JP2004319201A - MANUFACTURING METHOD OF Nb3Al COMPOUND BASED SUPERCONDUCTIVE WIRE - Google Patents

MANUFACTURING METHOD OF Nb3Al COMPOUND BASED SUPERCONDUCTIVE WIRE Download PDF

Info

Publication number
JP2004319201A
JP2004319201A JP2003110036A JP2003110036A JP2004319201A JP 2004319201 A JP2004319201 A JP 2004319201A JP 2003110036 A JP2003110036 A JP 2003110036A JP 2003110036 A JP2003110036 A JP 2003110036A JP 2004319201 A JP2004319201 A JP 2004319201A
Authority
JP
Japan
Prior art keywords
wire
superconducting wire
compound
manufacturing
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003110036A
Other languages
Japanese (ja)
Inventor
Kohei Tagawa
浩平 田川
Genzo Iwaki
源三 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003110036A priority Critical patent/JP2004319201A/en
Publication of JP2004319201A publication Critical patent/JP2004319201A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an Nb<SB>3</SB>Al compound based superconductive wire in which contact resistance of interface is further decreased by compounding strongly external matrix and a stabilizer, and by compounding the stabilizer well in the whole circumference of the wire material. <P>SOLUTION: In the manufacturing method of the Nb<SB>3</SB>Al compound based superconductive wire in which an Nb-Al oversaturated solid solution is formed by heating and cooling a mulch-wire rod 12 wherein a plurality of single wire rods 8 is covered by the external matrix 9', and in which an Nb<SB>3</SB>Al phase is precipitated by applying a reheating treatment to this at a prescribed temperature, after the cooling treatment, a metal material for cooling is removed from the surface of the external matrix 9', the external matrix 9' is covered by the stabilizer 13, a strong surface reduction working is applied in which the mulch-wire rod 12 and the stabilizer 13 are plastically deformed by a four-directional roll, and after the external matrix is made to be the wire material of a rectanglular cross-sectional face in which the interface is integrated without a gap, the reheating treatment is applied. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、NbAl化合物系超電導線の製造方法に関し、特に、安定化材を良好に複合したNbAl化合物系超電導線の製造方法に関する。
【0002】
【従来の技術】
NbAl化合物系超電導線は、NbSn、NbTiのような超電導線と比べ、高磁界における臨界電流密度特性に優れていることから、たとえば、高磁界NMRマグネット等に使用する超電導材料として実用化が期待されている。
【0003】
従来のNbAl化合物系超電導線の製造方法として、たとえば、NbとAlを所定の組成比率で複合し、相互の拡散距離をサブミクロンオーダーまで小さくした状態で600〜1050℃の温度に加熱し、これにより固相拡散を起こさせてNbAlを生成させる製法が知られている。
【0004】
しかし、この製法によると、1500℃以上の高温でのみ安定するNbAl化合物にとっては温度不足での固相拡散となり、このため、化学量論組成からのずれが発生することから、高い臨界電流密度を得ることが難しい。
【0005】
NbAl化合物系超電導線を得るための他の製造方法として、NbとAlを所定の組成比で複合し、これを1500℃以上に加熱して直ちに冷却することにより、Nb−Al過飽和固溶体を生成させ、その後、これを600〜1050℃の温度で再加熱し、NbAl相を析出させる方法が知られている。
【0006】
相析出法に基づくこの製造方法は、Nb−Al過飽和固溶体生成のための加熱温度が高いために、化学量論組成からのずれによる臨界電流密度の低下がなく、従って、NMRマグネット等への適用を考えた場合に最も適した製造方法とされている。
【0007】
通常、この方法による超電導線の製造は、以下の手順により進められる。
【0008】
たとえば、ジェリーロール法の場合であれば、まず、NbあるいはNb合金のシートと、AlあるいはAl合金のシートを積層巻きにしてNbパイプに詰め、これに伸線加工を施すことによって所定のサイズのシングル線材とする。
【0009】
次に、得られたシングル線材の集合束を外部マトリックスとなるNbパイプに入れ、これに伸線加工を施すことによってNbとAlのマルチ線材を作製し、その後、これを1500℃以上の高温に加熱して直ちに冷却処理する。
【0010】
この加熱と冷却処理の結果、NbとAlの複合部にはNb−Al過飽和固溶体が生成し、次に、この素材を600〜1050℃の温度で再加熱処理することにより、Nb−Al過飽和固溶体の部分にNbAl相を析出させる。
【0011】
この方法によれば、高い臨界電流密度を有する超電導線の製造が可能であり、従って、この方法は、要求性能の厳しいNMRマグネット等に使用される超電導線にとっては唯一とも言える製造方法であり、有望視されている。
【0012】
しかし、従来の析出法に基づいたNbAl化合物系超電導線によると、Nb−Al過飽和固溶体生成のための加熱急冷時の加熱温度が高いため、外部マトリックスの周上への安定化材の形成が難しい。即ち、Nb−Al過飽和固溶体生成のための加熱温度は、多くの場合2000℃と高く、安定化材を構成する銅あるいは銅合金等の融点を遥かに超えてしまうことから、加熱冷却処理の前に安定化材を形成しておくことは不可能である。
【0013】
このため、安定化材の形成は、加熱急冷処理後に行うのが普通とされているが、加熱急冷後の外部マトリックスの表面は、強固なNb酸化膜で覆われていることから、安定化材との間に良好な接合状態を作り出しにくく、たとえば、安定化材の形成を電気めっきによって行う場合、メッキ層と外部マトリックス間の電気化学的な接合が阻害され、良好な接合状態を得ることが困難となる。
【0014】
そこで、加熱急冷処理後の線材外周に安定化材を被覆して塑性変形を施すことによって安定化材を接合する方法が考案された(例えば、特許文献1参照)。この方法は、加熱急冷処理後の線材と安定化材が塑性変形を起こすような強い減面加工(クラッド加工)を施すことによって、外部マトリックス表面にNbの新生面を出し、これと安定化材を複合させる方法である。
【0015】
ところで、超電導線は、長手方向の引張り力や曲げ歪が加わった際に、臨界電流密度などの超電導特性が低下しやすいという欠点を有している。この点、断面円形の超電導線よりも断面矩形状の超電導線の方が、上記した変形による超電導特性の低下が少ない。この観点から、丸線を断面矩形状に加工することが知られている(例えば、特許文献2参照)。
【0016】
【特許文献1】
特開2000−113748号公報
【0017】
【特許文献2】
特開平4−298917号公報
【0018】
【発明が解決しようとする課題】
しかしながら、断面矩形状の超電導線とすることを目的として、従来の塑性変形を施す安定化材複合法に、例えば、2方向の平角ロールを用いて安定化材複合加工を施した場合、幅方向と厚さ方向とで複合状態が一定しないため、特に、厚さ方向に密着の不十分な箇所ができてしまうという問題がある。
【0019】
また、従来の塑性変形を施す安定化材複合法に、例えば、2方向の丸形状のローラーダイスを用いて安定化材複合加工を施した場合、全体に密着性は悪く、良好な密着性を得るためには大きな減面加工度が必要となるが、50%を越える減面加工は線材の超電導特性を低下させる原因となるため好ましくない。また、このような不十分な接合では、線材の寸法精度を向上させるためのダイス伸線が出来ないため、寸法精度の必要となるNMRマグネット用線材として使用することは困難となる。
【0020】
従って、本発明の目的は、上記課題を解決し、4方向ロールを用いて、線材側面の安定化材を塑性変形させることにより、外部マトリックスと安定化材をより強固に複合させ、線材の周方向全体に安定化材が良好に複合することによって、界面の接触抵抗をより低下させるNbAl化合物系超電導線の製造方法を提供することにある。
【0021】
【課題を解決するための手段】
本発明は、上記の目的を達成するため、NbあるいはNb合金とAlあるいはAl合金から成る積層体の周囲にNbあるいはNb合金のマトリックスを被覆して複数のシングル線材を形成し、上記複数のシングル線材をNbあるいはNb合金の外部マトリックスで被覆してマルチ線材を構成し、上記マルチ線材を所定の温度に加熱した後、冷却用金属材による冷却処理を施すことによりNb−Al過飽和固溶体を生成させ、これに所定の温度で再加熱処理を施すことによりNbAl相を析出させるNbAl化合物系超電導線の製造方法において、上記冷却処理の後に、上記外部マトリックスの表面から上記冷却用金属材を除去し、上記外部マトリックスの上に安定化材を被覆し、2つ以上の駆動ロールを有する4方向ロールによって上記マルチ線材および上記安定化材を塑性変形させる減面加工を施し、界面が隙間なく一体化された矩形断面の線材とした後、上記再加熱処理を施すことを特徴とするものである。
【0022】
上記減面加工は、4方向ロールによって行われ、これを用いることによって、平角側面の安定化材の塑性変形が助長され、線材の厚さ方向の接合が良好になるため、線材の周方向全体において上記外部マトリックスおよび上記安定化材の接合がより良好になり、界面の接触抵抗が低減される。
【0023】
また、本発明の製造方法では、減面加工に加え、マルチ線材の丸線から平角線への塑性変形による機械的複合効果を用いているため、効果的な複合をなし得る。この平角線への減面加工は、アスペクト比2.0以上に設定するのが好ましく、特にアスペクト比を2.0〜3.0としたとき、良好な密着性と高い臨界電流特性が得られる。
【0024】
さらに、本発明において、上記減面加工の減面率は、30%〜50%程度に設定するのが好ましく、特に減面率を35%〜45%と設定したとき最も高い臨界電流特性が得られる。減面率50%を超える減面加工も可能であるが、臨界電流密度の低下を招くため好ましくない。また、上記減面加工の減面率が30%未満の加工では、上記外部マトリックスと上記安定化材との接合が悪く、安定化としての効果が小さいため好ましくない。
【0025】
上記安定化材としては、銅、銅合金、銀、あるいは銀合金などが使用され、その外部マトリックス上への適用形式としては、シート状物の巻き付け、縦添え、あるいは管状体として成型した中にマルチ線材を詰め込む等の方法が採られ、その後、所定の加工が施される。
【0026】
上記冷却用金属材としては、多くの場合Gaが使用される。Gaは導電性に富み、沸点が高く、融点が低いことから、冷却材としては最適である。
【0027】
【発明の実施の形態】
次に、本発明によるNbAl化合物系超電導線の製造方法の実施の形態について説明する。
【0028】
ここで製造しようとするNbAl化合物系超電導線は、Nb−Al過飽和固溶体を加熱することによって析出された複数のNbAl超電導線材部と、上記超電導線材部を被覆するNbあるいはNb合金あるいはTaあるいはTa合金の外部マトリックスと、上記外部マトリックスの上に形成された安定化材とから構成され、上記外部マトリックスおよび上記安定化材が塑性変形を起こすような減面加工を施されることによって界面が隙間なく一体化された構成を有する。
【0029】
図1は、実施の形態に係る超電導線の製造過程における製品の形状を示したものである。
【0030】
図1(イ)において、1はNbシート2とAlシート3を積層し、これを中心材4に隙間なく巻き付けることによって構成したジェリーロール形式の積層体を示す。5は、Nbマトリックスを形成するために積層体1上に静水圧押出により形成されたNb被覆を示し、このNb被覆5の上には同様にしてCu被覆6が形成され、これによって複合素線7とされる。
【0031】
図1(ロ)は、複合素線7をダイス伸線により断面六角形に減面加工し、その後、Cu被覆6を除去することによって製造したシングル線材8の構造を示したもので、六角形による密接集合が可能な構造となっている。
【0032】
図1(ハ)は、外部マトリックスとなるべきNb管9とCu−Ni合金管10を、静水圧押出によりシングル線材8の集合束の上に形成することによって得られた複合線材11の構造を示す。この複合線材11は、ダイス伸線によって所定の寸法に減面加工された後、最外周のCu−Ni合金管10が除去され、所定寸法のマルチ線材12とされる。
【0033】
図1(ニ)は、以上により得られたマルチ線材12を所定の温度に加熱した後、これを液体Ga(冷却用金属材)中に浸漬して急冷し、シングル線材8の積層体1の部分にNb−Al過飽和固溶体を生成させた中間体の構造を示す。図中9’はマルチ線材12の外層部を構成する外部マトリックスを示す。加熱手段としてはマルチ線材12に直接電流を流す通電加熱方式が採用された。
【0034】
図1(ホ)は、Nb−Al過飽和固溶体を生成させたマルチ線材12の外部マトリックス9’の表面から冷却時に付着したGaを除去し、銅あるいは銀の安定化材13を設けた複合体14を示す。この複合体14は、2つ以上のロールが駆動式の4方向ロールによって所定の減面加工、すなわち上記マルチ線材12および上記安定化材13が塑性変形する強い減面加工(クラッド加工)を施され平角線材とされた後、所定の温度で再加熱処理をされ、Nb−Al過飽和固溶体からNbAl相を析出させて所定の超電導線材部15を有する超電導線とされる。
【0035】
図2は、実施の形態に係る超電導線の製造プロセスをフローチャートであり、図中(イ)〜(ホ)は、それぞれ図1の(イ)〜(ホ)に対応するものである。
【0036】
図3は、製造プロセス中の、4方向ロールによる減面加工を示した断面図である。21は上下に配置された一対の駆動ロールであり、横方向に走る回転中心軸を持つ。22は左右に配置された一対の非駆動ロールであり、縦方向に走る回転中心軸を持つ。左右の非駆動ロール22、22の間に上下の駆動ロール21の周端部が入り込む形で配置され、上下から複合体14を押圧する。左右の非駆動ロール22は駆動ロール21の側面から複合体14を押圧し、結果として隙間23をもって離れた状態に位置する。
【0037】
図示するように、各ロール21、22の隙間23に安定化材13が入り込むような強い減面加工を施すことによって、平角線材の幅方向だけでなく厚さ方向でも、外部マトリックス9’と安定化材13との接合が強固になり、接触抵抗が低減されるため、安定性が向上する。
【0038】
なお、図示の4方向ロールによる場合、安定化材13は線材厚さ方向に延び出した形となる。そこで、減面加工終了後、線材厚さ方向に延びた安定化材13を、減面しない程度のスキンパスによって押し潰すか、またはブラッシングやヤスリがけなどによって削った後、線材は所定の温度で再加熱処理をされ、Nb−Al過飽和固溶体からNbAl相を析出させて所定の超電導線材部15を有する超電導線とされる。
【0039】
【実施例】
以下、図1、図2に基づいた本発明の実施例について説明する。
【0040】
なお、Nb−Al過飽和固溶体を生成させるための加熱温度とNbAl相析出のための再加熱処理温度は、それぞれ2000℃と800℃に一律に設定した。
【0041】
[実施例1]
図1、図2において、厚さ75μmの純Nbシート2と、厚さ25μmの純Alシート3と、外径2mmのNb中心材4を使用し、外径1.20mmのマルチ線材12を得た。次に、これにNb−Al過飽和固溶体を生成させるための加熱急冷処理を施した後、外部マトリックス9’の表面に付着したGaを塩酸で化学処理し、引き続き、外部マトリックス9’の表面を研磨することによってGa酸化物を除去した。
【0042】
次に、肉厚0.1mm、外径1.5mmの無酸素銅のパイプを安定化材13の構成材として準備し、この中にマルチ線材12を詰め込んだ後、複合体14のサイズが1.6mm×0.59mm(減面率40%)となるように4方向ロールで減面加工を施し、次に、これに再加熱処理を施すことにより所定のNbAl化合物超電導線を製造した。
【0043】
[実施例2]
実施例1において、複合体14のサイズが1.6mm×0.69mm(減面率30%)となるように4方向ロールで減面加工を施し、他を実施例1と同じにすることにより所定のNbAl化合物超電導線を製造した
[実施例3]
実施例1において、複合体14のサイズが1.6mm×0.49mm(減面率50%)となるように4方向ロールで減面加工を施し、他を実施例1と同じにすることにより所定のNbAl化合物超電導線を製造した。
【0044】
[実施例4]
実施例1において、安定化材13の構成材として厚さ0.1mm、幅4mmの無酸素銅シートを使用し、これをマルチ線材12上に合わせ目に隙間が生じないように縦添えした後、4方向ロールにより、複合体14のサイズが1.6mm×0.57mm(減面率40%)となるように減面加工を施し、他を実施例1と同じにすることにより所定のNbAl化合物超電導線を製造した。
【0045】
[実施例5]
実施例4において、安定化材13の構成材として厚さ0.01mm、幅4mmの銀シートを使用し、他を実施例4と同じにすることにより所定のNbAl化合物系超電導線を製造した。
【0046】
[比較例1]
図1、図2において、厚さ75μmの純Nbシート2と、厚さ25μmの純Alシート3と、外径2mmのNb中心材4を使用し、外径1.20mmのマルチ線材12を得た。次に、これにNb−Al過飽和固溶体を生成させるための加熱急冷処理を施した後、外部マトリックス9’の表面に付着したGaを塩酸で化学処理し、引き続き、外部マトリックス9’の表面を研磨することによってGa酸化物を除去した。
【0047】
次に、肉厚0.1mm、外径1.5mmの無酸素銅のパイプを安定化材13の構成材として準備し、この中にマルチ線材12を詰め込んだ後、複合体14のサイズが1.6mm×0.98mm(減面率0%)となるように加工(スキンパス)を施し、次に、これに再加熱処理を施すことにより所定のNbAl化合物超電導線を製造した。
【0048】
[比較例2]
比較例1において、複合体14のサイズが1.6mm×0.93mm(減面率5%)となるように減面加工を施し、他を比較例1と同じにすることにより所定のNbAl化合物超電導線を製造した。
【0049】
[比較例3]
実施例1において、複合体14のサイズが1.6mm×0.89mm(減面率10%)となるように4方向ロールで減面加工を施し、他を実施例1と同じにすることにより所定のNbAl化合物超電導線を製造した。
【0050】
[比較例4]
実施例1において、複合体14のサイズが1.6mm×0.79mm(減面率20%)となるように4方向ロールで減面加工を施し、他を実施例1と同じにすることにより所定のNbAl化合物超電導線を製造した。
【0051】
[比較例5]
実施例1において、複合体14のサイズが1.6mm×0.39mm(減面率60%)となるように4方向ロールで減面加工を施し、他を実施例1と同じにすることにより所定のNbAl化合物超電導線を製造した。
【0052】
【表1】

Figure 2004319201
【0053】
【表2】
Figure 2004319201
【0054】
表1、表2に、以上の実施例および比較例によって得られた各超電導線の要部構成と臨界電流特性、臨界電流密度特性を示す。
【0055】
マルチ線材12と安定化材13の密着性の比較は接触抵抗測定でも行えるが、安定化の効果は、線材の使用条件(液体ヘリウム温度;4.2K)中で電流を流した際に、クエンチが起こるかどうかで判別でき、且つこの点が最も重要であるため、臨界電流特性、および臨界電流密度特性での比較を行った。
【0056】
表1によれば、本発明による実施例(実施例1〜5)がいずれも優れた臨界電流特性および臨界電流密度特性を示していることがわかる。また、比較例1〜4(表2)のように減面加工をほとんど施さない線材が低磁場側(18T以下)でクエンチするのに対し、本発明による実施例1〜5(表1)ではいずれも低磁界側(高電流側)でクエンチが起こらず、安定性が向上している。特に本発明を用いて、減面加工度を30%以上とした実施例(実施例1〜5)では15Tという低磁界側でもクエンチを発生せず、安定性が向上していることは明らかである。これは4方向ロールを用いて安定化材13が塑性変形を起こすような強加工を施すことによって、よりマルチ線材12と安定化材13の密着性が向上しているからにほかならない。
【0057】
表1に示された実施例1〜5の臨界電流特性および臨界電流密度特性は、現状において多用されているNbSnあるいはNbAl化合物超電導線より高い値を示し、さらに、耐歪み特性にも優れていることから、より高性能な超電導線の提供が可能となる。
【0058】
<最適条件についての根拠>
減面加工度30%〜50%とした平角線材は、上記表1の実施例に見られるように、臨界電流特性および臨界電流密度特性に優れ、マルチ線材と安定化材との接合も非常に良好である。30%未満の減面ではマルチ線材と安定化材との接合が悪く、50%を超える減面加工を施すと臨界電流特性が著しく低下してしまうため、最適な減面加工度は30%〜50%とした。
【0059】
また、アスペクト比2.0〜3.0とした平角線材は、上記実施例に見られるように、臨界電流特性および臨界電流密度特性に優れ、マルチ線材と安定化材との接合も非常に良好である。アスペクト比1.5〜2.0の平角線材においても加工は可能であるが、比較例に見られるようにIc、特性が低下するため好ましくない。
【0060】
<変形例>
上記4方向ロールの変形例として、図4に示すように、駆動ロール21と非駆動ロール22を、隣のロール側面にロール周面を向かわせるように順次ずらせて、まんじ状に配置したタークスヘッドロールにより減面加工することもできる。この場合も、安定化材を塑性変形させるような強加工を施すことによって、マルチ線材と安定化材間の接合性に優れた綿材の作製が可能である。
【0061】
<使用方法、応用システムなど>
本発明のNbAl系化合物超電導線は、臨界電流特性および臨界電流密度特性に優れ、且つ安定化材の接合性が良好なため、核融合炉用超電導マグネット、高エネルギー粒子加速器、物性研究用高磁界NMRマグネットなどに用いる線材として有効である。
【0062】
【発明の効果】
以上詳細に説明したように、本発明のNbAl系化合物超電導線およびその製造方法によれば、マルチ線材を加熱急冷した後、Gaを除去して安定化材をマルチ線材周囲に配置して、例えば減面加工度30%〜50%、アスペクト比2.0以上での塑性変形を起こすような減面加工を施すことによって、平角線材の幅方向だけでなく厚さ方向でも、外部マトリックスと安定化材との接合が強固になり、接触抵抗が低減されるため、高い臨界電流特性および臨界電流密度特性を持ち、安定化材の接合性に優れたNbAl化合物系超電導線を提供することが可能となった。
【図面の簡単な説明】
【図1】本発明のNbAl化合物系超電導線の製造方法における実施の形態を示す説明図であり、Aは部分拡大図を示す。
【図2】図1の実施の形態の製造プロセスを示すフローチャート。
【図3】本発明での4方向ロールによる減面加工の概要を示した断面図である。
【図4】本発明でのタークヘッドによる減面加工の概要を示した断面図である。
【符号の説明】
7 複合素線
8 シングル線材
9 Nb管
9’ 外部マトリックス
10 Cu−Ni合金管
11 複合線材
12 マルチ線材
13 安定化材
14 複合体
15 超伝導線材部
21 駆動ロール
22 非駆動ロール[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a Nb 3 Al compound superconducting wire, in particular to a method of manufacturing a well-complexed with Nb 3 Al compound superconducting wire of stabilizing material.
[0002]
[Prior art]
Nb 3 Al compound-based superconducting wires are superior in critical current density characteristics in a high magnetic field as compared with superconducting wires such as Nb 3 Sn and NbTi, and therefore are practically used as superconducting materials used for, for example, high-field NMR magnets. Is expected.
[0003]
As a conventional method of manufacturing a Nb 3 Al compound-based superconducting wire, for example, Nb and Al are compounded at a predetermined composition ratio, and heated to a temperature of 600 to 1050 ° C. with the mutual diffusion distance reduced to the submicron order. There is known a production method in which solid phase diffusion is caused to generate Nb 3 Al.
[0004]
However, according to this method, the Nb 3 Al compound which is stable only at a high temperature of 1500 ° C. or more causes solid-phase diffusion at an insufficient temperature, and a deviation from the stoichiometric composition occurs. Difficult to get density.
[0005]
As another manufacturing method for obtaining a Nb 3 Al compound superconducting wire, Nb and Al are combined at a predetermined composition ratio, and this is heated to 1500 ° C. or more and immediately cooled to form an Nb—Al supersaturated solid solution. A method is known in which the Nb 3 Al phase is precipitated and then reheated at a temperature of 600 to 1050 ° C. to precipitate an Nb 3 Al phase.
[0006]
This production method based on the phase precipitation method does not cause a decrease in critical current density due to deviation from the stoichiometric composition due to a high heating temperature for producing a Nb-Al supersaturated solid solution, and is therefore applicable to NMR magnets and the like. It is considered to be the most suitable manufacturing method when considering this.
[0007]
Usually, the production of a superconducting wire by this method proceeds according to the following procedure.
[0008]
For example, in the case of the jelly roll method, first, a sheet of Nb or Nb alloy and a sheet of Al or Al alloy are laminated and packed into an Nb pipe, which is drawn to a predetermined size. Use a single wire.
[0009]
Next, the obtained bundle of the single wires is put into an Nb pipe serving as an external matrix, and the wire is subjected to wire drawing to produce a multi-wire of Nb and Al, which is then heated to a high temperature of 1500 ° C. or more. Heat and immediately cool.
[0010]
As a result of this heating and cooling treatment, an Nb-Al supersaturated solid solution is formed in the composite portion of Nb and Al. Then, the material is reheated at a temperature of 600 to 1050 ° C. to obtain an Nb-Al supersaturated solid solution. The Nb 3 Al phase is precipitated in the portion of the above.
[0011]
According to this method, it is possible to manufacture a superconducting wire having a high critical current density.Therefore, this method is a manufacturing method that can be said to be the only method for a superconducting wire used for an NMR magnet or the like with strict performance requirements, Promising.
[0012]
However, according to the Nb 3 Al compound-based superconducting wire based on the conventional precipitation method, since the heating temperature at the time of heating and quenching for the production of the Nb-Al supersaturated solid solution is high, the formation of the stabilizing material on the periphery of the external matrix is performed. Is difficult. That is, the heating temperature for forming the Nb-Al supersaturated solid solution is as high as 2000 ° C. in many cases, far exceeding the melting point of copper or copper alloy constituting the stabilizing material. It is impossible to form a stabilizer in advance.
[0013]
Therefore, the formation of the stabilizing material is generally performed after the heating and quenching treatment. However, since the surface of the external matrix after the heating and quenching is covered with a strong Nb oxide film, the stabilizing material is formed. For example, when forming a stabilizing material by electroplating, electrochemical bonding between the plating layer and the external matrix is hindered, and a good bonding state may be obtained. It will be difficult.
[0014]
In view of this, a method has been devised in which a stabilizing material is coated on the outer periphery of a wire after heating and quenching treatment and plastically deformed to join the stabilizing material (for example, see Patent Document 1). In this method, a strong surface reduction process (cladding process) is performed to cause plastic deformation between the wire and the stabilizing material after the heating and quenching treatment, thereby producing a new surface of Nb on the surface of the external matrix. It is a method of combining.
[0015]
By the way, a superconducting wire has a drawback that when a tensile force or bending strain in a longitudinal direction is applied, superconducting characteristics such as a critical current density are easily reduced. In this regard, a superconducting wire having a rectangular cross section has less deterioration in superconductivity due to the above-described deformation than a superconducting wire having a circular cross section. From this viewpoint, it is known to process a round wire into a rectangular cross section (for example, see Patent Document 2).
[0016]
[Patent Document 1]
JP 2000-113748 A
[Patent Document 2]
JP-A-4-298917
[Problems to be solved by the invention]
However, for the purpose of forming a superconducting wire having a rectangular cross section, when the conventional stabilizer compounding method for performing plastic deformation is subjected to, for example, a stabilizer compounding process using a two-way flat roll, the widthwise direction is changed. Since the composite state is not constant between the thickness direction and the thickness direction, there is a problem that a portion having insufficient adhesion is formed particularly in the thickness direction.
[0019]
Also, in the case where the conventional stabilizing material composite method of performing plastic deformation is subjected to, for example, a stabilizing material composite processing using a two-way round roller die, the overall adhesiveness is poor, and good adhesiveness is obtained. To achieve this, a large degree of surface reduction is required, but a surface reduction exceeding 50% is not preferable because it causes the superconductivity of the wire to deteriorate. In addition, such insufficient bonding makes it impossible to draw a wire to improve the dimensional accuracy of the wire, so that it is difficult to use the wire for an NMR magnet that requires dimensional accuracy.
[0020]
Accordingly, an object of the present invention is to solve the above-mentioned problems, and to plastically deform the stabilizing material on the side surface of the wire using a four-way roll, thereby more firmly combining the external matrix and the stabilizing material, and forming a peripheral material of the wire. It is an object of the present invention to provide a method for producing an Nb 3 Al compound-based superconducting wire in which a stabilizing material is satisfactorily compounded in the entire direction to further reduce interface contact resistance.
[0021]
[Means for Solving the Problems]
In order to achieve the above object, the present invention forms a plurality of single wires by coating a matrix of Nb or Nb alloy around a laminate of Nb or Nb alloy and Al or Al alloy to form a plurality of single wires. The wire is coated with an external matrix of Nb or an Nb alloy to form a multi-wire, and after heating the multi-wire to a predetermined temperature, a cooling process is performed with a metal material for cooling to form an Nb-Al supersaturated solid solution. In the method for producing an Nb 3 Al compound superconducting wire in which a reheating treatment is performed at a predetermined temperature to precipitate an Nb 3 Al phase, after the cooling treatment, the cooling metal material is removed from the surface of the external matrix. And coat the stabilizing material over the outer matrix and top up with a four-way roll having two or more drive rolls. The multi-wire material and the stabilizing material are subjected to a surface reduction process for plastically deforming the wire material to form a wire having a rectangular cross section in which the interface is integrated without gaps, and then the reheating treatment is performed.
[0022]
The above-mentioned surface reduction processing is performed by a four-direction roll, and by using this, plastic deformation of the stabilizing material on the flat side surface is promoted and joining in the thickness direction of the wire becomes good, so that the entire circumferential direction of the wire is In the above, the bonding between the external matrix and the stabilizing material is improved, and the contact resistance at the interface is reduced.
[0023]
In addition, in the manufacturing method of the present invention, in addition to the surface reduction processing, an effective composite can be formed because the mechanical composite effect of plastic deformation of the multi-wire rod from a round wire to a flat wire is used. It is preferable to set the aspect ratio to 2.0 or more in the surface reduction processing to the flat wire. In particular, when the aspect ratio is 2.0 to 3.0, good adhesion and high critical current characteristics can be obtained. .
[0024]
Further, in the present invention, it is preferable that the area reduction rate of the above-described area reduction processing is set to about 30% to 50%, and particularly when the area reduction rate is set to 35% to 45%, the highest critical current characteristic is obtained. Can be Although a surface reduction process exceeding a surface reduction rate of 50% is possible, it is not preferable because a critical current density is lowered. Further, when the surface reduction rate of the surface reduction processing is less than 30%, the bonding between the external matrix and the stabilizing material is poor, and the stabilizing effect is small, which is not preferable.
[0025]
As the stabilizing material, copper, a copper alloy, silver, or a silver alloy is used, and as an application form on the external matrix, winding a sheet-like material, vertically attaching, or molding into a tubular body A method such as stuffing a multi-wire is adopted, and thereafter, predetermined processing is performed.
[0026]
Ga is often used as the cooling metal material. Ga is optimal as a coolant because it has high conductivity, a high boiling point, and a low melting point.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a method for producing an Nb 3 Al compound-based superconducting wire according to the present invention will be described.
[0028]
The Nb 3 Al compound-based superconducting wire to be manufactured here is composed of a plurality of Nb 3 Al superconducting wire portions deposited by heating an Nb—Al supersaturated solid solution, and Nb or Nb alloy covering the superconducting wire portion or An external matrix of Ta or a Ta alloy, and a stabilizing material formed on the external matrix. The external matrix and the stabilizing material are subjected to surface reduction processing that causes plastic deformation. It has a configuration in which the interface is integrated without gaps.
[0029]
FIG. 1 shows a shape of a product in a manufacturing process of the superconducting wire according to the embodiment.
[0030]
In FIG. 1A, reference numeral 1 denotes a jelly roll-type laminate formed by laminating an Nb sheet 2 and an Al sheet 3 and winding the Nb sheet 2 and an Al sheet 3 around a center member 4 without gaps. Numeral 5 denotes an Nb coating formed on the laminate 1 by hydrostatic extrusion to form an Nb matrix, on which a Cu coating 6 is formed in the same manner, whereby a composite strand is formed. 7 is assumed.
[0031]
FIG. 1 (b) shows the structure of a single wire 8 produced by reducing the surface of the composite wire 7 into a hexagonal cross section by die drawing and then removing the Cu coating 6. Is a structure that allows close assembly.
[0032]
FIG. 1C shows the structure of a composite wire 11 obtained by forming an Nb tube 9 and a Cu—Ni alloy tube 10 to be an external matrix on a bundle of single wires 8 by hydrostatic extrusion. Show. After the composite wire 11 is reduced in surface area to a predetermined size by die drawing, the outermost Cu-Ni alloy tube 10 is removed to obtain a multi-wire 12 having a predetermined size.
[0033]
FIG. 1 (d) shows that after heating the multi-wire 12 obtained as described above to a predetermined temperature, it is immersed in liquid Ga (metal for cooling) and quenched to obtain a laminate 1 of the single wire 8. The structure of an intermediate in which an Nb-Al supersaturated solid solution is formed in a part is shown. In the figure, reference numeral 9 'denotes an external matrix constituting an outer layer portion of the multi-wire 12. As a heating means, an energization heating method in which an electric current is directly applied to the multi-wire 12 was adopted.
[0034]
FIG. 1 (e) shows a composite 14 in which Ga adhered during cooling was removed from the surface of the external matrix 9 ′ of the multi-wire 12 in which the Nb—Al supersaturated solid solution was generated, and a copper or silver stabilizer 13 was provided. Is shown. The composite 14 is subjected to predetermined surface reduction processing, that is, a strong surface reduction processing (cladding processing) in which two or more rolls are driven by a driven four-way roll, that is, the multi-wire 12 and the stabilizing material 13 are plastically deformed. After being formed into a rectangular wire, the wire is reheated at a predetermined temperature to precipitate an Nb 3 Al phase from the Nb-Al supersaturated solid solution to form a superconducting wire having a predetermined superconducting wire portion 15.
[0035]
FIG. 2 is a flowchart showing a superconducting wire manufacturing process according to the embodiment, and (a) to (e) in the figure correspond to (a) to (e) in FIG. 1, respectively.
[0036]
FIG. 3 is a cross-sectional view illustrating a surface reduction process using a four-direction roll during the manufacturing process. Reference numeral 21 denotes a pair of drive rolls arranged vertically, and has a rotation center axis running in the lateral direction. Reference numeral 22 denotes a pair of non-driving rolls arranged on the left and right, and has a rotation center axis running in the vertical direction. The peripheral ends of the upper and lower drive rolls 21 are arranged between the left and right non-drive rolls 22 and 22 to press the composite 14 from above and below. The left and right non-driving rolls 22 press the composite 14 from the side surface of the driving roll 21, and as a result, are located with a gap 23 therebetween.
[0037]
As shown in the drawing, by performing a strong surface reduction process such that the stabilizing material 13 enters the gaps 23 between the rolls 21 and 22, the flat matrix wire is stable with the external matrix 9 ′ not only in the width direction but also in the thickness direction. Since the bonding with the chemical material 13 is strengthened and the contact resistance is reduced, the stability is improved.
[0038]
In the case of the illustrated four-direction roll, the stabilizing material 13 has a shape extending in the thickness direction of the wire. Therefore, after the surface reduction processing is completed, the stabilizing material 13 extending in the thickness direction of the wire is crushed by a skin pass that does not reduce the surface, or the stabilizing material 13 is shaved by brushing, sanding, or the like, and then the wire is re-processed at a predetermined temperature. A heat treatment is performed to precipitate an Nb 3 Al phase from the Nb-Al supersaturated solid solution to form a superconducting wire having a predetermined superconducting wire portion 15.
[0039]
【Example】
Hereinafter, an embodiment of the present invention based on FIG. 1 and FIG. 2 will be described.
[0040]
The heating temperature for generating the Nb-Al supersaturated solid solution and the reheating temperature for the Nb 3 Al phase precipitation were uniformly set to 2000 ° C. and 800 ° C., respectively.
[0041]
[Example 1]
1 and 2, a multi-wire 12 having an outer diameter of 1.20 mm is obtained by using a pure Nb sheet 2 having a thickness of 75 μm, a pure Al sheet 3 having a thickness of 25 μm, and a Nb center member 4 having an outer diameter of 2 mm. Was. Next, after heating and quenching to form a Nb-Al supersaturated solid solution, Ga adhering to the surface of the outer matrix 9 'is chemically treated with hydrochloric acid, and then the surface of the outer matrix 9' is polished. By doing so, Ga oxide was removed.
[0042]
Next, an oxygen-free copper pipe having a thickness of 0.1 mm and an outer diameter of 1.5 mm is prepared as a constituent material of the stabilizing material 13, and after the multi-wires 12 are packed therein, the size of the composite 14 is reduced to 1 mm. A predetermined Nb 3 Al compound superconducting wire was produced by subjecting a four-way roll to a surface reduction process so as to have a size of 0.6 mm × 0.59 mm (a surface reduction ratio of 40%), and then performing a reheating process. .
[0043]
[Example 2]
In Example 1, the area of the composite 14 is reduced by a four-direction roll so that the size of the composite 14 becomes 1.6 mm × 0.69 mm (area reduction rate: 30%). Example 3 A predetermined Nb 3 Al compound superconducting wire was manufactured [Example 3].
In Example 1, the area of the composite 14 is reduced by a four-way roll so that the size of the composite 14 becomes 1.6 mm × 0.49 mm (area reduction rate: 50%). A predetermined Nb 3 Al compound superconducting wire was manufactured.
[0044]
[Example 4]
In Example 1, an oxygen-free copper sheet having a thickness of 0.1 mm and a width of 4 mm was used as a constituent material of the stabilizing material 13, and was vertically attached on the multi-wire material 12 so that no gap was formed between joints. The surface of the composite 14 is reduced by a four-way roll so that the size of the composite 14 becomes 1.6 mm × 0.57 mm (area reduction ratio: 40%). A 3 Al compound superconducting wire was manufactured.
[0045]
[Example 5]
In Example 4, a predetermined Nb 3 Al compound-based superconducting wire is manufactured by using a silver sheet having a thickness of 0.01 mm and a width of 4 mm as a constituent material of the stabilizing material 13 and making the other components the same as in Example 4. did.
[0046]
[Comparative Example 1]
1 and 2, a multi-wire 12 having an outer diameter of 1.20 mm is obtained by using a pure Nb sheet 2 having a thickness of 75 μm, a pure Al sheet 3 having a thickness of 25 μm, and a Nb center member 4 having an outer diameter of 2 mm. Was. Next, after heating and quenching to form a Nb-Al supersaturated solid solution, Ga adhering to the surface of the outer matrix 9 'is chemically treated with hydrochloric acid, and then the surface of the outer matrix 9' is polished. By doing so, Ga oxide was removed.
[0047]
Next, an oxygen-free copper pipe having a thickness of 0.1 mm and an outer diameter of 1.5 mm is prepared as a constituent material of the stabilizing material 13, and after the multi-wires 12 are packed therein, the size of the composite 14 is reduced to 1 mm. A processing (skin pass) was performed so as to have a size of 0.6 mm × 0.98 mm (a surface reduction rate of 0%), and then a reheating treatment was performed thereon to produce a predetermined Nb 3 Al compound superconducting wire.
[0048]
[Comparative Example 2]
In Comparative Example 1, the surface of the composite 14 is reduced to 1.6 mm × 0.93 mm (area reduction ratio: 5%), and the other components are made the same as in Comparative Example 1 to obtain a predetermined Nb 3. An Al compound superconducting wire was manufactured.
[0049]
[Comparative Example 3]
In Example 1, the area of the composite 14 was reduced by a four-way roll so that the size of the composite 14 became 1.6 mm × 0.89 mm (area reduction rate: 10%). A predetermined Nb 3 Al compound superconducting wire was manufactured.
[0050]
[Comparative Example 4]
In the first embodiment, the surface of the composite 14 is reduced by a four-way roll so that the size of the composite 14 becomes 1.6 mm × 0.79 mm (reduction ratio of 20%). A predetermined Nb 3 Al compound superconducting wire was manufactured.
[0051]
[Comparative Example 5]
In the first embodiment, the surface of the composite 14 is reduced by a four-way roll so that the size of the composite 14 becomes 1.6 mm × 0.39 mm (a surface reduction rate of 60%). A predetermined Nb 3 Al compound superconducting wire was manufactured.
[0052]
[Table 1]
Figure 2004319201
[0053]
[Table 2]
Figure 2004319201
[0054]
Tables 1 and 2 show the main part configuration, critical current characteristics, and critical current density characteristics of each superconducting wire obtained by the above Examples and Comparative Examples.
[0055]
Although the adhesion between the multi-wire 12 and the stabilizing material 13 can be compared by contact resistance measurement, the effect of the stabilization is as follows: when a current is applied under the operating conditions of the wire (liquid helium temperature; 4.2K), Can be discriminated by whether or not this occurs, and since this point is the most important, comparison was made between critical current characteristics and critical current density characteristics.
[0056]
According to Table 1, it can be seen that Examples (Examples 1 to 5) according to the present invention all show excellent critical current characteristics and critical current density characteristics. Further, the wire rods which are hardly subjected to the surface reduction processing as in Comparative Examples 1 to 4 (Table 2) quench on the low magnetic field side (18 T or less), whereas in Examples 1 to 5 (Table 1) according to the present invention. In each case, quenching does not occur on the low magnetic field side (high current side), and the stability is improved. In particular, it is apparent that in the examples (Examples 1 to 5) in which the surface reduction degree is 30% or more using the present invention, no quench occurs even on the low magnetic field side of 15 T, and the stability is improved. is there. This is only because the adhesion between the multi-wire 12 and the stabilizing material 13 is further improved by performing a strong process to cause the stabilizing material 13 to undergo plastic deformation using a four-direction roll.
[0057]
The critical current characteristics and critical current density characteristics of Example 1-5 shown in Table 1, showed higher than Nb 3 Sn or Nb 3 Al compound superconducting wire which is frequently used at present value, further, the strain tolerance Therefore, a higher-performance superconducting wire can be provided.
[0058]
<Rationale for optimal conditions>
The rectangular wire having a surface reduction of 30% to 50% has excellent critical current characteristics and critical current density characteristics as shown in the examples of Table 1 above, and also has a very good connection between the multi-wire material and the stabilizing material. Good. If the surface reduction is less than 30%, the bonding between the multi-wire material and the stabilizing material is poor, and if the surface reduction processing exceeds 50%, the critical current characteristic is significantly reduced. 50%.
[0059]
Further, the rectangular wire having an aspect ratio of 2.0 to 3.0 is excellent in critical current characteristics and critical current density characteristics as seen in the above-described example, and also has very good bonding between the multi-wire and the stabilizing material. It is. It is possible to process even a rectangular wire having an aspect ratio of 1.5 to 2.0, but it is not preferable because Ic and characteristics are deteriorated as seen in Comparative Examples.
[0060]
<Modification>
As a modified example of the above-described four-direction roll, as shown in FIG. 4, a drive roll 21 and a non-drive roll 22 are sequentially shifted so that the roll peripheral surface is directed to the adjacent roll side surface, and are arranged in a swirl shape. Surface reduction can also be performed with a head roll. Also in this case, by performing a strong process such that the stabilizing material is plastically deformed, it is possible to produce a cotton material having excellent bonding properties between the multi-wire material and the stabilizing material.
[0061]
<How to use, application system, etc.>
The Nb 3 Al-based compound superconducting wire of the present invention is excellent in critical current characteristics and critical current density characteristics, and has good bonding properties of a stabilizer, so that it is used for superconducting magnets for fusion reactors, high-energy particle accelerators, and properties research. It is effective as a wire used for high-field NMR magnets and the like.
[0062]
【The invention's effect】
As described in detail above, according to the Nb 3 Al-based compound superconducting wire and the method of manufacturing the same of the present invention, after heating and quenching the multi-wire, Ga is removed and the stabilizing material is arranged around the multi-wire. For example, by performing a surface reduction process that causes plastic deformation at a surface reduction degree of 30% to 50% and an aspect ratio of 2.0 or more, an external matrix can be formed not only in the width direction but also in the thickness direction of the rectangular wire. Provided is an Nb 3 Al compound-based superconducting wire having high critical current characteristics and critical current density characteristics, and having excellent bonding properties of the stabilizer, because the bonding with the stabilizer is strengthened and the contact resistance is reduced. It became possible.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of a method for producing an Nb 3 Al compound-based superconducting wire of the present invention, in which A is a partially enlarged view.
FIG. 2 is a flowchart illustrating a manufacturing process according to the embodiment of FIG. 1;
FIG. 3 is a cross-sectional view showing an outline of surface reduction processing using a four-direction roll in the present invention.
FIG. 4 is a cross-sectional view showing an outline of surface reduction processing by a turk head according to the present invention.
[Explanation of symbols]
7 Composite Wire 8 Single Wire 9 Nb Tube 9 'External Matrix 10 Cu-Ni Alloy Tube 11 Composite Wire 12 Multi Wire 13 Stabilizer 14 Composite 15 Superconducting Wire 21 Drive Roll 22 Non-Drive Roll

Claims (5)

NbあるいはNb合金とAlあるいはAl合金から成る積層体の周囲にNbあるいはNb合金のマトリックスを被覆して複数のシングル線材を形成し、前記複数のシングル線材をNbあるいはNb合金の外部マトリックスで被覆してマルチ線材を構成し、前記マルチ線材を所定の温度に加熱した後、冷却用金属材による冷却処理を施すことによりNb−Al過飽和固溶体を生成させ、これに所定の温度で再加熱処理を施すことによりNbAl相を析出させるNbAl化合物系超電導線の製造方法において、
前記冷却処理の後に、前記外部マトリックスの表面から前記冷却用金属材を除去し、前記外部マトリックスの上に安定化材を被覆し、2つ以上の駆動ロールを有する4方向ロールによって前記マルチ線材および前記安定化材を塑性変形させる減面加工を施し、界面が隙間なく一体化された矩形断面の線材とした後、前記再加熱処理を施すことを特徴とするNbAl化合物系超電導線の製造方法。
A plurality of single wires are formed by coating a matrix of Nb or Nb alloy around a laminate of Nb or Nb alloy and Al or Al alloy, and the plurality of single wires are coated with an outer matrix of Nb or Nb alloy. After heating the multi-wire to a predetermined temperature, the multi-wire is subjected to a cooling treatment with a cooling metal material to generate an Nb-Al supersaturated solid solution, which is subjected to a re-heating treatment at a predetermined temperature. In the method for producing a Nb 3 Al compound-based superconducting wire that precipitates an Nb 3 Al phase by
After the cooling process, the metal material for cooling is removed from the surface of the external matrix, a stabilizing material is coated on the external matrix, and the multi-wire material and a four-way roll having two or more driving rolls are used. Manufacturing the Nb 3 Al compound-based superconducting wire, wherein the stabilizing material is subjected to surface reduction processing for plastically deforming the wire to form a wire having a rectangular cross section in which the interface is integrated without gaps, and then performing the reheating treatment. Method.
前記減面加工が、アスペクト比2.0以上の平角加工であることを特徴とする請求項1記載のNbAl化合物系超電導線の製造方法。The method according to claim 1 Nb 3 Al compound superconducting wire, wherein the area reduction processing, an aspect ratio of 2.0 or more flat processing. 前記減面加工が、30%〜50%の減面率であることを特徴とする請求項1又は2記載のNbAl化合物系超電導線の製造方法。The area reduction processing method according to claim 1 or 2 Nb 3 Al compound superconducting wire according to characterized in that 30% to 50% reduction in area of. 前記安定化材が、銅、銅合金、銀、あるいは銀合金のいずれかであることを特徴とする請求項1〜3のいずれかに記載のNbAl化合物系超電導線の製造方法。Wherein the stabilizing material is copper, the manufacturing method of the copper alloy, silver, or Nb 3 Al compound superconducting wire according to claim 1, characterized in that either a silver alloy. 前記冷却用金属が、Gaであることを特徴とする請求項1〜4のいずれかに記載のNbAl化合物系超電導線の製造方法。The cooling metal is a manufacturing method of Nb 3 Al compound superconducting wire according to claim 1, characterized in that the Ga.
JP2003110036A 2003-04-15 2003-04-15 MANUFACTURING METHOD OF Nb3Al COMPOUND BASED SUPERCONDUCTIVE WIRE Pending JP2004319201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110036A JP2004319201A (en) 2003-04-15 2003-04-15 MANUFACTURING METHOD OF Nb3Al COMPOUND BASED SUPERCONDUCTIVE WIRE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110036A JP2004319201A (en) 2003-04-15 2003-04-15 MANUFACTURING METHOD OF Nb3Al COMPOUND BASED SUPERCONDUCTIVE WIRE

Publications (1)

Publication Number Publication Date
JP2004319201A true JP2004319201A (en) 2004-11-11

Family

ID=33470999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110036A Pending JP2004319201A (en) 2003-04-15 2003-04-15 MANUFACTURING METHOD OF Nb3Al COMPOUND BASED SUPERCONDUCTIVE WIRE

Country Status (1)

Country Link
JP (1) JP2004319201A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173102A (en) * 2005-12-22 2007-07-05 Kobe Steel Ltd PRECURSOR FOR MAKING Nb3Sn SUPERCONDUCTIVE WIRE ROD AND ITS MANUFACTURING METHOD
CN102148077A (en) * 2010-12-18 2011-08-10 平湖迪工机械制造有限公司 Cable core rectangular compressing mould base
JPWO2017017715A1 (en) * 2015-07-24 2018-03-15 株式会社日立製作所 Superconducting wire, superconducting coil, MRI and NMR
JP2019079672A (en) * 2017-10-24 2019-05-23 国立研究開発法人物質・材料研究機構 RAPID HEATING QUICK COOLING TREATED PRECURSOR WIRE FOR Nb3Al SUPERCONDUCTING WIRE, AND HEAT TREATMENT METHOD OF PRECURSOR WIRE FOR Nb3Al SUPERCONDUCTING WIRE

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173102A (en) * 2005-12-22 2007-07-05 Kobe Steel Ltd PRECURSOR FOR MAKING Nb3Sn SUPERCONDUCTIVE WIRE ROD AND ITS MANUFACTURING METHOD
JP4699200B2 (en) * 2005-12-22 2011-06-08 株式会社神戸製鋼所 Precursor for producing Nb3Sn superconducting wire and method for producing the same
CN102148077A (en) * 2010-12-18 2011-08-10 平湖迪工机械制造有限公司 Cable core rectangular compressing mould base
JPWO2017017715A1 (en) * 2015-07-24 2018-03-15 株式会社日立製作所 Superconducting wire, superconducting coil, MRI and NMR
US11127514B2 (en) 2015-07-24 2021-09-21 Hitachi, Ltd. Superconducting wire, superconducting coil, MRI and NMR
JP2019079672A (en) * 2017-10-24 2019-05-23 国立研究開発法人物質・材料研究機構 RAPID HEATING QUICK COOLING TREATED PRECURSOR WIRE FOR Nb3Al SUPERCONDUCTING WIRE, AND HEAT TREATMENT METHOD OF PRECURSOR WIRE FOR Nb3Al SUPERCONDUCTING WIRE
JP7032783B2 (en) 2017-10-24 2022-03-09 国立研究開発法人物質・材料研究機構 A method for heat-treating a precursor wire for Nb3Al superconducting wire, and a method for manufacturing an Nb3Al superconducting wire using this precursor wire.

Similar Documents

Publication Publication Date Title
EP2357656B1 (en) Method for producing a metal laminated substrate for an oxide superconducting wire, and oxide superconducting wire using the substrate
JP2009301928A (en) Method for manufacturing superconducting wire
JP2004319201A (en) MANUFACTURING METHOD OF Nb3Al COMPOUND BASED SUPERCONDUCTIVE WIRE
JP4042933B2 (en) Nb3 Al compound-based superconducting wire and manufacturing method thereof
JP3588628B2 (en) Method for producing Nb3Al ultrafine multicore superconducting wire
JP3629527B2 (en) Manufacturing method of Nb3Al compound-based superconducting wire and superconducting wire obtained by the method
JP3663948B2 (en) Nb3Al compound-based superconducting wire and manufacturing method thereof
JP6086469B2 (en) Nb3Al superconducting wire manufacturing method
JP3948291B2 (en) Nb3Al compound superconducting wire and method for producing the same
JP2010282930A (en) Nb3Al MULTICORE SUPERCONDUCTIVE WIRE ROD
JP5598825B2 (en) Nb3Al superconducting wire manufacturing method
JPH11102617A (en) Nb3al compound superconductor and manufacture therefor
JP2000109320A (en) Metallic substrate for oxide superconductor and its production
JP4386306B2 (en) Method for producing Nb3Al compound-based superconducting wire
JP2010182470A (en) Nb3Al SUPERCONDUCTING MULTI-CORE WIRE
JPH09204828A (en) Manufacture of nb3al superconducting wire
JP3736425B2 (en) Manufacturing method of oxide superconducting multi-core wire
JP5067560B2 (en) Manufacturing method of Nb3Al compound superconducting wire and Nb3Al compound superconducting wire
JP2004356046A (en) Nb3AL COMPOUND GROUP SUPERCONDUCTING WIRE, AND MANUFACTURING METHOD AND MANUFACTURING DEVICE OF THE SAME
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
JPH09204829A (en) Manufacture of nb3al superconducting wire
JP3489313B2 (en) Method for producing Nb3Al-based superconducting wire
JP2005085555A (en) MANUFACTURING METHOD OF RAPID HEATING AND QUENCHING Nb3AL SUPERCONDUCTIVE WIRE ROD
JP2749136B2 (en) Aluminum stabilized superconducting wire
JP3716309B2 (en) Manufacturing method of Nb3Sn wire