

Claims (3)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】 連通路が複数の圧縮要素の内の一つの圧
    縮要素の吐出側とその圧縮要素より高段の圧縮要素の吸
    入側とを順次に連通して多段圧縮機構を構成し、前記多
    段圧縮機構の駆動軸に連結する電動機と前記多段圧縮機
    構とを密閉容器内に収納し、前記電動機を収納する電動
    機室に前記多段圧縮機構の最終段圧縮要素から圧縮ガス
    を排出させ、前記電動機室の底部に油溜を配置し、前記
    高段の圧縮要素のシリンダ容積を前記低段の圧縮要素の
    シリンダ容積の45〜65%に設定した構成において、
    前記低段の圧縮要素の吐出弁装置が開弁する直前の前記
    連通路の圧力が前記低段の圧縮要素の圧縮室圧力よりも
    低くなり、且つ前記低段の圧縮要素の圧縮開始後、17
    0度前後で前記吐出弁装置が開弁するように、前記高段
    の圧縮要素の圧縮タイミングを前記低段の圧縮要素より
    60〜80度遅延させると共に、前記吐出弁装置の開弁
    特性を設定した多段気体圧縮機。
    The communication path includes a pressure of one of a plurality of compression elements.
    The suction side of the compression element higher than the discharge side of the compression element and the compression element
    The input side is sequentially communicated to form a multi-stage compression mechanism, an electric motor connected to a drive shaft of the multi-stage compression mechanism and the multi-stage compression mechanism are housed in a closed container, and the motor chamber for housing the electric motor is Discharging the compressed gas from the final compression element of the multi-stage compression mechanism, disposing an oil reservoir at the bottom of the electric motor room,
    The cylinder capacity of the high-stage compression element is
    In the configuration set to 45 to 65% of the cylinder volume ,
    Immediately before the discharge valve device of the low-stage compression element opens, the pressure of the communication passage becomes lower than the compression chamber pressure of the low-stage compression element, and after the compression of the low-stage compression element starts, 17
    The high-stage so that the discharge valve device opens around 0 degrees.
    The compression timing of the compression element
    Delay 60 to 80 degrees and open the discharge valve device
    Multistage gas compressor with set characteristics .
  2. 【請求項2】 連通路の内の一つの連通路の途中と電動
    機室との間にバイパス通路を形成し、前記バイパス通路
    の途中には前記の一つの連通路の圧力が前記電動機室の
    圧力よりも高い時に、前記一つの連通路から前記電動機
    室へのみの開通を許容するバイパス弁装置を配置し、前
    バイパス通路を最終段圧縮要素に隣接し且つ前記最終
    段圧縮要素の圧縮室に通じる吐出室を経由させた請求項
    1記載の多段気体圧縮機。
    2. The method according to claim 1, wherein the middle of one of the communication passages is electrically connected to the middle of the communication passage.
    A bypass passage is formed between the bypass passage and the machine room;
    In the course of the above, the pressure of the one communication passage
    When the pressure is higher than the pressure, the motor
    A bypass valve device that allows opening only to the
    2. The multi-stage gas compressor according to claim 1, wherein the bypass passage passes through a discharge chamber adjacent to the last-stage compression element and communicating with a compression chamber of the last-stage compression element.
  3. 【請求項3】 バイパス弁装置の弁体を弁座の側に押圧
    する付勢力をバネ装置により作用させ、前記バネ装置
    は、それ自身の温度が上昇するとその付勢力を増し、そ
    れ自身の温度が下降するとその付勢力を減少する形状記
    憶特性を備えた請求項1記載の多段気体圧縮機。
    3. A spring device for applying an urging force for pressing a valve body of a bypass valve device toward a valve seat by a spring device.
    Increases its bias when its own temperature rises,
    The shape notation that reduces its biasing force when its own temperature falls
    2. The multi-stage gas compressor according to claim 1, wherein the compressor has storage characteristics.
JP3295511A 1991-11-12 1991-11-12 Multi-stage gas compressor with bypass valve device Expired - Fee Related JP2812022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3295511A JP2812022B2 (en) 1991-11-12 1991-11-12 Multi-stage gas compressor with bypass valve device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3295511A JP2812022B2 (en) 1991-11-12 1991-11-12 Multi-stage gas compressor with bypass valve device
PCT/JP1992/001459 WO1993010355A1 (en) 1991-11-12 1992-11-10 Multi-stage gas compressor provided with bypass valve device
CA 2099989 CA2099989C (en) 1991-11-12 1992-11-10 Multi-stage gas compressor incorporating bypass valve device
KR1019930702091A KR970005860B1 (en) 1991-11-12 1992-11-10 Multi-stage gas compressor provided with bypass valve device

Publications (2)

Publication Number Publication Date
JPH05133367A JPH05133367A (en) 1993-05-28
JP2812022B2 true JP2812022B2 (en) 1998-10-15

Family

ID=17821567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3295511A Expired - Fee Related JP2812022B2 (en) 1991-11-12 1991-11-12 Multi-stage gas compressor with bypass valve device

Country Status (4)

Country Link
JP (1) JP2812022B2 (en)
KR (1) KR970005860B1 (en)
CA (1) CA2099989C (en)
WO (1) WO1993010355A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016490A1 (en) * 1999-08-31 2001-03-08 Sanyo Electric Co., Ltd. Internal intermediate pressure 2-stage compression type rotary compressor
CN103256223A (en) * 2012-02-17 2013-08-21 珠海格力节能环保制冷技术研究中心有限公司 Variable volume compressor and control method thereof, air conditioner having variable volume compressor, and heat pump water heater having variable volume compressor
CN103620224A (en) * 2011-06-07 2014-03-05 松下电器产业株式会社 Rotary compressor

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69630981T2 (en) 1995-02-28 2004-12-30 Anest Iwata Corp. Control system for two-stage vacuum pump
JP3432679B2 (en) * 1996-06-03 2003-08-04 株式会社荏原製作所 Positive displacement vacuum pump
CN1423055A (en) * 2001-11-30 2003-06-11 三洋电机株式会社 Revolving compressor, its manufacturing method and defrosting device using said compressor
KR100577121B1 (en) * 2005-01-03 2006-05-10 삼성전자주식회사 Variable capacity rotary compressor
KR101234824B1 (en) 2005-01-18 2013-02-20 삼성전자주식회사 Multi-stage compression type rotary compressor
KR100608866B1 (en) * 2005-05-19 2006-08-08 엘지전자 주식회사 Modulation apparatus for rotary compressor
JP2009097485A (en) * 2007-10-19 2009-05-07 Mitsubishi Heavy Ind Ltd Compressor
JP2009097486A (en) * 2007-10-19 2009-05-07 Mitsubishi Heavy Ind Ltd Compressor
JP5228905B2 (en) * 2008-12-26 2013-07-03 ダイキン工業株式会社 Refrigeration equipment
JP5306478B2 (en) * 2009-11-06 2013-10-02 三菱電機株式会社 Heat pump device, two-stage compressor, and operation method of heat pump device
JPWO2012117599A1 (en) * 2011-02-28 2014-07-07 三洋電機株式会社 Multistage compression rotary compressor and compression rotary compressor
JP5586537B2 (en) * 2011-07-28 2014-09-10 三菱電機株式会社 Rotary two-stage compressor
JP5657143B2 (en) 2012-01-11 2015-01-21 三菱電機株式会社 Vane type compressor
CN103975163B (en) 2012-01-11 2015-12-02 三菱电机株式会社 Blade-tape compressor
WO2013105386A1 (en) 2012-01-11 2013-07-18 三菱電機株式会社 Vane-type compressor
US9382907B2 (en) 2012-01-11 2016-07-05 Mitsubishi Electric Corporation Vane-type compressor having an oil supply channel between the oil resevoir and vane angle adjuster
WO2014024517A1 (en) * 2012-08-06 2014-02-13 三菱電機株式会社 Vane compressor
WO2015122991A2 (en) 2014-02-17 2015-08-20 Carrier Corporation Hot gas bypass for two-stage compressor
CN105402128A (en) * 2014-09-12 2016-03-16 上海日立电器有限公司 Rotary compressor cylinder structure and air-conditioning system
CN104791251B (en) * 2015-04-16 2018-07-17 广东美芝制冷设备有限公司 Rotary compressor and the heat pump system with it, air-conditioning system
AU2017200660A1 (en) 2016-04-12 2017-10-26 Fujitsu General Limited Rotary compressor
DE102017205500A1 (en) * 2017-03-31 2018-10-04 BSH Hausgeräte GmbH Domestic appliance and method for vibration and / or noise reduced operation of a household appliance
CN108087273B (en) * 2017-11-30 2020-02-07 珠海格力电器股份有限公司 Compressor and air conditioner with same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792089U (en) * 1980-11-26 1982-06-07
JPS61286596A (en) * 1985-06-13 1986-12-17 Mitsubishi Electric Corp Enclosed type 2-cylinder rotary compressor
JPS62218680A (en) * 1986-03-18 1987-09-26 Nippon Denso Co Ltd Compressor
JPS6383483U (en) * 1986-11-21 1988-06-01
JPH0442557Y2 (en) * 1986-12-25 1992-10-07
JPH01247785A (en) * 1988-03-29 1989-10-03 Toshiba Corp Two-cylinder compressor
JPH0291494A (en) * 1988-09-28 1990-03-30 Mitsubishi Electric Corp Multicylinder rotary compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016490A1 (en) * 1999-08-31 2001-03-08 Sanyo Electric Co., Ltd. Internal intermediate pressure 2-stage compression type rotary compressor
CN1299006C (en) * 1999-08-31 2007-02-07 三洋电机株式会社 Internal intermediate pressure 2-stage compression type rotary compressor
CN103620224A (en) * 2011-06-07 2014-03-05 松下电器产业株式会社 Rotary compressor
CN103620224B (en) * 2011-06-07 2016-01-20 松下电器产业株式会社 Rotary compressor
CN103256223A (en) * 2012-02-17 2013-08-21 珠海格力节能环保制冷技术研究中心有限公司 Variable volume compressor and control method thereof, air conditioner having variable volume compressor, and heat pump water heater having variable volume compressor

Also Published As

Publication number Publication date
WO1993010355A1 (en) 1993-05-27
KR930703540A (en) 1993-11-30
JPH05133367A (en) 1993-05-28
KR970005860B1 (en) 1997-04-21
CA2099989C (en) 2000-03-07

Similar Documents

Publication Publication Date Title
US8568118B2 (en) Compressor having piston assembly
USRE41955E1 (en) Capacity modulation for plural compressors
US7260952B2 (en) Fluid machine
JP2618501B2 (en) Low-temperature scroll type refrigerator
US7798791B2 (en) Capacity varying type rotary compressor and refrigeration system having the same
JP2718295B2 (en) Scroll compressor
JP4722493B2 (en) Fluid machinery
US7870733B2 (en) Fluid machine for rankine cycle
KR101006616B1 (en) Refrigerant cycling device and compressor using the same
US7249459B2 (en) Fluid machine for converting heat energy into mechanical rotational force
US4475360A (en) Refrigeration system incorporating scroll type compressor
JP4493531B2 (en) Fluid pump with expander and Rankine cycle using the same
KR100740211B1 (en) Hermetic scroll compressor and refrigerating air conditioner
US7290994B2 (en) Rotary hermetic compressor and refrigeration cycle system
US8992191B2 (en) Scroll compressor with differential pressure hole
EP2054677B1 (en) Refrigeration system with a compressor injection system and method for refrigeration system compressor
EP2243958B1 (en) Compressor and refrigerating apparatus having the same
JP5178560B2 (en) Refrigeration cycle equipment
CA2099988C (en) Two stage gas compressor
KR0156879B1 (en) Air-tight compressor
US8435014B2 (en) Hermetically sealed scroll compressor
JP4067497B2 (en) Scroll compressor
US7442017B2 (en) Displacement type compressor having a self-start synchronous motor and start load reducing means
US5520526A (en) Scroll compressor with axially biased scroll
EP2055956B1 (en) Multistage compressor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees