JP4699200B2 - Precursor for producing Nb3Sn superconducting wire and method for producing the same - Google Patents

Precursor for producing Nb3Sn superconducting wire and method for producing the same Download PDF

Info

Publication number
JP4699200B2
JP4699200B2 JP2005370531A JP2005370531A JP4699200B2 JP 4699200 B2 JP4699200 B2 JP 4699200B2 JP 2005370531 A JP2005370531 A JP 2005370531A JP 2005370531 A JP2005370531 A JP 2005370531A JP 4699200 B2 JP4699200 B2 JP 4699200B2
Authority
JP
Japan
Prior art keywords
precursor
wire
producing
processing
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005370531A
Other languages
Japanese (ja)
Other versions
JP2007173102A (en
Inventor
隆好 宮崎
弘之 加藤
享司 財津
孝之 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005370531A priority Critical patent/JP4699200B2/en
Publication of JP2007173102A publication Critical patent/JP2007173102A/en
Application granted granted Critical
Publication of JP4699200B2 publication Critical patent/JP4699200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

本発明は、NbSn超電導線材を内部拡散法によって製造する際に用いる前駆体(超電導線材製造用前駆体)およびこうした前駆体を製造する方法に関するものであり、殊に高磁場発生用超電導マグネットの素材として有用な内部拡散法NbSn超電導線材を製造する為の技術に関するものである。 The present invention relates to a precursor (precursor for producing a superconducting wire) used when producing an Nb 3 Sn superconducting wire by an internal diffusion method, and a method for producing such a precursor, and in particular, a superconducting magnet for generating a high magnetic field. The present invention relates to a technique for producing an internal diffusion method Nb 3 Sn superconducting wire useful as a material for the above.

超電導線材が実用化されている分野のうち、高分解能核磁気共鳴(NMR)分析装置等に用いられる超電導マグネットについては発生磁場が高いほど分解能が高まることから、超電導マグネットは近年ますます高磁場化の傾向にある。   Among the fields in which superconducting wire is put into practical use, superconducting magnets used in high-resolution nuclear magnetic resonance (NMR) analyzers and the like have higher resolution as the generated magnetic field increases. Tend to.

高磁場発生用超電導マグネットに使用される超電導線材としては、NbSn線材が実用化されており、このNbSn超電導線材の製造には主にブロンズ法が採用されている。このブロンズ法は、Cu−Sn基合金(ブロンズ)マトリクス中に複数のNb基芯材を埋設し、伸線加工することによって上記Nb基芯材を細径化してフィラメントとし、このNb基芯材のフィラメント(Nb基フィラメント)とブロンズ複合材を複数束ねて線材群となし、安定化の為の銅(安定化銅)を配置した後伸線加工する。上記線材群を600℃以上800℃以下程度で熱処理(拡散熱処理)することにより、Nb基フィラメントとマトリクスの界面にNbSn化合物層を生成させる。しかしながら、この方法ではブロンズ中に固溶できるSn濃度には限界があり(15.8質量%以下)、生成されるNbSn化合物層の厚さが薄く、また結晶性が劣化してしまい、高磁場特性が良くないという欠点がある。 As a superconducting wire used for the superconducting magnet for generating a high magnetic field, an Nb 3 Sn wire has been put into practical use, and the bronze method is mainly employed for manufacturing this Nb 3 Sn superconducting wire. In this bronze method, a plurality of Nb base materials are embedded in a Cu-Sn base alloy (bronze) matrix, and the Nb base material is reduced in diameter by drawing to form a filament. A plurality of filaments (Nb-based filaments) and a bronze composite material are bundled to form a wire group, and after copper for stabilization (stabilized copper) is disposed, wire drawing is performed. The wire group is heat-treated (diffusion heat treatment) at about 600 ° C. or higher and 800 ° C. or lower to form an Nb 3 Sn compound layer at the interface between the Nb-based filament and the matrix. However, in this method, there is a limit to the Sn concentration that can be dissolved in bronze (15.8% by mass or less), the thickness of the Nb 3 Sn compound layer to be formed is thin, and the crystallinity is deteriorated. There is a disadvantage that the high magnetic field characteristics are not good.

NbSn超電導線材を製造する方法としては、上記ブロンズ法の他に、内部拡散法も知られている。この方法では、ブロンズ法のような固溶限によるSn濃度に限界がないのでSn量をできるだけ高く設定でき、良質なNbSn層が生成可能であるため、高磁場特性が優れた超電導線材が得られることが示されている。 In addition to the bronze method, an internal diffusion method is also known as a method for producing the Nb 3 Sn superconducting wire. In this method, since there is no limit on the Sn concentration due to the solid solubility limit as in the bronze method, the Sn amount can be set as high as possible, and a high-quality Nb 3 Sn layer can be generated. Therefore, a superconducting wire excellent in high magnetic field characteristics is obtained. It has been shown to be obtained.

この内部拡散法では、図1(NbSn超電導線材製造用前駆体の模式図)に示すように、CuまたはCu基合金(以下、「Cu母材」と呼ぶことがある)4の中央部に、SnまたはSn基合金からなる芯(以下、「Sn基金属芯」と呼ぶことがある)3を埋設すると共に、Sn基金属芯3の周囲のCu母材4中に複数のNbまたはNb基合金芯(以下、総括して「Nb基金属芯」と呼ぶことがある)2を相互に接触しないように配置して複合材料とし、これを伸線加工して前駆体1(超電導線材製造用前駆体)とした後、熱処理(拡散熱処理)によってSn基金属芯3中のSnを拡散させ、Nb基金属芯2と反応させることによってNbSnを生成させる方法である(例えば、特許文献1)。 In this internal diffusion method, as shown in FIG. 1 (schematic diagram of a precursor for producing a Nb 3 Sn superconducting wire), a central portion of Cu or a Cu-based alloy (hereinafter sometimes referred to as “Cu base material”) 4 In addition, a core 3 (hereinafter also referred to as “Sn-based metal core”) 3 made of Sn or an Sn-based alloy is embedded in the Cu base material 4 around the Sn-based metal core 3 and a plurality of Nb or Nb Base alloy cores (hereinafter collectively referred to as “Nb base metal cores”) 2 are arranged so as not to contact each other to form a composite material, which is drawn to produce precursor 1 (manufacturing superconducting wire) This is a method in which Sn in the Sn-based metal core 3 is diffused by heat treatment (diffusion heat treatment) and then reacted with the Nb-based metal core 2 to form Nb 3 Sn (for example, Patent Documents). 1).

