JP7032783B2 - A method for heat-treating a precursor wire for Nb3Al superconducting wire, and a method for manufacturing an Nb3Al superconducting wire using this precursor wire. - Google Patents

A method for heat-treating a precursor wire for Nb3Al superconducting wire, and a method for manufacturing an Nb3Al superconducting wire using this precursor wire. Download PDF

Info

Publication number
JP7032783B2
JP7032783B2 JP2017205171A JP2017205171A JP7032783B2 JP 7032783 B2 JP7032783 B2 JP 7032783B2 JP 2017205171 A JP2017205171 A JP 2017205171A JP 2017205171 A JP2017205171 A JP 2017205171A JP 7032783 B2 JP7032783 B2 JP 7032783B2
Authority
JP
Japan
Prior art keywords
wire
precursor
heat treatment
superconducting wire
precursor wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017205171A
Other languages
Japanese (ja)
Other versions
JP2019079672A (en
Inventor
章弘 菊池
安男 飯嶋
義博 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2017205171A priority Critical patent/JP7032783B2/en
Publication of JP2019079672A publication Critical patent/JP2019079672A/en
Application granted granted Critical
Publication of JP7032783B2 publication Critical patent/JP7032783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、NbAl超伝導線材用の前駆体線材の熱処理方法、及びこの前駆体線材を用いたNb Al超伝導線材の製造方法に関する。より詳しくは、Nb及びAlを含むフィラメント領域と、該フィラメント領域の周囲を覆うバリア層を有するシングル線を複数備えたNbAl超伝導線材用の前駆体線材の熱処理方法、及びこの前駆体線材を用いたNbAl超伝導線材の製造方法に関する。
The present invention relates to a method for heat-treating a precursor wire for Nb 3 Al superconducting wire and a method for producing an Nb 3 Al superconducting wire using this precursor wire . More specifically, a method for heat-treating a precursor wire for an Nb 3 Al superconducting wire having a filament region containing Nb and Al and a plurality of single wires having a barrier layer surrounding the filament region, and the precursor wire. The present invention relates to a method for producing a Nb 3 Al superconducting wire rod using the above.

特性に優れた化学量論組成比に近いNbAl超伝導線材を提供するにあたり、真空中で短時間通電加熱と液体金属ガリウムによる急冷を連続的に実施する急熱急冷処理は有効な手段である(例えば、特許文献1~4参照)。急熱急冷処理では、2000℃近傍の高温加熱を短時間行い、次いで50℃程度の温度に保たれた液体金属ガリウム浴に浸漬して急冷することで、NbAlの化学量論組成比を保った過飽和固溶体を生成させる。その後に800℃程度の追加熱処理で化学量論組成比に近いA15型NbAl超伝導化合物へ相変態させる。これまでの急熱急冷処理は、2000℃の高温加熱を伴うために著しい酸化反応が起こって線材が焼き切れる等の問題が予想され、真空中で行うことが通例であった。例えば、本製法について初めて報告された文献(非特許文献1)や、イタリアのグループから同製法について報告された文献(非特許文献2)など多くの非特許文献において、急熱急冷処理は10-5Torr以下の高真空中で実施するとの明瞭な記載がある。 In order to provide Nb 3 Al superconducting wire rods with excellent characteristics and close to the stoichiometric composition ratio, rapid heating and quenching treatment, in which short-time energization heating and rapid cooling with liquid metal gallium are continuously performed in vacuum, is an effective means. (See, for example, Patent Documents 1 to 4). In the rapid heating and quenching treatment, high-temperature heating at around 2000 ° C. is performed for a short time, and then the mixture is immersed in a liquid metal gallium bath maintained at a temperature of about 50 ° C. and rapidly cooled to obtain the stoichiometric composition ratio of Nb 3 Al. Produces a preserved supersaturated solid solution. After that, it is phase - transformed into an A15 type Nb3Al superconducting compound close to the stoichiometric composition ratio by an additional heat treatment at about 800 ° C. Until now, the rapid heating and quenching treatment is usually performed in a vacuum because it is expected that the wire rod will be burnt out due to a remarkable oxidation reaction due to the high temperature heating of 2000 ° C. For example, in many non-patent documents such as a document first reported on this manufacturing method (Non-Patent Document 1) and a document reported on the same manufacturing method by an Italian group (Non-Patent Document 2), the rapid heating / quenching treatment is 10-. There is a clear statement that it will be carried out in a high vacuum of 5 Torr or less.

