JP4055902B2 - Refrigeration equipment with an expander - Google Patents

Refrigeration equipment with an expander Download PDF

Info

Publication number
JP4055902B2
JP4055902B2 JP2003123125A JP2003123125A JP4055902B2 JP 4055902 B2 JP4055902 B2 JP 4055902B2 JP 2003123125 A JP2003123125 A JP 2003123125A JP 2003123125 A JP2003123125 A JP 2003123125A JP 4055902 B2 JP4055902 B2 JP 4055902B2
Authority
JP
Japan
Prior art keywords
expander
compressor
lubricating oil
sealed container
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003123125A
Other languages
Japanese (ja)
Other versions
JP2004325019A (en
Inventor
弘勝 香曽我部
一人 比嘉
和広 遠藤
健司 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003123125A priority Critical patent/JP4055902B2/en
Publication of JP2004325019A publication Critical patent/JP2004325019A/en
Application granted granted Critical
Publication of JP4055902B2 publication Critical patent/JP4055902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和装置や冷凍機等に使用され、冷媒の膨張過程の流体エネルギを動力回収する膨張機を備えた冷凍装置に関し、特に冷媒として二酸化炭素を使用するものに好適なものである。
【0002】
【従来の技術】
従来、空気調和装置や冷凍機等で用いられている蒸気圧縮式冷凍サイクルに膨張機を使用して冷凍サイクルのCOP(成績係数)を改善するようにしたものが知られており、例えば特許文献1に記載のものがある。
【0003】
この従来技術は、膨張機で膨張する主流冷媒の膨張エネルギを機械エネルギに変換し(膨張仕事をさせ)ながら主流冷媒を減圧するとともに、その変換された機械エネルギにより第2圧縮機を稼動させる。これにより、熱交換器を流出した主流冷媒は、等エントロピ変化をしながらそのエンタルピを低下させていくので、蒸発器内の圧力が上昇したときであっても、冷凍能力が大きく低下するのを防止すると共にCOP向上を図るようにしている。この種システムは、特に二酸化炭素等の超臨界域で使用する自然系冷媒を用いた冷凍サイクルに適用できる。
【0004】
【特許文献1】
特開2000−329416号公報
【発明が解決しようとする課題】
上記特許文献1に記載されている冷凍サイクルでは、略円筒形状のハウジング内に膨張エネルギを機械エネルギ(回転エネルギ)に変換するスクロール型の膨張機と、この膨張機で得られた回転エネルギにより稼動するスクロール型の圧縮機構が収納された円筒状の機械室が形成されている。
【0005】
しかしながら、この従来技術ではエネルギ回収効率に重大な影響を及ぼすスクロール型の膨張機と圧縮機の各摺動部の潤滑については十分な配慮がされておらず、摺動部の摩擦損失による効率低下や摺動部の摩耗による信頼性低下の問題があった。また、冷凍サイクル中に、第1圧縮機と、膨張機と圧縮機からなるエネルギ回収器が設けられており、これらの摺動部の潤滑を各機器に充填した潤滑油で賄うが、第1圧縮機が保有する潤滑油とエネルギ回収器が保有する潤滑油が不均衡となり、どちらの潤滑油が不足しても信頼性上の問題が発生する。
【0006】
本発明の目的は、膨張機や各圧縮機における摺動部の潤滑を確実に行うことのできる膨張機を備えた冷凍装置を得ることにある。
【0007】
本発明の他の目的は、冷凍サイクルのCOP向上及び容積形膨張機などの信頼性向上を図れる膨張機を備えた冷凍装置を得ることにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するために、本発明は、底部に潤滑油を貯留した密閉容器と、この密閉容器内の潤滑油中に浸漬して収納され、冷媒の膨張エネルギを機械エネルギに変換する膨張機と、前記膨張機に積層配置して前記密閉容器内の潤滑油中に浸漬して収納され、前記膨張機によって駆動される副圧縮機と、前記副圧縮機及び前記膨張機のクランク軸に各軸受摺動部に潤滑油を供給する給油通路とを有し、前記副圧縮機で昇圧された冷媒が前記密閉容器内の空間に吐出される膨張/圧縮システムと、
底部に潤滑油を貯留した密閉容器とこの密閉容器内の潤滑油中内に浸漬して収納され、前記密閉容器内の空間に昇圧された冷媒を吐出する主圧縮機およびそのモータと、
前記主圧縮機で圧縮した高圧の冷媒を、放熱器、膨張弁、蒸発器を介して前記副圧縮機に流通させる第1の流路と、
前記膨張/圧縮システムの前記密閉容器内における前記副圧縮機で昇圧された冷媒を前記主圧縮機に流通させる第2の流路と、
前記第1の流路から分岐し前記放熱器から流出した冷媒の一部を前記膨張機に流通させる第3の流路とを備え、
前記第1の流路における主圧縮機側の吐出口の開口位置を、前記密閉容器内の潤滑油面より上方に位置するように前記主圧縮機の密閉容器内の空間に開口させ、
前記第2の流路における膨張/圧縮システム側の開口位置を、前記密閉容器内の潤滑油面より上方に位置するように前記膨張/圧縮システムの密閉容器内の空間に開口させたことを特徴とする冷凍装置にある。
【0011】
また、本発明は、底部に潤滑油を貯留した密閉容器と、この密閉容器内の潤滑油中に浸漬して収納され、冷媒の膨張エネルギを機械エネルギに変換する膨張機と、前記膨張機に積層配置して前記密閉容器内の潤滑油中に浸漬して収納され、前記膨張機によって駆動される副圧縮機と、前記副圧縮機及び前記膨張機のクランク軸に各軸受摺動部に潤滑油を供給する給油通路とを有し、前記副圧縮機で昇圧された冷媒が前記密閉容器内の空間に吐出される膨張/圧縮システムと、
底部に潤滑油を貯留した密閉容器とこの密閉容器内の潤滑油中内に浸漬して収納され、前記密閉容器内の空間に昇圧された冷媒を吐出する主圧縮機およびそのモータと、
前記主圧縮機で圧縮した高圧の冷媒を、放熱器、膨張弁、蒸発器を介して前記副圧縮機に流通させる第1の流路と、
前記膨張/圧縮システムの前記密閉容器内における前記副圧縮機で昇圧された冷媒を前記主圧縮機の密閉容器内に流通させる第2の流路と、
前記第1の流路から分岐し前記放熱器から流出した冷媒の一部を前記膨張機に流通させる第3の流路とを備え、
前記第1の流路における主圧縮機側の吐出口の開口位置を、前記密閉容器内の潤滑油面より上方に位置するように前記主圧縮機の密閉容器内の空間に開口させ、
前記主圧縮機の吸入パイプの開口位置をその密閉容器内の潤滑油面より上方に向くように配置し、この吸入パイプに油回収小穴を設けたことを特徴とする冷凍装置にある。
【0012】
前記冷凍装置の冷媒として二酸化炭素を使用するのが好適であり、また前記膨張機はローリングピストン式膨張機が好適である。
【0013】
以上のように、内圧が副圧縮機の吐出圧力に保たれると共に潤滑油を貯溜する膨張/圧縮システム用密閉容器を備えるものでは、吐き出しガスの流れにより該密閉容器に蓄えられた潤滑油を主圧縮機に還流することが可能になる。
【0014】
特に、主圧縮機用密閉容器を備え、放熱器側への吐出パイプを主圧縮機用密閉容器側面の圧縮機構上方部に設けると共に、膨張/圧縮システム用密閉容器の上部に主圧縮機側への吐出パイプを設けることにより、各密閉容器内の潤滑油がどちらか一方に偏るのを、ガスの流れによる油面上昇防止機能を利用して防止でき、潤滑状態を良好に保ち、冷凍装置の性能及び信頼性を向上できる。
【0015】
【発明の実施の形態】
以下、本発明の具体的実施例を、図面を用いて詳細に説明する。図1は本発明の一実施例を示す冷凍サイクル構成図、図2は図1の実施例に使用される圧縮/膨張システム(容積形流体機械)の例を示す縦断面図、図3は図2のA−A断面図、図4は図2のB−B断面図である。
【0016】
図1から図4において、圧縮/膨張システム(容積形流体機械)1は冷凍サイクルにおける作動流体の膨張エネルギを機械エネルギに変換する膨張機2(記号EXで表す)と、この変換された機械エネルギにより仕事をする副圧縮機(副圧縮機)3(記号SCで表す)から構成され、膨張機2と副圧縮機3は一つの密閉容器5内に積層して配置され、クランク軸4を介して連結され、収納されている。
【0017】
図1に示す冷凍システム24は、圧縮/膨張システム1を放熱器25と蒸発器26の間に備えている。密閉容器27a内には、冷凍システム24の主圧縮機(記号MC)27、この主圧縮機を駆動する駆動モータ(記号M)が収納されている。27bは吸入パイプ、27cは吐出パイプ、29は液冷媒を貯溜する機能を有する吸入アキュムレータである。
【0018】
冷媒の流れは、主圧縮機27から吐き出された高温・高圧の冷媒は、吐出パイプ27cを経由し、放熱器25に入って放熱されて温度低下する。この放熱器25から出た冷媒は、冷凍サイクルの運転圧力比に膨張機2の設計圧力比を適合させるための前段膨張弁28を通り、流入パイプ11から膨張機2に入り、ここで膨張動作を行ってその膨張エネルギが機械エネルギに変換される。その後、冷媒は、低温・低圧の気液二相状態の冷媒となって流出パイプ12から吐き出される。膨張機2を出た冷媒は、蒸発器26に入って吸熱・ガス化し、吸入パイプ18から副圧縮機3へ吸い込まれ、この副圧縮機3内で昇圧されて密閉容器5内に吐き出されてこの密閉容器5の上側部に取付けられた吐出パイプ19から外部(主圧縮機側)に吐き出される。副圧縮機3から吐き出された冷媒は、吸入アキュムレータ29を通って主圧縮機27に戻って再び圧縮されて高温・高圧のガス冷媒となり、主圧縮機用密閉容器27a内に吐き出され、密閉容器27aの圧縮機部の上方に設けられた吐出パイプ27cから外部のサイクルに流出するようになっている。 以上のサイクルが繰り返されて冷凍作用をなす。
【0019】
20は、密閉容器5および密閉容器27a内に貯留された潤滑油である。なお、バイパス膨張弁28bは膨張機2をバイパスする回路に取付けられ、冷凍サイクルの運転条件変化時の流量(圧力)調整作用を行う。
【0020】
上記のように、容積形流体機械1を備える構成としたことにより、膨張過程が等エントロピ変化となり冷凍効果が増えて冷凍能力が増加する。また、膨張過程の流体エネルギを膨張機2で機械エネルギに変換し、副圧縮機3を駆動することで動力回収するので、ガス圧縮のための仕事を減少でき、冷凍システム24のCOPを向上できる。ここで、容積形流体機械(膨張/圧縮システム)1の潤滑油20を貯留している密閉容器5と、主圧縮機27の潤滑油20を貯留している密閉容器27a内は、共に各圧縮機の吐き出しガスの雰囲気となっており、各密閉容器から流出するガスの流れが存在している。従って、吐出パイプ19及び吐出パイプ27cの吐出口の開口位置を各密閉容器に収納された流体機械の潤滑に必要な油面位置よりも上方部に設定してやることにより、どちらか一方の密閉容器に潤滑油20の偏りが発生して油面が上昇した場合には、吐き出しガスの流れによって油が持ち出されてもう一方の密閉容器内に還流する。したがって、各密閉容器間の潤滑油の偏りが自動調整され、流体機械摺動部の潤滑状態を良好に保つことができ、膨張機を備えた冷凍システムの性能・信頼性を向上することが可能となる。
【0021】
次に、本発明に用いる容積形流体機械(膨張/圧縮システム)1のとして、ロータリタイプを例にとり、その構造及び動作を図2〜図6により説明する。
膨張機2は、図2、図3に示すように、クランク軸4の軸支持を兼ねた下部軸受6と仕切り板7によりシリンダ8の両端開口部が閉塞されている。シリンダ8には中央部に円筒状内周面8aが形成されている。クランク軸4には、シリンダ8の円筒状内周面8aにあたる部分に偏心部4aが形成されており、揺動ピストン9のローラ部9aの軸受メタル9bが嵌合された円筒状内周面が回転可能に嵌入されている。ローラ部9aの円筒状外周面には板状のベーン部9cが一体で形成されている。シリンダ8の円筒状内周面8aの外側には円筒状内周面8aの中心軸と平行な中心軸を持つ円筒孔部8bが形成されており、円筒孔部8bのシリンダ8中心側とその反対側とはそれぞれシリンダ8の円筒状内周面8aと円筒孔部8bの外側に設けた逃げ孔部8cに連通している。
【0022】
揺動ピストン9のベーン部9cは円筒孔部8bと逃げ孔部8cとに挿入されているが、ベーン部9cと円筒孔部8bとの間には、ベーン部9cの平面部に摺動可能に当接する平面部と円筒孔部8bの円筒面部に摺動可能に当接する円筒面部とを有するシュー10がベーン部9cを挟み込む形で組込まれている。この結果、ベーン部9cは円筒孔部8bの中心軸を通る往復運動と中心軸廻りの揺動運動を行い、シュー10は円筒孔部8bの中心軸廻りの揺動運動を行う。ベーン部9cの先端部は逃げ孔部8cの中で運動し、シリンダ8と干渉することはない。密閉容器5に取付けられた流入パイプ11は、シリンダ8の円筒孔部8bに開口する流入通路8dと接続している。
【0023】
この膨張機の特徴である作動流体の流入タイミングの調整は、この流入パイプ11からシリンダ8の流入通路8dを通って流入する高圧の作動流体を、この流入通路8d側のシュー10に形成された流入孔10aと、この流入孔10aが形成されたシュー10が当接するベーン部9cの側面部に形成された流入溝9dとの連通状態を設定することにより容易に実現される(詳細後述)。
【0024】
一方、容積形の副圧縮機(ブロワ)3は、図2、図4に示すように、クランク軸4の軸支持を兼ねた上部軸受14と仕切り板7によりシリンダ15の両端開口部が閉塞されている。シリンダ15には中央部に円筒状内周面15aが形成されている。クランク軸4には、シリンダ15の円筒状内周面15aにあたる部分にもう一方の偏心部4bが形成されており(膨張機2側の偏心部4aとこの偏心部4bとは回転位相が180°ずれている)、円筒状のローラ16の内周面装着されたころ軸受内に回転可能に嵌入されている。ローラ16の円筒状外周面には板状のベーン17がベーンスプリング17aにより押圧されている。シリンダ15の円筒状内周面15aの外側には、このベーン17が往復摺動可能なベーン溝15bとシリンダ15とベーン17の干渉を防ぐ逃げ孔部15c及びベーンスプリング17aの他端部が嵌入して装着されるスプリング孔部15dが形成されている。
【0025】
また、密閉容器5に取付けられた吸入パイプ18は、シリンダ15の吸入通路15eと接続しており、吸入パイプ18から吸込まれた冷媒ガスは、吸入通路15eを通ってシリンダ15内に入り、クランク軸4の回転によってローラ16がシリンダ15の円筒状内周面15aに沿って偏心回転運動をすることにより移動する。冷媒ガスは、更にシリンダ15の円筒状内周面15aの一部を切欠く形に形成された吐出切欠き15fを通り、上部軸受14に形成された吐出ポート14aから密閉容器5内に吐き出され、密閉容器5の上側面部に取付けられた吐出パイプ19から外部の冷凍サイクルに流出する。
【0026】
密閉容器5の底部には、潤滑油20が貯溜されており膨張機2および容積形副圧縮機3の大部分がこの潤滑油20中に浸漬した状態のため、各摺動部に油供給路を通じて容易に潤滑油を導くことができる。更に、軸受摺動部(クランク軸4の各軸受部)に強制的に給油するため、クランク軸4の下端部に給油ピース21を装着し、クランク軸4内に形成した給油通路4cを通してクランク軸4の回転による遠心ポンプ作用で各軸受摺動部に潤滑油を供給するようになっている。
【0027】
また、回転系のバランスは、クランク軸4の上端部に取付けられたバランスウエイト22によってとられ、バランスウエイト22の周囲はバランスウエイトカバー23で囲まれている。
以上のような構成からなる膨張機2と容積形副圧縮機(副圧縮機)3は積層状に積み重ねられた状態で組立てボルト13によって締結固定され、容積形副圧縮機(ブロワ)3のシリンダ15外周部で密閉容器5の内周に嵌合固定されている。
【0028】
次に、上記膨張機2の動作を図5、図6により説明する。図5はクランク軸回転角毎の作動流体の流入過程を示す膨張機の動作説明図、図6は膨張機における作動流体の流入完了及び流出開始状態を示す動作説明図である。
【0029】
図5は、クランク軸回転角90°毎のシリンダ8内における揺動ピストン9の位置関係を示したもので、揺動ピストン9のベーン部9cが上死点位置(ベーン部が最もシリンダ8の外周部に突き出した状態)を回転角θの0°とし、クランク軸4は時計廻りに回転する。
【0030】
先ず、回転角0°の状態では、シリンダ8の流入通路8dとシュー10の流入孔10aとは一部連通しており、シュー10の流入孔10aと揺動ピストン9のベーン部9cに形成された流入溝9dも連通しているが、この流入溝9dのシリンダ円筒状内周面8a側の端部aはシュー10により塞がれているため、蒸気圧縮冷凍サイクルの膨張過程入口にある高圧の作動流体はシリンダ8内への流入を遮断された状態にある。一方、シリンダ8の流出通路8eはシリンダ8内に連通しているため、作動流体は膨張過程出口にあたる低圧の圧力状態になっている。この状態から、クランク軸4が時計廻りに回転すると、ベーン部9cがシリンダ8内に突き出して流入溝9dがシリンダ内と連通を開始するため、高圧の作動流体がシリンダ8内に流入し始め、シリンダ8内の圧力差により、クランク軸4を時計廻りに回転させる機械エネルギが発生する。
【0031】
回転角90°の状態では、シュー10の揺動によりシリンダ流入通路8dとシュー流入孔10aの接続部bの流路面積も拡大するため作動流体の流入が促進される。
さらに90°回転した回転角180°の状態では、シリンダ8の流入通路8dとシュー10の流入孔10aとは回転角0°の状態と同様に一部連通しているが、ベーン部9cのシリンダ円筒状内周面8a側への往復運動によりシュー流入孔10aとベーン流入溝9dとは連通が遮断され、高圧の作動流体の流入が遮断された状態で作動室の容積が拡大することから作動流体は膨張し機械エネルギを発生する。
【0032】
回転角270°の状態では、シュー流入孔10aとベーン流入溝9dとは連通しはじめるが、シリンダ8の流入通路8dとシュー10の流入孔10aとは、今度はシュー10が回転角90°の状態とは反対方向に揺動運動するため両者の連通は遮断された状態で、作動流体はさらに膨張して機械エネルギを発生し続ける。
さらに回転が進むと、シリンダ8の流出通路8eはシリンダ8内に連通し、最初の回転角0°の状態になる。以上の動作を繰り返すことにより、作動流体の持つ流体エネルギが機械エネルギに変換されることになる。
【0033】
一般に、容積形膨張機の設計容積比の値は、冷凍システムにおける作動流体の種類とその運転条件(圧力比)により決められることになる。本実施例の膨張機2の設計容積比Vrexは、高圧の作動流体が流入する容積(流入完了容積)をVi、と膨張終了容積(流出開始容積)をVoとすると、
Vrex=Vo/Vi
で表される。
【0034】
図6は、膨張機における作動流体の流入完了と流出開始の状態をそれぞれ示す動作図である。流入完了状態は、ベーン流入溝9dとシュー流入孔10aとの連通が遮断された直後の状態で、本実施例では、クランク軸の回転角が137°に相当する(容積Vi=0.242、但しクランク軸の回転角0°の容積を1とした場合)。流出開始状態は、シリンダ8内の膨張作動空間が流出通路8eと連通する直前の状態で、クランク軸回転角で317°に相当する(容積Vo=0.98)。両者の容積の比から本発明の膨張機2の設計容積比Vrexが求められ、その値は
Vrex=0.98/0.242=4.05
である(設計条件は、作動流体:二酸化炭素(R744),吸込圧力Ps=2.65MPa,吐出圧力Pd=8MPaの場合…図7参照)。
【0035】
また、図5と図6より、ベーン流入溝9dの長さ寸法を調整することにより流入完了となるクランク軸回転角、即ち流入完了容積を容易に変更できると共に、流出通路8eの位置により流出開始容積も変更できることから、設計容積比Vrexも容易に変更可能であることが分かる。これより、スクリュー式やスクロール式等の固有の設計容積比が構造的に組込まれた膨張機に比べて、ベーンを備えた揺動形膨張機(ローリングピストン式膨張機)は、設計対応が容易であるばかりでなく大幅な小形・低コスト化が図れる。さらに、例えば、シリンダ8に複数の流出通路8eを形成してこの流出通路の選択切替えを行うことにより、一つの膨張機で複数の設計容積比が実現できることから、冷凍サイクルとの適合性をより高めて、冷凍空調機器のシステム効率を向上することが可能となる。
【0036】
図7は、作動流体として自然系冷媒である二酸化炭素(R744)を使用した場合の冷凍サイクルを、モリエル線図上に表した図である。
なお、冷媒としての二酸化炭素(R744)は自然系冷媒であり、地球温暖化係数(GWP)もフロン系冷媒の数千分の一と小さく、地球環境保全の点で優れている。反面、臨界温度が約31℃と低いことから冷凍空調装置の通常の運転条件で高圧側の動作圧力が臨界圧力(約7MPa)を超える超臨界サイクルとなり、高圧冷媒であり、モリエル線図上の理論COP(成績係数)が低いという欠点がある。しかし、R744は膨張過程の損失がフロン系冷媒に比べて大きいことから、この膨張過程の動力を回収することにより、COPの大幅な改善が期待できる。従って、高効率で信頼性の高い膨張機を備えた容積形流体機械の開発が冷媒R744を使用した冷凍装置の実用化の鍵を握ると考えられている。フロン系冷媒を使用した冷凍装置に本発明を適用しても、改善比率は幾分小さくなるがCOP向上は図れる。ここでは冷媒R744を用いた冷凍サイクルを例に挙げて説明する。
【0037】
図7のモリエル線図において、B−Cは主圧縮機27による圧縮過程、C−Dは放熱器(ガスクーラ)25による放熱過程、D−Eは膨張機2の膨張過程であり、図5で説明した膨張動作を行わせて膨張エネルギを機械エネルギに変換する。E−Aは蒸発器26による蒸発過程、A−Bは膨張機2に駆動される副圧縮機(ブロワ)3による圧縮過程を示している。
【0038】
図7から明らかなように、本実施例の膨張/圧縮システム(容積形流体機械)1を備えることにより、膨張過程が等エントロピ変化(D−E)となり、膨張機を持たない場合の等エンタルピ変化(破線で示す)と比べΔiexだけ冷凍効果が増え、冷凍能力が増加する。また、膨張エネルギを膨張機2で機械エネルギに変換して容積形副圧縮機を駆動し動力回収することにより、単位質量のガスを圧縮するのに必要な仕事がΔiadからΔiad′に減少しCOPを向上することが可能となる。
【0039】
本実施例の膨張/圧縮システム(容積形流体機械)1の起動法を説明する。まず、主圧縮機28を起動することにより、初め副圧縮機3の吐出パイプ19側が負圧になり、駆動軸4を回転するトルクが発生する。次いで、膨張機2の流入パイプ11に圧力が作用し、膨張機2を回転駆動するようになり、自立起動が可能となる。必要に応じてモータ等の起動装置を付属させて膨張/圧縮システムを起動させても良い。
本実施例では、容積形の副圧縮機としてローリングピストン式を例に挙げて説明したが、本発明はこれに限定されるものではなく、スクロール式等の他形式の容積形副圧縮機としても適用可能である。
【0040】
次に、本発明の他の実施例図8、図9により説明する。図8はその冷凍サイクル構成図、図9は図8に示す主圧縮機への吸入パイプ部の要部拡大図である。これらの図において、図1〜図4と同一符号を付したものは同一又は相当する部分であり、それらは同様の作用をなす。
【0041】
この実施例は、主圧縮機27の密閉容器27a内圧力を主圧縮機27の吸入圧力に保つようにした低圧チャンバ方式とした例である。主圧縮機27への吸入パイプ27bは密閉容器27a内に設けられ、その開口部(吸入端部)は、密閉容器内に貯溜された潤滑油20の油面20aの上方に位置されている。図9に示す27b'は吸入パイプ27bに形成された油回収小穴で、この油回収小穴27b'は前記開口部よりも下方で主圧縮機密閉容器27aにおける適正油面の上限位置に設けられている。
【0042】
密閉容器27a内の油面20aが上昇して油回収小穴27b'に到達すると、図9に矢印で示す吸入ガスの流れにより吸入パイプ27b内の圧力が低下し、潤滑油20は油回収小穴27b'を通って吸入パイプ27b内に流入するため、油面20aの上昇は抑えられる。吸入ガスと共に主圧縮機27に吸い込まれた潤滑油20は、冷凍サイクルの回路を通り、膨張機2と副圧縮機3からなる圧縮/膨張システム(容積形流体機械)1が収納された密閉容器5内に還流され、密閉容器27aと密閉容器5間の潤滑油の偏りが自動調整される。この結果、流体機械摺動部の潤滑状態を良好に保つことができ、膨張機を備えた冷凍装置の性能・信頼性を向上することができる。従って、自然系冷媒である二酸化炭素(R744)を用いた冷凍空調システムの実用化が促進され、地球温暖化防止に寄与できる。
【0043】
【発明の効果】
本発明によれば、膨張機で駆動され冷媒を圧縮して主圧縮機に流通させる副圧縮機を備えると共に、膨張機と副圧縮機を内部に収納し且つ内圧が副圧縮機の吐出圧力に保たれると共に潤滑油を貯溜する膨張/圧縮システム用密閉容器と、主圧縮機を収納すると共に内部に潤滑油を貯溜する主圧縮機用密閉容器とを備える構成としたので、作動流体の流れによって各密閉容器内の油面上昇が規制され、潤滑油が還流されるようになる。この結果、各密閉容器間の潤滑油の偏りが自動調整され、流体機械摺動部の潤滑状態を良好に保つことができ、膨張機を備えた冷凍システムの性能及び信頼性の向上を図ることが可能となる。
【0044】
また、本発明によれば、冷媒の膨張エネルギにより副圧縮機を駆動するシステムを構成しているので、冷凍サイクルのCOPを向上できる効果もある。
【図面の簡単な説明】
【図1】本発明の一実施例を示す冷凍サイクル構成図である。
【図2】図1の実施例に使用される圧縮/膨張システムの例を示す縦断面図である。
【図3】図2のA−A断面図である。
【図4】図2のB−B断面図である。
【図5】クランク軸回転角毎の作動流体の流入過程を示す膨張機の動作説明図である。
【図6】膨張機における作動流体の流入完了及び流出開始状態を示す動作説明図である。
【図7】二酸化炭素を使用した冷凍サイクルをモリエル線図上に表した図である。
【図8】本発明の他の実施例を示す冷凍サイクル構成図である。
【図9】図8に示す主圧縮機への吸入パイプ部の要部拡大図である。
【符号の説明】
1…膨張/圧縮システム(容積形流体機械)、2…膨張機、3…容積形副圧縮機(副圧縮機)、4…クランク軸、4a…偏心部、4b…偏心部、4c…給油通路、5…密閉容器、6…下部軸受、7…仕切り板、8…シリンダ、8a…円筒状内周面、8b…円筒孔部、8c…逃げ孔部、8d…流入通路、8e…流出通路、9…揺動ピストン、9a…ローラ部、9b…軸受メタル、9c…ベーン部、9d…流入溝、10…シュー、10a…流入孔、11…流入パイプ、12…流出パイプ、13…組立てボルト、14…上部軸受、15…シリンダ、15a…円筒状内周面、15b…ベーン溝、15c…逃げ孔部、15d…スプリング孔部、15e…吸入通路、15f…吐出切欠き、16…ローラ、17…ベーン、17a…ベーンスプリング、18…吸入パイプ、19…吐出パイプ、20…潤滑油、20a…油面、21…給油ピース、22…バランスウエイト、23…バランスウエイトカバー、24…冷凍システム、25…放熱器、26…蒸発器、27…主圧縮機、27a…密閉容器、27b…吸入パイプ、27b'…油回収小穴、27c…吐出パイプ、28…前段膨張弁、28b…バイパス膨張弁、29…吸入アキュムレータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus that is used in an air conditioner, a refrigerator, or the like and includes an expander that recovers power of fluid energy in the expansion process of the refrigerant, and is particularly suitable for an apparatus that uses carbon dioxide as a refrigerant. .
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a vapor compression refrigeration cycle used in an air conditioner, a refrigerator, or the like is known in which an expander is used to improve the COP (coefficient of performance) of the refrigeration cycle. 1 is described.
[0003]
In this prior art, the mainstream refrigerant is decompressed while converting the expansion energy of the mainstream refrigerant that is expanded by the expander into mechanical energy (expanding work is performed), and the second compressor is operated by the converted mechanical energy. As a result, the mainstream refrigerant flowing out of the heat exchanger lowers its enthalpy while changing the isentropy, so that the refrigerating capacity is greatly reduced even when the pressure in the evaporator rises. In addition to preventing this, COP is improved. This type of system can be applied particularly to a refrigeration cycle using a natural refrigerant used in a supercritical region such as carbon dioxide.
[0004]
[Patent Document 1]
JP 2000-329416 A
[Problems to be solved by the invention]
In the refrigeration cycle described in Patent Document 1 above, a scroll-type expander that converts expansion energy into mechanical energy (rotational energy) in a substantially cylindrical housing, and operation by rotational energy obtained by the expander. A cylindrical machine room in which a scroll type compression mechanism is housed is formed.
[0005]
However, in this conventional technology, sufficient consideration is not given to the lubrication of the sliding parts of the scroll type expander and the compressor, which has a significant effect on the energy recovery efficiency, and the efficiency decreases due to the friction loss of the sliding parts. There was a problem of reliability degradation due to wear of sliding parts. Moreover, the energy recovery device which consists of a 1st compressor and an expander and a compressor is provided in the refrigerating cycle, and lubrication of these sliding parts is covered with the lubricating oil with which each apparatus was filled. The lubricating oil possessed by the compressor and the lubricating oil possessed by the energy recovery unit become imbalanced, and a problem in reliability occurs regardless of which lubricating oil is insufficient.
[0006]
An object of the present invention is to obtain a refrigeration apparatus including an expander that can reliably lubricate sliding portions of the expander and each compressor.
[0007]
Another object of the present invention is to obtain a refrigeration apparatus equipped with an expander capable of improving the COP of the refrigeration cycle and improving the reliability of a positive displacement expander.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a sealed container having lubricating oil stored at the bottom, and an expansion that is immersed in the lubricating oil in the sealed container and converts the expansion energy of the refrigerant into mechanical energy. And the expansion In machine A sub-compressor which is disposed in a stack and immersed in the lubricating oil in the sealed container and driven by the expander; The crankshaft of the sub compressor and the expander has an oil supply passage for supplying lubricating oil to each bearing sliding portion, and the refrigerant pressurized by the sub compressor is discharged into the space in the sealed container. An expansion / compression system;
Airtight container with lubricating oil stored at the bottom And immersed in the lubricating oil in the sealed container, and the pressurized refrigerant is discharged into the space in the sealed container. The main compressor and its motor;
A first flow path for circulating the high-pressure refrigerant compressed by the main compressor to the sub-compressor via a radiator, an expansion valve, and an evaporator;
A second flow path for circulating the refrigerant pressurized by the sub-compressor in the closed container of the expansion / compression system to the main compressor;
A third flow path that branches from the first flow path and causes a part of the refrigerant flowing out of the radiator to flow to the expander;
The opening position of the discharge port on the main compressor side in the first flow path, In the sealed container The main compressor hermetically sealed container is positioned above the lubricating oil surface Inside space Open to
The opening position on the side of the expansion / compression system in the second flow path, In the sealed container A closed container of the expansion / compression system so as to be positioned above the lubricating oil surface Inside space The refrigeration apparatus is characterized in that it is opened.
[0011]
The present invention also includes a sealed container storing lubricating oil at the bottom, an expander that is immersed in the lubricating oil in the sealed container and converts expansion energy of the refrigerant into mechanical energy, and the expansion In machine A sub-compressor which is disposed in a stack and immersed in the lubricating oil in the sealed container and driven by the expander; The crankshaft of the sub compressor and the expander has an oil supply passage for supplying lubricating oil to each bearing sliding portion, and the refrigerant pressurized by the sub compressor is discharged into the space in the sealed container. An expansion / compression system;
Airtight container with lubricating oil stored at the bottom And immersed in the lubricating oil in the sealed container, and the pressurized refrigerant is discharged into the space in the sealed container. The main compressor and its motor;
A first flow path for circulating the high-pressure refrigerant compressed by the main compressor to the sub-compressor via a radiator, an expansion valve, and an evaporator;
A second flow path for circulating the refrigerant pressurized by the sub-compressor in the sealed container of the expansion / compression system into the sealed container of the main compressor;
A third flow path that branches from the first flow path and causes a part of the refrigerant flowing out of the radiator to flow to the expander;
The opening position of the discharge port on the main compressor side in the first flow path, In the sealed container The main compressor hermetically sealed container is positioned above the lubricating oil surface Inside space Open to
The refrigerating apparatus is characterized in that the suction pipe has an opening at an opening position of the main compressor so as to face an upper surface of the lubricating oil in the airtight container, and an oil recovery small hole is provided in the suction pipe.
[0012]
It is preferable to use carbon dioxide as the refrigerant of the refrigeration apparatus, and the expander is preferably a rolling piston expander.
[0013]
As described above, in the case where the internal pressure is maintained at the discharge pressure of the sub-compressor and the closed container for the expansion / compression system that stores the lubricating oil is provided, the lubricating oil stored in the closed container by the flow of the discharge gas is used. It becomes possible to return to the main compressor.
[0014]
In particular, the main compressor is equipped with a sealed container, and a discharge pipe to the radiator side is provided above the compression mechanism on the side of the main compressor sealed container, and at the top of the expansion / compression system sealed container to the main compressor side. By providing this discharge pipe, it is possible to prevent the lubricating oil in each sealed container from being biased to either one by utilizing the oil level rise prevention function due to the flow of gas, maintaining a good lubrication state, Performance and reliability can be improved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a refrigeration cycle showing an embodiment of the present invention, FIG. 2 is a longitudinal sectional view showing an example of a compression / expansion system (a positive displacement fluid machine) used in the embodiment of FIG. 1, and FIG. 2 is a cross-sectional view taken along the line AA, and FIG. 4 is a cross-sectional view taken along the line BB in FIG.
[0016]
1 to 4, a compression / expansion system (positive displacement fluid machine) 1 includes an expander 2 (represented by the symbol EX) that converts expansion energy of a working fluid in a refrigeration cycle into mechanical energy, and the converted mechanical energy. The sub-compressor (sub-compressor) 3 (represented by the symbol SC) that performs the work is arranged, and the expander 2 and the sub-compressor 3 are arranged in a single sealed container 5 and are arranged via the crankshaft 4. Are connected and stored.
[0017]
A refrigeration system 24 shown in FIG. 1 includes a compression / expansion system 1 between a radiator 25 and an evaporator 26. In the sealed container 27a, a main compressor (symbol MC) 27 of the refrigeration system 24 and a drive motor (symbol M) for driving the main compressor are housed. Reference numeral 27b denotes a suction pipe, 27c denotes a discharge pipe, and 29 denotes a suction accumulator having a function of storing liquid refrigerant.
[0018]
As for the flow of the refrigerant, the high-temperature and high-pressure refrigerant discharged from the main compressor 27 enters the radiator 25 via the discharge pipe 27c and is radiated to lower the temperature. The refrigerant discharged from the radiator 25 passes through the upstream expansion valve 28 for adapting the design pressure ratio of the expander 2 to the operating pressure ratio of the refrigeration cycle, enters the expander 2 from the inflow pipe 11, and expands here. The expansion energy is converted into mechanical energy. Thereafter, the refrigerant becomes a low-temperature, low-pressure gas-liquid two-phase refrigerant and is discharged from the outflow pipe 12. The refrigerant exiting the expander 2 enters the evaporator 26 and absorbs heat and gas, is sucked into the subcompressor 3 from the suction pipe 18, is pressurized in the subcompressor 3, and is discharged into the sealed container 5. The air is discharged from the discharge pipe 19 attached to the upper side of the sealed container 5 to the outside (main compressor side). The refrigerant discharged from the sub-compressor 3 returns to the main compressor 27 through the suction accumulator 29 and is compressed again to become a high-temperature / high-pressure gas refrigerant. The refrigerant is discharged into the main-compressor sealed container 27a. The discharge pipe 27c provided above the compressor section 27a flows out to the external cycle. The above cycle is repeated to produce a freezing action.
[0019]
Reference numeral 20 denotes lubricating oil stored in the sealed container 5 and the sealed container 27a. The bypass expansion valve 28b is attached to a circuit that bypasses the expander 2, and performs a flow rate (pressure) adjustment operation when the operating condition of the refrigeration cycle is changed.
[0020]
As described above, with the configuration including the positive displacement fluid machine 1, the expansion process becomes isentropic change, and the refrigeration effect is increased and the refrigeration capacity is increased. In addition, since fluid energy in the expansion process is converted into mechanical energy by the expander 2 and the power is recovered by driving the sub-compressor 3, work for gas compression can be reduced and COP of the refrigeration system 24 can be improved. . Here, the airtight container 5 storing the lubricating oil 20 of the positive displacement fluid machine (expansion / compression system) 1 and the airtight container 27a storing the lubricating oil 20 of the main compressor 27 are both compressed. There is an atmosphere of gas discharged from the machine, and there is a flow of gas flowing out from each sealed container. Therefore, by setting the opening positions of the discharge ports of the discharge pipe 19 and the discharge pipe 27c above the oil level position necessary for lubrication of the fluid machine accommodated in each closed container, either one of the closed containers is set. When the lubricating oil 20 is biased and the oil level rises, the oil is taken out by the flow of the discharged gas and returned to the other sealed container. Therefore, the bias of the lubricating oil between each sealed container is automatically adjusted, the lubrication state of the fluid machine sliding part can be kept good, and the performance and reliability of the refrigeration system equipped with the expander can be improved. It becomes.
[0021]
Next, as a positive displacement fluid machine (expansion / compression system) 1 used in the present invention, a rotary type is taken as an example, and the structure and operation will be described with reference to FIGS.
As shown in FIGS. 2 and 3, in the expander 2, both ends of the cylinder 8 are closed by a lower bearing 6 that also serves as a shaft support for the crankshaft 4 and a partition plate 7. The cylinder 8 has a cylindrical inner peripheral surface 8a formed at the center. The crankshaft 4 is formed with an eccentric portion 4a at a portion corresponding to the cylindrical inner peripheral surface 8a of the cylinder 8, and a cylindrical inner peripheral surface to which the bearing metal 9b of the roller portion 9a of the swing piston 9 is fitted. It is inserted so that it can rotate. A plate-like vane portion 9c is integrally formed on the cylindrical outer peripheral surface of the roller portion 9a. A cylindrical hole 8b having a central axis parallel to the central axis of the cylindrical inner peripheral surface 8a is formed outside the cylindrical inner peripheral surface 8a of the cylinder 8, and the cylinder 8 center side of the cylindrical hole 8b and The opposite side communicates with the cylindrical inner peripheral surface 8a of the cylinder 8 and the escape hole portion 8c provided outside the cylindrical hole portion 8b.
[0022]
The vane portion 9c of the oscillating piston 9 is inserted into the cylindrical hole portion 8b and the escape hole portion 8c, but can slide between the vane portion 9c and the cylindrical hole portion 8b on the plane portion of the vane portion 9c. A shoe 10 having a flat surface portion in contact with the cylindrical surface portion and a cylindrical surface portion slidably in contact with the cylindrical surface portion of the cylindrical hole portion 8b is incorporated in such a manner as to sandwich the vane portion 9c. As a result, the vane portion 9c performs a reciprocating motion through the central axis of the cylindrical hole portion 8b and a swinging motion about the central axis, and the shoe 10 performs a swinging motion about the central axis of the cylindrical hole portion 8b. The tip of the vane portion 9c moves in the escape hole portion 8c and does not interfere with the cylinder 8. The inflow pipe 11 attached to the sealed container 5 is connected to an inflow passage 8 d that opens in the cylindrical hole portion 8 b of the cylinder 8.
[0023]
The adjustment of the inflow timing of the working fluid, which is a feature of the expander, is performed by forming a high-pressure working fluid flowing from the inflow pipe 11 through the inflow passage 8d of the cylinder 8 in the shoe 10 on the inflow passage 8d side. This is easily realized by setting a communication state between the inflow hole 10a and the inflow groove 9d formed in the side surface portion of the vane portion 9c with which the shoe 10 in which the inflow hole 10a is formed abuts (details will be described later).
[0024]
On the other hand, as shown in FIGS. 2 and 4, the positive displacement sub-compressor (blower) 3 is closed at both ends of the cylinder 15 by the upper bearing 14 that also serves as the shaft support of the crankshaft 4 and the partition plate 7. ing. The cylinder 15 has a cylindrical inner peripheral surface 15a formed at the center. The crankshaft 4 is formed with another eccentric portion 4b at the portion corresponding to the cylindrical inner peripheral surface 15a of the cylinder 15 (the rotational phase between the eccentric portion 4a on the expander 2 side and this eccentric portion 4b is 180 °). The roller bearing is attached to the inner peripheral surface of the cylindrical roller 16 so as to be rotatable. A plate-like vane 17 is pressed against the cylindrical outer peripheral surface of the roller 16 by a vane spring 17a. On the outside of the cylindrical inner peripheral surface 15a of the cylinder 15, a vane groove 15b through which the vane 17 can reciprocate, a relief hole portion 15c for preventing interference between the cylinder 15 and the vane 17, and the other end portion of the vane spring 17a are fitted. Thus, a spring hole 15d to be mounted is formed.