また上記のような前駆体1においては、図2に示すように、前記Nb基金属芯2が配置された部分(以下、「Cuマトリクス部」と呼ぶことがある)とその外周の安定化銅層4aの間に拡散バリヤー層6を配置した構成のものも知られている。この拡散バリヤー層6は、例えばNb層またはTa層、或いはNb層とTa層の2層からなり、拡散熱処理の際にCuマトリクス部内側のSn(Sn基金属芯3)が外部に拡散してしまうことを防止し、Cuマトリスク部内でのSnの純度を高める作用を発揮するものである。   Further, in the precursor 1 as described above, as shown in FIG. 2, the portion where the Nb-based metal core 2 is disposed (hereinafter sometimes referred to as “Cu matrix portion”) and the stabilized copper on the outer periphery thereof are provided. A structure in which a diffusion barrier layer 6 is disposed between the layers 4a is also known. The diffusion barrier layer 6 is composed of, for example, an Nb layer or a Ta layer, or two layers of an Nb layer and a Ta layer, and Sn (Sn-based metal core 3) inside the Cu matrix portion diffuses to the outside during the diffusion heat treatment. The effect which raises the purity of Sn in a Cu mat risk part is exhibited.

上記のような、超電導線材製造用前駆体を製造するには、下記の手順で行われる。まず、Nb基金属芯(Nb基金属フィラメント)をCuマトリスク管に挿入し、押出し、伸線等によって縮径加工して複合体とし、これを適当な長さに裁断する。そして、Cu製外筒を有し、拡散バリヤー層を設け或いは設けないビレット内に前記複合体を充填し、その中央部にCuマトリクス(Cu製中実ビレット)を配置して押出し加工した後、中央部のCuマトリクスを機械的に穿孔してパイプ状複合体を構成する。或いは、他の方法として、Cu外筒とCu内筒で構成され、拡散バリヤー層6を有しまたは有さない中空ビレット内(外筒と内筒の間)に前記複合体を複数本充填してパイプ押出ししてパイプ状複合体を構成する。   In order to manufacture the precursor for manufacturing a superconducting wire as described above, the following procedure is performed. First, an Nb-based metal core (Nb-based metal filament) is inserted into a Cu matrisk tube, subjected to extrusion, wire diameter reduction or the like to obtain a composite, and this is cut into an appropriate length. Then, after having a Cu outer cylinder, filling the composite in a billet with or without a diffusion barrier layer, placing a Cu matrix (Cu solid billet) in the center and extruding it, A Cu matrix at the center is mechanically drilled to form a pipe-shaped composite. Alternatively, as another method, a plurality of the composites are filled in a hollow billet (between the outer cylinder and the inner cylinder) which is composed of a Cu outer cylinder and a Cu inner cylinder and which has or does not have the diffusion barrier layer 6. The pipe is extruded to form a pipe-shaped composite.

そして、これらの方法に作製されたパイプ状複合体の中央空隙部内に、Sn基金属芯3を挿入して縮径加工して図1、2に示したような前駆体が製造される。   Then, the Sn-based metal core 3 is inserted into the central gap portion of the pipe-shaped composite produced by these methods and the diameter is reduced to produce the precursor as shown in FIGS.

上記のような前駆体を用いて内部拡散法で超電導線材を製造するに当っては、平角の方が丸線よりも充填率高くコイルに巻き線できるため、また線材を巻回し易くするために、断面が平角形状となるように押し出し、伸線加工されるのが一般的である。そして、こうした加工を行うに当っては、図3に示すように、1対のロール10a,10bによって前駆体1[図3(a)]を一方向(図3の上下方向)から押圧して、断面が平角形状となるようにしている[図3(b)]。このように、断面円形の線材を最終の平角形状にするのに、一方向のみのロールで圧延後平角度化しているのが実情である。   When manufacturing a superconducting wire by the internal diffusion method using the precursor as described above, the flat wire can be wound around the coil at a higher filling rate than the round wire, and in order to make the wire easier to wind. In general, the cross section is extruded and drawn to have a flat rectangular shape. When performing such processing, as shown in FIG. 3, the precursor 1 [FIG. 3 (a)] is pressed from one direction (vertical direction in FIG. 3) by a pair of rolls 10a and 10b. The cross section has a flat shape [FIG. 3 (b)]. As described above, in order to make the wire rod having a circular cross section into the final flat rectangular shape, the actual situation is that the flat angle is obtained after rolling with a roll in only one direction.

しかしながら、こうした加工方法では、Nb基金属芯2やSn基金属芯3が均一にされるとは限らず、複合線材の内部構造が歪(いびつ)となってしまい、最終的に超電導線材としたときに、臨界電流密度Jc、n値、座残留抵抗値RRR等が低下することがある。特に、前述したような拡散バリヤー層6を配置した場合には、他の部分との硬度差によって拡散バリヤー層6が破損するという事態を招くことがある。   However, in such a processing method, the Nb-based metal core 2 and the Sn-based metal core 3 are not necessarily made uniform, and the internal structure of the composite wire becomes distorted, and finally a superconducting wire is obtained. Sometimes, the critical current density Jc, the n value, the residual resistance value RRR, and the like may decrease. In particular, when the diffusion barrier layer 6 as described above is disposed, the diffusion barrier layer 6 may be damaged due to a difference in hardness from other portions.