さらに通電加熱温度は銅の融点をはるかに超えるため、実用上不可欠な安定化銅を含んだ線材の急熱急冷処理は難しい。そこで、通常は急熱急冷処理後に安定化銅を付与することになり、具体的には銅箔のクラッド圧延、銅イオンプレーティング、銅電解めっきなどの手法が用いられる。安定化銅を付与するためのいずれの手法においても、強固な密着性を確保する上で最も重要になるのが複合前の線材の表面状態である。 Furthermore, since the energization heating temperature far exceeds the melting point of copper, it is difficult to quench and quench the wire containing stabilized copper, which is indispensable for practical use. Therefore, usually, stabilized copper is applied after the rapid heating and quenching treatment, and specifically, methods such as clad rolling of copper foil, copper ion plating, and copper electrolytic plating are used. In any method for imparting stabilized copper, the most important factor in ensuring strong adhesion is the surface condition of the wire before composite.

急熱急冷処理において、線材は高温の状態で金属ガリウムに突入するために、表面材質のニオブとガリウムが著しく反応して、線材表面の所々にNb-Ga化合物が粒状に生成される。線材表面を汚染しているNb-Ga化合物は安定化銅を複合するために除去されなければならないが、非常に硬いため、従来はワイヤーブラシや研磨紙などにより機械的に削り取ったり、フッ酸等により化学的に除去したりする煩雑な作業を必要としていた。またそれら煩雑な作業はNbAl超伝導線材の製造コストを引き上げる要因の1つにもなっていた。 In the rapid heating and quenching treatment, the wire rod rushes into the metallic gallium at a high temperature, so that the surface material niobium and gallium react remarkably, and Nb-Ga compounds are formed in the form of granules on the surface of the wire rod. The Nb-Ga compound that contaminates the surface of the wire must be removed in order to combine stabilized copper, but since it is extremely hard, it has been mechanically scraped off with a wire brush or abrasive paper, or hydrofluoric acid, etc. It required complicated work such as chemical removal. In addition, these complicated operations have become one of the factors that raise the manufacturing cost of the Nb 3 Al superconducting wire.

特許2021986号公報Japanese Patent No. 2021986 特許4005713号公報Japanese Patent No. 4005713 特開2004-207013号公報Japanese Unexamined Patent Publication No. 2004-20701 特開2000-090754号公報Japanese Unexamined Patent Publication No. 2000-090754

Yasuo Iijima, et. al., “Superconducting properties of Nb3Al multifilamentary wires fabricated continuously by rapid-quenching”, Advances in Cryogenic Engineering, Vol. 42, 1996, p.p.1447-1454.Yasuo Iijima, et. Al., “Superconducting properties of Nb3Al multifilamentary wires quenched continuously by rapid-quenching”, Advances in Cryogenic Engineering, Vol. 42, 1996, p.p. 1447-1454. S. Ceresara, et. al., “Manufacture of Nb3Al superconducting wires by the rapid heating and quenching technique”, Physica C 386 (2003) p.p. 384-937.S. Ceresara, et. Al., “Manufacture of Nb3Al superconducting wires by the rapid heating and quenching technique”, Physica C 386 (2003) p.p. 384-937. Akihiro Kikuchi, et. al., “Fabrication of Cu Stabilizer into Long-Length RHQT-Processed Nb3Al Round Wire”, IEEE Trans. Appl. Supercond., Vol. 16, No. 2, 2006, p.p.1224-1227.Akihiro Kikuchi, et. Al., “Fabrication of Cu Stabilizer into Long-Length RHQT-Processed Nb3Al Round Wire”, IEEE Trans. Appl. Supercond., Vol. 16, No. 2, 2006, p.p.1224-1227.

本発明は、急熱急冷処理において、急冷処理において前駆体線材が金属ガリウムに突入しても、線材表面にNb-Ga化合物が粒状に生成されることを防止した、NbAl超伝導線材用の前駆体線材の熱処理方法、及びこの前駆体線材を用いたNb Al超伝導線材の製造方法を提供することを目的とする。
INDUSTRIAL APPLICABILITY The present invention is for Nb 3 Al superconducting wire rod, which prevents the Nb-Ga compound from being formed in the form of granules on the wire rod surface even if the precursor wire rod rushes into the metal gallium in the rapid heat quenching treatment. It is an object of the present invention to provide a method for heat-treating a precursor wire of the above, and a method for producing an Nb 3 Al superconducting wire using the precursor wire .

[1] 本発明のNbAl超伝導線材用の前駆体線材の熱処理方法は、NbとAlの複合体の周囲に高融点金属の被覆を形成した前駆体線材に急熱急冷処理を施すことによって前記複合体に基づいたNb‐Al過飽和固溶体を生成させるNbAl超伝導線材用の前駆体線材の熱処理方法において、
前記急熱急冷処理の急熱処理において、1700℃~2100℃の急熱処理を大気中で行うことで、前駆体線材表面に薄い酸化皮膜が形成される工程と、
前記急熱急冷処理の急冷処理において、前駆体線材表面での粒状のNb-Ga化合物の生成を防止する工程と、を備えることを特徴とする。
[1] In the heat treatment method for the precursor wire for Nb 3 Al superconducting wire of the present invention, the precursor wire having a refractory metal coating formed around the composite of Nb and Al is subjected to rapid heating and quenching treatment. In the heat treatment method of the precursor wire for the Nb 3 Al superconducting wire , which produces an Nb-Al supersaturated solid solution based on the complex.
In the rapid heat treatment of the rapid heating and quenching treatment, a step of forming a thin oxide film on the surface of the precursor wire by performing a rapid heat treatment at 1700 ° C to 2100 ° C in the atmosphere, and
The rapid cooling treatment of the rapid heating and quenching treatment is characterized by comprising a step of preventing the formation of granular Nb-Ga compounds on the surface of the precursor wire rod.

[2] 本発明のNbAl超伝導線材用の前駆体線材の熱処理方法において、好ましくは、前記複合体は、ジェリーロール法、RIT法(ロッド・イン・チューブ法)、CCE法(クラッドチップ押出法)、PIT法(粉末充填法)のいずれかの方法によって作製されるとよい。
[3] 本発明のNbAl超伝導線材用の前駆体線材の熱処理方法において、好ましくは、前記高融点金属は、Nb又はTaからなると共に、添加元素としてNi、Al、Ti、Co、GdもしくはFe又はこれらのいずれかの元素の合金又はCu合金からなる群から選択された元素又は合金を含むとよい。
[2] In the heat treatment method for the precursor wire rod for Nb 3 Al superconducting wire rod of the present invention, preferably, the complex is a jelly roll method, a RIT method (rod-in-tube method), or a CCE method (clad tip). It may be produced by either an extrusion method) or a PIT method (powder filling method).
[3] In the heat treatment method for the precursor wire for the Nb 3 Al superconducting wire of the present invention, the refractory metal preferably consists of Nb or Ta and Ni, Al, Ti, Co, Gd as additive elements. Alternatively, it may contain an element or alloy selected from the group consisting of Fe or an alloy of any of these elements or a Cu alloy.

[4] 本発明のNbAl超伝導線材の製造方法は、[1]~[3]のNbAl超伝導線材用の前駆体線材の熱処理方法で熱処理された前駆体線材を変態熱処理することによって、前記Nb‐Al過飽和固溶体に基づくNbAl相を析出させることを特徴とする
[4] In the method for producing the Nb 3 Al superconducting wire of the present invention, the precursor wire heat-treated by the heat treatment method of the precursor wire for the Nb 3 Al superconducting wire according to [1] to [3] is subjected to transformation heat treatment. This is characterized by precipitating the Nb 3 Al phase based on the Nb-Al supersaturated solid solution .

本発明では、急熱急冷処理を大気中で行うことで、前駆体線材表面に薄い酸化皮膜が形成され、硬い粒状のNb-Ga化合物の生成を防止する。本発明により、Nb-Ga化合物を除去するための煩雑な作業が無くなるだけでなく、且つ、急熱急冷処理装置そのものの高価な真空チャンバーや排気系システムを不要にして劇的に簡素化し、装置価格も大幅に安価なものとなる。 In the present invention, by performing the rapid heating and quenching treatment in the atmosphere, a thin oxide film is formed on the surface of the precursor wire rod, and the formation of hard granular Nb-Ga compound is prevented. The present invention not only eliminates the complicated work for removing the Nb-Ga compound, but also dramatically simplifies the apparatus by eliminating the need for the expensive vacuum chamber and exhaust system of the rapid heating and quenching treatment apparatus itself. The price will also be significantly cheaper.

本発明によるNbAl超伝導線材の前駆体線材製造の加工経緯説明図であり、ジェリーロール法の場合を示している。Aは部分拡大図を示す。It is a processing process explanatory drawing of the precursor wire rod manufacturing of the Nb 3 Al superconducting wire rod by this invention, and shows the case of the jelly roll method. A shows a partially enlarged view. 図1の実施形態において使用される急熱急冷処理装置の一例を示す構成図である。It is a block diagram which shows an example of the rapid heat quenching processing apparatus used in the embodiment of FIG. 図1および図2の実施形態における製造プロセス図である。It is a manufacturing process diagram in the embodiment of FIGS. 1 and 2. 急熱急冷処理前のNb/Al前駆体線材の表面状態を示す図である。It is a figure which shows the surface state of the Nb / Al precursor wire rod before the rapid heat quenching process. 本発明の一実施の形態を示す、大気中で急熱急冷処理を行ったNb/Al前駆体線材の表面状態を示す図である。It is a figure which shows one Embodiment of this invention, and shows the surface state of the Nb / Al precursor wire rod which was subjected to rapid heat quenching treatment in the atmosphere. 本発明の比較例を示す、従来のNbAl超伝導線材用の前駆体線材の熱処理方法に用いられる、急熱急冷処理装置の一例を示す構成図である。It is a block diagram which shows an example of the rapid heat quenching processing apparatus used in the heat treatment method of the precursor wire | former for Nb 3 Al superconducting wire which shows the comparative example of this invention. 本発明の比較例を示す、真空中で急熱急冷処理を行ったNb/Al前駆体線材の表面状態を示す図である。It is a figure which shows the comparative example of this invention, and shows the surface state of the Nb / Al precursor wire rod which was subjected to rapid heat quenching treatment in vacuum.

次に、本発明によるNbAl系超伝導線およびその製造方法における実施の形態について説明する。図1は、本発明によるNbAl超伝導線材の前駆体線材製造の加工経緯説明図であり、ジェリーロール法の場合を示している。 Next, an embodiment in the Nb 3 Al-based superconducting wire according to the present invention and the method for producing the same will be described. FIG. 1 is an explanatory diagram of the processing process of manufacturing a precursor wire rod of the Nb 3 Al superconducting wire rod according to the present invention, and shows the case of the jelly roll method.

図1(イ)において、1は、工業用純Nbシート2と工業用純Alシート3を積層し、これを工業用純Nb製の中心材4に隙間なく巻き付けることによって構成したジェリーロール形式の複合体を示す。5は複合体1上に静水圧押出によりNb管を被せることによって設けられた工業用純Nb製の被覆を示し、この被覆5の上にはCu被覆6が同様にして形成され、これによって複合素線7とされる。 In FIG. 1 (a), 1 is a jelly roll type configured by laminating an industrial pure Nb sheet 2 and an industrial pure Al sheet 3 and winding the industrial pure Nb center material 4 without a gap. Shows a complex. Reference numeral 5 shows a coating made of industrial pure Nb provided by covering the composite 1 with an Nb tube by hydrostatic extrusion, and a Cu coating 6 is similarly formed on the coating 5, whereby the composite is formed. It is a wire 7.

図1(ロ)は、複合素線7をダイス伸線により断面6角形に減面加工し、その後、Cu被覆6を除去することによって製造したシングル線材8の構造を示したもので、6角形による密接集合が可能な構造となっている。 FIG. 1 (b) shows the structure of the single wire rod 8 manufactured by reducing the surface of the composite wire 7 into a hexagonal cross section by drawing a die and then removing the Cu coating 6. It has a structure that allows close assembly by.

図1(ハ)は、Nb製の一括被覆9とCu‐Ni合金被覆10とをシングル線材8の集合束の上に形成することによって得られた複合線材11の構造を示す。この複合線材11は、ダイス伸線により所定の寸法に減面加工された後、外周のCu‐Ni合金被覆10が除去され、これにより所定寸法のマルチ複合線材とされる。 FIG. 1 (c) shows the structure of the composite wire rod 11 obtained by forming the batch coating 9 made of Nb and the Cu—Ni alloy coating 10 on the aggregate bundle of the single wire rod 8. The composite wire 11 is surface-reduced to a predetermined size by die drawing, and then the Cu—Ni alloy coating 10 on the outer periphery is removed, whereby a multi-composite wire having a predetermined size is obtained.

図1(ニ)は、以上により得られたマルチ複合線材16を加熱し、冷却し、さらに、再加熱することによって製造したNbAl系超伝導線の断面構造を示したもので、最初の加熱とそれに続く冷却とは、以下に説明する装置を使用して行われた。 なお、図中、12はNbAl超伝導部、13と14は、いずれもNbから構成された中心材マトリックスと外周部マトリックスを示す。 FIG. 1 (d) shows the cross-sectional structure of the Nb3 Al - based superconducting wire produced by heating, cooling, and reheating the multi-composite wire rod 16 obtained as described above. Heating and subsequent cooling were performed using the equipment described below. In the figure, 12 is an Nb 3 Al superconducting portion, and 13 and 14 are both a central material matrix and an outer peripheral matrix composed of Nb.

図2は、加熱および冷却に使用された装置の概要を示したもので、15はマルチ複合線材16を送り出すための供給リール、17、18は電極ローラ、19は内部に冷却剤としての液体Ga20を収容した冷却槽を示し、液体Ga20の中には電極ロール18が浸漬させられている。21は巻取リール、22は電源、23は抵抗Rの両端の電位差から電流を測定する電流値測定リード線24と、電極ローラ17、18間の電圧を測定する電圧測定リード線25とを備えた記録計、26はガイドローラを示す。 FIG. 2 shows an outline of the equipment used for heating and cooling, in which 15 is a supply reel for sending out a multi-composite wire rod 16, 17 and 18 are electrode rollers, and 19 is a liquid Ga20 as a cooling agent inside. The cooling tank containing the above is shown, and the electrode roll 18 is immersed in the liquid Ga 20. 21 is a take-up reel, 22 is a power supply, and 23 is a current value measuring lead wire 24 for measuring a current from a potential difference between both ends of a resistor R, and a voltage measuring lead wire 25 for measuring a voltage between the electrode rollers 17 and 18. The recorder, 26, indicates a guide roller.

供給リール15から送り出されたマルチ複合線材16は、電極ローラ17と18を通過する間に2000℃で0.1秒間通電加熱され、その後、引き続き液体Ga20によって5000K/秒の冷却速度で冷却された後、巻取リール21に巻き取られる。ここで、急熱急冷処理は、加熱を1800~2100℃で、0.1~10秒行った後、500℃以下に急冷して行うのが好ましい。これにより、マルチ複合線材を構成するAlとNbとが反応して、過飽和固溶体が形成される。 The multi-composite wire 16 delivered from the supply reel 15 was energized and heated at 2000 ° C. for 0.1 seconds while passing through the electrode rollers 17 and 18, and then subsequently cooled by the liquid Ga 20 at a cooling rate of 5000 K / sec. After that, it is wound on the take-up reel 21. Here, the rapid heating and quenching treatment is preferably carried out by heating at 1800 to 2100 ° C. for 0.1 to 10 seconds and then quenching to 500 ° C. or lower. As a result, Al and Nb constituting the multi-composite wire rod react with each other to form a supersaturated solid solution.

巻き取られたマルチ複合線材16は、変態熱処理工程において800℃で10時間再加熱され、これによりNbAlを析出させられ、所定のNbAl系超伝導線となる。変態熱処理工程では、好ましくは600~1000℃、典型的には800℃で、10時間程度の熱処理により実施することができる。変態熱処理は、過飽和固溶体を有するマルチ複合線材の再加熱処理のことであり、これにより最終形状を備えたNbAl超伝導線材が製造される。
図3は、以上の超伝導線製造プロセスをフローチャートにまとめたものである。
The wound multi-composite wire 16 is reheated at 800 ° C. for 10 hours in the transformation heat treatment step, whereby Nb 3 Al is precipitated to become a predetermined Nb 3 Al superconducting wire. The transformation heat treatment step can be carried out by heat treatment at preferably 600 to 1000 ° C., typically 800 ° C. for about 10 hours. The transformation heat treatment is a reheat treatment of a multi-composite wire having a supersaturated solid solution, whereby an Nb 3 Al superconducting wire having a final shape is produced.
FIG. 3 summarizes the above superconducting wire manufacturing process in a flowchart.

(実施例)
図4は、本発明の一実施の形態を示す、急熱急冷処理前のNb/Al前駆体線材の表面状態を示す図である。前駆体線材の表面の材質はニオブであり、外径は1.37mmである。
図5は、大気中で急熱急冷処理を行ったNb/Al前駆体線材の表面状態を示す図である。急熱急冷時の印加電圧は10.5Vで、線材は約2000℃まで加熱した。急熱急冷処理を行ったNb/Al前駆体線材の表面状態では、ニオブ-ガリウム化合物の生成は一切認められない。
(Example)
FIG. 4 is a diagram showing the surface state of the Nb / Al precursor wire rod before the rapid heating and quenching treatment, which shows one embodiment of the present invention. The surface material of the precursor wire is niobium, and the outer diameter is 1.37 mm.
FIG. 5 is a diagram showing the surface state of the Nb / Al precursor wire rod that has been subjected to rapid heating and quenching treatment in the atmosphere. The applied voltage during rapid heating and quenching was 10.5 V, and the wire was heated to about 2000 ° C. No formation of niobium-gallium compounds is observed in the surface state of the Nb / Al precursor wire rod that has been subjected to the rapid heating and quenching treatment.

(比較例)
図6は、本発明の比較例を示す、従来のNbAl超伝導線材用の前駆体線材の熱処理方法に用いられる、急熱急冷処理装置の一例を示す構成図である。なお、図6において、前記図2と同一作用をするものには、同一符号を付して説明を省略する。
ここでは、急熱急冷処理装置の全体が、例えば2x10-5Torr程度の真空状態となっている。
(Comparative example)
FIG. 6 is a block diagram showing an example of a rapid heating / quenching treatment apparatus used in a conventional heat treatment method for a precursor wire for Nb 3 Al superconducting wire, which shows a comparative example of the present invention. In FIG. 6, those having the same operation as those in FIG. 2 are designated by the same reference numerals and the description thereof will be omitted.
Here, the entire rapid heating / quenching processing apparatus is in a vacuum state of, for example, about 2x10-5 Torr.

図7は、真空中で急熱急冷処理を行ったNb/Al前駆体線材の表面状態を示す図である。急熱急冷時の印加電圧は10.5Vで、線材は約2000℃まで加熱した。線材表面は冷媒の金属ガリウムと反応して所々に硬いニオブ-ガリウム化合物が生成し、それらは線材表層を一部浸食して強固に付着している。
そこで、後工程として、線材表層のニオブ-ガリウム化合物を剥離させる追加工程が必要となる。
FIG. 7 is a diagram showing the surface state of the Nb / Al precursor wire rod that has been subjected to rapid heating and quenching treatment in vacuum. The applied voltage during rapid heating and quenching was 10.5 V, and the wire was heated to about 2000 ° C. The surface of the wire reacts with the metal gallium of the refrigerant to form hard niobium-gallium compounds in some places, which partially erode the surface layer of the wire and adhere firmly.
Therefore, as a post-step, an additional step of peeling off the niobium-gallium compound on the surface layer of the wire rod is required.

以上、本発明の実施の形態及び実施例を説明したが、上記の実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の項で説明した特徴の組み合わせの全てが本発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
例えば、上記の実施形態においては、NbAl超伝導線材用の前駆体線材の製造工程として、ジェリーロール法の場合を示してあるが、RIT法(ロッド・イン・チューブ法)、CCE法(クラッドチップ押出法)、PIT法(粉末充填法)等の他の慣用されている製造方法を用いてよい。
また、上記の実施形態においては、NbとAlの複合体の周囲に高融点金属の被覆を形成した前駆体線材として、工業用純Nbシートと工業用純Alシートを積層し、これを工業用純Nb製の中心材に隙間なく巻き付けることによって構成したジェリーロール形式の複合体に、高融点金属の被覆としてNb管を被せる場合を示しているが、本発明はこれに限定されるものではなく、例えば高融点金属がNb又はTaからなると共に、添加元素としてNi、Al、Ti、Co、GdもしくはFe又はこれらのいずれかの元素の合金又はCu合金からなる群から選択された元素又は合金を含むバリア層を設けても良い。
Although the embodiments and examples of the present invention have been described above, the above-described embodiments and examples do not limit the invention according to the claims. It should also be noted that not all combinations of features described in the embodiments and examples are essential to the means for solving the problems of the present invention.
For example, in the above embodiment, the jelly roll method is shown as the manufacturing process of the precursor wire for the Nb 3 Al superconducting wire, but the RIT method (rod-in-tube method) and the CCE method ( Other conventional manufacturing methods such as clad tip extrusion method) and PIT method (powder filling method) may be used.
Further, in the above embodiment, an industrial pure Nb sheet and an industrial pure Al sheet are laminated as a precursor wire having a refractory metal coating formed around a composite of Nb and Al, and this is used for industrial purposes. The present invention shows a case where an Nb tube is covered as a coating of a refractory metal on a jelly roll type alloy constructed by winding it around a center material made of pure Nb without gaps, but the present invention is not limited to this. For example, an element or alloy selected from the group consisting of Nb or Ta as a refractory metal and Ni, Al, Ti, Co, Gd or Fe or an alloy of any of these elements or a Cu alloy as an additive element. A barrier layer including the barrier layer may be provided.

本発明のNbAl超伝導線材用の前駆体線材の熱処理方法によれば、急熱急冷処理を大気中で行うことで、前駆体線材表面に薄い酸化皮膜が形成され、硬い粒状のNb-Ga化合物の生成を防止できる。本発明により、Nb-Ga化合物を除去するための煩雑な作業が無くなるだけでなく、且つ、急熱急冷処理装置そのものの高価な真空チャンバーや排気系システムを不要にして劇的に簡素化し、装置価格も大幅に安価なものとできる。
According to the heat treatment method for the precursor wire for Nb 3 Al superconducting wire of the present invention, a thin oxide film is formed on the surface of the precursor wire by performing the rapid heating and quenching treatment in the atmosphere, and the hard granular Nb- The formation of Ga compound can be prevented. The present invention not only eliminates the complicated work for removing the Nb-Ga compound, but also dramatically simplifies the apparatus by eliminating the need for the expensive vacuum chamber and exhaust system of the rapid heating and quenching treatment apparatus itself. The price can also be significantly cheaper.

1 複合体
2 Nbシート
3 Alシート
4 中心材
5 被覆
6 Cu被覆
7 複合素線
8 シングル線材
9 一括被覆
10 Cu‐Ni合金被覆
11 複合線材
12 Nb3 Al超伝導部
13 中心材マトリックス
14 外周部マトリックス
15 供給リール
16 マルチ複合線材
17、18 電極ローラ
19 冷却槽
20 液体Ga
21 巻取リール
22 電源
23 記録計
24 抵抗Rの両端の電位差から電流を測定する電流値測定リード線
25 電極ローラ17、18間の電圧を測定する電圧測定リード線
26 ガイドローラ
1 Composite 2 Nb sheet 3 Al sheet 4 Center material 5 Coating 6 Cu coating 7 Composite wire 8 Single wire 9 Collective coating 10 Cu-Ni alloy coating 11 Composite wire 12 Nb3 Al Superconducting part 13 Center material matrix 14 Outer peripheral matrix 15 Supply reel 16 Multi-composite wire rod 17, 18 Electrode roller 19 Cooling tank 20 Liquid Ga
21 Take-up reel 22 Power supply 23 Recorder 24 Current value measurement lead wire that measures current from the potential difference across the resistor R 25 Voltage measurement lead wire that measures the voltage between the electrode rollers 17 and 18 26 Guide roller

Claims (4)

NbとAlの複合体の周囲に高融点金属の被覆を形成した前駆体線材に急熱急冷処理を施すことによって、前記複合体に基づいたNb‐Al過飽和固溶体を生成させるNb3Al超伝導線材用の前駆体線材の熱処理方法において、
前記急熱急冷処理の急熱処理において、1700℃~2100℃の急熱処理を大気中で行うことで、前駆体線材表面に薄い酸化皮膜が形成される工程と、
前記急熱急冷処理の急冷処理において、前駆体線材表面での粒状のNb-Ga化合物の生成を防止する工程と、
を備えることを特徴とするNbAl超伝導線材用の前駆体線材の熱処理方法。
For Nb3Al superconducting wire that produces an Nb-Al supersaturated solid solution based on the composite by subjecting a precursor wire having a refractory metal coating around the composite of Nb and Al to a rapid heat treatment. In the heat treatment method for precursor wire,
In the rapid heat treatment of the rapid heating and quenching treatment, a step of forming a thin oxide film on the surface of the precursor wire by performing a rapid heat treatment at 1700 ° C to 2100 ° C in the atmosphere, and
In the rapid cooling treatment of the rapid heating and quenching treatment, a step of preventing the formation of granular Nb-Ga compounds on the surface of the precursor wire and
A method for heat-treating a precursor wire for Nb 3 Al superconducting wire.
前記複合体は、ジェリーロール法、RIT法、CCE法、PIT法のいずれかの方法によって作製されることを特徴とする請求項1に記載のNbAl超伝導線材用の急熱急冷処理済みの前駆体線材の熱処理方法。 The rapid heating and quenching treatment for the Nb 3 Al superconducting wire according to claim 1, wherein the complex is produced by any one of a jelly roll method, a RIT method, a CCE method, and a PIT method. Method of heat treatment of precursor wire rod. 前記高融点金属は、Nb又はTaからなると共に、添加元素としてNi、Al、Ti、Co、GdもしくはFe又はこれらのいずれかの元素の合金又はCu合金からなる群から選択された元素又は合金を含むことを特徴とする請求項第1項あるいは第2項記載のNbAl超伝導線材用の急熱急冷処理済みの前駆体線材の熱処理方法。 The refractory metal is composed of Nb or Ta, and an element or alloy selected from the group consisting of Ni, Al, Ti, Co, Gd or Fe, an alloy of any of these elements, or a Cu alloy as an additive element. The method for heat-treating a precursor wire having been subjected to rapid heating and quenching treatment for an Nb 3 Al superconducting wire according to claim 1 or 2, wherein the method comprises. 請求項1乃至3に記載のNbAl超伝導線材用の前駆体線材の熱処理方法で熱処理された前駆体線材を変態熱処理することによって、前記Nb‐Al過飽和固溶体に基づくNbAl相を析出させるNbAl超伝導線材の製造方法 The Nb 3 Al phase based on the Nb-Al supersaturated solid solution is precipitated by performing a transformation heat treatment on the precursor wire heat-treated by the heat treatment method for the precursor wire for the Nb 3 Al superconducting wire according to claims 1 to 3. A method for producing a Nb 3 Al superconducting wire .
JP2017205171A 2017-10-24 2017-10-24 A method for heat-treating a precursor wire for Nb3Al superconducting wire, and a method for manufacturing an Nb3Al superconducting wire using this precursor wire. Active JP7032783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017205171A JP7032783B2 (en) 2017-10-24 2017-10-24 A method for heat-treating a precursor wire for Nb3Al superconducting wire, and a method for manufacturing an Nb3Al superconducting wire using this precursor wire.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017205171A JP7032783B2 (en) 2017-10-24 2017-10-24 A method for heat-treating a precursor wire for Nb3Al superconducting wire, and a method for manufacturing an Nb3Al superconducting wire using this precursor wire.

Publications (2)

Publication Number Publication Date
JP2019079672A JP2019079672A (en) 2019-05-23
JP7032783B2 true JP7032783B2 (en) 2022-03-09

Family

ID=66628066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017205171A Active JP7032783B2 (en) 2017-10-24 2017-10-24 A method for heat-treating a precursor wire for Nb3Al superconducting wire, and a method for manufacturing an Nb3Al superconducting wire using this precursor wire.

Country Status (1)

Country Link
JP (1) JP7032783B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110610781B (en) * 2019-08-28 2022-03-11 福建师范大学 Heat treatment device and method for high-performance iron-based superconducting wire
CN114822981B (en) * 2022-06-20 2022-09-20 西部超导材料科技股份有限公司 Method for preparing niobium three-aluminum superconducting wire by hot extrusion method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113748A (en) 1998-10-09 2000-04-21 Natl Res Inst For Metals Nb3 AL COMPOUND SUPERCONDUCTING CONDUCTOR AND ITS MANUFACTURE
JP2004319201A (en) 2003-04-15 2004-11-11 Hitachi Cable Ltd MANUFACTURING METHOD OF Nb3Al COMPOUND BASED SUPERCONDUCTIVE WIRE
WO2006129540A1 (en) 2005-05-30 2006-12-07 High Energy Accelerator Research Organization Nb-Al TYPE SUPERCONDUCTING WIRE HAVING STABILIZING COPPER DEPOSIT TENACIOUSLY ADHERENT THERETO AND PROCESS FOR PRODUCING THE SAME
JP2016225288A (en) 2015-05-27 2016-12-28 国立研究開発法人物質・材料研究機構 PRECURSOR WIRE MATERIAL FOR Nb3Al SUPERCONDUCTING WIRE MATERIAL AND Nb3Al SUPERCONDUCTING WIRE MATERIAL

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000113748A (en) 1998-10-09 2000-04-21 Natl Res Inst For Metals Nb3 AL COMPOUND SUPERCONDUCTING CONDUCTOR AND ITS MANUFACTURE
JP2004319201A (en) 2003-04-15 2004-11-11 Hitachi Cable Ltd MANUFACTURING METHOD OF Nb3Al COMPOUND BASED SUPERCONDUCTIVE WIRE
WO2006129540A1 (en) 2005-05-30 2006-12-07 High Energy Accelerator Research Organization Nb-Al TYPE SUPERCONDUCTING WIRE HAVING STABILIZING COPPER DEPOSIT TENACIOUSLY ADHERENT THERETO AND PROCESS FOR PRODUCING THE SAME
JP2016225288A (en) 2015-05-27 2016-12-28 国立研究開発法人物質・材料研究機構 PRECURSOR WIRE MATERIAL FOR Nb3Al SUPERCONDUCTING WIRE MATERIAL AND Nb3Al SUPERCONDUCTING WIRE MATERIAL

Also Published As

Publication number Publication date
JP2019079672A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US3996661A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JP4602911B2 (en) Rare earth tape oxide superconductor
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
JP7032783B2 (en) A method for heat-treating a precursor wire for Nb3Al superconducting wire, and a method for manufacturing an Nb3Al superconducting wire using this precursor wire.
JP2009301928A (en) Method for manufacturing superconducting wire
JP2006286212A (en) High-strength polycrystalline metallic board for oxide superconductivity, and oxide superconductivity wire rod using the same
KR20070120497A (en) Process for producing superconducting wire rod
JP4723306B2 (en) Manufacturing method of Nb3Al-based superconducting wire, primary composite material for manufacturing Nb3Al-based superconducting wire and manufacturing method thereof, and multi-core composite material for manufacturing Nb3Al-based superconducting wire
US3346467A (en) Method of making long length superconductors
US5628836A (en) Method of preparing Nb3 Al superconducting wire
JPH06139848A (en) Manufacture of oxide high-temperature superconducting wire rod
RU2076363C1 (en) Method for manufacturing of multiple-conductor superconducting wire using nb*003sn compound
JPH0765646A (en) Oxide superconducting cable and manufacture of strand
JP3858830B2 (en) Manufacturing method of oxide superconducting wire
JP4005713B2 (en) Nb3 Al compound superconducting wire and method for manufacturing the same
JP4720211B2 (en) Method for producing bismuth oxide superconducting wire
JPS63102115A (en) Manufacture of superconductive alloy wire material
JPH03134917A (en) Manufacture of ceramic superconductor
JPH08167336A (en) Manufacture of nb3sn superconducting wire
JP2599138B2 (en) Method for producing oxide-based superconducting wire
JPH0760620B2 (en) Nb3 Al Extra-fine multi-core superconducting wire manufacturing method
JP2006100063A (en) MANUFACTURING METHOD OF Nb3X COMPOUND BASED SUPERCONDUCTING WIRE MATERIAL
JP2003223823A (en) Nb3Al-BASED COMPOUND SUPERCONDUCTING WIRE AND MANUFACTURING METHOD THEREFOR
JP2003132750A (en) Oxide superconductive multi-core wire rod with barrier and its manufacturing method
JPH09204830A (en) Manufacture of nb3al superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R150 Certificate of patent or registration of utility model

Ref document number: 7032783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150