[0025]
The suction pipe 18 attached to the sealed container 5 is connected to the suction passage 15e of the cylinder 15, and the refrigerant gas sucked from the suction pipe 18 enters the cylinder 15 through the suction passage 15e, and is cranked. As the shaft 4 rotates, the roller 16 moves by performing an eccentric rotational movement along the cylindrical inner peripheral surface 15 a of the cylinder 15. The refrigerant gas further passes through a discharge notch 15f formed in a shape in which a part of the cylindrical inner peripheral surface 15a of the cylinder 15 is cut out, and is discharged into the sealed container 5 from a discharge port 14a formed in the upper bearing 14. Then, it flows out from the discharge pipe 19 attached to the upper side surface portion of the sealed container 5 to the external refrigeration cycle.
[0026]
Since the lubricating oil 20 is stored at the bottom of the sealed container 5 and most of the expander 2 and the positive displacement sub-compressor 3 are immersed in the lubricating oil 20, an oil supply path is provided to each sliding portion. The lubricating oil can be easily guided through. Further, in order to forcibly supply oil to the bearing sliding portions (each bearing portion of the crankshaft 4), an oil supply piece 21 is attached to the lower end portion of the crankshaft 4, and the crankshaft is passed through an oil supply passage 4c formed in the crankshaft 4. Lubricating oil is supplied to each bearing sliding part by the centrifugal pump action by rotation of 4.
[0027]
Further, the balance of the rotating system is taken by a balance weight 22 attached to the upper end portion of the crankshaft 4, and the balance weight 22 is surrounded by a balance weight cover 23.
The expander 2 and the displacement subcompressor (subcompressor) 3 having the above-described configuration are fastened and fixed by the assembly bolts 13 in a stacked state, and the cylinder of the displacement subcompressor (blower) 3 is fixed. The outer peripheral portion 15 is fitted and fixed to the inner periphery of the sealed container 5.
[0028]
Next, the operation of the expander 2 will be described with reference to FIGS. FIG. 5 is an operation explanatory view of the expander showing the inflow process of the working fluid for each crankshaft rotation angle, and FIG. 6 is an operation explanatory view showing the inflow completion and outflow start states of the working fluid in the expander.
[0029]
FIG. 5 shows the positional relationship of the swing piston 9 in the cylinder 8 at every crankshaft rotation angle of 90 °. The vane portion 9c of the swing piston 9 is at the top dead center position (the vane portion is the most in the cylinder 8). When the rotation angle θ is 0 °, the crankshaft 4 rotates clockwise.
[0030]
First, in a state where the rotation angle is 0 °, the inflow passage 8d of the cylinder 8 and the inflow hole 10a of the shoe 10 are partially communicated with each other, and are formed in the inflow hole 10a of the shoe 10 and the vane portion 9c of the swing piston 9. The inflow groove 9d is also communicated, but the end a of the inflow groove 9d on the cylinder cylindrical inner peripheral surface 8a side is closed by the shoe 10, so that the high pressure at the expansion process inlet of the vapor compression refrigeration cycle. The working fluid is blocked from flowing into the cylinder 8. On the other hand, since the outflow passage 8e of the cylinder 8 communicates with the inside of the cylinder 8, the working fluid is in a low pressure state corresponding to the expansion process outlet. From this state, when the crankshaft 4 rotates clockwise, the vane portion 9c protrudes into the cylinder 8 and the inflow groove 9d starts to communicate with the inside of the cylinder, so that high-pressure working fluid begins to flow into the cylinder 8, Due to the pressure difference in the cylinder 8, mechanical energy for rotating the crankshaft 4 clockwise is generated.
[0031]
In a state where the rotation angle is 90 °, the flow area of the connecting portion b between the cylinder inflow passage 8d and the shoe inflow hole 10a is increased by the swing of the shoe 10, and thus the inflow of the working fluid is promoted.
Further, in the state of the rotation angle of 180 ° rotated 90 °, the inflow passage 8d of the cylinder 8 and the inflow hole 10a of the shoe 10 are partially communicated as in the state of the rotation angle of 0 °, but the cylinder of the vane portion 9c. The reciprocating motion toward the cylindrical inner peripheral surface 8a side cuts off the communication between the shoe inflow hole 10a and the vane inflow groove 9d, and the volume of the working chamber expands in a state where the inflow of high-pressure working fluid is blocked. The fluid expands and generates mechanical energy.
[0032]
In the state of the rotation angle of 270 °, the shoe inflow hole 10a and the vane inflow groove 9d begin to communicate with each other. However, the inflow passage 8d of the cylinder 8 and the inflow hole 10a of the shoe 10 now have a rotation angle of 90 °. The working fluid further expands and continues to generate mechanical energy in a state in which the communication between the two is cut off because of the swinging motion in the opposite direction to the state.
When the rotation further proceeds, the outflow passage 8e of the cylinder 8 communicates with the inside of the cylinder 8, and the initial rotation angle is 0 °. By repeating the above operation, the fluid energy of the working fluid is converted into mechanical energy.
[0033]
In general, the value of the design volume ratio of the positive displacement expander is determined by the type of working fluid in the refrigeration system and its operating conditions (pressure ratio). The design volume ratio Vrex of the expander 2 of the present embodiment is defined such that the volume into which the high-pressure working fluid flows (inflow completion volume) is Vi, and the expansion end volume (outflow start volume) is Vo.
Vrex = Vo / Vi
It is represented by
[0034]
FIG. 6 is an operation diagram showing the completion of the inflow of the working fluid and the start of the outflow in the expander. The inflow completion state is a state immediately after the communication between the vane inflow groove 9d and the shoe inflow hole 10a is cut off. In this embodiment, the rotation angle of the crankshaft corresponds to 137 ° (volume Vi = 0.242, However, when the crankshaft rotation angle is 0 °, the volume is 1. The outflow start state is a state immediately before the expansion operation space in the cylinder 8 communicates with the outflow passage 8e, and corresponds to a crankshaft rotation angle of 317 ° (volume Vo = 0.98). The design volume ratio Vrex of the expander 2 of the present invention is obtained from the ratio of both volumes, and the value is
Vrex = 0.98 / 0.242 = 4.05
(The design conditions are as follows: working fluid: carbon dioxide (R744), suction pressure Ps = 2.65 MPa, discharge pressure Pd = 8 MPa, see FIG. 7).
[0035]
5 and 6, it is possible to easily change the crankshaft rotation angle at which the inflow is completed, that is, the inflow completion volume, by adjusting the length of the vane inflow groove 9d, and the outflow starts depending on the position of the outflow passage 8e. Since the volume can also be changed, it can be seen that the design volume ratio Vrex can be easily changed. As a result, the swing type expander with a vane (rolling piston type expander) is easier to design than the expander with a unique design volume ratio such as screw type or scroll type. In addition to this, a significant reduction in size and cost can be achieved. Furthermore, for example, by forming a plurality of outflow passages 8e in the cylinder 8 and selectively switching the outflow passages, a plurality of design volume ratios can be realized with a single expander. This increases the system efficiency of the refrigeration and air conditioning equipment.
[0036]
FIG. 7 is a diagram showing a refrigeration cycle on the Mollier diagram when carbon dioxide (R744), which is a natural refrigerant, is used as the working fluid.
Note that carbon dioxide (R744) as a refrigerant is a natural refrigerant, and has a global warming potential (GWP) that is one-thousandth that of a fluorocarbon refrigerant, which is excellent in terms of global environmental conservation. On the other hand, since the critical temperature is as low as about 31 ° C, the operating pressure on the high pressure side exceeds the critical pressure (about 7 MPa) under the normal operating conditions of the refrigeration air conditioner. There is a disadvantage that the theoretical COP (coefficient of performance) is low. However, since the loss of the expansion process is larger than that of the fluorocarbon refrigerant, R744 can be expected to greatly improve the COP by recovering the power of the expansion process. Therefore, it is considered that the development of a positive displacement fluid machine equipped with a highly efficient and highly reliable expander holds the key to the practical application of a refrigeration apparatus using the refrigerant R744. Even if the present invention is applied to a refrigeration apparatus using a chlorofluorocarbon refrigerant, the improvement ratio is somewhat reduced, but the COP can be improved. Here, a refrigeration cycle using the refrigerant R744 will be described as an example.
[0037]
In the Mollier diagram of FIG. 7, BC is a compression process by the main compressor 27, CD is a heat release process by the radiator (gas cooler) 25, and DE is an expansion process of the expander 2, FIG. The expansion operation described is performed to convert the expansion energy into mechanical energy. E-A shows the evaporation process by the evaporator 26, and A-B shows the compression process by the sub-compressor (blower) 3 driven by the expander 2.
[0038]
As is clear from FIG. 7, by providing the expansion / compression system (positive displacement fluid machine) 1 of this embodiment, the expansion process becomes an isentropic change (DE), and the isoenthalpy without an expander is obtained. Compared with the change (indicated by a broken line), the refrigeration effect increases by Δiex, and the refrigeration capacity increases. Further, by converting expansion energy into mechanical energy by the expander 2 and driving the positive displacement sub-compressor to recover the power, the work required to compress the unit mass of gas is reduced from Δiad to Δiad ′ and COP It becomes possible to improve.
[0039]
A starting method of the expansion / compression system (positive displacement fluid machine) 1 of the present embodiment will be described. First, when the main compressor 28 is started, the discharge pipe 19 side of the sub-compressor 3 first becomes negative pressure, and torque for rotating the drive shaft 4 is generated. Next, pressure acts on the inflow pipe 11 of the expander 2 to rotationally drive the expander 2, enabling self-sustained activation. If necessary, the expansion / compression system may be activated by attaching an activation device such as a motor.
In the present embodiment, the rolling piston type is described as an example of the positive displacement sub-compressor, but the present invention is not limited to this, and other types of positive displacement sub-compressors such as a scroll type may be used. Applicable.
[0040]
Next, another embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a configuration diagram of the refrigeration cycle, and FIG. 9 is an enlarged view of a main part of a suction pipe portion to the main compressor shown in FIG. In these drawings, the same reference numerals as those in FIGS. 1 to 4 denote the same or corresponding parts, and they perform the same function.
[0041]
This embodiment is an example of a low-pressure chamber system in which the pressure inside the sealed container 27 a of the main compressor 27 is kept at the suction pressure of the main compressor 27. A suction pipe 27b to the main compressor 27 is provided in the sealed container 27a, and its opening (suction end) is located above the oil surface 20a of the lubricating oil 20 stored in the sealed container. Reference numeral 27b ′ shown in FIG. 9 denotes an oil recovery small hole formed in the suction pipe 27b. The oil recovery small hole 27b ′ is provided at the upper limit position of the appropriate oil level in the main compressor hermetic container 27a below the opening. Yes.
[0042]
When the oil level 20a in the closed container 27a rises and reaches the oil recovery small hole 27b ′, the pressure in the suction pipe 27b is reduced by the flow of the suction gas indicated by the arrow in FIG. 9, and the lubricating oil 20 is supplied to the oil recovery small hole 27b. Since the oil flows into the suction pipe 27b through ', the rise of the oil level 20a is suppressed. The lubricating oil 20 sucked into the main compressor 27 together with the suction gas passes through the circuit of the refrigeration cycle, and is a sealed container in which a compression / expansion system (a positive displacement fluid machine) 1 including the expander 2 and the sub compressor 3 is stored. Then, the deviation of the lubricating oil between the sealed container 27a and the sealed container 5 is automatically adjusted. As a result, the lubrication state of the fluid machine sliding portion can be maintained well, and the performance and reliability of the refrigeration apparatus including the expander can be improved. Therefore, practical application of a refrigeration air conditioning system using carbon dioxide (R744), which is a natural refrigerant, is promoted and can contribute to prevention of global warming.
[0043]
【The invention's effect】
According to the present invention, a sub-compressor that is driven by an expander and compresses the refrigerant to flow to the main compressor is provided, the expander and the sub-compressor are housed inside, and the internal pressure becomes the discharge pressure of the sub-compressor. Since it is configured to include a sealed container for an expansion / compression system that retains and stores lubricating oil, and a sealed container for main compressor that stores a main compressor and stores lubricating oil therein, the flow of working fluid As a result, the rise of the oil level in each sealed container is regulated, and the lubricating oil is recirculated. As a result, the bias of the lubricating oil between the closed containers is automatically adjusted, the lubrication state of the fluid machine sliding portion can be kept good, and the performance and reliability of the refrigeration system including the expander can be improved. Is possible.
[0044]
In addition, according to the present invention, since the sub-compressor is driven by the expansion energy of the refrigerant, the COP of the refrigeration cycle can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a refrigeration cycle showing an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing an example of a compression / expansion system used in the embodiment of FIG.
3 is a cross-sectional view taken along the line AA in FIG.
4 is a cross-sectional view taken along the line BB in FIG.
FIG. 5 is an operation explanatory view of the expander showing the inflow process of the working fluid for each crankshaft rotation angle.
FIG. 6 is an operation explanatory view showing the completion of inflow of working fluid and the start of outflow in the expander.
FIG. 7 is a diagram showing a refrigeration cycle using carbon dioxide on the Mollier diagram.
FIG. 8 is a refrigeration cycle configuration diagram showing another embodiment of the present invention.
FIG. 9 is an enlarged view of a main part of a suction pipe portion to the main compressor shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Expansion / compression system (displacement type fluid machine), 2 ... Expander, 3 ... Displacement type sub compressor (sub compressor), 4 ... Crankshaft, 4a ... Eccentric part, 4b ... Eccentric part, 4c ... Oil supply passage DESCRIPTION OF SYMBOLS 5 ... Sealed container, 6 ... Lower bearing, 7 ... Partition plate, 8 ... Cylinder, 8a ... Cylindrical inner peripheral surface, 8b ... Cylindrical hole part, 8c ... Escape hole part, 8d ... Inflow passage, 8e ... Outflow passage, DESCRIPTION OF SYMBOLS 9 ... Swing piston, 9a ... Roller part, 9b ... Bearing metal, 9c ... Vane part, 9d ... Inflow groove, 10 ... Shoe, 10a ... Inflow hole, 11 ... Inflow pipe, 12 ... Outflow pipe, 13 ... Assembly bolt, DESCRIPTION OF SYMBOLS 14 ... Upper bearing, 15 ... Cylinder, 15a ... Cylindrical inner peripheral surface, 15b ... Vane groove, 15c ... Escape hole part, 15d ... Spring hole part, 15e ... Suction passage, 15f ... Discharge notch, 16 ... Roller, 17 ... Vane, 17a ... Vane spring, 18 ... Suction pipe, 19 ... Discharge pie 20 ... Lubricating oil, 20a ... Oil level, 21 ... Refueling piece, 22 ... Balance weight, 23 ... Balance weight cover, 24 ... Refrigerating system, 25 ... Radiator, 26 ... Evaporator, 27 ... Main compressor, 27a ... Sealed container, 27b ... suction pipe, 27b '... oil recovery small hole, 27c ... discharge pipe, 28 ... pre-stage expansion valve, 28b ... bypass expansion valve, 29 ... suction accumulator.

Claims (3)

底部に潤滑油を貯留した密閉容器と、この密閉容器内の潤滑油中に浸漬して収納され、冷媒の膨張エネルギを機械エネルギに変換する膨張機と、前記膨張機に積層配置して前記密閉容器内の潤滑油中に浸漬して収納され、前記膨張機によって駆動される副圧縮機と、前記副圧縮機及び前記膨張機のクランク軸に各軸受摺動部に潤滑油を供給する給油通路とを有し、前記副圧縮機で昇圧された冷媒が前記密閉容器内の空間に吐出される膨張/圧縮システムと、
底部に潤滑油を貯留した密閉容器とこの密閉容器内の潤滑油中内に浸漬して収納され、前記密閉容器内の空間に昇圧された冷媒を吐出する主圧縮機およびそのモータと、
前記主圧縮機で圧縮した高圧の冷媒を、放熱器、膨張弁、蒸発器を介して前記副圧縮機に流通させる第1の流路と、
前記膨張/圧縮システムの前記密閉容器内における前記副圧縮機で昇圧された冷媒を前記主圧縮機に流通させる第2の流路と、
前記第1の流路から分岐し前記放熱器から流出した冷媒の一部を前記膨張機に流通させる第3の流路とを備え、
前記第1の流路における主圧縮機側の吐出口の開口位置を、前記密閉容器内の潤滑油面より上方に位置するように前記主圧縮機の密閉容器内の空間に開口させ、
前記第2の流路における膨張/圧縮システム側の開口位置を、前記密閉容器内の潤滑油面より上方に位置するように前記膨張/圧縮システムの密閉容器内の空間に開口させた
ことを特徴とする冷凍装置。
A sealed container in which the bottom stores lubricating oil, this is immersed in housed in the lubricating oil in the closed container, an expander for converting expansion energy of the refrigerant into mechanical energy, the sealed and stacked on the expander A sub-compressor that is immersed in the lubricating oil in the container and driven by the expander, and an oil supply passage that supplies the lubricating oil to each bearing sliding portion to the crankshaft of the sub-compressor and the expander DOO anda expansion / compression system Ru discharged into the space of the refrigerant that has been pressurized by the auxiliary compressor is in said closed container,
A main container that stores the lubricating oil in the bottom , and is immersed in the lubricating oil in the sealed container and stored therein, and discharges the pressurized refrigerant into the space in the sealed container, and its motor;
A first flow path for circulating the high-pressure refrigerant compressed by the main compressor to the sub-compressor via a radiator, an expansion valve, and an evaporator;
A second flow path for circulating the refrigerant pressurized by the sub-compressor in the closed container of the expansion / compression system to the main compressor;
A third flow path that branches from the first flow path and causes a part of the refrigerant flowing out of the radiator to flow to the expander;
The opening position of the discharge port on the main compressor side in the first flow path is opened in the space in the sealed container of the main compressor so as to be positioned above the lubricating oil surface in the sealed container,
The opening position on the expansion / compression system side in the second flow path is opened in a space in the sealed container of the expansion / compression system so as to be positioned above the lubricating oil surface in the sealed container . Refrigeration equipment.
底部に潤滑油を貯留した密閉容器と、この密閉容器内の潤滑油中に浸漬して収納され、冷媒の膨張エネルギを機械エネルギに変換する膨張機と、前記膨張機に積層配置して前記密閉容器内の潤滑油中に浸漬して収納され、前記膨張機によって駆動される副圧縮機と、前記副圧縮機及び前記膨張機のクランク軸に各軸受摺動部に潤滑油を供給する給油通路とを有し、前記副圧縮機で昇圧された冷媒が前記密閉容器内の空間に吐出される膨張/圧縮システムと、
底部に潤滑油を貯留した密閉容器とこの密閉容器内の潤滑油中内に浸漬して収納され、前記密閉容器内の空間に昇圧された冷媒を吐出する主圧縮機およびそのモータと、
前記主圧縮機で圧縮した高圧の冷媒を、放熱器、膨張弁、蒸発器を介して前記副圧縮機に流通させる第1の流路と、
前記膨張/圧縮システムの前記密閉容器内における前記副圧縮機で昇圧された冷媒を前記主圧縮機の密閉容器内に流通させる第2の流路と、
前記第1の流路から分岐し前記放熱器から流出した冷媒の一部を前記膨張機に流通させる第3の流路とを備え、
前記第1の流路における主圧縮機側の吐出口の開口位置を、前記密閉容器内の潤滑油面より上方に位置するように前記主圧縮機の密閉容器内の空間に開口させ、
前記主圧縮機の吸入パイプの開口位置をその密閉容器内の潤滑油面より上方に向くように配置し、この吸入パイプに油回収小穴を設けた
ことを特徴とする冷凍装置。
A sealed container in which the bottom stores lubricating oil, this is immersed in housed in the lubricating oil in the closed container, an expander for converting expansion energy of the refrigerant into mechanical energy, the sealed and stacked on the expander A sub-compressor that is immersed in the lubricating oil in the container and driven by the expander, and an oil supply passage that supplies the lubricating oil to each bearing sliding portion to the crankshaft of the sub-compressor and the expander DOO anda expansion / compression system Ru discharged into the space of the refrigerant that has been pressurized by the auxiliary compressor is in said closed container,
A main container that stores the lubricating oil in the bottom , and is immersed in the lubricating oil in the sealed container and stored therein, and discharges the pressurized refrigerant into the space in the sealed container, and its motor;
A first flow path for circulating the high-pressure refrigerant compressed by the main compressor to the sub-compressor via a radiator, an expansion valve, and an evaporator;
A second flow path for circulating the refrigerant pressurized by the sub-compressor in the sealed container of the expansion / compression system into the sealed container of the main compressor;
A third flow path that branches from the first flow path and causes a part of the refrigerant flowing out of the radiator to flow to the expander;
The opening position of the discharge port on the main compressor side in the first flow path is opened in the space in the sealed container of the main compressor so as to be positioned above the lubricating oil surface in the sealed container,
A refrigerating apparatus characterized in that an opening position of a suction pipe of the main compressor is arranged so as to face upward from a lubricating oil surface in the airtight container, and an oil recovery small hole is provided in the suction pipe.
請求項1又は請求項2に記載の冷凍装置において、前記冷凍装置の冷媒は二酸化炭素であり、また前記膨張機はローリングピストン式膨張機であることを特徴とする膨張機を備えた冷凍装置。  The refrigerating apparatus according to claim 1 or 2, wherein the refrigerant of the refrigerating apparatus is carbon dioxide, and the expander is a rolling piston expander.
JP2003123125A 2003-04-28 2003-04-28 Refrigeration equipment with an expander Expired - Fee Related JP4055902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123125A JP4055902B2 (en) 2003-04-28 2003-04-28 Refrigeration equipment with an expander

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123125A JP4055902B2 (en) 2003-04-28 2003-04-28 Refrigeration equipment with an expander

Publications (2)

Publication Number Publication Date
JP2004325019A JP2004325019A (en) 2004-11-18
JP4055902B2 true JP4055902B2 (en) 2008-03-05

Family

ID=33501100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123125A Expired - Fee Related JP4055902B2 (en) 2003-04-28 2003-04-28 Refrigeration equipment with an expander

Country Status (1)

Country Link
JP (1) JP4055902B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2423902T3 (en) * 2005-08-26 2013-09-25 Mitsubishi Electric Corporation Cooling air conditioner
JP2007071430A (en) * 2005-09-06 2007-03-22 Tgk Co Ltd Refrigeration cycle and compression auxiliary device
JP4816220B2 (en) * 2006-04-20 2011-11-16 ダイキン工業株式会社 Refrigeration equipment
JP4715615B2 (en) * 2006-04-20 2011-07-06 ダイキン工業株式会社 Refrigeration equipment
JP4967435B2 (en) * 2006-04-20 2012-07-04 ダイキン工業株式会社 Refrigeration equipment
US8128388B2 (en) 2006-09-28 2012-03-06 Mitsubishi Electric Corporation Scroll-type expansion machine
JP5103952B2 (en) * 2007-03-08 2012-12-19 ダイキン工業株式会社 Refrigeration equipment
EP2154330A4 (en) * 2007-05-16 2012-11-21 Panasonic Corp Refrigeration cycle device and fluid machine used therefor
PL2147265T3 (en) * 2007-05-22 2012-12-31 Angelantoni Cleantech Srl Refrigerating device and method for circulating a refrigerating fluid associated with it
EP2177767A1 (en) * 2008-05-08 2010-04-21 Panasonic Corporation Fluid machine
JP2010043556A (en) * 2008-08-08 2010-02-25 Mitsubishi Electric Corp Expander unit and refrigeration cycle device including the same
WO2010084552A2 (en) * 2009-01-20 2010-07-29 Panasonic Corporation Refrigeration cycle apparatus
GB2474259A (en) * 2009-10-08 2011-04-13 Ebac Ltd Vapour compression refrigeration circuit
WO2011161953A1 (en) 2010-06-23 2011-12-29 パナソニック株式会社 Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP2004325019A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4709076B2 (en) Positive displacement fluid machine
JP4261620B2 (en) Refrigeration cycle equipment
EP2055956B1 (en) Multistage compressor
JP4055902B2 (en) Refrigeration equipment with an expander
US8172558B2 (en) Rotary expander with discharge and introduction passages for working fluid
JP2004190559A (en) Displacement expander and fluid machine
JP2000087892A (en) Two-stage compressor and air conditioner
JP4039024B2 (en) Refrigeration equipment
JP4697734B2 (en) Refrigeration cycle
JPH02230995A (en) Compressor for heat pump and operating method thereof
JPWO2008038366A1 (en) Scroll expander
JP4991255B2 (en) Refrigeration cycle equipment
JP3998249B2 (en) Refrigeration cycle
JP2006266171A (en) Positive displacement fluid machine
EP2527591B1 (en) Positive displacement expander and refrigeration cycle device using the positive displacement expander
JP2012093017A (en) Refrigerating cycle device
JP2004324595A (en) Positive displacement fluid machine
US11953005B2 (en) Compressor having orbiting scroll supply hole to lubricate thrust surface
KR101176452B1 (en) Refrigerating cycle
JP4775206B2 (en) Refrigerant circuit with expander
WO2012104934A1 (en) Scroll expander, and refrigeration cycle with the scroll expander
JP5119786B2 (en) Fluid machinery and refrigeration cycle equipment
WO2011161953A1 (en) Refrigeration cycle apparatus
WO2012107959A1 (en) Refrigeration and air-conditioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

R150 Certificate of patent or registration of utility model

Ref document number: 4055902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees