JP2004322387A - Tube having gas permeation amount suppressing outer cover layer and its manufacturing method - Google Patents

Tube having gas permeation amount suppressing outer cover layer and its manufacturing method Download PDF

Info

Publication number
JP2004322387A
JP2004322387A JP2003117823A JP2003117823A JP2004322387A JP 2004322387 A JP2004322387 A JP 2004322387A JP 2003117823 A JP2003117823 A JP 2003117823A JP 2003117823 A JP2003117823 A JP 2003117823A JP 2004322387 A JP2004322387 A JP 2004322387A
Authority
JP
Japan
Prior art keywords
film
tube
tube body
skin layer
gas permeation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003117823A
Other languages
Japanese (ja)
Inventor
Tadahiro Omi
忠弘 大見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Mitsubishi Chemical Engineering Corp
Yodogawa Hu Tech Co Ltd
Original Assignee
Kureha Corp
Mitsubishi Chemical Engineering Corp
Yodogawa Hu Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp, Mitsubishi Chemical Engineering Corp, Yodogawa Hu Tech Co Ltd filed Critical Kureha Corp
Priority to JP2003117823A priority Critical patent/JP2004322387A/en
Publication of JP2004322387A publication Critical patent/JP2004322387A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tube having a gas permeation amount suppressing outer cover layer capable of preventing such a phenomenon that oxygen permeates through a tube wall on the way of the tube feed of ultrapure water to dissolve in ultrapure water. <P>SOLUTION: This tube 1 is constituted so as to have an oxygen permeation amount suppressing effect by spirally winding a heat-shrinkable strip-like film 31, which is formed of a material for suppressing the permeation of oxygen, around a chemical-resistant tube main body 2 so as to overlap the edges of the film with each other and heating the strip-like film 31 at a temperature lower than the melting point of the strip-like film 31 in a vacuum atmosphere not only to shrink the same to exclude air between the tube main body 2 and the film 31 to the utmost but also to weld the film 3 and the tube main body 2 and the overlapped parts on the tube main body 2 by the thermal shrink of the film 31. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する分野】
本発明は、半導体装置、液晶表示装置等の製造に際して、超純水や薬液等の輸送ラインに使用されるチューブ及びその製法に関するものである。
【0002】
【従来の技術】
半導体デバイスの進歩は目覚ましく、半導体デバイスの集積度が高まるに従い、半導体製造の洗浄工程で使用する超純水に求められる性能が益々厳しくなってきている。そのために超純水に混在し、又は溶出しているパーティクルやメタル成分の徹底的な除去が行われている。
今後の方向として、超純水の溶存酸素の除去が注目されている。
【0003】
図5a、bは、超純水の溶存酸素量を抑制するために提案されている超純水配管用のチューブの製法を示している(特許文献1)。
該配管用チューブ(1)は、ふっ素樹脂製のチューブ本体(2)の外表面に、酸素透過度の小さい外皮層(3)を形成したものである。
図5aに示す配管用チューブの製法は、チューブ本体(2)に、酸素透過度の小さい熱収縮性フィルムチューブ(32)を被せた後、該フィルムチューブ(32)を熱収縮させて、外皮層(3)を形成している。
図5bは、酸素透過度の小さい材料で製られた帯状フィルム(31)を、チューブ本体(2)に隙間なく螺旋状に巻き付けた後、帯状フィルム(31)を熱融着させて外皮層(3)を形成している。
【0004】
【発明が解決しようとする課題】
図5aの場合、チューブ本体(2)への熱収縮フィルムチューブ(32)の被せは、手作業に依らねばならず、面倒である。又、チューブ本体(2)が長尺であれば、フィルムチューブ(32)を被せることが極めて困難となる。
又、チューブ本体(2)にフィルムチューブ(32)を被せる途上で、チューブ本体(21)の先端がフィルムチューブ(32)に引っ掛かり、該フィルムチューブ(32)を傷付け、又は破る虞れがある。
又、フィルムチューブ(32)が熱収縮する際、該フィルムチューブ(32)とチューブ本体(2)との間の空気が抜けきれずに封じ込まれ、残存した空気中の酸素が、チューブ本体(2)の肉厚を透過してチューブ本体(2)内を流れる超純水に溶出する。この酸素溶出による超純水の溶存酸素量の増加は、シリコンウエハの洗浄工程でシリコンウエハ表面を酸化させ、製品の歩留まりを低下させる問題を招来する。
【0005】
図5bの様に、帯状フィルム(31)をチューブ本体(2)に螺旋状に巻き付ける場合でも、チューブ本体(2)と帯状フィルム(31)との間、及び帯状フィルム(31)(31)どうしの重なり部に空気を巻き込んだまま、次の加熱工程によって、フィルムの重なり部の融着が行われる。そのため該残存空気中の酸素がチューブ本体(2)の肉厚を透過して、チューブ本体(2)内を流れる超純水に溶出し、前記同様の問題が生じる。
又、図5bの場合、帯状フィルム(31)はストレートフィルム(熱収縮性のないフィルム)であるから、チューブ本体(2)に螺旋状に巻回したフィルムどうしを融着するには、フィルムの融点以上に加熱する必要がある。
チューブ本体(2)へ螺旋状に巻き付けたチューブを加熱するために、チューブを巻き束ねて加熱炉中に置いて加熱する場合、加熱温度がフィルムの融点未満であれば、帯状フィルム(31)(31)どうしが融着せず、或いは融着が不完全となる。加熱温度がフィルムの融点以上であれば、巻き重なったフィルムどうしだけではなく、巻き束ねた隣り合うチューブ上のフィルム(31)(31)どうしも融着してしまい、巻き束ねたチューブ(1)からチューブの巻き戻しと引き出しが出来なくなる。
【0006】
特許文献1の酸素透過量抑制外皮層(3)を有するチューブ(1)は、チーブ本体(91)を単体で使用することに較べれば、酸素透過量の抑制効果があるとされているが、上記の如く、製法上の問題がある。
本発明は、上記問題を解決できるガス透過量抑制外皮層を有するチューブ及びその製法を明らかにするものである。
【0007】
【特許文献1】
実開平6−34940号
【0008】
【課題を解決する手段】
本発明のチューブ本体(2)の外表面にガス透過量抑制外皮層(3)を有するチューブ(1)の製法は、チューブ本体(2)に、ガスの透過を抑制する樹脂で形成された熱収縮性の帯状フィルム(31)を、帯状フィルムどうしが一部重なり合う様に螺旋状に巻き、これを真空雰囲気中で、フィルム(31)の融点より低い温度で加熱し、チューブ本体(2)とフィルム(31)との間の空気、及びフィルム(31)(31)の積層間の空気を排除すると共に、フィルム(31)の熱収縮により、巻き重なったフィルム(31)(31)の内側のフィルムを締付け加圧して、該締付け加圧とフィルムへの加熱との相乗効果により、フィルム(31)の融点より低い温度雰囲気で、巻き重なったフィルムの表面どうしを融着させ、巻き重なったフィルムが一体化した外皮層(3)を形成することを特徴とする。
【0009】
【作用及び効果】
チューブ本体(2)に巻き重ねたフィルム(31)の熱収縮と、フィルム(31)に対する融点より低い温度での加熱との相乗効果により、巻き重ねたフィルム(31)が融着一体化した外皮層(3)を形成できる。
又、真空脱気により、外皮層(3)とチューブ本体(2)との間、外皮層(3)の肉厚内には空気の残留はなく、然も、外皮層(3)自体がガスの透過を抑制する特性を有するため、外皮層(3)をガスが透過する量は無視できる程度であり、チューブ本体(2)内を流れる超純水や薬液にガスが溶出することを効果的に防止できる。
【0010】
【発明の実施の形態】
図1は、本発明のチューブ(1)を示しており、チューブ本体(2)に酸素透過量抑制外皮層(3)を形成している。
チューブ本体(2)は、超純水やその他の薬液、気体に対して不活性で耐久性に優れたふっ素樹脂にて形成される。
実施例では、チューブ本体(2)は、四ふっ化エチレン・パーフルオロアルコキシエチレン共重合体樹脂(PFA)で形成されている。
チューブ本体(2)の材料として、四ふっ化エチレン樹脂(PTFE)、四ふっ化エチレン−六ふっ化プロピレン共重合体(FEP)等でも実施可能である。
チューブ本体(2)の寸法は任意に形成できるが、例えば、肉厚1.6mm、外径
13mmとし、巻き束ねることができる程度の可撓性を有している。
【0011】
上記外皮層(3)は、内層(3a)と外層(3b)からなり、何れも帯状フィルム(31)を螺旋状に巻回して形成される。但し、後記の如く、真空加熱によって帯状フィルム(31)を加熱すると、帯状フィルムの重なり部が融着して内層(3a)と外層(3b)が一体化し、内層(3a)と外層(3b)の境界はなくなる。
【0012】
帯状フィルム(31)は、ガス透過度が低く、熱収縮性を有する樹脂フィルムを帯状に形成したものである。
フィルム(31)への熱収縮性の付与は、公知の如く、フィルムを二軸延伸した後、熱固定させないことによって行う。
帯状フィルム(31)は、樹脂の中でも気体透過性が特に低いポリ塩化ビニリデンにて形成されている。フィルム(31)の厚み、幅は任意であるが、例えば、厚み40μm、フィルム幅40mmである。
【0013】
実施例の帯状フィルム(31)は、クレハロンフィルムMT300R(商品名:呉羽化学工業株式会社製)であって、塩化ビニリデンと塩化ビニルの共重合物であり、酸素バリヤー性と水蒸気バリヤー性を合わせ持つ。
帯状フィルム(31)の厚み40μmは、ポリ塩化ビニリデンフィルム(31)としては、特別に厚く、ソーセージの皮等の包装用としての用途に製造されているものである。
【0014】
厚みの大きい帯状フィルム(31)を用いたのは、必要厚みの外皮層(3)を得るための、帯状フィルム(31)の巻数を少なくし、フィルムどうしの積層数を減らして、該積層間の空気の巻込みを可及的に少なくすること、更に、該帯状フィルム(31)をチューブ本体(2)にテンションを掛けて螺旋状に巻く際、テンションによる伸びの防止、該フィルム(31)を熱収縮させる際の強度を維持するためである。
【0015】
下記表1は、クレハロンフィルムMT300Rの一般物性を示している。
【表1】

Figure 2004322387
【0016】
次に、チューブ本体(2)に、帯状フィルム(31)によって外皮層(3)を形成する方法を説明する。
図2に示す如く、巻き束ねたチューブ本体(2)を、テンションを掛けた状態で引張り機(5)で真っ直ぐに引き出しつつ、該チューブ本体(2)に帯状フィルム(31)をテンションを掛けて螺旋状に巻回する。
帯状フィルム(31)はボビン(4)に予め巻かれており、ボビン(4)がフィルム(31)を繰り出しつつ、チューブ本体(2)の廻りを、同一軌跡且つ一定速度で回転する。従って、チューブ本体(2)が一定の速度で真っ直ぐに引き出されることにより、チューブ本体(2)の外周に帯状フィルム(31)が螺旋状に巻回される。
【0017】