拡散バリヤー層を設けた前駆体を良好に平角形状にする技術として、例えば特許文献2のような技術も提案されている。この技術では、平角形状に加工する際に拡散バリヤー層の破損を防止するという観点から、ロール加工前に線材(前駆体)に300〜550℃で20〜100時間の熱処理を施し、Cuマトリクス部をCu−Sn合金化することによって、拡散バリヤー層との硬度差をなくし、加工性を良好にするものである。   As a technique for making the precursor provided with the diffusion barrier layer into a flat rectangular shape, for example, a technique as disclosed in Patent Document 2 has been proposed. In this technology, from the viewpoint of preventing the diffusion barrier layer from being damaged when processing into a flat rectangular shape, the wire (precursor) is subjected to heat treatment at 300 to 550 ° C. for 20 to 100 hours before the roll processing to obtain a Cu matrix portion. By forming a Cu—Sn alloy, the hardness difference from the diffusion barrier layer is eliminated and the workability is improved.

しかしながら、こうした技術ではCu−Sn合金化のための熱処理時間が長くなり、生産性が劣るという問題がある。また、500℃を超えるような温度で熱処理した場合には、この熱処理の段階でNbSnが生成してしまい、加工性が劣化し、正常な平角形状加工ができなくなるという問題がある。
特開昭49−114389号公報 特許請求の範囲等 特開昭63−213213号公報 特許請求の範囲等
However, such a technique has a problem that the heat treatment time for forming the Cu—Sn alloy becomes long and the productivity is inferior. Further, when heat treatment is performed at a temperature exceeding 500 ° C., Nb 3 Sn is generated at the stage of the heat treatment, so that workability is deteriorated and normal rectangular shape machining cannot be performed.
Japanese Patent Laid-Open No. 49-114389 Patent Claims, etc. JP, 63-213213, A Claims etc.

本発明はこうした状況の下でなされたものであって、その目的は、断面が平角形状の超電導線材製造用前駆体を製造するに際して、均一な加工ができると共に、良好な超電導特性を発揮することのできる内部酸化法超電導線材を製造するための前駆体、およびそのための有用な方法を提供することにある。   The present invention has been made under such circumstances, and its purpose is to produce uniform superconductors and produce good superconducting properties when producing a precursor for producing a superconducting wire having a flat cross section. It is an object of the present invention to provide a precursor for producing a superconducting wire capable of being subjected to internal oxidation, and a useful method therefor.

上記目的を達成することのできた本発明の超電導線材製造用前駆体の製造方法とは、
内部拡散法によってNbSn超電導線材を製造する際に用いる超電導線材製造用前駆体を製造するに当り、
中央部のSnまたはSn基合金芯と、その周囲に複数本のNbまたはNb基合金芯が配置されたCuマトリクス部、および該Cuマトリクス部の外周に安定化銅層を有し、断面が円形状である複合材料を構成し、この複合材料の上下側および左右側の両方向から押圧して、下記(1)式で示される圧下率Rを−21〜−8%として、断面形状が楕円形状または扁平形状となるように中間加工して中間加工線材とし、
この中間加工線材をダイスによって伸線加工し、線材最終形状が平角形状の前駆体を形成する点に要旨を有するものである。
R=(L−L)/L …(1)
但し、L:加工後の短辺側厚さ
:加工前の短辺側厚さ、または丸線の場合は線径(直径)
With the method for producing a precursor for producing a superconducting wire of the present invention that has achieved the above-mentioned object,
In producing a precursor for producing a superconducting wire used when producing a Nb 3 Sn superconducting wire by an internal diffusion method,
Sn or Sn-based alloy core in the center, a Cu matrix portion in which a plurality of Nb or Nb-based alloy cores are arranged around the center, and a stabilizing copper layer on the outer periphery of the Cu matrix portion, and a cross-section is circular A composite material having a shape is formed and pressed from both the upper and lower sides and the left and right sides of the composite material, the rolling reduction R shown by the following formula (1) is set to -21 to -8%, and the cross-sectional shape is elliptical Alternatively, intermediate processing to form a flat shape to an intermediate processing wire,
The intermediate processed wire is drawn by a die to form a precursor having a flat rectangular shape.
R = (L 1 −L 0 ) / L 0 (1)
However, L 1 : Short side thickness after processing L 0 : Short side thickness before processing, or wire diameter (diameter) in the case of a round wire

上記本発明の製造方法において、前記中間加工線材の短辺側厚さ(上記L)は、平角形状の前駆体の短辺側厚さよりも大きくなるように設定することが好ましい。また本発明の製造方法においては、前記Cuマトリクス部と安定化Cu層の間に、Nbおよび/またはTaからなる拡散バリヤー層を介在させた複合材料を用いる場合にその効果が有効に発揮される。 In the manufacturing method of the present invention, it is preferable that the short side thickness (L 1 ) of the intermediate processed wire is set to be larger than the short side thickness of the flat rectangular precursor. In the manufacturing method of the present invention, the effect is effectively exhibited when a composite material in which a diffusion barrier layer made of Nb and / or Ta is interposed between the Cu matrix portion and the stabilizing Cu layer is used. .

上記のような本発明方法によって製造された前駆体にあっては、SnまたはSn基合金芯のアスペクト比(断面における長径/短径比)をR、Cuマトリクス部の最外周側に配置されるNbまたはNb基合金芯のアスペクト比(断面における長径/短径比)をRとしたとき、これらの比(R/R)が1.3以下を満足するものであることが好ましいく、このような超電導線材製造用前駆体を熱処理することによって、希望する特性を発揮するNbSn超電導線材を得ることができる。 In the precursor manufactured by the method of the present invention as described above, the aspect ratio (major axis / minor axis ratio in the cross section) of the Sn or Sn-based alloy core is R c , and the Cu matrix part is arranged on the outermost peripheral side. When the aspect ratio of the Nb or Nb-based alloy core (major axis / minor axis ratio in the cross section) is R 0 , it is preferable that these ratios (R c / R 0 ) satisfy 1.3 or less. In addition, by heat-treating such a precursor for producing a superconducting wire, an Nb 3 Sn superconducting wire exhibiting desired characteristics can be obtained.

本発明方法によれば、超電導線材製造用前駆体を断面平角形状に成形するに際して、所定の圧下率の範囲内で、上下側および左右側の両方向から押圧して断面形状が略楕円形状または扁平形状となるように中間加工した後、最終形状の平角形状に成形するようにしたので、断面構造内部に歪(いびつ)な部分を発生させることなく均一に成形加工でき、最終的に良好な超電導線材を得ることのできるNbSn超電導線材製造用前駆体が実現できた。 According to the method of the present invention, when the precursor for producing a superconducting wire is formed into a rectangular cross-sectional shape, the cross-sectional shape is substantially elliptical or flat by pressing from both the upper and lower sides and the left and right sides within a predetermined rolling reduction range. After intermediate processing to form a shape, it is shaped into a flat rectangular shape of the final shape, so it can be uniformly shaped without generating distorted parts inside the cross-sectional structure, and finally good superconductivity Nb 3 Sn superconducting wire precursor for manufacturing capable of obtaining the wire could be realized.

本発明者らは、上記目的を達成するために様々な角度から検討した。その結果、断面円形の線材(前駆体)を1回の強加工で断面平角形状にするのではなく、所定の圧下率で断面円形の線材(丸線)から最終平角形状になるまでに中間的な断面形状となるように加工を施した後、最終形状となるようにダイスによって整形加工すれば、従来技術におけるような不都合が生じることなく、均一に加工できることを見出し、本発明を完成した。   The present inventors have studied from various angles in order to achieve the above object. As a result, the wire (precursor) having a circular cross section is not formed into a flat rectangular shape by one strong processing, but is intermediated from a circular wire (round wire) to a final flat shape with a predetermined rolling reduction. As a result, the present invention has been completed by performing processing so as to obtain a perfect cross-sectional shape and then shaping it with a die so as to obtain a final shape, without causing any inconvenience as in the prior art.

上記のような中間加工を実施するに際して、一方向に加工するのではなく、上下側および左右側の両方向から押圧する必要がある。このような構成で加工することによって、一方向の加工を実施したときに生じる様なロール間隙間を外方に逃げる様な歪な変形を防止して均一加工が可能となる。特に、硬質の拡散バリヤー層を設けた場合であっても、横方向(図2、3における左右方向)への広がりを抑制し、均一加工が実現できる。また、本発明方法によれば、熱処理を施すことなく、短時間で加工できることから、生産性の点でも有利である。   When performing the above-described intermediate processing, it is necessary to press from both the upper and lower sides and the left and right sides instead of processing in one direction. By processing in such a configuration, it is possible to perform uniform processing by preventing distortion deformation that escapes outwardly through the gap between the rolls that occurs when processing in one direction is performed. In particular, even when a hard diffusion barrier layer is provided, the spread in the lateral direction (left and right direction in FIGS. 2 and 3) is suppressed, and uniform processing can be realized. Further, according to the method of the present invention, since it can be processed in a short time without performing heat treatment, it is advantageous in terms of productivity.

本発明方法において、上下側および左右側の両方向から押圧する手段については、特に限定されるものではなく、例えば2方向ロールを用いて加工したり、断面形状が楕円形(中間的な形状)となる楕円ダイスを用いて加工することが挙げられる。こうした状態を図面に基づいて説明する。   In the method of the present invention, the means for pressing from both the upper and lower sides and the left and right sides is not particularly limited. For example, the processing is performed using a two-way roll, or the cross-sectional shape is elliptical (intermediate shape). It is possible to process using an elliptical die. Such a state will be described with reference to the drawings.

図4は2方向ロールを用いて中間加工する状態を説明する図であり、図中、15a,15bは上下方向を押圧する1対のロール、16a,16bは左右方向を押圧する1対のロールを夫々示す(他の部分について図1、2に対応する)。こうした状態で、例えば上下方向から圧力を加えつつ圧延し、少なくとも厚み方向(図4の上下方向)の厚みを減少させる様に加工を行う。その際、左右方向のロールは必ずしもロール間距離が短くなるように移動させる必要はなく、一定の位置で固定して前駆体1の左右方向両端部を拘束する状態であっても良く、左右方向への広がりを抑えることによって押圧したのと同様の効果を発揮することになる。尚、2方向ロールによる加工を行うときの温度は常温でもよいが、加工性を良好にするために100〜400℃での加工を実施しても良い。   FIG. 4 is a diagram illustrating a state in which intermediate processing is performed using a two-way roll, in which 15a and 15b are a pair of rolls that press in the vertical direction, and 16a and 16b are a pair of rolls that press in the left-right direction. (The other parts correspond to FIGS. 1 and 2). In such a state, for example, rolling is performed while applying pressure from above and below, and processing is performed so as to reduce at least the thickness in the thickness direction (vertical direction in FIG. 4). At that time, the roll in the left-right direction does not necessarily have to be moved so that the distance between the rolls is shortened, and may be in a state of being fixed at a fixed position and restraining both ends in the left-right direction of the precursor 1. The same effect as pressing is exhibited by suppressing the spread to the. In addition, although the temperature at the time of processing by a two-way roll may be normal temperature, you may implement processing at 100-400 degreeC in order to make workability favorable.

図4に示した状態は、前駆体1が最終断面形状に近い状態となったとき示しているが、断面形状が丸に近い状態(楕円形)若しくは扁平形状であっても良い。要するに、断面が円形の線材と最終形状の平角形状の中間形状となるように、所定の圧下率(後述する)で加工を行えば良い。この2方向ロールを用いた方法では、そのまま最終形状にするほどの強加工はできないので、上記のような中間加工を行った後、断面形状が平角形状となるダイス[以下、「平角ダイス」と呼ぶ:後記図5(c)参照]を用いて整形加工することによって、最終的な平角形状の線材に成形することになる。   The state shown in FIG. 4 is shown when the precursor 1 is in a state close to the final cross-sectional shape, but the cross-sectional shape may be close to a circle (elliptical) or flat. In short, the processing may be performed at a predetermined rolling reduction (to be described later) so that the cross section becomes an intermediate shape between the wire having a circular shape and the flat rectangular shape of the final shape. In the method using the two-way roll, the strong processing to the final shape as it is cannot be performed, so after performing the intermediate processing as described above, a die whose cross-sectional shape becomes a rectangular shape [hereinafter referred to as “flat rectangular die”. Called: see FIG. 5C to be described later] to form a final rectangular wire.

図5は楕円ダイスを用いて中間加工する状態を説明する図である。断面円形の前駆体1[図5(a)]は、まず楕円ダイス12によって、断面楕円状若しくは扁平形状となるように中間加工される[図5(b)]。その後、断面形状が平角形状となるダイス11を用いて整形加工することによって、最終的な平角形状の線材に成形される[図5(c)]。   FIG. 5 is a diagram for explaining a state of intermediate processing using an elliptical die. The precursor 1 having a circular cross section [FIG. 5A] is first subjected to intermediate processing with an elliptical die 12 to have an elliptical cross section or a flat shape [FIG. 5B]. Then, it shape | molds using the die | dye 11 from which cross-sectional shape becomes a flat shape, and it shape | molds in the final flat wire shape [FIG.5 (c)].

いずれの手段を用いるに場合においても、上記中間加工時の加工率は前記(1)式で示した圧下率Rで−21〜−8%となるように設定する必要がある。この圧下率が−8%よりも大きい値になると(加工率が小さくなると)、中間加工後において最終形状までの平角ダイスによる伸線での加工率が高くなり過ぎて不均一変形を招くことになる。また圧下率が−21%よりも小さい値になると(加工率が大きくなると)、中間加工での加工率が大きくなるので、中間加工の段階で不均一変形が発生することになる。尚、上記圧下率は中間加工の段階で上記の範囲内となればよく、必ずしも1回の加工で上記の圧下率範囲にしなければならないわけではない。従って、複数回の加工を行って後の圧下率が上記の範囲となるようにしても良いことは勿論である。   In any case, the processing rate during the intermediate processing needs to be set to be -21 to -8% in terms of the rolling reduction R shown in the equation (1). If this rolling reduction becomes a value larger than -8% (when the processing rate becomes small), the processing rate in drawing with a flat die up to the final shape after intermediate processing becomes too high, leading to non-uniform deformation. Become. Further, when the rolling reduction becomes a value smaller than -21% (when the processing rate increases), the processing rate in the intermediate processing increases, and thus non-uniform deformation occurs in the intermediate processing stage. In addition, the said rolling reduction should just be in said range in the stage of an intermediate process, and does not necessarily have to be in said rolling reduction range by one process. Therefore, it goes without saying that the rolling reduction after the plurality of times of processing may be within the above range.

本発明で圧下率を規定するときの短辺側厚さとは、前記図4および図5(b)に示した断面形状において、辺の長さが短くなる方側の厚み(LまたはL)を意味し、辺の長さが長くなる側の大きさは「長辺側長さL」と表現する(図5参照)。要するに、中間加工においては、中間加工線材の短辺側厚さ(LまたはL)が最終の平角形状の厚みL[図5(c)参照]よりも大きくなるような加工を行なえば良い。この中間加工の段階では、長辺側長さLは基本的には大きくなるが、殆ど変化がないように設定しても良いし、加工性を損なわない範囲で5〜20%程度短くしてもよい。尚、上記加工前の短辺側厚さLは、丸線の場合は線径(直径)と同じとなる。 The thickness on the short side when the rolling reduction is defined in the present invention is the thickness on the side where the length of the side becomes short (L 1 or L 0 ) in the cross-sectional shape shown in FIG. 4 and FIG. ) And the size of the side where the length of the side becomes longer is expressed as “long side length L 2 ” (see FIG. 5). In short, in the intermediate processing, if the processing is performed such that the short side thickness (L 1 or L 0 ) of the intermediate processed wire becomes larger than the final flat rectangular thickness L 3 [see FIG. 5 (c)]. good. In this stage of intermediate processing, although the long side length L 2 increases basically, may be set so that almost no change, and 5 to 20% shorter in the range not impairing the processability May be. Incidentally, the short side thickness L 0 before the processing, in the case of round wire is the same as the wire diameter (diameter).

上記のような条件で中間加工した後、ダイスによる整形加工によって最終断面形状にした前駆体を用いて拡散熱処理(通常650〜750℃)することによって、良好な特性を発揮する超電導線材が得られるのであるが、中間加工を終了した段階での前駆体の構成としては、SnまたはSn基合金芯のアスペクト比(断面における長径/短径比)をR、Cuマトリクス部の最外周側に配置されるNbまたはNb基合金芯のアスペクト比(断面における長径/短径比)をRとしたとき、これらの比(R/R)が1.1以上、1.3以下を満足するものであることが好ましい。こうした要件を満足することによって、均一加工が実行された結果として、線材中心部と外周部の歪(ひずみ)の差異がなくなるものとなる。但し、上記比(R/R)が1.3以下となっても、夫々のアスペクト比R、Rが適切な範囲内にないと、その部分が極端な変形を受けている可能性があり、最終的に超電導特性の劣化に繋がることになる。こうした観点からして、SnまたはSn基合金芯のアスペクト比Rは、1.05〜1.4の範囲、およびCuマトリクス部の最外周側に配置されるNbまたはNb基合金芯のアスペクト比Rは、1.0〜1.2の範囲となるように制御することが好ましい。 After intermediate processing under the above conditions, a diffusion heat treatment (usually 650 to 750 ° C.) is performed using a precursor having a final cross-sectional shape formed by shaping with a die, thereby obtaining a superconducting wire exhibiting good characteristics. Although the it, as the configuration of the precursor at the stage of completion of the preform, arranged the aspect ratio of the Sn or Sn-based alloy cores (the major diameter / minor diameter ratio in the cross section) R c, the outermost peripheral side of the Cu matrix portion When the aspect ratio (major axis / minor axis ratio in the cross section) of the Nb or Nb-based alloy core is R 0 , these ratios (R c / R 0 ) satisfy 1.1 or more and 1.3 or less. It is preferable. Satisfying these requirements eliminates the difference in strain between the central portion of the wire and the outer peripheral portion as a result of the uniform processing being performed. However, even if the ratio (R c / R 0 ) is 1.3 or less, if the respective aspect ratios R c and R 0 are not within an appropriate range, the portion may have undergone extreme deformation. Will eventually lead to deterioration of the superconducting properties. And from this point of view, the aspect ratio R c of the Sn or Sn-based alloy core is in the range of 1.05 to 1.4, and Cu aspect ratio of Nb or Nb-based alloy cores being disposed in the outermost peripheral side of the matrix portion R 0 is preferably controlled to be in the range of 1.0 to 1.2.

