JP4709076B2 - Positive displacement fluid machine - Google Patents

Positive displacement fluid machine Download PDF

Info

Publication number
JP4709076B2
JP4709076B2 JP2006163364A JP2006163364A JP4709076B2 JP 4709076 B2 JP4709076 B2 JP 4709076B2 JP 2006163364 A JP2006163364 A JP 2006163364A JP 2006163364 A JP2006163364 A JP 2006163364A JP 4709076 B2 JP4709076 B2 JP 4709076B2
Authority
JP
Japan
Prior art keywords
roller
expander
compressor
eccentric shaft
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006163364A
Other languages
Japanese (ja)
Other versions
JP2007332819A (en
Inventor
豊 榎津
昌喜 小山
仁彦 権守
正 増田
圭一 水谷
勝也 森本
真理 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Appliances Inc
Original Assignee
Kansai Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Chubu Electric Power Co Inc, Hitachi Appliances Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2006163364A priority Critical patent/JP4709076B2/en
Priority to CNB2007101089597A priority patent/CN100532843C/en
Priority to KR1020070056989A priority patent/KR100840048B1/en
Priority to DE102007026961A priority patent/DE102007026961A1/en
Publication of JP2007332819A publication Critical patent/JP2007332819A/en
Application granted granted Critical
Publication of JP4709076B2 publication Critical patent/JP4709076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1027CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1072Oxygen (O2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Description

本発明は、容積形流体機械に関し、特に冷凍サイクルにおいて冷媒を膨張及び圧縮させる機能を備えた流体機械に関する。   The present invention relates to a positive displacement fluid machine, and more particularly, to a fluid machine having a function of expanding and compressing a refrigerant in a refrigeration cycle.

従来から、例えば、冷凍サイクルに接続して用いられる流体機械として、膨張機部と圧縮機部とを備えた流体機械が知られている。   2. Description of the Related Art Conventionally, for example, a fluid machine including an expander unit and a compressor unit is known as a fluid machine used by being connected to a refrigeration cycle.

例えば、同一の容器内にそれぞれローリングピストン式の膨張機部と圧縮機部とを収納するとともに、膨張機部と圧縮機部の主軸を同軸で結合し、膨張機部に流入する冷媒の膨張エネルギを用いて主軸を回転駆動させ、これにより圧縮機部を駆動させる技術が開示されている(特許文献1参照。)。   For example, a rolling piston type expander unit and a compressor unit are housed in the same container, and the main shafts of the expander unit and the compressor unit are connected coaxially so that the expansion energy of the refrigerant flowing into the expander unit A technique is disclosed in which the main shaft is rotationally driven by using this to drive the compressor unit (see Patent Document 1).

このように、冷凍サイクルの膨張過程において動力を回収し、圧縮過程に利用することにより、冷凍サイクルのCOPを向上させることができる。   Thus, COP of a refrigerating cycle can be improved by collect | recovering motive power in the expansion | swelling process of a refrigerating cycle, and utilizing for a compression process.

特開平8−82296号公報JP-A-8-82296

ところで、特許文献1の流体機械は、膨張機部と圧縮機部との間に補助モータが設置され、補助モータと膨張機部及び圧縮機部の主軸が互いに連結して構成される。これらの主軸は、膨張機部の最大トルク発生時の回転位置と圧縮機部の最大負荷トルク発生時の回転位置とが一致するように位相差が設けられている。   By the way, the fluid machine of Patent Document 1 is configured such that an auxiliary motor is installed between the expander unit and the compressor unit, and the main shafts of the auxiliary motor, the expander unit, and the compressor unit are connected to each other. These main shafts are provided with a phase difference so that the rotational position of the expander unit when the maximum torque is generated coincides with the rotational position of the compressor unit when the maximum load torque is generated.

このように、特許文献1では、流体機械の起動時に補助モータから主軸に回転トルクを与えているため、流体機械の起動トルクを十分に確保することができる。   As described above, in Patent Document 1, since the rotational torque is applied from the auxiliary motor to the main shaft when the fluid machine is activated, the activation torque of the fluid machine can be sufficiently ensured.

しかしながら、このように補助モータを容器内に収納する構成の場合、流体機械の構造が複雑化し、例えば、製造コストが高価になるとともに、装置自体が大型化するという問題がある。   However, in the case where the auxiliary motor is housed in the container in this way, there is a problem that the structure of the fluid machine becomes complicated, for example, the manufacturing cost becomes expensive and the apparatus itself becomes large.

これに対し、補助モータ等の動力源を備えていない流体機械の場合、膨張機部及び圧縮機部の負荷トルク(静止摩擦力)を上回る大きさの起動トルクを膨張機部から生じさせることができなければ、流体機械を起動させることができない。   On the other hand, in the case of a fluid machine that does not include a power source such as an auxiliary motor, a starting torque larger than the load torque (static friction force) of the expander unit and the compressor unit may be generated from the expander unit. If not, the fluid machine cannot be started.

本発明は、膨張機部と圧縮機部を有する流体機械において補助モータを用いないで安定した起動を実現することを課題とする。   An object of the present invention is to realize stable start-up without using an auxiliary motor in a fluid machine having an expander section and a compressor section.

本発明の流体機械は、膨張機部と圧縮機部とを容器内に収納し、膨張機部に流入する流体を膨張させて膨張機部を駆動させ、その駆動力により圧縮機部を駆動させるものである。   In the fluid machine of the present invention, the expander unit and the compressor unit are housed in a container, the fluid flowing into the expander unit is expanded to drive the expander unit, and the compressor unit is driven by the driving force. Is.

ここで、膨張機部は、それぞれ板材に渦巻き状の羽根が直立して形成され、互いに噛み合って複数の作動室を形成する固定スクロール及び旋回スクロールと、固定スクロールの中央部に開口する流体の流入口と、固定スクロールの外周部に開口する流体の吐出口と、旋回スクロールと連結する第1の偏心軸部とを備えたスクロール型膨張機部であるものとし、圧縮機部は、シリンダと、このシリンダの両端を閉塞する閉塞板と、シリンダの内側で偏心回転する円筒状のローラと、このローラの外周面に接してシリンダとローラと閉塞板とにより形成される空間を仕切るベーン部と、このベーン部を付勢してローラに押し付けるばねと、ローラに連結する第2の偏心軸部とを備えたローリングピストン型圧縮機部であるものとする。   Here, each of the expander sections is formed by a spiral blade formed upright on a plate material, and meshes with each other to form a plurality of working chambers, a fixed scroll and a turning scroll, and a fluid flow opening at a central portion of the fixed scroll. The scroll expander unit includes an inlet, a fluid discharge port that opens to the outer periphery of the fixed scroll, and a first eccentric shaft unit that is connected to the orbiting scroll. The compressor unit includes a cylinder, A closing plate that closes both ends of the cylinder, a cylindrical roller that rotates eccentrically inside the cylinder, and a vane portion that is in contact with the outer peripheral surface of the roller and partitions the space formed by the cylinder, the roller, and the closing plate, It is assumed that this is a rolling piston type compressor portion that includes a spring that urges the vane portion and presses it against the roller, and a second eccentric shaft portion that is connected to the roller.

このような流体機械の膨張機部を、例えば、冷凍サイクルの圧縮機の後流側に接続して圧縮機を起動させた場合、高圧の冷媒が固定スクロールの中央の流入口を通じて最内周の作動室に流入する。このとき、膨張機部の吐出口側の作動室は流入口側の作動室よりも低圧であるため、この圧力差により旋回スクロールは主軸の回転中心から径方向の力が働いて、回転トルクを発生する。   For example, when the compressor is started by connecting the expander portion of the fluid machine to the downstream side of the compressor of the refrigeration cycle, the high-pressure refrigerant passes through the central inlet of the fixed scroll and is located at the innermost periphery. Flows into the working chamber. At this time, since the working chamber on the discharge port side of the expander section is at a lower pressure than the working chamber on the inlet side, the orbiting scroll acts as a radial force from the center of rotation of the main shaft due to this pressure difference, and generates rotational torque. appear.

ここで、流入口に連通する作動室は、その容積が最大のとき最も冷媒による径方向の力が有効に働く。ただし、作動室の容積は旋回スクロールの公転とともに変化し、容積が最大となった直後は急激に減少する。このため、旋回スクロールの回転位置は流入口に連通する作動室の容積が最大となる回転位置に設定し、この位置を限度として、そこから−45度までの範囲とすることにより、膨張機部において最大或いはそれに近い回転トルクを発生させることができる。   Here, in the working chamber communicating with the inflow port, the radial force due to the refrigerant works most effectively when the volume is maximum. However, the volume of the working chamber changes with the revolution of the orbiting scroll, and decreases rapidly immediately after the volume reaches the maximum. For this reason, the rotational position of the orbiting scroll is set to a rotational position where the volume of the working chamber communicating with the inflow port is maximized. In this case, a maximum or near rotational torque can be generated.

一方、圧縮機部は、例えば、膨張機部の吐出口側と圧縮機の吸入口側との間に接続される。このため、圧縮機部はシリンダ内でベーンにより仕切られた吸入口側の作動室よりも吐出口側の作動室の方が低圧となる。つまり、吸入口からシリンダ内に流入した冷媒は、作動室間の圧力差に伴い、吸入口側の作動室が最大容積となる位置までローラを移動させ、このとき主軸に回転トルクを発生させる。この膨張機部と圧縮機部とから生じる起動トルクは回転方向が一致している。   On the other hand, the compressor unit is connected, for example, between the discharge port side of the expander unit and the suction port side of the compressor. For this reason, in the compressor section, the working chamber on the discharge port side has a lower pressure than the working chamber on the suction port side partitioned by the vanes in the cylinder. That is, the refrigerant that has flowed into the cylinder from the suction port moves the roller to a position where the working chamber on the suction port side has the maximum volume due to the pressure difference between the working chambers, and at this time, generates rotational torque on the main shaft. The starting torque generated from the expander unit and the compressor unit has the same rotational direction.

したがって、膨張機部の第1の偏心軸部と圧縮機部の第2の偏心軸部に所定の位相差を設けることにより膨張機部と圧縮機部とから同時に起動トルクを取り出すことができる。ただし、この起動トルクによって主軸を回転させるには、常にこれらの起動トルクが膨張機部と圧縮機部の負荷トルク(静止摩擦力)を上回る位置に旋回スクロールとローラが静止している必要がある。   Therefore, by providing a predetermined phase difference between the first eccentric shaft portion of the expander portion and the second eccentric shaft portion of the compressor portion, it is possible to simultaneously extract the starting torque from the expander portion and the compressor portion. However, in order to rotate the main shaft by this starting torque, it is necessary that the orbiting scroll and the roller be stationary at a position where these starting torques always exceed the load torque (static frictional force) of the expander unit and the compressor unit. .

そこで、本発明では、圧縮機部においてローラはベーン部の押し付け力により常にばねの全長が最大となる回転位置にて静止することに着目し、ばねが最も伸びたときのローラの回転位置に対し、旋回スクロールの回転位置は流入口に連通する作動室の容積が最大となる回転位置を限度とし、この回転位置から−45度までの範囲となるように、第1の偏心軸部と第2の偏心軸部との間に位相差を設けることを特徴としている。   Therefore, in the present invention, attention is paid to the fact that the roller in the compressor portion is always stationary at the rotational position where the total length of the spring is maximized by the pressing force of the vane portion, and the rotational position of the roller when the spring is extended to the maximum. The rotation position of the orbiting scroll is limited to the rotation position where the volume of the working chamber communicating with the inlet is maximized, and the first eccentric shaft portion and the second rotation portion are in a range of −45 degrees from this rotation position. It is characterized by providing a phase difference with the eccentric shaft portion.

これによれば、流体機械の停止時において第1の偏心軸部と第2の偏心軸部の回転位置をほぼ同一とすることができるため、起動時に、膨張機部と圧縮機部とから発生する起動トルクをほぼ最大として取り出すことができ、補助モータを用いなくても安定した起動を実現することができる。   According to this, since the rotational positions of the first eccentric shaft portion and the second eccentric shaft portion can be made substantially the same when the fluid machine is stopped, it is generated from the expander portion and the compressor portion at the time of startup. The starting torque to be obtained can be taken out almost as a maximum, and stable starting can be realized without using an auxiliary motor.

また、本発明の流体機械は、例えば、冷凍サイクルの作動冷媒を二酸化炭素とするとき、膨張過程の動力を回収することによりCOPの大幅な向上を実現できる。   In addition, the fluid machine of the present invention can realize a significant improvement in COP by, for example, recovering the power of the expansion process when the working refrigerant of the refrigeration cycle is carbon dioxide.

本発明によれば、膨張機部と圧縮機部を有する流体機械において補助モータを用いないで安定した起動を実現することができる。   ADVANTAGE OF THE INVENTION According to this invention, the stable starting can be implement | achieved without using an auxiliary motor in the fluid machine which has an expander part and a compressor part.

以下、本発明の実施形態を図面に基づいて説明する。図1は本発明を適用してなる流体機械の断面図である。図2は本発明を適用してなる流体機械を備えた冷凍サイクルの模式図である。図3は本発明を適用してなる流体機械を備えた冷凍サイクルのモリエル線図である。図4は本発明を適用してなる流体機械の膨張機部及び圧縮機部の横断面図である。図5は本発明を適用してなる流体機械のクランク角ごとの膨張機部及び圧縮機部の動作図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a fluid machine to which the present invention is applied. FIG. 2 is a schematic diagram of a refrigeration cycle provided with a fluid machine to which the present invention is applied. FIG. 3 is a Mollier diagram of a refrigeration cycle provided with a fluid machine to which the present invention is applied. FIG. 4 is a cross-sectional view of an expander unit and a compressor unit of a fluid machine to which the present invention is applied. FIG. 5 is an operation diagram of the expander unit and the compressor unit for each crank angle of the fluid machine to which the present invention is applied.

本実施形態の冷凍サイクルは作動流体(以下、適宜冷媒と略す。)として二酸化炭素(R744)を用いている。冷媒としての二酸化炭素(R744)は、地球温暖化係数(GWP)がフロン系冷媒の数千分の一と小さく地球環境保全の点で優れている。その反面、高圧冷媒のモリエル線図上の理論的COP(成績係数)が低いという欠点があるが、R744は膨張過程のエネルギ損失がフロン系冷媒に比べて大きいため、この膨張過程の動力を回収することによりCOPを大幅に改善することができる。   The refrigeration cycle of the present embodiment uses carbon dioxide (R744) as a working fluid (hereinafter abbreviated as a refrigerant as appropriate). Carbon dioxide (R744) as a refrigerant has a global warming potential (GWP) as small as one thousandth of that of CFC refrigerants, and is excellent in terms of global environmental conservation. On the other hand, although the theoretical COP (coefficient of performance) on the Mollier diagram of the high-pressure refrigerant is low, R744 recovers the power of the expansion process because the energy loss of the expansion process is larger than that of the chlorofluorocarbon refrigerant. By doing so, the COP can be greatly improved.

本実施形態の流体機械は、同一の密閉容器9内にスクロール型の膨張機部1とローリングピストン型の圧縮機部3とを収納し、膨張機部1と圧縮機部3は、それぞれの駆動軸(主軸)を同軸に結合することで、膨張機部1にて冷媒が膨張する際に発生する動力を回収して圧縮機部3を駆動させ、圧縮仕事を行う膨張/圧縮機となっている。   The fluid machine of the present embodiment houses a scroll type expander unit 1 and a rolling piston type compressor unit 3 in the same sealed container 9, and the expander unit 1 and the compressor unit 3 are driven by each. By connecting the shafts (main shafts) coaxially, the power generated when the refrigerant expands in the expander unit 1 is recovered to drive the compressor unit 3 so that the compressor / compressor performs compression work. Yes.

膨張機部1は、それぞれ円板状の鏡板に渦巻状のラップを直立させて形成される固定スクロール5と旋回スクロール7とを互いに対向する姿勢で配置し、固定スクロール5と旋回スクロール7を噛み合わせることで、これらの間に複数の作動室を形成する。固定スクロール5は密閉容器9に固定されたフレーム11に固定される。   The expander unit 1 has a fixed scroll 5 and a orbiting scroll 7 that are each formed by allowing a spiral wrap to stand upright on a disc-shaped end plate, and is arranged in a posture facing each other, and bites the fixed scroll 5 and the orbiting scroll 7. By combining them, a plurality of working chambers are formed between them. The fixed scroll 5 is fixed to a frame 11 fixed to the sealed container 9.

固定スクロール5の中央部に開口する吸入口13には流入パイプ15が穿設される一方、固定スクロール5の外周部に開口する吐出口17には流出パイプ19が穿設される。旋回スクロール7には、ラップと反対側の面の中央に軸受23が形成される。この軸受23には中心軸L1を中心として回転可能なクランクシャフト21の一端に連結された膨張機偏心軸21aが摺動自在に嵌め込まれ、旋回スクロール7は膨張機偏心軸21aに支持される。これにより、旋回スクロール7は、固定スクロール5に対し、中心軸L1を中心として所定の偏心量にて公転運転し、作動室を外周側に移動させるとともに作動室の容積を拡大させる。なお、旋回スクロール7はオルダムリング25にて公転運動が規制される。   An inflow pipe 15 is formed in the suction port 13 that opens in the center of the fixed scroll 5, while an outflow pipe 19 is formed in the discharge port 17 that opens in the outer periphery of the fixed scroll 5. The orbiting scroll 7 is formed with a bearing 23 at the center of the surface opposite to the wrap. An expander eccentric shaft 21a connected to one end of a crankshaft 21 rotatable about the central axis L1 is slidably fitted to the bearing 23, and the orbiting scroll 7 is supported by the expander eccentric shaft 21a. As a result, the orbiting scroll 7 revolves with a predetermined eccentric amount about the central axis L1 with respect to the fixed scroll 5, moves the working chamber to the outer peripheral side, and expands the volume of the working chamber. The orbiting scroll 7 is restricted from revolving motion by the Oldham ring 25.

圧縮機部3は、円筒内周面を有するシリンダ31と、シリンダ31の両端面を閉塞する端板27及びフレーム11と、シリンダ31内で偏心回転運動を行う円筒状のローラ33と、ローラ33の外周面に端面を接しながらシリンダ31に形成される溝37内を往復運動し、シリンダ31とローラ33により形成される空間を吸込室39と圧縮室41とに分割する板状のベーン35と、ベーン35の後端に設置されてローラ33の外周面にベーン35を押し付けるばね43とから構成される。また、ローラ33にはクランクシャフト21の他端に連結された圧縮機偏心軸21bが回転自在に嵌め込まれる。   The compressor unit 3 includes a cylinder 31 having a cylindrical inner peripheral surface, end plates 27 and frames 11 that close both end surfaces of the cylinder 31, a cylindrical roller 33 that performs eccentric rotational movement in the cylinder 31, and a roller 33. A plate-like vane 35 that reciprocates in a groove 37 formed in the cylinder 31 while contacting an end face with the outer peripheral surface of the cylinder, and divides a space formed by the cylinder 31 and the roller 33 into a suction chamber 39 and a compression chamber 41. And a spring 43 that is installed at the rear end of the vane 35 and presses the vane 35 against the outer peripheral surface of the roller 33. Further, a compressor eccentric shaft 21b connected to the other end of the crankshaft 21 is rotatably fitted to the roller 33.

シリンダ31には冷媒の吸込口45と吐出口47が形成されており、吸込口45には吸込パイプ49が穿設される一方、吐出口47には吐出弁51及び吐出パイプ53が接続される。   A suction port 45 and a discharge port 47 for the refrigerant are formed in the cylinder 31, and a suction pipe 49 is formed in the suction port 45, while a discharge valve 51 and a discharge pipe 53 are connected to the discharge port 47. .

このように、膨張機部1の旋回スクロール7と圧縮機部3のローラ33は、膨張機偏心軸21a,圧縮機偏心軸21b及びクランクシャフト21により所定の回転角度で連結されている。   As described above, the orbiting scroll 7 of the expander unit 1 and the roller 33 of the compressor unit 3 are connected at a predetermined rotation angle by the expander eccentric shaft 21a, the compressor eccentric shaft 21b, and the crankshaft 21.

次に、上記の流体機械に作動流体が流入したときの動作について説明する。   Next, the operation when the working fluid flows into the fluid machine will be described.

先ず、膨張機部1の流入パイプ15を通じて最内周に形成される作動室に高圧の作動流体が流入すると、作動流体の減圧膨張により旋回スクロール7が中心軸L1を中心として公転運動する。この旋回スクロール7の公転運動により作動室が容積を拡大しながら外周側に移動し、流出パイプ19から減圧された状態で流出する。また、旋回スクロール7が公転運動すると膨張機偏心軸21aを一端とするクランクシャフト21が回転する。   First, when a high-pressure working fluid flows into the working chamber formed in the innermost periphery through the inflow pipe 15 of the expander unit 1, the orbiting scroll 7 revolves around the central axis L1 due to the decompression and expansion of the working fluid. The revolving motion of the orbiting scroll 7 moves the working chamber to the outer peripheral side while expanding the volume, and flows out from the outflow pipe 19 in a decompressed state. Further, when the orbiting scroll 7 revolves, the crankshaft 21 having the expander eccentric shaft 21a as one end rotates.

一方、クランクシャフト21の他端側に配置される圧縮機部3においては、膨張機部1によりクランクシャフト21が回転すると、圧縮機偏心軸21bを介してローラ33がシリンダ31内で偏心回転する。ローラ33の偏心回転に伴い、ベーン35は、ばね43によりローラ33の外周面に押し付けられながら、溝37内を往復運動する。   On the other hand, in the compressor section 3 arranged on the other end side of the crankshaft 21, when the crankshaft 21 is rotated by the expander section 1, the roller 33 rotates eccentrically in the cylinder 31 via the compressor eccentric shaft 21b. . With the eccentric rotation of the roller 33, the vane 35 reciprocates in the groove 37 while being pressed against the outer peripheral surface of the roller 33 by the spring 43.

シリンダ31内でベーン35により区画された二つの作動室、つまり吸込室39と圧縮室41は、ローラ33の偏心回転に伴い容積が変化する。吸込パイプ49を通じて低圧の作動流体が吸込室39内に吸い込まれると吸込室39は容積の減少に伴い、所定の圧力まで圧縮される。圧縮された作動流体は、吐出弁51を通じて吐出パイプ53より外部へ吐き出される。   The volumes of the two working chambers partitioned by the vanes 35 in the cylinder 31, that is, the suction chamber 39 and the compression chamber 41 change with the eccentric rotation of the roller 33. When a low-pressure working fluid is sucked into the suction chamber 39 through the suction pipe 49, the suction chamber 39 is compressed to a predetermined pressure as the volume decreases. The compressed working fluid is discharged from the discharge pipe 53 to the outside through the discharge valve 51.

本実施形態の流体機械は、膨張機部1において作動流体が膨張する際に生じる膨張エネルギを利用して圧縮機部3を駆動させ、この駆動する圧縮機部3において作動流体を圧縮させるため電動機などを用いずに作動流体を膨張、圧縮させることができる。   The fluid machine according to the present embodiment drives the compressor unit 3 using expansion energy generated when the working fluid expands in the expander unit 1, and compresses the working fluid in the driven compressor unit 3. The working fluid can be expanded and compressed without using the above.

次に、上記の流体機械を備えた冷凍サイクルの構成及び動作について図2及び図3を用いて説明する。   Next, the configuration and operation of the refrigeration cycle including the fluid machine will be described with reference to FIGS.

本実施形態の冷凍サイクルは、圧縮装置61、放熱器(ガスクーラ)63、流体機械65、蒸発器67、膨張弁69をそれぞれ冷媒配管で接続して構成される。圧縮装置61は密閉容器内に主圧縮機71と電動機73を収納して構成される。流体機械65は、膨張機部1と圧縮機部3(副圧縮機ともいう)との間に蒸発器67が接続される。膨張弁69は、膨張機部1と蒸発器67を接続する経路をバイパスするバイパス経路に配設される。なお、膨張弁69はサイクルの運転条件変化時の流量(圧力)調整等を行う以外は閉じている。   The refrigeration cycle of the present embodiment is configured by connecting a compressor 61, a radiator (gas cooler) 63, a fluid machine 65, an evaporator 67, and an expansion valve 69 with refrigerant pipes. The compression device 61 is configured by housing a main compressor 71 and an electric motor 73 in a sealed container. In the fluid machine 65, an evaporator 67 is connected between the expander unit 1 and the compressor unit 3 (also referred to as a sub-compressor). The expansion valve 69 is disposed in a bypass path that bypasses a path connecting the expander unit 1 and the evaporator 67. The expansion valve 69 is closed except for adjusting the flow rate (pressure) when the operating conditions of the cycle change.

主圧縮機71において圧縮された高温・高圧冷媒(図3の点Cの状態)は、圧縮装置61の吐出口から吐出され、放熱器63を通過して放熱により減温された後(図3の点D)、流入パイプ15を通って流体機械65の膨張機部1に入る。膨張機部1に流入した冷媒は、膨張過程において膨張エネルギを機械エネルギに変換して圧縮機部3を駆動させ、流出パイプ19から低温・低圧の気液二相冷媒(図3の点E)となって吐出される。   The high-temperature / high-pressure refrigerant compressed in the main compressor 71 (the state at point C in FIG. 3) is discharged from the discharge port of the compressor 61, passes through the radiator 63, and is reduced in temperature by heat dissipation (FIG. 3). Point D) and enters the expander section 1 of the fluid machine 65 through the inflow pipe 15. The refrigerant that has flowed into the expander unit 1 converts expansion energy into mechanical energy during the expansion process to drive the compressor unit 3, and the low-temperature and low-pressure gas-liquid two-phase refrigerant (point E in FIG. 3) from the outflow pipe 19. And discharged.

膨張機部1から吐出された冷媒は、蒸発器67に入って吸熱によりガス化された後、流体機械65の圧縮機部3に吸入パイプ49を通じて吸い込まれる(図3の点A)。圧縮機部3に流入した冷媒は若干昇圧され、吐出パイプ53を通じて吐出される(図3の点B)。圧縮機部3から吐出されたガス冷媒は主圧縮機71に戻されて再び圧縮され、高温・高圧のガス冷媒となる。以上のサイクルが繰り返されて冷凍作用をなす。   The refrigerant discharged from the expander unit 1 enters the evaporator 67 and is gasified by heat absorption, and is then sucked into the compressor unit 3 of the fluid machine 65 through the suction pipe 49 (point A in FIG. 3). The refrigerant flowing into the compressor unit 3 is slightly pressurized and discharged through the discharge pipe 53 (point B in FIG. 3). The gas refrigerant discharged from the compressor unit 3 is returned to the main compressor 71 and compressed again to become a high-temperature and high-pressure gas refrigerant. The above cycle is repeated to produce a freezing action.

このように本実施形態の流体機械65を冷凍サイクルに用いた場合、膨張機部1の膨張エネルギを動力として回収し、この回収された動力を圧縮機部3の駆動源として、圧縮工程の一部(図3のAB間)に利用できるため、その分、主圧縮機71における仕事量を低減することができ、冷凍サイクルのCOPを向上させることができる。   As described above, when the fluid machine 65 of the present embodiment is used in a refrigeration cycle, the expansion energy of the expander unit 1 is recovered as power, and the recovered power is used as a drive source of the compressor unit 3 in the compression process. Therefore, the amount of work in the main compressor 71 can be reduced and the COP of the refrigeration cycle can be improved.

なお、本実施形態では、冷凍サイクルの冷媒として二酸化炭素を用いているが、フロン系の冷媒においても、二酸化炭素の改善比率ほどではないが、COPの向上を図ることができる。   In the present embodiment, carbon dioxide is used as the refrigerant in the refrigeration cycle. However, even in the case of the fluorocarbon refrigerant, the COP can be improved, although not as much as the improvement ratio of carbon dioxide.

次に、上記の冷凍サイクルの起動時の動作について詳細に説明する。   Next, the operation at the start of the refrigeration cycle will be described in detail.

冷凍サイクルの起動直前はサイクル内の圧力がほぼ一定のバランス圧力となっており、この圧力的にバランスした状態から主圧縮機71の運転を開始して冷凍サイクルを起動させる。   Immediately before the start of the refrigeration cycle, the pressure in the cycle is a substantially constant balance pressure, and the operation of the main compressor 71 is started from this pressure balanced state to start the refrigeration cycle.

先ず、主圧縮機71の運転開始と同時に膨張弁69を閉じる。これにより、主圧縮機71の回転数の上昇とともに主圧縮機71の吸込側圧力が低下し、吐出側圧力が上昇する。そして、圧力が上昇した高圧冷媒が放熱器63を経由し、流入パイプ15を通じて膨張機部1の最内周の作動室(図4の71)に到達する。このとき最内周の作動室の周囲の作動室は停止時のバランス圧力のまま維持されているため、作動室間の圧力差により旋回スクロール7にはクランクシャフト21の中心軸L1に対する径方向力が発生し、回転トルクが発生する。   First, the expansion valve 69 is closed simultaneously with the start of operation of the main compressor 71. As a result, the suction side pressure of the main compressor 71 decreases and the discharge side pressure increases as the rotational speed of the main compressor 71 increases. Then, the high-pressure refrigerant whose pressure has increased passes through the radiator 63 and reaches the innermost working chamber (71 in FIG. 4) of the expander unit 1 through the inflow pipe 15. At this time, since the working chamber around the innermost working chamber is maintained at the balance pressure at the time of stopping, the radial force with respect to the central axis L1 of the crankshaft 21 is exerted on the orbiting scroll 7 by the pressure difference between the working chambers. Occurs and rotational torque is generated.

この起動時の回転トルク(起動トルク)が流体機械65の膨張機部1や圧縮機部3の各摺動部における静止摩擦力を上回ると、クランクシャフト21は回転を始める。ここで、静止時の旋回スクロール7の回転位置に応じて作動室の大きさは決まり、特に吸入口13に連通する最内周の作動室71はその容積が大きいほど、冷媒の径方向にかかる力が大きくなり、その結果、起動トルクが増加する。このため、最内周の作動室71は、吸入口13に連通し、かつ各摺動部の静止摩擦力を上回るのに十分な起動トルクを発生させるため、静止時において所定の容積が確保されている必要がある。   When the rotational torque at the time of starting (starting torque) exceeds the static frictional force at the sliding portions of the expander unit 1 and the compressor unit 3 of the fluid machine 65, the crankshaft 21 starts to rotate. Here, the size of the working chamber is determined according to the rotational position of the orbiting scroll 7 at rest, and in particular, the innermost working chamber 71 communicating with the suction port 13 is applied in the radial direction of the refrigerant as its volume increases. The force increases and as a result, the starting torque increases. For this reason, the innermost working chamber 71 communicates with the suction port 13 and generates a starting torque sufficient to exceed the static frictional force of each sliding portion, so that a predetermined volume is ensured when stationary. Need to be.

一方、主圧縮機71の吸込側圧力が低下することにより、流体機械65の圧縮機部3の圧縮室41とこれに連通する空間の圧力が低下する。このとき、圧縮機部3の吸込室39は停止時のバランス圧力のまま維持されているため、吸込室39と圧縮室41との両作動室間には圧力差が生じる。この圧力差により吸込室39の容積が最大となる回転位置までローラ33が移動し、同時にクランクシャフト21には回転トルクが発生する。この回転トルクのかかる方向は膨張機部1の回転方向と同じであるため、流体機械65の起動時の回転トルクは増すことになる。   On the other hand, when the suction side pressure of the main compressor 71 decreases, the pressure in the compression chamber 41 of the compressor unit 3 of the fluid machine 65 and the space communicating with the compression chamber 41 decreases. At this time, since the suction chamber 39 of the compressor unit 3 is maintained at the balance pressure at the time of stop, a pressure difference is generated between the working chambers of the suction chamber 39 and the compression chamber 41. Due to this pressure difference, the roller 33 moves to the rotational position where the volume of the suction chamber 39 is maximized, and at the same time, rotational torque is generated in the crankshaft 21. Since the direction in which this rotational torque is applied is the same as the rotational direction of the expander unit 1, the rotational torque when the fluid machine 65 is started increases.

このように、本冷凍サイクルの流体機械65は、起動時において旋回スクロール7及びローラ33が所定の回転位置に停止していれば、膨張機部1及び圧縮機部3のそれぞれから起動トルクが発生する。すなわち、流体機械65は、その停止時において、次の起動時に備えて、起動トルクが静止摩擦力を上回る位置に旋回スクロール7及びローラ33を常時静止させておく必要がある。そのため、本実施形態では、膨張機部1と圧縮機部3との間の回転角度を規定するため、クランクシャフト21の中心軸L1に対し、膨張機偏心軸21a及び圧縮機偏心軸21bの回転位相を規定している。   Thus, the fluid machine 65 of the present refrigeration cycle generates start-up torque from each of the expander unit 1 and the compressor unit 3 if the orbiting scroll 7 and the roller 33 are stopped at a predetermined rotational position at the time of start-up. To do. That is, when the fluid machine 65 is stopped, it is necessary to always keep the orbiting scroll 7 and the roller 33 stationary at a position where the starting torque exceeds the static frictional force in preparation for the next starting. Therefore, in this embodiment, in order to define the rotation angle between the expander unit 1 and the compressor unit 3, the rotation of the expander eccentric shaft 21 a and the compressor eccentric shaft 21 b with respect to the central axis L 1 of the crankshaft 21. Specifies the phase.

ここで、流体機械65の停止時の圧縮機部3に着目すると、圧縮機部3のローラ33はベーン35を介してばね43による押し付け力を常に受けている。このため、流体機械65が停止すると、ローラ33はばね43の押し付けにより、ばね全長が最大となる回転位置(ベーン下死点)まで移動して停止する。つまり、ローラ33は、吸込室39と圧縮室41とがほぼ同容積となる位置に停止することになる。このため、ローラ33がベーン下死点の位置から冷凍サイクルを起動させると、圧縮機部3の吐出側圧力が低下して吸込室39と圧縮室41との間に圧力差を生じ、ローラ33は吸込室39の容積が最大となる回転位置まで移動することから、このローラ33の移動の際に起動トルクを得ることができる。   Here, paying attention to the compressor unit 3 when the fluid machine 65 is stopped, the roller 33 of the compressor unit 3 always receives the pressing force of the spring 43 via the vane 35. For this reason, when the fluid machine 65 stops, the roller 33 moves to a rotational position (vane bottom dead center) where the total length of the spring is maximum by the pressing of the spring 43 and stops. That is, the roller 33 stops at a position where the suction chamber 39 and the compression chamber 41 have substantially the same volume. For this reason, when the roller 33 starts the refrigeration cycle from the position of the vane bottom dead center, the pressure on the discharge side of the compressor unit 3 is reduced, creating a pressure difference between the suction chamber 39 and the compression chamber 41, and the roller 33. Since the suction chamber 39 moves to the rotational position where the volume of the suction chamber 39 is maximized, the starting torque can be obtained when the roller 33 moves.

以上のことから、本実施形態では、圧縮機部3が、ベーン下死点となるローラ33の回転位置のとき、膨張機部1により発生する回転トルクが最大となるように旋回スクロール7の回転位置を規定しており、具体的には、膨張機部1の流入口に連通する最内周の作動室71の容積が最大となるように、膨張機偏心軸21aの回転位置を決めている。   From the above, in this embodiment, when the compressor unit 3 is at the rotational position of the roller 33 at the vane bottom dead center, the rotation of the orbiting scroll 7 so that the rotational torque generated by the expander unit 1 is maximized. Specifically, the rotational position of the expander eccentric shaft 21a is determined so that the volume of the innermost working chamber 71 communicating with the inlet of the expander unit 1 is maximized. .

図5にクランク角ごとの旋回スクロール7とベーン位置及び起動トルクの関係の一例を示すが、膨張機部1においては吸入口13に連通した最内周の作動室71の容積が大きいほど起動トルクは大きく、その分流体機械は起動しやすくなる。そのため本実施形態の流体機械では、膨張機部1の吸入口13に連通する最内周の作動室71の容積が最大となるときのクランク角と、圧縮機部3のベーン下死点となるときのクランク角とが一致するように、膨張機偏心軸21a及び圧縮機偏心軸21bをクランクシャフト21の中心軸L1に対して所定の位相にて配置する。これにより旋回スクロール7は流体機械65の停止時に必ず吸入口13に連通する最内周の作動室71の容積が最大となる回転位置に停止し、主圧縮機71の始動後は、吸入口13に連通する最内周の作動室に高圧冷媒が流入するようになり、膨張機部1が発生しうる最大の起動トルクを得ることができる。   FIG. 5 shows an example of the relationship between the orbiting scroll 7 for each crank angle, the vane position, and the starting torque. In the expander unit 1, the starting torque increases as the volume of the innermost working chamber 71 communicating with the suction port 13 increases. Is larger and the fluid machine is easier to start. Therefore, in the fluid machine of the present embodiment, the crank angle when the volume of the innermost working chamber 71 communicating with the suction port 13 of the expander unit 1 is maximized and the vane bottom dead center of the compressor unit 3 are obtained. The expander eccentric shaft 21a and the compressor eccentric shaft 21b are arranged at a predetermined phase with respect to the central axis L1 of the crankshaft 21 so that the crank angle at the same time coincides. As a result, the orbiting scroll 7 always stops at the rotational position where the volume of the innermost working chamber 71 communicating with the suction port 13 is maximized when the fluid machine 65 is stopped, and after the main compressor 71 is started, the suction port 13 is stopped. Thus, the high-pressure refrigerant flows into the innermost working chamber that communicates with each other, and the maximum starting torque that can be generated by the expander unit 1 can be obtained.

また、一般に、スクロール式膨張機部の最内周の作動室71は吸入口13に連通し始めてから作動室を閉じきるまでの間、容積を連続的に増加させるが、作動室を閉じきった直後には最内周の作動室はさらに内周側に形成される作動室に移るため、容積が急激に小さくなる。そのため、停止時の旋回スクロール7の回転位置が、ローラ33の押し付けによるばね長さ最大の位置に対しずれを生じると、作動室が閉じきった直後の状態となるおそれがある。この場合、膨張機部1が生じる起動トルクは最も小さい状態となり、流体機械を駆動させることができないおそれがある。   In general, the innermost working chamber 71 of the scroll expander section continuously increases in volume from the start of communicating with the suction port 13 until the working chamber is completely closed, but the working chamber is completely closed. Immediately after that, the innermost working chamber is further moved to the working chamber formed on the inner circumferential side, so that the volume is rapidly reduced. For this reason, if the rotational position of the orbiting scroll 7 at the time of stopping deviates from the position where the spring length is maximum due to the pressing of the roller 33, there is a possibility that the operating chamber is in a state immediately after it is closed. In this case, the starting torque generated by the expander unit 1 is the smallest, and there is a possibility that the fluid machine cannot be driven.

これを防止するため、旋回スクロール7の停止時の回転位置(クランク角)は作動室が閉じ切りとなる回転位置よりも若干前方にずれていた方がよく、例えば、ベーン下死点に対し、膨張機部1の吸入口13に連通する作動室の容積が最大となる回転位置を限度として、この回転位置から−45度までの角度範囲に、膨張機偏心軸21aを配置することが好ましい。これにより、停止時のクランクシャフト21の回転位置がベーン下死点からずれても、起動トルクの低下を防ぎ、安定した起動を行うことができる。   In order to prevent this, the rotational position (crank angle) when the orbiting scroll 7 is stopped should be shifted slightly forward from the rotational position at which the working chamber is closed. For example, with respect to the vane bottom dead center, The expander eccentric shaft 21a is preferably arranged in an angle range from this rotation position to -45 degrees, with the rotation position where the volume of the working chamber communicating with the suction port 13 of the expander unit 1 is maximized as a limit. Thereby, even if the rotation position of the crankshaft 21 at the time of a stop shift | deviates from a vane bottom dead center, the fall of starting torque can be prevented and stable starting can be performed.

以上述べたように、本実施形態の流体機械によれば、膨張機部1にスクロール型膨張機を、圧縮機部3にローリングピストン型ロータリ圧縮機を備え、ローリングピストン型圧縮機部のローラ33をベーン35を介してばね43により付勢することにより、停止時のクランクシャフト21の回転位置を常にほぼ同一とすることができ、かつ、その回転位置にて膨張機部1により発生する起動トルクをほぼ最大とすることができることため、例えば、補助モータを設置しなくても常に安定した起動を実現でき、冷凍サイクルの信頼性を高め、効率的な膨張エネルギ回収を実現できる。また、流体機械において補助モータなどの起動手段を特段設ける必要がないため、機器のコスト低下に寄与することができる。   As described above, according to the fluid machine of the present embodiment, the expander unit 1 includes the scroll type expander, the compressor unit 3 includes the rolling piston type rotary compressor, and the roller 33 of the rolling piston type compressor unit. Is urged by the spring 43 via the vane 35 so that the rotational position of the crankshaft 21 at the time of stopping can be made substantially the same, and the starting torque generated by the expander unit 1 at the rotational position. Therefore, for example, stable start-up can be realized without installing an auxiliary motor, reliability of the refrigeration cycle can be improved, and efficient expansion energy recovery can be realized. Moreover, since it is not necessary to provide a starting means such as an auxiliary motor in the fluid machine, it is possible to contribute to the cost reduction of the equipment.

本発明を適用してなる流体機械の断面図ある。It is sectional drawing of the fluid machine formed by applying this invention. 本発明を適用してなる流体機械を備えた冷凍サイクルの模式図である。It is a schematic diagram of the refrigerating cycle provided with the fluid machine to which this invention is applied. 本発明を適用してなる流体機械を備えた冷凍サイクルのモリエル線図である。It is a Mollier diagram of a refrigeration cycle provided with a fluid machine to which the present invention is applied. 本発明を適用してなる流体機械の膨張機部及び圧縮機部の横断面図である。It is a cross-sectional view of an expander part and a compressor part of a fluid machine to which the present invention is applied. 本発明を適用してなる流体機械のクランク角ごとの膨張機部及び圧縮機部の動作図である。It is an operation | movement diagram of the expander part and compressor part for every crank angle of the fluid machine to which this invention is applied.

符号の説明Explanation of symbols

1 膨張機部
3 圧縮機部
5 固定スクロール
7 旋回スクロール
13 吸入口
21 クランクシャフト
21a 膨張機偏心軸21a
21b 圧縮機偏心軸21b
31 シリンダ
33 ローラ
35 ベーン
43 ばね
DESCRIPTION OF SYMBOLS 1 Expander part 3 Compressor part 5 Fixed scroll 7 Orbiting scroll 13 Suction port 21 Crankshaft 21a Expander eccentric shaft 21a
21b Compressor eccentric shaft 21b
31 Cylinder 33 Roller 35 Vane 43 Spring

Claims (3)

膨張機部と圧縮機部とが容器内に収納され、前記膨張機部で流体を膨張させて前記膨張機部を駆動させ、該膨張機部の駆動力により前記圧縮機部を駆動させる容積形流体機械において、
前記膨張機部は、それぞれ板材に渦巻き状の羽根が直立して形成され、互いに噛み合って複数の作動室を形成する固定スクロール及び旋回スクロールと、前記固定スクロールの中央部に開口する前記流体の流入口と、前記固定スクロールの外周部に開口する前記流体の吐出口と、前記旋回スクロールと連結する第1の偏心軸部とを備えたスクロール型膨張機部であり、
前記圧縮機部は、シリンダと、該シリンダの両端を閉塞する閉塞板と、前記シリンダの内側で偏心回転する円筒状のローラと、前記ローラの外周面に接して前記シリンダと前記ローラと前記閉塞板とにより形成される空間を仕切るベーン部と、前記ベーン部を付勢して前記ローラに押し付けるばねと、前記ローラに連結する第2の偏心軸部とを備えたローリングピストン型圧縮機部であり、
前記第1の偏心軸部と前記第2の偏心軸部は主軸に連結され、前記ばねが最も伸びたときの前記ローラの回転位置に対し、前記旋回スクロールの回転位置は、前記流入口に連通する前記作動室の容積が最大となる回転位置を限度として該回転位置から−45度までの範囲となるように、前記第1の偏心軸部と前記第2の偏心軸部との間に位相差を設けることを特徴とする容積形流体機械。
An expander unit and a compressor unit are accommodated in a container, a fluid is expanded by the expander unit to drive the expander unit, and the compressor unit is driven by a driving force of the expander unit. In fluid machinery,
The expander section includes a fixed scroll and an orbiting scroll, each of which has a spiral blade formed upright on a plate material and meshes with each other to form a plurality of working chambers. A scroll-type expander unit including an inlet, a discharge port of the fluid that opens to an outer peripheral portion of the fixed scroll, and a first eccentric shaft unit that is connected to the orbiting scroll;
The compressor section includes a cylinder, a closing plate that closes both ends of the cylinder, a cylindrical roller that rotates eccentrically inside the cylinder, and the cylinder, the roller, and the blocking that are in contact with the outer peripheral surface of the roller. A rolling piston type compressor section comprising a vane section that partitions a space formed by a plate, a spring that urges the vane section to press it against the roller, and a second eccentric shaft section that is coupled to the roller. Yes,
The first eccentric shaft portion and the second eccentric shaft portion are connected to a main shaft, and the rotational position of the orbiting scroll communicates with the inflow port with respect to the rotational position of the roller when the spring is most extended. Between the first eccentric shaft portion and the second eccentric shaft portion so that the rotational position where the volume of the working chamber is maximized is within a range of −45 degrees from the rotational position. A positive displacement fluid machine characterized by providing a phase difference.
前記第1の偏心軸部と前記第2の偏心軸部との位相差は、前記ばねが最も伸びたときの前記ローラの回転位置に対し、前記旋回スクロールの回転位置が前記流入口に連通する前記作動室の容積が最大となる回転位置となるように設定することを特徴とする請求項1に記載の容積形流体機械。 The phase difference between the first eccentric shaft portion and the second eccentric shaft portion is such that the rotational position of the orbiting scroll communicates with the inflow port with respect to the rotational position of the roller when the spring is most extended. The positive displacement fluid machine according to claim 1, wherein the displacement chamber is set so as to be a rotational position where the volume of the working chamber is maximized. 前記流体が二酸化炭素であることを特徴とする請求項1又は2に記載の容積形流体機械。
The positive displacement fluid machine according to claim 1, wherein the fluid is carbon dioxide.
JP2006163364A 2006-06-13 2006-06-13 Positive displacement fluid machine Expired - Fee Related JP4709076B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006163364A JP4709076B2 (en) 2006-06-13 2006-06-13 Positive displacement fluid machine
CNB2007101089597A CN100532843C (en) 2006-06-13 2007-06-08 Cubage type fluid machinery
KR1020070056989A KR100840048B1 (en) 2006-06-13 2007-06-12 Displacement fluid machine
DE102007026961A DE102007026961A1 (en) 2006-06-13 2007-06-12 Fluid displacement machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163364A JP4709076B2 (en) 2006-06-13 2006-06-13 Positive displacement fluid machine

Publications (2)

Publication Number Publication Date
JP2007332819A JP2007332819A (en) 2007-12-27
JP4709076B2 true JP4709076B2 (en) 2011-06-22

Family

ID=38859560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163364A Expired - Fee Related JP4709076B2 (en) 2006-06-13 2006-06-13 Positive displacement fluid machine

Country Status (4)

Country Link
JP (1) JP4709076B2 (en)
KR (1) KR100840048B1 (en)
CN (1) CN100532843C (en)
DE (1) DE102007026961A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101467752B1 (en) 2007-11-21 2014-12-03 엘지전자 주식회사 Device for treating cloth
JP5223412B2 (en) * 2008-03-27 2013-06-26 ダイキン工業株式会社 Piston eccentric rotating fluid machine
KR101386483B1 (en) 2008-04-14 2014-04-18 엘지전자 주식회사 Scroll compressor
WO2011089638A1 (en) * 2010-01-19 2011-07-28 三菱電機株式会社 Positive displacement expander and refrigeration cycle device using the positive displacement expander
WO2011135779A1 (en) * 2010-04-30 2011-11-03 パナソニック株式会社 Fluid machine and refrigeration cycle apparatus
CN102182688B (en) * 2011-04-26 2013-05-29 苏州英华特制冷设备技术有限公司 Two-stage compression compressor
CN104121192B (en) * 2013-04-24 2017-03-15 珠海格力节能环保制冷技术研究中心有限公司 Double-stage compressor
KR102022871B1 (en) * 2013-05-21 2019-09-20 엘지전자 주식회사 Scroll compressor
US9689388B2 (en) 2013-06-05 2017-06-27 Lg Electronics Inc. Scroll compressor
DE102013218430A1 (en) * 2013-09-13 2015-03-19 Mahle International Gmbh Scroll compressor
CN105526166B (en) * 2016-01-19 2017-08-29 广东美芝制冷设备有限公司 Compressor and the heat-exchange system with it
CN108105091B (en) * 2018-02-02 2023-11-24 广东美芝制冷设备有限公司 Compression mechanism and compressor with same
CN108386354B (en) * 2018-03-23 2020-11-13 合肥通用机械研究院有限公司 High-temperature heat pump compressor with double-pump-body structure
CN110375450A (en) * 2019-07-03 2019-10-25 天津大学 A kind of carbon dioxide refrigeration heat pump system
CN114810598B (en) * 2022-04-29 2024-08-30 宁波金巽科技有限公司 Novel combined compressor structure
CN115126684B (en) * 2022-06-24 2023-08-08 清华大学 Dual-mode compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1037705A (en) * 1996-07-23 1998-02-10 Toshiba Corp Fluid machinery
JPH10266980A (en) * 1997-03-27 1998-10-06 Toshiba Corp Scroll type expander
JP4606840B2 (en) * 2004-10-29 2011-01-05 株式会社デンソー Composite fluid machine and refrigeration apparatus using the same

Also Published As

Publication number Publication date
KR100840048B1 (en) 2008-06-19
CN100532843C (en) 2009-08-26
CN101089395A (en) 2007-12-19
JP2007332819A (en) 2007-12-27
DE102007026961A1 (en) 2008-01-31
KR20070118963A (en) 2007-12-18

Similar Documents

Publication Publication Date Title
JP4709076B2 (en) Positive displacement fluid machine
JP4584306B2 (en) Scroll expander
JP4261620B2 (en) Refrigeration cycle equipment
WO2005026499A1 (en) Rotary expansion machine and fluid machinery
JP2008506885A (en) Refrigeration system and refrigeration method
WO2006013959A1 (en) Displacement type expansion machine and fluid machine
JP2004190559A (en) Displacement expander and fluid machine
JP4232149B2 (en) Scroll expander and refrigeration air conditioner
JP4055902B2 (en) Refrigeration equipment with an expander
JP4974851B2 (en) Refrigeration air conditioner
JP4991255B2 (en) Refrigeration cycle equipment
JP2009270529A (en) Positive displacement fluid machine
KR101176452B1 (en) Refrigerating cycle
EP2527591B1 (en) Positive displacement expander and refrigeration cycle device using the positive displacement expander
JP2006266171A (en) Positive displacement fluid machine
JP2004324595A (en) Positive displacement fluid machine
WO2012104934A1 (en) Scroll expander, and refrigeration cycle with the scroll expander
JP5119786B2 (en) Fluid machinery and refrigeration cycle equipment
JP2005048654A (en) Compressor
JP4888222B2 (en) Fluid machine and refrigeration cycle apparatus including the same
WO2011161953A1 (en) Refrigeration cycle apparatus
JP5095320B2 (en) Rotary fluid machine and refrigeration cycle apparatus
KR100556409B1 (en) gear type compressor
JP4888000B2 (en) Expansion machine
JP2009062951A (en) Two stage rotary type expander

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110317

LAPS Cancellation because of no payment of annual fees