実施例では、帯状フィルム(31)の幅長さの1/2の幅で、隣合うフィルム(31)(31)どうしが重なり合う様に螺旋状に巻回される。
チューブ本体(2)は、帯状フィルム(31)の巻き付けが終了した部分から順に、巻取り機(6)によって、巻き束ねられる。
帯状フィルム(31)で被覆されて巻き束ねられたチューブに対し、上記帯状フィルム(31)の巻き付け工程を、更に1回繰り返す。
図1に示す如く、チューブ本体(2)上の外皮層(3)は、1回目のフィルム巻回による内層(3a)と2回目のフィルム巻回による外層(3b)によって形成される。
外皮層(3)の厚みは、フィルム厚み40μmの4倍である160μmが保証され、帯状フィルムの重なりの状態ではそれ以上の厚み部分も生じる。
【0018】
図2に示す如く、外皮層(3)が形成され、巻き束ねられたチューブを、真空加熱炉(7)に投入し、20torr、130℃の雰囲気を8時間保つ。
真空雰囲気によって、チューブ本体(2)とフィルム(31)との間、及びフィルム(31)(31)の重なり部の空気が排除される。
真空雰囲気中の時間が長いほど、チューブ本体(2)とフィルム(31)との間、及びフィルム(31)(31)の重なり部の脱気は良好に行われるが、8時間以上であれば十分である。
帯状フィルム(31)は、テンションを加えて耐薬品性チューブ本体(2)上に巻回されており、然も、その後の工程で、該フィルム(31)の融点より少し低い温度に加熱されて熱収縮するため、フィルム(31)が耐薬品性チューブ本体(2)を強く締め付ける。
【0019】
実施例での真空加熱炉(7)での加熱温度130℃は、帯状フィルム(31)の素材であるポリ塩化ビニリデンの融点150℃より少し低い温度であり、フィルム全体が溶融することはない。しかし、帯状フィルム(31)は加熱によって充分に熱収縮し、巻き重なったフィルム(31)(31)は強く締まって内側のフィルを強力に締付け加圧する。この締付け加圧と加熱の相乗効果により、フィルムの融点よりも低い温度であっても巻き重なったフィルムの表面どうしが融着して一体化し、単層状の外皮層(3)を形成する。
外皮層(3)の外周面が溶融しているのではなく、且つ隣り合うチューブの外皮層どうしを押圧する強い外力は作用しておらず、外皮層どうしが溶着することはない。従って、真空加熱炉(7)からチューブ(1)を取り出して、該チューブを必要長さに引き出す際、チューブの外皮層(3)(3)どうしが互いに溶着して、引出し不能の事態は起らない。
フィルム(31)と、該フィルム(31)より融点の高いチューブ本体(2)との間は、加圧状態に密着する。
【0020】
真空加熱炉(7)の温度雰囲気は、加熱時間にも左右されるが、100℃からフィルム(31)の融点未満の範囲が許容範囲である。
真空加熱炉(7)の温度が100℃未満であれば、温度が低過ぎてフィルムの重なり部に融着不良を生じる虞れがあり、フィルム(31)の融点以上であれば、フィルム全体が溶けてしまう。
【0021】
上記の如く、酸素の透過を抑制する特性を有する帯状テープ(31)を螺旋状に巻回し、真空加熱によって脱気と融着によって単層状態に形成された外皮層(3)はは、空気の残留や外気の侵入を阻止する。従って、外皮層(3)を透過してチューブ本体内へ酸素が侵入することは阻止され、該チューブ本体(2)内の超純水等に酸素が溶出することを効果的に防止できる。
【0022】
以下に、本発明の酸素透過量抑制外皮層を有するチューブ(1)と、比較例のチューブを通る純水の溶存酸素量を計測する実験方法及び結果を示す。
実験方法
図3に示す如く、チューブを直径70cmのループ(11)に巻き束ねて全長50mのサンプル配管を行い、配管の一端を超純水装置に連通させ、他端を二股分岐管に接続する。
分岐管の一方(13)は仕事用であり、フローメータ(81)を具えている。分岐管の他方(14)は計測用であり、溶存酸素計(8)を具えている。
仕事用分岐管(13)の流量は2L/分、計測用分岐管(14)の流量は700mL/分とした。
配管の接続部には、帯状フィルム(31)と同様の酸素透過量抑制効果のあるフィルムを5重以上に巻いて、該接続部から配管内への酸素の侵入は、無視できる程度に抑えた。
溶存酸素計による超純水の溶存酸素の測定値の変化は、この場合、時間依存性はなく、溶存酸素計の反応速度が要因となっている。そのため、上記状態にしてから24時間後の溶存酸素計の測定値をテスト結果とした。
【0023】
図4は、チューブ配管の出口の溶存酸素量を示している。
比較例1は、帯状フィルムによる外皮層が存在しないチューブ本体(2)のみで、サンプル配管を行った。
比較例2は、帯状フィルム(31)による外皮層は存在している。該外皮層は、ふっ素樹脂チューブ本体(2)に帯状フィルム(31)を前記と同様にして螺旋状に2回巻いた後、150℃の温度雰囲気の筒状加熱炉に、通過時間約1分で通して形成されている。真空脱気は行っていない。
加熱温度150℃は、帯状フィルムの溶融温度であるが、これ以下の温度であれば、チューブの筒状加熱炉の通過速度を遅くして、炉内での時間を長くしない限り、フィルムどうしの溶着不良が生じる。
比較例2では、外皮層、或いはチューブ本体と外皮層との間に、気泡の巻込みよって白濁変色した箇所が肉眼ではっきりと認められた。
前出の特許文献1の帯状フィルムがストレートフィルムであるのに対して、比較例1は熱収縮性フィルムであるという違いがある。比較例2は、特許文献1よりも条件は良いと考えられる。
図4中、イニシャルの数値は、超純水中に最初から溶存している酸素量を示す。
比較例1に較べて本発明のチューブ(1)の実質酸素透過量は、1/20以下であり、比較例2に較べても、1/5程度である。
本発明のチューブ(1)の酸素透過量抑制効果が如何に大きいかは、上記数値が如実に示している。
【0024】
本発明の実施に際し、帯状フィルム(31)の厚みは、40μmに限らず、一般的な20μm程度でも実施可能であり、30〜80μmとすれば、40μmの場合に近い良好な結果が得られた。フィルム(31)厚みを80μm以上とすることは、巻き難くなる。
又、実施例では、ふっ素樹脂チューブ本体(2)に帯状フィルム(31)を4層に重ね、外皮層の厚みを160μmとしたが、外皮層の厚みは100μmから200μm程度であれば、比較例1は勿論のこと比較例2に比べても、酸素透過量の抑制効果が大きいことが分かった。
【0025】
上記実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。又、本発明の各部構成は上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。
【0026】
例えば、半導体の製造において、今後は、超純水でのウエハ洗浄時の気泡発生の抑制のために、溶存ガス全般の除去が求められることが予想され、チューブ本体(2)上の外皮層(3)の材料である帯状フィルム(31)に求められる特性は、酸素透過度の小さいことに限定されるものではなく、対象とするガスに対する耐透過性があれば可い。
又、チューブ本体(2)は、該チューブ本体(2)を流れる超純水や薬品に対して不活性であれば、ふっ素樹脂に限定されるものではない。
【図面の簡単な説明】
【図1】本発明の耐薬品性チューブの斜面図である。
【図2】耐薬品性チューブの製造工程の説明図である。
【図3】サンプル配管を通過する超純水の溶存酸素量の増加抑制測定装置の説明図である。
【図4】酸素透過テストの結果を示すグラフ。
【図5】従来の外皮層の形成方法を示し、a図は、チューブ本体にフィルムチューブを被せる。b図はチューブ本体に帯状フィルムを巻回する。
【符号の説明】
(1) チューブ
(2) チューブ本体
(3) 外皮層
(31) 帯状フィルム[0001]
[Field of the Invention]
The present invention relates to a tube used for a transport line for ultrapure water, a chemical solution, and the like when manufacturing a semiconductor device, a liquid crystal display device, and the like, and a method for manufacturing the tube.
[0002]
[Prior art]
2. Description of the Related Art The progress of semiconductor devices has been remarkable, and as the degree of integration of semiconductor devices has increased, the performance required of ultrapure water used in a cleaning process of semiconductor manufacturing has become increasingly severe. For this reason, particles and metal components mixed or eluted in ultrapure water are thoroughly removed.
As a future direction, removal of dissolved oxygen from ultrapure water is attracting attention.
[0003]
FIGS. 5A and 5B show a method of manufacturing a tube for ultrapure water piping proposed to suppress the dissolved oxygen amount of ultrapure water (Patent Document 1).
The piping tube (1) is obtained by forming a skin layer (3) having a small oxygen permeability on the outer surface of a tube body (2) made of a fluororesin.
The method of manufacturing the piping tube shown in FIG. 5A is as follows. After covering the tube body (2) with the heat-shrinkable film tube (32) having a low oxygen permeability, the film tube (32) is heat-shrinked to form the outer layer. (3) is formed.
FIG. 5B is a diagram showing a state in which a belt-like film (31) made of a material having a low oxygen permeability is spirally wound around the tube body (2) without any gap, and then the belt-like film (31) is heat-sealed to form a skin layer ( 3) is formed.
[0004]
[Problems to be solved by the invention]
In the case of FIG. 5a, the covering of the tube body (2) with the heat-shrinkable film tube (32) has to be done manually and is cumbersome. If the tube body (2) is long, it is extremely difficult to cover the film tube (32).
In addition, while the film tube (32) is being put on the tube body (2), the tip of the tube body (21) may be caught on the film tube (32), and the film tube (32) may be damaged or broken.
Further, when the film tube (32) thermally shrinks, the air between the film tube (32) and the tube body (2) is completely trapped, and the remaining oxygen in the air is removed from the tube body ( It elutes in ultrapure water flowing through the tube body (2) through the thickness of 2). The increase in the dissolved oxygen amount of the ultrapure water due to the oxygen elution causes a problem that the silicon wafer surface is oxidized in the silicon wafer cleaning step and the product yield is reduced.
[0005]
As shown in FIG. 5B, even when the band-shaped film (31) is spirally wound around the tube body (2), the space between the tube body (2) and the band-shaped film (31), and between the band-shaped films (31) and (31). In the next heating step, the overlapping portion of the film is fused while the air is entrapped in the overlapping portion. Therefore, the oxygen in the remaining air permeates through the thickness of the tube body (2) and elutes in the ultrapure water flowing in the tube body (2), and the same problem as described above occurs.
Further, in the case of FIG. 5B, since the strip film (31) is a straight film (a film having no heat shrinkage), in order to fuse the spirally wound films to the tube body (2), It is necessary to heat above the melting point.
In order to heat the tube spirally wound around the tube main body (2), when the tube is wound and placed in a heating furnace and heated, if the heating temperature is lower than the melting point of the film, the strip film (31) ( 31) The fusion does not occur or the fusion is incomplete. When the heating temperature is equal to or higher than the melting point of the film, not only the wound films but also the films (31) and (31) on the wound adjacent tubes are fused together, and the wound tube (1) The tube cannot be rewound and pulled out.
[0006]
The tube (1) having the oxygen permeation suppression outer layer (3) of Patent Document 1 is said to have an effect of suppressing the permeation of oxygen as compared with the case where the tube body (91) is used alone. As described above, there is a problem in the manufacturing method.
The present invention is to clarify a tube having a gas permeation suppression skin layer capable of solving the above problem and a method for producing the same.
[0007]
[Patent Document 1]
No. 6-34940
[Means to solve the problem]
The method for producing a tube (1) having a gas permeation suppression skin layer (3) on the outer surface of a tube main body (2) of the present invention is characterized in that the tube main body (2) is made of a resin formed of a resin that suppresses gas permeation. The shrinkable strip film (31) is spirally wound so that the strip films partially overlap each other, and is heated in a vacuum atmosphere at a temperature lower than the melting point of the film (31) to form a tube body (2). The air between the films (31) and (31) and the air between the laminations of the films (31) and (31) are excluded, and the heat shrinkage of the film (31) causes the inside of the wound films (31) and (31) to be removed. The film was clamped and pressed, and due to the synergistic effect of the clamping pressure and heating of the film, the surfaces of the wound films were fused together in an atmosphere at a temperature lower than the melting point of the film (31), and the film was wound. Irumu wherein the forms were skin layer (3) integrally.
[0009]
[Action and effect]
Due to the synergistic effect of heat shrinkage of the film (31) wound around the tube body (2) and heating at a temperature lower than the melting point of the film (31), the outside of the fused film (31) is fused and integrated. A skin layer (3) can be formed.
Also, due to vacuum degassing, no air remains in the outer layer (3) between the outer layer (3) and the tube main body (2) and within the thickness of the outer layer (3). Since it has the property of suppressing permeation of gas, the amount of gas permeating the outer skin layer (3) is negligible, and the gas is effectively eluted into ultrapure water or a chemical solution flowing in the tube body (2). Can be prevented.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a tube (1) of the present invention, in which an outer layer (3) for suppressing oxygen permeation is formed on a tube body (2).
The tube body (2) is formed of a fluororesin which is inert to ultrapure water, other chemicals, and gases and has excellent durability.
In the embodiment, the tube body (2) is formed of ethylene tetrafluoride / perfluoroalkoxyethylene copolymer resin (PFA).
As the material of the tube body (2), the present invention can also be carried out using ethylene tetrafluoride resin (PTFE), ethylene tetrafluoride-propylene hexafluoride copolymer (FEP), or the like.
Although the dimensions of the tube main body (2) can be arbitrarily formed, for example, the thickness is 1.6 mm, the outer diameter is 13 mm, and the tube main body (2) is flexible enough to be wound and bundled.
[0011]
The outer skin layer (3) includes an inner layer (3a) and an outer layer (3b), and is formed by spirally winding a belt-like film (31). However, as described later, when the strip film (31) is heated by vacuum heating, the overlapping portion of the strip film is fused, the inner layer (3a) and the outer layer (3b) are integrated, and the inner layer (3a) and the outer layer (3b). Boundary disappears.
[0012]
The band-shaped film (31) is formed by forming a resin film having low gas permeability and heat shrinkability into a band shape.
The application of heat shrinkability to the film (31) is performed, as is known, by stretching the film biaxially and not heat setting it.
The belt-shaped film (31) is formed of polyvinylidene chloride having a particularly low gas permeability among resins. Although the thickness and width of the film (31) are arbitrary, for example, the thickness is 40 μm and the film width is 40 mm.
[0013]
The belt-shaped film (31) of the example is Klehalon film MT300R (trade name: manufactured by Kureha Chemical Industry Co., Ltd.), which is a copolymer of vinylidene chloride and vinyl chloride, and has both oxygen barrier property and water vapor barrier property. Have.
The thickness of the belt-shaped film (31) is 40 μm, which is particularly thick as the polyvinylidene chloride film (31) and is manufactured for use in packaging sausage skin and the like.
[0014]
The reason why the band-shaped film (31) having a large thickness was used was to reduce the number of turns of the band-shaped film (31) and to reduce the number of layers of the films to obtain the outer layer (3) having the required thickness. Air entrapment as much as possible. Further, when the strip-shaped film (31) is spirally wound by applying tension to the tube body (2), elongation due to tension is prevented. This is to maintain the strength when heat shrinking is performed.
[0015]
Table 1 below shows general physical properties of the Klehalon film MT300R.
[Table 1]
Figure 2004322387
[0016]
Next, a method of forming the outer skin layer (3) on the tube body (2) using the strip film (31) will be described.
As shown in FIG. 2, the tube body (2) wound around the tube body (2) is pulled out straight with a tensioner (5) in a tensioned state, and the tube-shaped body (2) is tensioned with a strip film (31). Wind spirally.
The strip film (31) is wound on a bobbin (4) in advance, and the bobbin (4) rotates around the tube body (2) at the same locus and at a constant speed while feeding the film (31). Therefore, when the tube body (2) is drawn straight out at a constant speed, the strip film (31) is spirally wound around the outer periphery of the tube body (2).
[0017]
In the embodiment, the adjacent films (31) and (31) are spirally wound so that the adjacent films (31) and (31) are overlapped with each other at a half of the width of the band-shaped film (31).
The tube body (2) is wound and bound by the winder (6) in order from the portion where the winding of the band-shaped film (31) has been completed.
The step of winding the band-shaped film (31) on the tube covered and banded with the band-shaped film (31) is further repeated once.
As shown in FIG. 1, the outer skin layer (3) on the tube body (2) is formed by an inner layer (3a) formed by a first film winding and an outer layer (3b) formed by a second film winding.
The thickness of the outer skin layer (3) is guaranteed to be 160 μm, which is four times the film thickness of 40 μm, and in the state where the belt-like films are overlapped, a thicker portion is generated.
[0018]
As shown in FIG. 2, the tube wound with the outer skin layer (3) formed and wound is put into a vacuum heating furnace (7), and the atmosphere at 20 torr and 130 ° C. is maintained for 8 hours.
The vacuum atmosphere eliminates air between the tube body (2) and the film (31) and in the overlapping portions of the films (31) and (31).
The longer the time in the vacuum atmosphere, the better the deaeration between the tube body (2) and the film (31) and the overlapping portion of the films (31) and (31) is performed. It is enough.
The strip film (31) is wound on the chemical resistant tube body (2) under tension, and is heated to a temperature slightly lower than the melting point of the film (31) in a subsequent step. Due to heat shrinkage, the film (31) strongly clamps the chemical resistant tube body (2).
[0019]
The heating temperature of 130 ° C. in the vacuum heating furnace (7) in the example is a temperature slightly lower than the melting point of 150 ° C. of polyvinylidene chloride, which is the material of the belt-like film (31), and the entire film does not melt. However, the belt-shaped film (31) is sufficiently thermally shrunk by heating, and the wound films (31) and (31) are strongly tightened and the inner fill is strongly tightened and pressed. Due to the synergistic effect of the tightening pressure and the heating, even at a temperature lower than the melting point of the film, the surfaces of the wound films are fused and integrated to form a single-layered outer layer (3).
The outer peripheral surface of the outer skin layer (3) is not melted, and a strong external force for pressing the outer skin layers of adjacent tubes does not act, and the outer skin layers are not welded to each other. Therefore, when the tube (1) is taken out from the vacuum heating furnace (7) and the tube is drawn out to a required length, the outer layers (3) and (3) of the tube are welded to each other, so that it is impossible to draw out the tube. No.
The film (31) and the tube body (2) having a higher melting point than the film (31) are in close contact with each other in a pressurized state.
[0020]
Although the temperature atmosphere of the vacuum heating furnace (7) also depends on the heating time, the allowable range is from 100 ° C. to less than the melting point of the film (31).
If the temperature of the vacuum heating furnace (7) is lower than 100 ° C., the temperature is too low, and there is a possibility that defective fusion may occur at the overlapping portion of the films. Will melt.
[0021]
As described above, the belt-like tape (31) having the property of suppressing the permeation of oxygen is spirally wound, and the outer skin layer (3) formed into a single layer state by degassing and fusing by vacuum heating is air-free. Prevents residual air and invasion of outside air. Therefore, penetration of oxygen into the tube main body through the outer skin layer (3) is prevented, and the elution of oxygen into ultrapure water or the like in the tube main body (2) can be effectively prevented.
[0022]
Hereinafter, an experimental method and results of measuring the dissolved oxygen amount of pure water passing through the tube (1) having the oxygen permeation suppression skin layer of the present invention and the tube of the comparative example will be described.
Experimental method As shown in FIG. 3, a tube was wound around a loop (11) having a diameter of 70 cm to form a sample pipe having a total length of 50 m, one end of the pipe was connected to an ultrapure water apparatus, and the other end was branched into two branches. Connect to pipe.
One of the branches (13) is for work and comprises a flow meter (81). The other side of the branch pipe (14) is for measurement and comprises a dissolved oxygen meter (8).
The flow rate of the work branch pipe (13) was 2 L / min, and the flow rate of the measurement branch pipe (14) was 700 mL / min.
A film having the same oxygen permeation suppression effect as the band-shaped film (31) is wound around the connecting portion of the pipe in five or more layers, and the intrusion of oxygen from the connecting portion into the pipe is suppressed to a negligible level. .
In this case, the change in the measured value of the dissolved oxygen in the ultrapure water by the dissolved oxygen meter is not time-dependent, but is caused by the reaction rate of the dissolved oxygen meter. Therefore, the measured value of the dissolved oxygen meter 24 hours after the above state was taken as the test result.
[0023]
FIG. 4 shows the amount of dissolved oxygen at the outlet of the tube pipe.
In Comparative Example 1, sample piping was performed only with the tube body (2) having no outer skin layer made of a band-shaped film.
In Comparative Example 2, a skin layer formed of the band-shaped film (31) is present. The outer skin layer is formed by spirally winding the belt-like film (31) twice around the fluororesin tube body (2) in the same manner as described above, and then passing through a cylindrical heating furnace having a temperature of 150 ° C. for about 1 minute. Formed through. No vacuum degassing was performed.
The heating temperature of 150 ° C. is the melting temperature of the belt-shaped film. If the temperature is lower than 150 ° C., the speed of passing the tube through the tubular heating furnace is reduced so long as the time in the furnace is not increased. Poor welding occurs.
In Comparative Example 2, a portion that became cloudy and discolored due to the inclusion of air bubbles between the outer skin layer or the tube body and the outer skin layer was clearly recognized with the naked eye.
The difference is that the belt-shaped film of Patent Document 1 described above is a straight film, whereas Comparative Example 1 is a heat-shrinkable film. Comparative Example 2 is considered to have better conditions than Patent Document 1.
In FIG. 4, the initial value indicates the amount of oxygen dissolved in ultrapure water from the beginning.
The substantial oxygen permeation amount of the tube (1) of the present invention is 1/20 or less as compared with Comparative Example 1, and is about 1/5 as compared with Comparative Example 2.
The above-mentioned numerical values clearly show how much the oxygen permeation suppression effect of the tube (1) of the present invention is large.
[0024]
In the practice of the present invention, the thickness of the band-shaped film (31) is not limited to 40 μm, and can be implemented with a general thickness of about 20 μm. When the thickness is 30 to 80 μm, a good result close to the case of 40 μm was obtained. . When the thickness of the film (31) is 80 μm or more, it becomes difficult to wind the film.
In the example, the band-shaped film (31) is laminated on the fluororesin tube body (2) in four layers, and the thickness of the outer layer is 160 μm. However, if the outer layer is about 100 μm to 200 μm, the comparative example It was found that the effect of suppressing the amount of oxygen permeation was larger than that of Comparative Example 2 as well as Comparative Example 1.
[0025]
The description of the above embodiments is intended to explain the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. Further, the configuration of each part of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made within the technical scope described in the claims.
[0026]
For example, in the manufacture of semiconductors, it is expected that in the future it will be required to remove all dissolved gases in order to suppress the generation of bubbles during wafer cleaning with ultrapure water. The properties required of the band-shaped film (31), which is the material of 3), are not limited to a small oxygen permeability, but may be any as long as they have resistance to the gas of interest.
Further, the tube main body (2) is not limited to fluorocarbon resin as long as it is inert to ultrapure water or chemicals flowing through the tube main body (2).
[Brief description of the drawings]
FIG. 1 is a perspective view of a chemical resistant tube of the present invention.
FIG. 2 is an explanatory view of a manufacturing process of a chemical resistant tube.
FIG. 3 is an explanatory diagram of a measuring device for suppressing an increase in the dissolved oxygen amount of ultrapure water passing through a sample pipe.
FIG. 4 is a graph showing the results of an oxygen permeation test.
FIG. 5 shows a conventional method for forming a skin layer, and FIG. 5A shows a case in which a film tube is put on a tube body. In the figure b, a band-shaped film is wound around a tube body.
[Explanation of symbols]
(1) Tube (2) Tube body (3) Skin layer (31) Strip film

Claims (5)

チューブ本体(2)に、ガスの透過を抑制する樹脂で形成された熱収縮性の帯状フィルム(31)を、帯状フィルムどうしが一部重なり合う様に螺旋状に巻き、これを真空雰囲気中で、フィルム(31)の融点より低い温度で加熱し、チューブ本体(2)とフィルム(31)との間の空気、及びフィルム(31)(31)の積層間の空気を排除すると共に、フィルム(31)の熱収縮により、巻き重なったフィルムの表面どうしを融着させて巻き重なったフィルムが一体化した外皮層(3)を形成することを特徴とするガス透過量抑制外皮層を有するチューブの製法。A heat-shrinkable band-like film (31) formed of a resin that suppresses gas permeation is spirally wound around the tube body (2) so that the band-like films partially overlap each other, and this is wound in a vacuum atmosphere. Heating at a temperature lower than the melting point of the film (31) eliminates air between the tube body (2) and the film (31) and air between the laminations of the films (31) and (31), and removes the film (31). The method of producing a tube having a gas permeation-suppressed outer skin layer, characterized in that the surfaces of the wound films are fused together by heat shrinkage to form an outer skin layer (3) in which the wound films are integrated. . チューブ本体(2)は、ふっ素樹脂、又は超純水や薬液に対して不活性の樹脂にて形成され、帯状フィルム(31)はポリ塩化ビニリデンにて形成されている、請求項1に記載のガス透過量抑制外皮層を有するチューブの製法。The tube body (2) according to claim 1, wherein the tube body (2) is formed of a fluororesin or a resin inert to ultrapure water or a chemical solution, and the strip film (31) is formed of polyvinylidene chloride. A method for producing a tube having a gas permeation suppression outer skin layer. チューブ本体(2)に帯状フィルム(31)を螺旋状に巻き付けたチューブ(1)を、巻き束ねた状態で真空加熱炉へ投入し、真空雰囲気中で加熱を行う、請求項1又は2に記載のガス透過量抑制外皮層を有するチューブの製法。The tube (1) obtained by spirally winding a strip film (31) around a tube body (2) is put into a vacuum heating furnace in a bundled state, and heated in a vacuum atmosphere. A method for producing a tube having a gas permeation suppression outer skin layer. 帯状フィルム(31)の厚みは30〜80μmであって、フィルム幅の略1/2が重なる様にチューブ本体(2)の一端から他端まで螺旋状に巻回し、この巻回工程を2回以上繰り返している、請求項1乃至3の何れかに記載のガス透過量抑制外皮層を有するチューブの製法。The thickness of the band-shaped film (31) is 30 to 80 μm, and the film is spirally wound from one end to the other end of the tube body (2) so that approximately 1 / of the film width overlaps. The method for producing a tube having a gas permeation suppression skin layer according to claim 1, which is repeated as described above. 請求項1乃至4の何れかに記載の方法で製造したチューブ。A tube manufactured by the method according to claim 1.
JP2003117823A 2003-04-23 2003-04-23 Tube having gas permeation amount suppressing outer cover layer and its manufacturing method Pending JP2004322387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003117823A JP2004322387A (en) 2003-04-23 2003-04-23 Tube having gas permeation amount suppressing outer cover layer and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003117823A JP2004322387A (en) 2003-04-23 2003-04-23 Tube having gas permeation amount suppressing outer cover layer and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004322387A true JP2004322387A (en) 2004-11-18

Family

ID=33497556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003117823A Pending JP2004322387A (en) 2003-04-23 2003-04-23 Tube having gas permeation amount suppressing outer cover layer and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004322387A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292292A (en) * 2006-03-29 2007-11-08 Tohoku Univ Resin pipe
JP2008085263A (en) * 2006-09-29 2008-04-10 Tohoku Univ Film applying device and film applying method
JP2010234576A (en) * 2009-03-30 2010-10-21 Kurita Water Ind Ltd Multilayer tube
US8562320B2 (en) 2007-03-28 2013-10-22 National University Corporation Tohoku University Resin molding device
JP2014043952A (en) * 2013-12-06 2014-03-13 Toppan Printing Co Ltd Multilayer pipe
CN113561494A (en) * 2021-07-21 2021-10-29 深圳市沃尔核材股份有限公司 Soldering tin ring heat-shrinkable tube assembling equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292292A (en) * 2006-03-29 2007-11-08 Tohoku Univ Resin pipe
JP2008085263A (en) * 2006-09-29 2008-04-10 Tohoku Univ Film applying device and film applying method
US8562320B2 (en) 2007-03-28 2013-10-22 National University Corporation Tohoku University Resin molding device
JP2010234576A (en) * 2009-03-30 2010-10-21 Kurita Water Ind Ltd Multilayer tube
JP2014043952A (en) * 2013-12-06 2014-03-13 Toppan Printing Co Ltd Multilayer pipe
CN113561494A (en) * 2021-07-21 2021-10-29 深圳市沃尔核材股份有限公司 Soldering tin ring heat-shrinkable tube assembling equipment
CN113561494B (en) * 2021-07-21 2023-11-14 深圳市沃尔核材股份有限公司 Soldering tin ring pyrocondensation nest of tubes equipment

Similar Documents

Publication Publication Date Title
SU1342433A3 (en) Insulating tape
US6889715B2 (en) Flexible tubular member with sealed tape layer
WO1993013849A1 (en) Filter and filter element
JP2004322387A (en) Tube having gas permeation amount suppressing outer cover layer and its manufacturing method
NO323046B1 (en) Membrane element and method of manufacture thereof
JP3955643B2 (en) Composite tube with great flexibility
JP2002228080A (en) Method for connecting composite pipe
JP4485828B2 (en) Atmosphere-controlled resin bonding apparatus, bonding method, and bonded resin member
JPH1057946A (en) Deaerator
JP4039880B2 (en) Outer layer coated polyolefin tube
JP5025041B2 (en) Gas dissolving or degassing antistatic membrane module
CN219648590U (en) Spring winding tongue piece of medical spring sheath tube
JP6192557B2 (en) Hollow fiber membrane module and manufacturing method thereof
JPH0252024A (en) Manufacture method for porous hollow yarn membrane bundle
JP2005279556A (en) Spiral type separation membrane element
JPH09276667A (en) Solvent-resistant hollow yarn semipermeable membrane type cartridge and semipermeable membrane type module therefor
TWI457513B (en) Tape-wrapped multilayer tubing and methods making the same
KR950006828B1 (en) Package method of ring shaped products using a different heat shrinkage rate film
JPH0734852B2 (en) Method for manufacturing hollow fiber microfilter bundle
JP3197440U (en) Spiral tube in close contact with the electrode
JP2023064274A (en) Exterior sheet, wire harness, and manufacturing method for wire harness
JP2005329979A (en) Packaging cloth
JP3901769B2 (en) A fitting tube in which the outer surface of a metal base tube is covered with a heat-shrinkable and continuously shrinkable resin-made tube, and a method for manufacturing the fitting tube
JP2001311493A (en) Welding method of duplex pipe
JP2004067118A (en) Roving package

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060509