本発明の前駆体は、その基本的な構成として、CuまたはCu基合金中に、Nb基金属芯2(NbまたはNb基合金芯)およびSn基金属芯3(SnまたはSn基合金芯)を相互の間隔をあけて配置するものであるが、こうした構成で用いるCu合金としては、CuにNb,Ni等の元素を含有したものを用いることができる。またSn基金属芯3として用いる素材としては、Ti,Ta,Zr,Hf等の元素を、加工性を阻害しない程度(5質量%程度以下)含有させたものを使用することができる。Nb基合金芯2は、NbにTi,Ta,Hf,Zr等の添加元素を10質量%程度以下含有させたものを使用することができる。   The precursor of the present invention has an Nb-based metal core 2 (Nb or Nb-based alloy core) and an Sn-based metal core 3 (Sn or Sn-based alloy core) in a Cu or Cu-based alloy as a basic configuration. Although it arrange | positions at intervals, as Cu alloy used by such a structure, what contains elements, such as Nb and Ni, can be used for Cu. Moreover, as a raw material used as the Sn-based metal core 3, a material containing elements such as Ti, Ta, Zr, Hf and the like that does not inhibit workability (about 5% by mass or less) can be used. As the Nb-based alloy core 2, Nb containing an additive element such as Ti, Ta, Hf, Zr or the like in an amount of about 10% by mass or less can be used.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
外径:57mmのNb−7.5質量%Ta合金芯を、外径:68mm、内径:57mmの無酸素銅からなるビット(管状部材)内に挿入し、押し出し、伸線加工によって対辺長2mmの六角断面形状のCu/Nb複合線を作製した。
Example 1
An Nb-7.5 mass% Ta alloy core having an outer diameter of 57 mm is inserted into a bit (tubular member) made of oxygen-free copper having an outer diameter of 68 mm and an inner diameter of 57 mm, extruded, and the opposite side length is 2 mm by wire drawing. A Cu / Nb composite wire having a hexagonal cross section was prepared.

一方、Cu製外筒(外径:68mm、内径:60mm)およびその中央部に配置されるCu製円柱部材(外径:30mm)からなるCu中実ビレットの前記Cu製外筒の内面側に、Nbからなるバリヤー層(厚さ:2mm)を貼付けて配置した後、前記Cu製円柱部材の周りに、前記Cu/Nb複合線を410本束ねて挿入して押し出しビレットとした。   On the other hand, on the inner surface side of the Cu outer cylinder of a Cu solid billet composed of a Cu outer cylinder (outer diameter: 68 mm, inner diameter: 60 mm) and a Cu cylindrical member (outer diameter: 30 mm) disposed at the center thereof. , A barrier layer (thickness: 2 mm) made of Nb was pasted and arranged, and then 410 Cu / Nb composite wires were bundled and inserted around the Cu cylindrical member to form an extruded billet.

このビレットを押出し加工した後、ドリルによって中央の銅部分(Cu製円柱部材)にφ10mmの穴を開け、そこに外径:10mmのSn棒を挿入し、複合材料(前駆体)を作製した。その後、ダイス伸線により線径:2.14mmまで加工した。   After extruding this billet, a hole having a diameter of 10 mm was drilled in a central copper portion (Cu cylindrical member) by a drill, and a Sn rod having an outer diameter of 10 mm was inserted therein to produce a composite material (precursor). Then, the wire diameter was processed to 2.14 mm by die drawing.

次いで、この複合材料を、2方向ロールを用いて一旦中間加工して(加工温度:25℃)、その後平角ダイスを用いて、最終線径に仕上げた。尚これらの加工の際の温度は、常温(25℃)で行った。得られた前駆体を、700℃で150時間熱処理(拡散熱処理)を施して、NbSn超電導線材とした。得られたNbSn超電導線材について、外部磁場18T(テスラ)を印加した状態で、四端子法によって温度4.2Kでの臨界電流(Ic)を測定し、線材断面の非銅部の面積でIcを除して臨界電流密度(Jc)の評価を行った。その結果を、中間加工条件(高さ、圧下率)、最終平角材形状(高さ、幅)、アスペクト比(線材、中央部Rc、外周部R)および比(Rc/R)と共に、下記表1に示す。 Subsequently, this composite material was once subjected to intermediate processing using a two-way roll (processing temperature: 25 ° C.), and then finished to a final wire diameter using a flat rectangular die. In addition, the temperature at the time of these processes was normal temperature (25 degreeC). The obtained precursor was subjected to heat treatment (diffusion heat treatment) at 700 ° C. for 150 hours to obtain an Nb 3 Sn superconducting wire. With respect to the obtained Nb 3 Sn superconducting wire, the critical current (Ic) at a temperature of 4.2 K was measured by a four-terminal method with an external magnetic field 18T (Tesla) applied, and the area of the non-copper portion of the wire cross section was measured. The critical current density (Jc) was evaluated by removing Ic. The results, along with intermediate processing conditions (height, rolling reduction), final flat rectangular shape (height, width), aspect ratio (wire, central portion Rc, outer peripheral portion R 0 ) and ratio (Rc / R 0 ), Shown in Table 1 below.

尚、各部位のアスペクト比は、下記の方法によって測定した。   The aspect ratio of each part was measured by the following method.

[アスペクト比測定方法]
線材:平角線材を、マイクロメータを用いて長辺、短辺を測定し、計算した。
中央部(R):光学顕微鏡による断面写真からコア部の長軸方向と短軸方向の長さを測定し、計算した。
外周部(R):SEM写真から外周部のフィラメントを任意に選び、その長軸方向と短軸方向の長さを測定し、計算した。
[Aspect ratio measurement method]
Wire: A rectangular wire was measured by measuring a long side and a short side using a micrometer.
Center part (R c ): The length in the major axis direction and the minor axis direction of the core part was measured and calculated from a cross-sectional photograph taken with an optical microscope.
Outer peripheral part (R 0 ): Filaments at the outer peripheral part were arbitrarily selected from SEM photographs, and the lengths in the major axis direction and the minor axis direction were measured and calculated.

Figure 0004699200
Figure 0004699200

この結果から明らかなように、本発明で規定する条件で加工したもの(試験No.3〜6)では、良好な超電導特性が得られていることが分かる。これに対して、中間加工の圧下率が大きいもの(試験No.1、2)では、特に中央部のアスペクト比Rcが大きくなって歪となり、良好な超電導特性が得られないことが分かる。   As is apparent from this result, it is understood that good superconducting characteristics are obtained with the samples processed under the conditions specified in the present invention (Test Nos. 3 to 6). On the other hand, it can be seen that in the case where the rolling ratio of the intermediate processing is large (test Nos. 1 and 2), the aspect ratio Rc in the center portion is particularly large, resulting in distortion, and good superconducting characteristics cannot be obtained.

実施例2
前記表1において中間加工の圧下率が−6.5%の試料(表1のNo.7)のものについて、更に圧延を施し、高さ1.8mmmまで加工した(最終圧下率:15.9)。得られた前駆体を、実施例1と同じ条件で熱処理してNbSn超電導線材とし、同様の方法で超電導特性を測定した。その結果、温度4.2Kでの臨界電流密度(Jc)は、378A/mmと高い臨界電流密度(Jc)が得られていた。
Example 2
In Table 1, the sample with a rolling reduction ratio of -6.5% (No. 7 in Table 1) was further rolled and processed to a height of 1.8 mm (final rolling reduction: 15.9). ). The obtained precursor was heat-treated under the same conditions as in Example 1 to obtain a Nb 3 Sn superconducting wire, and the superconducting properties were measured by the same method. As a result, the critical current density (Jc) at a temperature of 4.2 K was 378 A / mm 2 and a high critical current density (Jc) was obtained.

この結果から、明らかなように、1回目の圧下率が小さい場合には、続けて圧下することによって、合計の圧下率が本発明で規定する範囲内となるようにすれば、希望する超電導特性が得られることが分かる。この際、圧延による中間加工後の短辺側厚さLは、最終的な平角形状の厚さよりも大きくすることが有効である。 As is clear from this result, when the first rolling reduction is small, if the total rolling reduction is within the range defined by the present invention by continuing the rolling, the desired superconducting characteristics are obtained. It can be seen that At this time, it is effective to make the short side thickness L 0 after the intermediate processing by rolling larger than the thickness of the final rectangular shape.

内部拡散法に適用される超電導線材製造用前駆体の構成例を模式的に示した断面図である。It is sectional drawing which showed typically the example of a structure of the precursor for superconducting wire manufacturing applied to the internal diffusion method. 内部拡散法に適用される超電導線材製造用前駆体の他の構成例を模式的に示した断面図である。It is sectional drawing which showed typically the other structural example of the precursor for superconducting wire manufacturing applied to the internal diffusion method. 従来の加工方法の一例を説明するための図である。It is a figure for demonstrating an example of the conventional processing method. 本発明の加工方法の例を説明するための図である。It is a figure for demonstrating the example of the processing method of this invention. 本発明の加工方法の他の例を説明するための図である。It is a figure for demonstrating the other example of the processing method of this invention.

符号の説明Explanation of symbols

1 前駆体
2 Nb基金属芯
3 Sn基金属芯
4 Cu基合金(Cu母材)
4a 安定化銅
6 拡散バリヤー層
1 Precursor 2 Nb-based metal core 3 Sn-based metal core 4 Cu-based alloy (Cu base material)
4a Stabilized copper 6 Diffusion barrier layer

Claims (4)

内部拡散法によってNbSn超電導線材を製造する際に用いる超電導線材製造用前駆体を製造するに当り、
中央部のSnまたはSn基合金芯と、その周囲に複数本のNbまたはNb基合金芯が配置されたCuマトリクス部、および該Cuマトリクス部の外周に安定化銅層を有し、断面が円形状である複合材料を構成し、この複合材料の上下側および左右側の両方向から押圧して、下記(1)式で示される圧下率Rを−21〜−8%として、断面形状が楕円形状または扁平形状となるように中間加工して中間加工線材とし、
この中間加工線材をダイスによって伸線加工し、線材最終形状が平角形状の前駆体を形成することを特徴とする内部拡散法NbSn超電導線材製造用前駆体の製造方法。
R=(L−L)/L …(1)
但し、L:加工後の短辺側厚さ
:加工前の短辺側厚さ、または丸線の場合は線径(直径)
In producing a precursor for producing a superconducting wire used when producing a Nb 3 Sn superconducting wire by an internal diffusion method,
Sn or Sn-based alloy core in the center, a Cu matrix portion in which a plurality of Nb or Nb-based alloy cores are arranged around the center, and a stabilizing copper layer on the outer periphery of the Cu matrix portion, and a cross-section is circular A composite material having a shape is formed and pressed from both the upper and lower sides and the left and right sides of the composite material, the rolling reduction R shown by the following formula (1) is set to -21 to -8%, and the cross-sectional shape is elliptical Alternatively, intermediate processing to form a flat shape to an intermediate processing wire,
A method for producing a precursor for producing an internal diffusion method Nb 3 Sn superconducting wire, characterized in that the intermediate processed wire is drawn with a die to form a precursor having a flat rectangular shape.
R = (L 1 −L 0 ) / L 0 (1)
However, L 1 : Short side thickness after processing L 0 : Short side thickness before processing, or wire diameter (diameter) in the case of a round wire
前記中間加工線材の短辺側厚さLは、平角形状の前駆体の短辺側厚さよりも大きくなるように設定する請求項1に記載の製造方法。 The short side thickness L 1 of the preform wire is method of claim 1 set to be larger than the short side thickness of the precursor of the rectangular shape. 前記Cuマトリクス部と安定化Cu層の間に、Nbおよび/またはTaからなる拡散バリヤー層を介在させた複合材料を用いる請求項1または2に記載の製造方法。   The manufacturing method of Claim 1 or 2 using the composite material which interposed the diffusion barrier layer which consists of Nb and / or Ta between the said Cu matrix part and the stabilization Cu layer. 請求項1〜3のいずれかに記載の方法によって製造された前駆体であって、SnまたはSn基合金芯のアスペクト比(断面における長径/短径比)をR、Cuマトリクス部の最外周側に配置されるNbまたはNb基合金芯のアスペクト比(断面における長径/短径比)をRとしたとき、これらの比(R/R)が1.3以下を満足するものであることを特徴とする内部拡散法NbSn超電導線材製造用前駆体。 It is a precursor manufactured by the method according to any one of claims 1 to 3, wherein the aspect ratio (major axis / minor axis ratio in the cross section) of Sn or Sn-based alloy core is R c , and the outermost periphery of the Cu matrix part When the aspect ratio (major axis / minor axis ratio in the cross section) of the Nb or Nb-based alloy core disposed on the side is R 0 , these ratios (R c / R 0 ) satisfy 1.3 or less. A precursor for producing an internal diffusion method Nb 3 Sn superconducting wire characterized by being.
JP2005370531A 2005-12-22 2005-12-22 Precursor for producing Nb3Sn superconducting wire and method for producing the same Expired - Fee Related JP4699200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005370531A JP4699200B2 (en) 2005-12-22 2005-12-22 Precursor for producing Nb3Sn superconducting wire and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005370531A JP4699200B2 (en) 2005-12-22 2005-12-22 Precursor for producing Nb3Sn superconducting wire and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007173102A JP2007173102A (en) 2007-07-05
JP4699200B2 true JP4699200B2 (en) 2011-06-08

Family

ID=38299370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005370531A Expired - Fee Related JP4699200B2 (en) 2005-12-22 2005-12-22 Precursor for producing Nb3Sn superconducting wire and method for producing the same

Country Status (1)

Country Link
JP (1) JP4699200B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4383281A1 (en) 2021-08-06 2024-06-12 Furukawa Electric Co., Ltd. Precursor wire for compound superconducting wire, compound superconducting wire, and rewinding method for compound superconducting wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174366A (en) * 1985-01-29 1986-08-06 Sumitomo Electric Ind Ltd Manufacture of super conductor wire made of nb3sn compound
JPH04298917A (en) * 1991-03-28 1992-10-22 Toshiba Corp Manufacture of compound superconductor
JPH05151843A (en) * 1991-11-28 1993-06-18 Furukawa Electric Co Ltd:The Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JP2003045247A (en) * 2001-08-03 2003-02-14 Kobe Steel Ltd Superconductive cable
JP2004319201A (en) * 2003-04-15 2004-11-11 Hitachi Cable Ltd MANUFACTURING METHOD OF Nb3Al COMPOUND BASED SUPERCONDUCTIVE WIRE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174366A (en) * 1985-01-29 1986-08-06 Sumitomo Electric Ind Ltd Manufacture of super conductor wire made of nb3sn compound
JPH04298917A (en) * 1991-03-28 1992-10-22 Toshiba Corp Manufacture of compound superconductor
JPH05151843A (en) * 1991-11-28 1993-06-18 Furukawa Electric Co Ltd:The Manufacture of angular cross-section type multilayer ceramic superconductive conductor
JP2003045247A (en) * 2001-08-03 2003-02-14 Kobe Steel Ltd Superconductive cable
JP2004319201A (en) * 2003-04-15 2004-11-11 Hitachi Cable Ltd MANUFACTURING METHOD OF Nb3Al COMPOUND BASED SUPERCONDUCTIVE WIRE

Also Published As

Publication number Publication date
JP2007173102A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
US11417445B2 (en) Fabrication of reinforced superconducting wires
US9711262B2 (en) Compound superconducting wire and method for manufacturing the same
JP4034802B2 (en) Nb or Nb-based alloy rod for production of superconducting wire and method for producing Nb3Sn superconducting wire
JP4791309B2 (en) Nb3Sn superconducting wire and precursor therefor
EP2099080A1 (en) Nb3Sn superconducting wire manufactured by internal Sn process and precursor for manufacturing the same
KR100970813B1 (en) PRECURSOR FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE ROD, AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP4185548B1 (en) Nb3Sn superconducting wire and precursor therefor
JP2009301928A (en) Method for manufacturing superconducting wire
US7718898B2 (en) Precursor for manufacturing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP4934497B2 (en) Nb3Sn superconducting wire, precursor therefor, and method for producing the precursor
JP4996084B2 (en) Manufacturing method of superconducting element
JP6585519B2 (en) Precursor for producing Nb3Sn superconducting wire, and method for producing Nb3Sn superconducting wire
JP4699200B2 (en) Precursor for producing Nb3Sn superconducting wire and method for producing the same
JP2014072039A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP4762782B2 (en) Reinforcing material, compound superconducting wire, and method for producing compound superconducting wire
JP5065582B2 (en) Superconducting device and manufacturing method thereof
JP6086469B2 (en) Nb3Al superconducting wire manufacturing method
JP5164815B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP4791346B2 (en) Nb3Sn superconducting wire, precursor therefor, and Nb composite single core wire for precursor
JP5308683B2 (en) Bronze method Nb3Sn superconducting wire production Nb or Nb-based alloy rod, Nb3Sn superconducting wire production precursor and production method thereof, and Nb3Sn superconducting wire
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
JP4723327B2 (en) Powder process Nb3Sn superconducting wire manufacturing method and precursor therefor
JP4476800B2 (en) Method for producing Nb3Sn superconducting wire
JPH09503094A (en) Method for manufacturing wire-shaped superconductor
JP4476755B2 (en) Method for producing Nb3Sn superconducting wire and composite wire therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R150 Certificate of patent or registration of utility model

Ref document number: 4699200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees