JP5308683B2 - Bronze method Nb3Sn superconducting wire production Nb or Nb-based alloy rod, Nb3Sn superconducting wire production precursor and production method thereof, and Nb3Sn superconducting wire - Google Patents

Bronze method Nb3Sn superconducting wire production Nb or Nb-based alloy rod, Nb3Sn superconducting wire production precursor and production method thereof, and Nb3Sn superconducting wire Download PDF

Info

Publication number
JP5308683B2
JP5308683B2 JP2008018075A JP2008018075A JP5308683B2 JP 5308683 B2 JP5308683 B2 JP 5308683B2 JP 2008018075 A JP2008018075 A JP 2008018075A JP 2008018075 A JP2008018075 A JP 2008018075A JP 5308683 B2 JP5308683 B2 JP 5308683B2
Authority
JP
Japan
Prior art keywords
superconducting wire
based alloy
precursor
superconducting
bronze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008018075A
Other languages
Japanese (ja)
Other versions
JP2009181744A (en
Inventor
隆司 長谷
弘之 加藤
享司 財津
茂信 難波
輝 栄
幸伸 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Japan Superconductor Technology Inc
Original Assignee
Kobe Steel Ltd
Japan Superconductor Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Japan Superconductor Technology Inc filed Critical Kobe Steel Ltd
Priority to JP2008018075A priority Critical patent/JP5308683B2/en
Publication of JP2009181744A publication Critical patent/JP2009181744A/en
Application granted granted Critical
Publication of JP5308683B2 publication Critical patent/JP5308683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、ブロンズ法によってNb3Sn超電導線材を製造する際に素材として用いられるNbまたはNb基合金棒、およびこうしたNbまたはNb基合金棒を用いて構成される超電導線材製造用前駆体とその製造方法、並びにNb3Sn超電導線材に関するものである。詳細には、前駆体製造の際の押し出し等の減面加工時における加工上の不都合を発生させることなく、良好な超電導特性を発揮し、高分解能核磁気共鳴(NMR)分析装置のマグネットに代表される液体ヘリウム浸漬冷却型の超電導マグネットや、冷凍機冷却型の超電導マグネットに適用される素材として有用なNb3Sn超電導線材、およびそのための前駆体とその製造方法、並びにこれらを製造するために用いるNbまたはNb基合金棒に関するものである。 The present invention relates to an Nb or Nb-based alloy rod used as a raw material when producing an Nb 3 Sn superconducting wire by the bronze method, a superconducting wire manufacturing precursor constituted using such an Nb or Nb-based alloy rod, and The present invention relates to a manufacturing method and Nb 3 Sn superconducting wire. Specifically, it exhibits good superconducting properties without causing processing inconveniences during surface-reduction processing such as extrusion during precursor production, and is representative of magnets for high-resolution nuclear magnetic resonance (NMR) analyzers. Liquid helium immersion cooling superconducting magnet, Nb 3 Sn superconducting wire useful as a material applied to a refrigerator cooling superconducting magnet, a precursor and manufacturing method therefor, and for manufacturing these It relates to the Nb or Nb-based alloy rod used.

超電導線材を巻回したコイルに大電流を流し強磁場を発生させる超電導マグネットは、核磁気共鳴(NMR)分析装置や物性評価装置の他に、核融合装置等への応用を目指して、その開発が進められている。このうちNMR分析装置は、結晶化できない生体高分子やタンパク質の分子構造を解析できる唯一の装置であり、ポストゲノム開発を推進するための強力なツ−ルである。また、この装置では、超電導マグネットが発生する磁場が高ければ高い程、分析の分解能が向上しNMR信号とノイズの比が高くなって、より短時間での分析が可能となる。そして、上記の様な超電導マグネットの構成素材としては、従来からNb3Sn超電導線材が代表的なものとして汎用されている。 A superconducting magnet that generates a strong magnetic field by passing a large current through a coil wound with a superconducting wire has been developed with the aim of applying it to nuclear fusion devices in addition to nuclear magnetic resonance (NMR) analyzers and physical property evaluation devices. Is underway. Among these, the NMR analyzer is the only device that can analyze the molecular structure of biopolymers and proteins that cannot be crystallized, and is a powerful tool for promoting post-genome development. In addition, in this apparatus, the higher the magnetic field generated by the superconducting magnet, the higher the resolution of the analysis and the higher the ratio of the NMR signal and noise, enabling analysis in a shorter time. As a constituent material of the superconducting magnet as described above, a Nb 3 Sn superconducting wire has been widely used as a representative material.

図1は、ブロンズ法によって製造されるNb3Sn超電導線材の二次多芯ビレット段階での断面構造を模式的に示した説明図であり、図中1はNbまたはNb基合金芯、2は線状のCu−Sn基合金製母材(ブロンズマトリックス)、3は拡散バリア層、4は安定化銅、5は一次スタック材、6は外層ケース、7は二次多芯ビレット(Nb3Sn超電導線材製造用前駆体)を夫々示す。 FIG. 1 is an explanatory view schematically showing a cross-sectional structure of a Nb 3 Sn superconducting wire manufactured by a bronze method at a secondary multi-core billet stage, in which 1 is an Nb or Nb-based alloy core, Linear Cu—Sn base alloy base material (bronze matrix), 3 diffusion barrier layer, 4 stabilized copper, 5 primary stack material, 6 outer layer case, 7 secondary multi-core billet (Nb 3 Sn (Precursor for producing superconducting wire).

まず図1に示すように、六角断面に成形したCu−Sn基合金製母材2に複数(この図では7)のNbまたはNb基合金芯1を埋設して複合材(一次スタック材5)を構成し、この一次スタック材5を複数束ねて、拡散バリア層3としてのNbシートやTaシートを巻いたパイプ状のCu−Sn基合金(外層ケース6)内に挿入し、或は束ねた一次スタック材に直接NbシートやTaシートを巻き付け、更にその外側に安定化銅4を配置して二次多芯ビレット7を組み立てる。尚、前記拡散バリア層3は、Nb3Sn生成のための熱処理時にSnの外方への拡散を抑制する機能を発揮するものである。また安定化銅4は、Nb3Sn超電導線材の安定化材として配置されるものであり、例えば無酸素銅からなるものである。 First, as shown in FIG. 1, a plurality of (7 in this figure) Nb or Nb-based alloy cores 1 are embedded in a Cu—Sn-based alloy base material 2 formed into a hexagonal cross section to form a composite material (primary stack material 5). A plurality of primary stack members 5 are bundled and inserted into a pipe-like Cu-Sn base alloy (outer layer case 6) wound with an Nb sheet or Ta sheet as a diffusion barrier layer 3, or bundled. A secondary multi-core billet 7 is assembled by winding a Nb sheet or a Ta sheet directly around the primary stack material, and further disposing the stabilizing copper 4 on the outside thereof. The diffusion barrier layer 3 exhibits a function of suppressing the outward diffusion of Sn during the heat treatment for generating Nb 3 Sn. The stabilized copper 4 is arranged as a stabilizing material for the Nb 3 Sn superconducting wire, and is made of, for example, oxygen-free copper.

図1に示した二次多芯ビレットを、静水圧押出しし、続いて引抜き加工等の減面加工を施してNb3Sn超電導線材製造用多芯型前駆体とする。その後、650〜720℃程度の温度で100時間ほどの熱処理(拡散熱処理)をすることにより、NbまたはNb基合金芯1の表面近傍(この場合には、Cu−Sn基合金製母材2とNbまたはNb基合金芯1の界面)にNb3Sn相を形成させるものである。 The secondary multi-core billet shown in FIG. 1 is extruded under hydrostatic pressure, and subsequently subjected to a surface reduction process such as a drawing process to obtain a multi-core precursor for producing an Nb 3 Sn superconducting wire. Thereafter, by performing a heat treatment (diffusion heat treatment) at a temperature of about 650 to 720 ° C. for about 100 hours, the vicinity of the surface of the Nb or Nb base alloy core 1 (in this case, the base material 2 made of Cu—Sn base alloy) Nb 3 Sn phase is formed on the interface of Nb or Nb-based alloy core 1.

尚、上記構成では、二次多芯ビレット7における安定化銅4は、最外層として設けたものを示したけれども、安定化銅4の位置は、二次多芯ビレット7の中心部(軸芯部)に設ける構成も採用される。また、図1に示したものは、二次多芯ビレット7の断面形状は円形のものを示したが、例えば図2に示すような断面矩形状のもの(平角線材)も採用される。   In the above configuration, the stabilizing copper 4 in the secondary multi-core billet 7 has been provided as the outermost layer. However, the position of the stabilizing copper 4 is the center of the secondary multi-core billet 7 (axial core). The structure provided in the part) is also employed. 1 shows a circular cross-sectional shape of the secondary multi-core billet 7, but a rectangular cross-sectional shape (flat wire) as shown in FIG. 2, for example, is also employed.

上記の二次多芯ビレットの押出し以後の引抜き加工では、健全に加工するために、1パス当たりの減面率が20%程度以下の低い値に設定されることが多い。そのため、所定の線径まで加工するためのパススケジュールが、非常に長くなる。また、ブロンズは加工硬化が激しく生じるため、焼鈍して軟らかくする必要があり、そのために更に余計に時間が必要となる。このようにして長くなるパススケジュールを少しでも短くするために、上記の二次ビレットの押出し比(=ビレットの断面積/押出し後の部材の断面積)を大きくし、後の引き抜き工程を短くすることが求められている。しかし、現状では押出し比は15〜20が限界であり、それよりも押出し比を大きくしようとすると、押出し時にビレット内部の圧力のバランスが崩れて、NbまたはNb基合金芯が太くあるいは細く変形したり(所謂ソーセージング現象)、場合によってはNbまたはNb基合金芯が切断されたりすることがある。   In the drawing process after the extrusion of the secondary multi-core billet, the area reduction rate per pass is often set to a low value of about 20% or less in order to process it smoothly. Therefore, the pass schedule for processing to a predetermined wire diameter becomes very long. Further, since bronze is hardened by work, it needs to be annealed and softened, which requires more time. In order to shorten the lengthening pass schedule as much as possible, the extrusion ratio of the secondary billet (= the cross-sectional area of the billet / the cross-sectional area of the member after extrusion) is increased and the subsequent drawing process is shortened. It is demanded. However, at present, the extrusion ratio is limited to 15-20, and if the extrusion ratio is made higher than that, the balance of the pressure inside the billet is lost during extrusion, and the Nb or Nb-based alloy core is deformed thick or thin. (So-called so-called phenomenon), and in some cases, the Nb or Nb-based alloy core may be cut.

この課題を解決するために、原材料の変形抵抗を従来よりも小さくして、加工性を向上させることが考えられる。Nb3Sn超電導線材の製造用前駆体の原材料として、Nb棒については、その中の酸素や窒素の不純物濃度を20〜200ppmの範囲に制御することにより、加工性と超電導特性を向上させることが提案されている(例えば、特許文献1)。 In order to solve this problem, it is conceivable to improve the workability by making the deformation resistance of the raw material smaller than before. As a raw material of the precursor for manufacturing the Nb 3 Sn superconducting wire, it is possible to improve the workability and superconducting characteristics of the Nb bar by controlling the oxygen and nitrogen impurity concentration in the range of 20 to 200 ppm. It has been proposed (for example, Patent Document 1).

本発明者らが実験によって確認したところ、そのようなNb棒を用いても、押出し比については、従来と同等(押出し比で15〜20)の条件でしか押出すことができないことが判明した。それよりも大きい押出し比で押出し加工した場合には、押出し後の断面を観察すると、Nb芯が部分的に断線して消失していることが分かった。このように、押出し比を20超に設定した場合は、健全に押出すことが困難であった。   As a result of experiments, the present inventors have confirmed that even if such an Nb rod is used, the extrusion ratio can be extruded only under the same conditions as the conventional one (extrusion ratio of 15 to 20). . When extrusion was performed at an extrusion ratio larger than that, it was found that the Nb core was partially broken and disappeared when the cross section after extrusion was observed. Thus, when the extrusion ratio was set to more than 20, it was difficult to extrude soundly.

Nb棒の工業規格については、米国材料試験協会(American Society for Testing and Materials:ASTM、世界最大の民間・非営利の国際標準化・規格設定機関)のB392−99がある。この規格では、0.2%耐力は73MPa以上となっている。しかし、上限が規定されているわけではなく、この規格に合格したものがそのまま高押出し比の加工に使用できるわけではない。   The industry standard for Nb bars is B392-99 from the American Society for Testing and Materials (ASTM), the world's largest private and non-profit international standardization and standardization organization. In this standard, the 0.2% proof stress is 73 MPa or more. However, the upper limit is not stipulated, and those that pass this standard cannot be used for processing with a high extrusion ratio.

また、Nb棒の平均結晶粒径については、加工性を維持するために5〜100μmにすることも提案されているが(例えば特許文献2)、こうした要件を満足させるだけでは押出し比を20超にすることは困難であった。
特開平8−138467号公報 特開2007−141796号公報
Further, the average crystal grain size of the Nb bar is proposed to be 5 to 100 μm in order to maintain the workability (for example, Patent Document 2), but the extrusion ratio exceeds 20 by satisfying these requirements. It was difficult to do.
JP-A-8-138467 JP 2007-141796 A

本発明はこうした状況の下でなされたものであって、その目的は、Nb3Sn超電導線材を製造するときに用いるNbまたはNb基合金における加工性(特に、押出し比)を高めることのできるようなNbまたはNb基合金棒、およびこのようなNbまたはNb基合金棒を用いて良好な超電導特性(特に、臨界電流およびn値)を発揮する超電導線材、およびそのための前駆体(超電導線材製造用前駆体)とその製造方法を提供することにある。 The present invention has been made under such circumstances, and the object thereof is to improve the workability (particularly, the extrusion ratio) in Nb or Nb-based alloys used when manufacturing a Nb 3 Sn superconducting wire. Nb or Nb-based alloy rods, superconducting wires that exhibit good superconducting properties (particularly critical current and n value) using such Nb or Nb-based alloy rods, and precursors therefor (for producing superconducting wires) A precursor) and a method for producing the same.

上記目的を達成することできた本発明の超電導線材製造用NbまたはNb基合金棒とは、ブロンズ法によってNb3Sn超電導線材を製造するために用いられるNbまたはNb基合金棒であって、軸心を通り長手方向に平行な断面における結晶組織の再結晶率が78%以上であり、且つ0.2%耐力の値が220MPa以下である点に要旨を有するものである。 The Nb or Nb-based alloy rod for producing a superconducting wire of the present invention that has achieved the above object is an Nb or Nb-based alloy rod used for producing an Nb 3 Sn superconducting wire by a bronze method, It has a gist in that the recrystallization rate of the crystal structure in a cross section passing through the center and parallel to the longitudinal direction is 78% or more and the 0.2% proof stress is 220 MPa or less.

上記Nb3Sn超電導線材製造用NbまたはNb基合金棒においては、(a)平均結晶粒径が10〜50μmであることや、(b)外表面の平均ビッカース硬さHvが50〜120であること、等の要件を満足することが好ましい。 In the Nb 3 Sn superconducting wire manufacturing Nb or Nb-based alloy rod, (a) the average crystal grain size is 10 to 50 μm, and (b) the average Vickers hardness Hv of the outer surface is 50 to 120. It is preferable to satisfy the requirements such as

上記のようなNbまたはNb基合金棒を用い、Cu−Sn基合金と複合化して複合材とし、該複合材を押出し加工し、更に複数本を束ねて減面加工することによって線材化することで、良好な超電導特性を発揮するNb3Sn超電導線材を得る上で有用な前駆体を製造することができる。 Using the Nb or Nb base alloy rod as described above, it is combined with a Cu-Sn base alloy to form a composite material, the composite material is extruded, and a plurality of bundles are bundled to reduce the surface to a wire. Thus, a precursor useful for obtaining an Nb 3 Sn superconducting wire exhibiting good superconducting properties can be produced.

また上記のような超電導線材製造用前駆体を熱処理して超電導相を形成することによって、良好な超電導特性を発揮するブロンズ法Nb3Sn超電導線材が得られる。 Also by forming a superconducting phase by heat-treating precursor for fabricating a superconducting wire as described above, bronze process Nb 3 Sn superconducting wire exhibiting good superconducting properties can be obtained.

本発明を適用することにより、これまで難しかった20より大きい押出し比でブロンズ法Nb3Sn超電導線材製造用前駆体を押出すことが可能になり、製造工程が短縮できると共に、安価に安定してNb3Sn線材の前駆体を製造することが可能となり、この様な前駆体から得られるNb3Sn超電導線材は良好な超電導特性を発揮するものとなる。 By applying the present invention, it becomes possible to extrude a precursor for producing a bronze Nb 3 Sn superconducting wire at an extrusion ratio greater than 20, which has been difficult so far. It becomes possible to manufacture a precursor of an Nb 3 Sn wire, and an Nb 3 Sn superconducting wire obtained from such a precursor exhibits good superconducting characteristics.

本発明者らは、前記課題を解決するために様々な角度から検討した。二次多芯ビレットを押出し加工する際、構成材料のブロンズが加工発熱によっても融けない範囲で高温にするという観点から、600℃程度の温度に加熱されることが多い。二次多芯ビレットの構成材料である一次スタック材のブロンズ(例えば、Cu−15%Sn−0.3%Ti:「%」については「質量%」の意味、化学成分組成については以下同じ)とNbまたはNb基合金芯(以下、「Nb芯」で代表することがある)を切り出し、600℃付近で引張り試験を行った結果、ブロンズ(Cu−Sn基合金)の引張り強さに比べて、Nb芯の引張り強さが20倍以上に大きいことがわかった。押出しの際の加工バランスはこの差が小さいほど望ましい。   The present inventors have studied from various angles in order to solve the above problems. When extruding a secondary multi-core billet, it is often heated to a temperature of about 600 ° C. from the viewpoint of increasing the temperature of the constituent material bronzes within a range that does not melt even by processing heat generation. Bronze of primary stack material which is a constituent material of secondary multi-core billet (for example, Cu-15% Sn-0.3% Ti: “%” means “mass%”, and chemical composition is the same hereinafter) And Nb or an Nb-based alloy core (hereinafter sometimes referred to as “Nb core”) were cut out and subjected to a tensile test near 600 ° C. As a result, compared to the tensile strength of bronze (Cu—Sn-based alloy) It was found that the tensile strength of the Nb core was 20 times or more. The processing balance during extrusion is preferably as small as possible.

そこで、0.2%耐力が異なる複数のNbまたはNb基合金棒(以下、「Nb棒」で代表することがある)を準備し、それらを用いて二次多芯ビレット用の一次スタック材を作製し、その中のNb芯を600℃で引張り試験を行って、引張り強さと0.2%耐力との関係を調べたところ、0.2%耐力を低減させることにより、600℃におけるNb芯の引張り強さを低下させることが可能であることが判明した。換言すると、Nb棒の0.2%耐力を低減させることにより、600℃におけるNb芯とブロンズの引張り強さの差を低減することが可能であり、押出し時の加工バランスを改善できることが明らかになったのである。尚、本発明における上記「0.2%耐力」は、常温(25℃)での値である。   Therefore, a plurality of Nb or Nb-based alloy bars (hereinafter, may be represented by “Nb bars”) having different 0.2% proof stress are prepared, and a primary stack material for a secondary multi-core billet is prepared using them. A Nb core was prepared and subjected to a tensile test at 600 ° C. to examine the relationship between tensile strength and 0.2% yield strength. By reducing the 0.2% yield strength, the Nb core at 600 ° C. It has been found that the tensile strength of can be reduced. In other words, by reducing the 0.2% yield strength of the Nb bar, it is possible to reduce the difference in tensile strength between the Nb core and bronze at 600 ° C, and it is clear that the processing balance during extrusion can be improved. It became. The “0.2% proof stress” in the present invention is a value at room temperature (25 ° C.).

そして、軸心(横断面中心点)を通り長手方向に平行な断面(縦断面)における結晶組織での再結晶率が78%以上であり、且つ上記0.2%耐力の値が220MPa以下のNb棒(またはNb基合金棒)を用いることにより、Nb結晶粒による加工性向上効果を発揮させながら、ブロンズとの加工バランスを維持させて、押出し比で20を超える様な強加工が可能になったのである。   And the recrystallization rate in the crystal structure in the cross section (longitudinal section) parallel to the longitudinal direction passing through the axial center (cross-sectional center point) is 78% or more, and the value of 0.2% proof stress is 220 MPa or less. By using Nb rods (or Nb-based alloy rods), while maintaining the workability improvement effect of Nb crystal grains, it is possible to maintain the work balance with bronze and to perform strong work with an extrusion ratio exceeding 20 It became.

0.2%耐力は材料を塑性変形させるために必要な応力であり、上述したように、複合材の場合は異種材料の0.2%耐力同士を近づけることにより、単一材と同じようなバランスで加工することが可能となる。従って、Nb棒(またはNb基合金棒)を健全に加工するうえで要求される0.2%耐力の適正範囲は、ブロンズの0.2%耐力との関係で決まることになる。尚、Nb棒の0.2%耐力の下限値としては、55MPaのものまで使用可能であることを確認している(後記実施例7参照)。   The 0.2% proof stress is a stress necessary for plastically deforming a material. As described above, in the case of a composite material, by bringing the 0.2% proof stress of different materials close to each other, it is similar to a single material. It becomes possible to process with balance. Therefore, the appropriate range of 0.2% proof stress required for soundly processing an Nb bar (or Nb-based alloy bar) is determined by the relationship with the 0.2% proof stress of bronze. It has been confirmed that the lower limit of the 0.2% proof stress of the Nb bar can be used up to 55 MPa (see Example 7 below).

Nb棒の0.2%耐力の値を220MPa以下にすることにより、ブロンズとの引張り強さの差が小さくなり、押出し時の加工バランスが向上する。尚、引張り試験における機械的特性値は、歪み増加率に依存して変化する。こうした観点から、0.2%耐力を測定するための室温での引張り試験における歪み増加率は、5〜10%/minとする。   By setting the value of 0.2% proof stress of the Nb bar to 220 MPa or less, the difference in tensile strength from bronze is reduced, and the processing balance during extrusion is improved. The mechanical property value in the tensile test varies depending on the strain increase rate. From such a viewpoint, the strain increase rate in the tensile test at room temperature for measuring the 0.2% proof stress is 5 to 10% / min.

一方、結晶組織の再結晶率は、Nb棒の単一材としての加工の余裕度を示している。Nb棒の0.2%耐力が適正範囲であっても、再結晶率が低ければ加工限界に達して加工できなくなる。Nb棒の再結晶率を78%以上にすることにより、加工による歪みが入っていない再結晶粒の比率が増え、Nb棒が加工に余裕のあるものとなる。   On the other hand, the recrystallization rate of the crystal structure indicates a margin for processing the Nb bar as a single material. Even if the 0.2% proof stress of the Nb bar is within an appropriate range, if the recrystallization rate is low, the processing limit is reached and processing becomes impossible. By setting the recrystallization rate of the Nb bar to 78% or more, the ratio of recrystallized grains that are not distorted by processing increases, and the Nb bar has a sufficient margin for processing.

このように、Nb棒の0.2%耐力および再結晶率の値を上記のように設定することにより、後記実施例に示すように、押出し比を20よりも大きな状態で押出し加工を行っても、Nb芯に断線が生じなくなるのである。本発明のNb棒においては、結晶組織の再結晶率は93%以上で、且つ0.2%耐力の値が172MPa以下であることがより好ましい。尚、「結晶組織の再結晶率」は、後記実施例で示した方法によって求められる値である。   Thus, by setting the values of the 0.2% proof stress and recrystallization rate of the Nb bar as described above, the extrusion process was performed with the extrusion ratio being larger than 20, as shown in the examples below. However, no disconnection occurs in the Nb core. In the Nb bar of the present invention, it is more preferable that the recrystallization rate of the crystal structure is 93% or more and the 0.2% proof stress value is 172 MPa or less. The “crystal structure recrystallization rate” is a value obtained by the method described in Examples below.

従来のNb棒においては、加工性を維持するためには平均結晶粒径を5〜100μmにすることが有用であることが示されている(前記特許文献2)。しかしながら、本発明のNb棒においては、押出し比をより高くするという観点から、Nb棒の平均結晶粒径に対する要求範囲は狭くなる。即ち、Nb棒の平均結晶粒径を10〜50μmにすることにより、均一な加工性を維持しながら伸び(「伸び」は、引張り試験の際に試験片に取り付けたゲージの間隔が初期値に比べてどれだけ長くなったかその比率を意味する。)を50%以上の大きな値に高め得ることをも見出している。   In the conventional Nb bar, it has been shown that it is useful to make the average crystal grain size 5 to 100 μm in order to maintain the workability (Patent Document 2). However, in the Nb bar of the present invention, the required range for the average crystal grain size of the Nb bar is narrowed from the viewpoint of increasing the extrusion ratio. That is, by setting the average crystal grain size of the Nb bar to 10 to 50 μm, elongation is maintained while maintaining uniform workability (“elongation” is the initial value of the distance between the gauges attached to the test piece during the tensile test. It is also found that it can be increased to a large value of 50% or more.

Nb棒における平均結晶粒径が50μmを超えると伸びが低下する。一方、平均結晶粒径が10μm未満となると、上記0.2%耐力の値が大きくなってしまい、押出し時のブロンズとの加工バランスが乱れ、Nb芯の部分断線などの異常が生じる。これは、結晶粒径が小さくなると結晶粒界が増加し、塑性加工を生じるときに、原子の移動に対して結晶粒界が妨げになり、高い応力が必要となるためである。Nb棒の平均結晶粒径の更に好ましい範囲は10〜30μm程度である。尚、上記「平均結晶粒径」は、後記実施例で示した方法によって求められる値である。   When the average crystal grain size in the Nb bar exceeds 50 μm, the elongation decreases. On the other hand, when the average crystal grain size is less than 10 μm, the 0.2% proof stress value becomes large, the processing balance with the bronze during extrusion is disturbed, and abnormalities such as partial disconnection of the Nb core occur. This is because when the crystal grain size is reduced, the crystal grain boundary increases, and when plastic working occurs, the crystal grain boundary hinders the movement of atoms, and high stress is required. A more preferable range of the average crystal grain size of the Nb bar is about 10 to 30 μm. The “average crystal grain size” is a value obtained by the method described in Examples below.

ところで、超電導線材における臨界電流密度やn値などの超電導特性を向上させるためには、押出し後の冷間引き抜き加工などの減面加工も重要である。減面加工を行うときに、健全加工を実現するために重要な因子はNb芯の硬さである。こうした減面加工(冷間加工)では、ブロンズの硬さはNb棒の硬さを上回っており、原材料のNb棒の外表面の平均ビッカース硬さHvが50未満の場合には、両者の硬さの差が大きくなるため冷間加工バランスが乱れ、上記の超電導特性が劣化することになる。   By the way, in order to improve the superconducting characteristics such as critical current density and n value in the superconducting wire, surface-reducing processing such as cold drawing after extrusion is also important. When performing surface-reducing processing, an important factor for realizing sound processing is the hardness of the Nb core. In such surface reduction processing (cold processing), the hardness of the bronze exceeds the hardness of the Nb bar, and when the average Vickers hardness Hv of the outer surface of the raw material Nb bar is less than 50, the hardness of both Since the difference in thickness increases, the cold working balance is disturbed, and the above superconducting characteristics are deteriorated.

また、Nb棒の外表面の平均ビッカース硬さHvが120を超える場合は、ビッカース硬さのバラツキが大きくなり、超電導特性の線材長手方向の分布が大きくなって問題が生じる。Nb棒の外表面の平均ビッカース硬さHvを50〜120の範囲内にすることによって、冷間加工バランスを良好に保ちながら、線材長手方向の分布も小さく超電導特性を向上させることが可能となる。尚、Nb棒の外表面の平均ビッカース硬さHvのより好ましい下限は60であり、より好ましい上限は90である。またNb棒の外表面の平均ビッカース硬さHvは、後記実施例で示した方法によって求められる値である。   In addition, when the average Vickers hardness Hv of the outer surface of the Nb bar exceeds 120, the Vickers hardness variation increases, and the distribution of the superconducting characteristics in the longitudinal direction of the wire increases, causing a problem. By making the average Vickers hardness Hv of the outer surface of the Nb rod within the range of 50 to 120, it is possible to improve the superconducting characteristics with a small distribution in the longitudinal direction of the wire while maintaining a good cold work balance. . The more preferable lower limit of the average Vickers hardness Hv of the outer surface of the Nb bar is 60, and the more preferable upper limit is 90. Further, the average Vickers hardness Hv of the outer surface of the Nb bar is a value obtained by the method shown in Examples described later.

上記のようなNb棒(またはNb基合金棒)を作製するには、不純物としての水素濃度が10ppm以下であり、窒素濃度が30ppm以下であり、且つ炭素、酸素の濃度の合計が60ppm以下である高純度のインゴットを用いることが好ましい。高純度のインゴットの製造には、電子ビーム溶解などの真空溶解法が適用されるが、例えば電子ビーム溶解の場合は、1回の溶解ではなく、2回、3回と溶解を繰り返すことにより、従来(例えば特許文献1)よりもさらに純度の高いインゴットを製造することが可能である。   In order to produce the Nb rod (or Nb-based alloy rod) as described above, the hydrogen concentration as an impurity is 10 ppm or less, the nitrogen concentration is 30 ppm or less, and the total concentration of carbon and oxygen is 60 ppm or less. It is preferable to use a certain high purity ingot. For the production of a high purity ingot, a vacuum melting method such as electron beam melting is applied. For example, in the case of electron beam melting, the melting is repeated twice or three times instead of once. It is possible to produce an ingot having a higher purity than conventional (for example, Patent Document 1).

このような高純度のインゴットを棒状に加工し、引き続き900〜1800℃の温度で所定時間最終焼鈍を行った後、冷間加工は全く行わないか、または加工率が5%程度以下の冷間加工を行う。また場合によっては、更に再焼鈍も行う。それ以外の条件・工程については従来公知のものを適用することができる。このようなプロセスにより、所定の0.2%耐力や再結晶率、平均結晶粒径、平均ビッカース硬さHvなどを具備するNb棒またはNb基合金棒を作製することができる。   After processing such a high-purity ingot into a rod shape, and subsequently performing final annealing at a temperature of 900 to 1800 ° C. for a predetermined time, cold processing is not performed at all, or cold processing with a processing rate of about 5% or less Processing. In some cases, re-annealing is also performed. Conventionally known ones can be applied to other conditions and processes. By such a process, an Nb rod or an Nb-based alloy rod having a predetermined 0.2% yield strength, recrystallization rate, average crystal grain size, average Vickers hardness Hv, and the like can be produced.

次に、本発明のNb棒で規定する各要件を制御するための具体的な製造条件について説明する。まず再結晶率を78%以上にするには、Nbインゴットを熱間押出し、冷間圧延加工して押出し後の減面率が約20%以上の状態で最終形状に加工した後、約950℃で約1時間以上最終焼鈍を行えば良い。このとき、Nbインゴットの純度は再結晶率にあまり影響を及ぼさない。   Next, specific manufacturing conditions for controlling each requirement defined by the Nb bar of the present invention will be described. First, in order to increase the recrystallization rate to 78% or more, Nb ingot is hot-extruded, cold-rolled and processed into a final shape with an area reduction after extrusion of about 20% or more, and then about 950 ° C. The final annealing may be performed for about 1 hour or longer. At this time, the purity of the Nb ingot does not significantly affect the recrystallization rate.

Nb棒の再結晶率を更に93%以上に高めるためには、Nbインゴットを熱間押出し、冷間圧延加工して押出し後の減面率が約50%以上の状態で最終形状に加工した後、約1100℃で約1時間以上最終焼鈍を行うようにすればよい。   In order to further increase the recrystallization rate of the Nb bar to 93% or more, after the Nb ingot is hot-extruded, cold-rolled and processed into a final shape with a reduction in area after extrusion of about 50% or more The final annealing may be performed at about 1100 ° C. for about 1 hour or longer.

Nb棒の0.2%耐力を220MPa以下にするには、Nbインゴットを熱間押出し、冷間圧延加工して押出し後の減面率が約20%以上の状態で最終形状に加工した後、約1200℃で約0.2時間以上最終焼鈍を行うようにすればよい。このときのNbインゴットの純度が低いと0.2%耐力が高くなる傾向がある。   In order to reduce the 0.2% proof stress of the Nb bar to 220 MPa or less, the Nb ingot is hot-extruded, cold-rolled and processed into a final shape in a state where the area reduction after extrusion is about 20% or more, The final annealing may be performed at about 1200 ° C. for about 0.2 hours or longer. If the purity of the Nb ingot at this time is low, the 0.2% yield strength tends to increase.

Nb棒の0.2%耐力を更に172MPa以下にするには、Nbインゴットを熱間押出し、冷間圧延加工して押出し後の減面率が約20%以上の状態で最終形状に加工した後、約1200℃で約2時間以上最終焼鈍を行うようにすればよい。このときも、Nbインゴットの純度が低いと0.2%耐力が高くなる傾向がある。   In order to further reduce the 0.2% proof stress of the Nb bar to 172 MPa or less, after the Nb ingot is hot extruded, cold rolled and processed into a final shape with a reduction in area after extrusion of about 20% or more The final annealing may be performed at about 1200 ° C. for about 2 hours or more. At this time, if the purity of the Nb ingot is low, the 0.2% yield strength tends to be high.

再結晶率78%以上で且つ0.2%耐力が220MPa以下のNb棒を製造するには、少なくともNbインゴットを熱間押出し、冷間圧延加工して押出し後の減面率が約20%以上の状態で最終形状に加工した後、約1200℃で約1時間最終焼鈍を行うようにすれば良い。また0.2%耐力を下げるという観点から、Nbインゴットの純度を高くする必要がある(できるだけ不純物元素を低減する)。   In order to produce an Nb bar having a recrystallization rate of 78% or more and a 0.2% proof stress of 220 MPa or less, at least a Nb ingot is hot-extruded, and cold rolling is performed, and the area reduction after extrusion is about 20% or more. After being processed into the final shape in this state, the final annealing may be performed at about 1200 ° C. for about 1 hour. Further, from the viewpoint of lowering the 0.2% proof stress, it is necessary to increase the purity of the Nb ingot (reducing the impurity elements as much as possible).

また再結晶率が93%以上で且つ0.2%耐力が172MPa以下のNb棒を製造するには、少なくともNbインゴットを熱間押出し、冷間圧延加工して押出し後の減面率が約50% 以上の状態で最終形状に加工した後、約1200℃で約2時間以上最終焼鈍を行う。このときNbインゴットの純度が低いと0.2%耐力が高くなる傾向がある。   In order to produce an Nb bar having a recrystallization ratio of 93% or more and a 0.2% proof stress of 172 MPa or less, at least a Nb ingot is hot-extruded, cold-rolled, and the area reduction after extrusion is about 50 After being processed into a final shape in a state of% or more, final annealing is performed at about 1200 ° C. for about 2 hours or more. At this time, if the purity of the Nb ingot is low, the 0.2% yield strength tends to increase.

上記の効果については、基本的にNb棒についてのものであるが、NbにTi,Ta,Zr,Hfよりなる群から選ばれる1種または2種以上を0.01〜5.0%程度含有させたNb基合金棒を用いても、純Nb棒を用いた時と同等の効果が得られることになる。   The above effect is basically for the Nb rod, but Nb contains about 0.01 to 5.0% of one or more selected from the group consisting of Ti, Ta, Zr, and Hf. Even if the Nb-based alloy bar is used, the same effect as that obtained when the pure Nb bar is used can be obtained.

上記のようなNb棒(またはNb基合金棒)を用いて、Cu−Sn基合金と複合化して複合材とし、該複合材を押出し加工し、更に複数本を束ねて減面加工することによって線材化したものでは(前記図1、2参照)、高い押出し比を維持しつつ効率良く安定した超電導線材前駆体が得られ、またこうした前駆体を熱処理して超電導相を形成することによって良好な超電導特性を発揮するブロンズ法Nb3Sn超電導線材が実現できる。 By using the Nb bar (or Nb-based alloy bar) as described above, it is combined with a Cu—Sn-based alloy to form a composite material, the composite material is extruded, and a plurality of bundles are bundled to reduce the surface. In the case of a wire (see FIGS. 1 and 2), a superconducting wire precursor that is efficiently stable while maintaining a high extrusion ratio can be obtained, and it is good by heat-treating such a precursor to form a superconducting phase. A bronze Nb 3 Sn superconducting wire that exhibits superconducting properties can be realized.

尚、本発明を適用できるブロンズ法Nb3Sn線材の構造は、その二次多芯ビレットの断面構造が図1に示したものに限定されないことは勿論である。例えば、前記図1に示した断面構造は、安定化銅が断面の最外層にある外部安定化Nb3Sn前駆体を得るための二次多芯ビレットであるが、安定化銅が断面の中心に存在する内部安定化のブロンズ法Nb3Sn前駆体を得るための二次多芯ビレットについても同様の効果が期待できる。また二次多芯ビレットの断面構造が図2に示したものであっても良い。 Of course, the structure of the bronze Nb 3 Sn wire to which the present invention can be applied is not limited to the cross-sectional structure of the secondary multi-core billet shown in FIG. For example, the cross-sectional structure shown in FIG. 1 is a secondary multi-core billet for obtaining an externally stabilized Nb 3 Sn precursor in which the stabilized copper is in the outermost layer of the cross section. The same effect can be expected for the secondary multi-core billet for obtaining the internally stabilized bronze method Nb 3 Sn precursor present in FIG. Moreover, the cross-sectional structure of the secondary multi-core billet may be that shown in FIG.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。尚、以下の実験で示した再結晶率、0.2%耐力、伸び、平均結晶粒径および平均ビッカース硬さHv、並びに超電導線材における超電導特性(臨界電流密度およびn値)は、下記の方法によって測定したものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention. The recrystallization rate, 0.2% proof stress, elongation, average crystal grain size and average Vickers hardness Hv, and superconducting properties (critical current density and n value) in the superconducting wire shown in the following experiments are as follows: It is measured by.

[結晶組織の再結晶率の測定方法]
軸心を通り長手方向に平行な面(縦断面)を、顕微鏡で観察したミクロ組織像より、100〜110の結晶粒を無作為に抽出し、長軸の長さを短軸の長さで除したアスペクト比(長軸の長さ/短軸の長さ)が2.5以下の結晶粒を再結晶粒とし、この再結晶粒の数を抽出した全結晶粒数で割った値を再結晶率とした。ここで「長軸の長さ」とは、結晶断面内で直線を引いたとき、結晶粒の表面とその直線が交わる二点の間隔が最も長くなる時の長さであり、「短軸の長さ」とは、結晶断面内で上記長軸の中点を通るように直線を引いた時、結晶粒の表面とその直線が交わる二点の間隔が最も短くなるときの長さである。
[Measurement method of recrystallization rate of crystal structure]
A plane (longitudinal section) that passes through the axis and is parallel to the longitudinal direction is randomly extracted from 100 to 110 crystal grains from the microstructure image observed with a microscope, and the length of the major axis is the length of the minor axis. Divide the crystal grains whose aspect ratio (long axis length / short axis length) is 2.5 or less into recrystallized grains, and then divide the number of recrystallized grains by the total number of extracted crystal grains. The crystal ratio was taken. Here, the “long axis length” is the length when the distance between the surface of the crystal grain and the two points where the line intersects is longest when a straight line is drawn in the crystal cross section. The “length” is the length when the distance between the surface of the crystal grain and the two points where the straight line intersects is the shortest when a straight line is drawn so as to pass through the midpoint of the long axis in the crystal cross section.

[0.2%耐力の測定方法]
引張り試験を行って応力−歪み曲線とヤング率を評価して、塑性歪みが0.2%になる応力(常温)を0.2%耐力として求めた。このとき、室温での引張り試験における歪み増加率は、5〜10%/minに調整した。
[Measurement method of 0.2% yield strength]
A tensile test was conducted to evaluate the stress-strain curve and Young's modulus, and the stress (normal temperature) at which the plastic strain becomes 0.2% was determined as the 0.2% yield strength. At this time, the strain increase rate in the tensile test at room temperature was adjusted to 5 to 10% / min.

[伸びの測定方法]
日本工業規格の金属材料引張試験方法(JIS Z 2241)に従い、試験片を破断させた後の標点距離の永久伸びを原標点距離で除した値を百分率で示した。
[Measurement method of elongation]
According to the Japanese Industrial Standard metal material tensile test method (JIS Z 2241), the value obtained by dividing the permanent elongation of the gauge distance after breaking the test piece by the original gauge distance is shown as a percentage.

[平均結晶粒径の測定方法]
断面(軸心を通り長手方向に平行な断面)を顕微鏡で観察したミクロ組織像に、無作為に一本または複数本の直線を引き、その直線の相当長さをその直線と交差する結晶の数で除した値を平均結晶粒径として求めた。このときの直線と交差する結晶粒の総数は、30〜50とした。
[Measurement method of average grain size]
One or more lines are drawn at random on the microstructure (cross-section passing through the axis and parallel to the longitudinal direction) under a microscope, and the equivalent length of the line intersects the line. The value divided by the number was determined as the average crystal grain size. The total number of crystal grains intersecting with the straight line at this time was 30-50.

[Nb棒の外表面の平均ビッカース硬さHvの測定方法]
Nb棒の長手方向の表面に4〜6箇所の圧痕を打って、各圧痕のサイズから夫々のビッカース硬さを求めて加算平均した値とする。このときの圧痕を打つときの荷重は、10kgf(98N)とした。
[Measurement method of average Vickers hardness Hv of outer surface of Nb bar]
Four to six indentations are made on the surface of the Nb bar in the longitudinal direction, and the respective Vickers hardnesses are obtained from the size of each indentation, and the sum is averaged. The load when hitting the impression was 10 kgf (98 N).

[超電導特性(臨界電流密度、n値)の測定方法]
超電導線材の超電導特性は、温度4.2K、外部磁場19Tにおける臨界電流を、直流四端子法で、10μV/mの電界基準を用いて測定し、これを線材の銅以外の断面積で除することによって非銅部の臨界電流密度nonCu−Jc(=臨界電流/安定化銅を除いた部分の面積)として求めた。またn値は、10μV/mおよび100μV/mの電界基準を用いて求めた2つの臨界電流の値から求めた。
[Measurement method of superconducting properties (critical current density, n value)]
The superconducting properties of the superconducting wire are as follows: the critical current at a temperature of 4.2K and an external magnetic field of 19T is measured by a DC four-terminal method using an electric field standard of 10 μV / m, and this is divided by the cross-sectional area other than copper of the wire As a result, the critical current density of the non-copper portion was determined as nonCu-Jc (= critical current / area of the portion excluding the stabilized copper). The n value was determined from the values of two critical currents determined using electric field standards of 10 μV / m and 100 μV / m.

尚、上記「n値」とは、超電導線材における線材方向に流れる電流の均一性、即ち線材長手方向での超電導フィラメントの均一性を示す指標となるものであり、この値が大きいほど超電導特性(即ち、電流の均一性)が優れていると言われているものである。   The “n value” is an index indicating the uniformity of the current flowing in the wire direction in the superconducting wire, that is, the uniformity of the superconducting filament in the longitudinal direction of the wire. The larger this value, the higher the superconducting characteristics ( That is, the current uniformity is said to be excellent.

(比較例1)
Nbの電子ビーム溶解の回数を3回として、酸素、窒素の不純物濃度が、夫々50ppm、10ppmのインゴットを作製した。このNbインゴットを熱間押出し、冷間圧延加工して押出し後の減面率が10%の状態で最終形状に加工した後、950℃で30分の最終焼鈍を行い、再結晶率:57%、0.2%耐力:231MPa、平均結晶粒径:120μm、平均ビッカース硬さHv:132、伸び:38%のNb棒を作製した。
(Comparative Example 1)
The number of times of Nb electron beam melting was set to 3 to prepare ingots having oxygen and nitrogen impurity concentrations of 50 ppm and 10 ppm, respectively. This Nb ingot was hot-extruded, cold-rolled and processed into a final shape with a reduction in area of 10% after extrusion, followed by final annealing at 950 ° C. for 30 minutes, recrystallization rate: 57% 0.2% proof stress: 231 MPa, average crystal grain size: 120 μm, average Vickers hardness Hv: 132, elongation: 38% Nb bar was produced.

直径:67mmのCu−15%Sn−0.3%Tiインゴットに、直径:8.0mmの穴を19個空け、前記Nb棒19本を挿入して電子ビーム溶接を行い、一次スタック材用のビレットを作製した。これを600℃で静水圧押出しし、途中で焼鈍を行いながら押出し加工して、対辺間距離:2.5mmの断面が六角である一次スタック材に加工した。この一次スタック材を433本束ね、その外周に厚さ:0.2mmのNbシート巻き、それらを一体化して外径:67mm、内径:60mmの純銅パイプに挿入して、電子ビーム溶接を行い、二次スタック材のビレット(二次多芯ビレット)を作製した。   19 holes with a diameter of 8.0 mm are drilled in a Cu-15% Sn-0.3% Ti ingot with a diameter of 67 mm, 19 Nb bars are inserted, and electron beam welding is performed. Billets were made. This was extruded at 600 ° C. under hydrostatic pressure, and extruded while being annealed in the middle, to be processed into a primary stack material having a hexagonal cross section with a distance between opposite sides of 2.5 mm. 433 bundles of this primary stack material, Nb sheet winding with a thickness of 0.2 mm on the outer periphery thereof, integrated them and inserted into a pure copper pipe with an outer diameter of 67 mm and an inner diameter of 60 mm, and performing electron beam welding, A billet of secondary stack material (secondary multi-core billet) was produced.

上記二次多芯ビレットを600℃に加熱し、14mmの直径に熱間静水圧押出しした(押出し比22.9)。押出し後の部材の断面観察したところ、一次スタック材単位では、Nb芯が19本存在するはずだが、内部で断線して欠落していることが判明した。このように、Nb芯が内部で断線した前駆体は、熱処理を行ってNb3Sn相を生成しても、長手方向でNb3Snフィラメントが欠落しているため、超電導電流を線材全長に亘って流すことができなくなり、永久電流モードで運転するNMRマグネット等への適用ができなくなる。 The secondary multi-core billet was heated to 600 ° C. and subjected to hot isostatic pressing to a diameter of 14 mm (extrusion ratio 22.9). When the cross section of the extruded member was observed, it was found that there were 19 Nb cores in the primary stack material unit, but they were disconnected and missing. Thus, even if the precursor in which the Nb core is disconnected inside generates the Nb 3 Sn phase by performing heat treatment, the Nb 3 Sn filament is missing in the longitudinal direction. And cannot be applied to an NMR magnet or the like that operates in the permanent current mode.

(比較例2)
比較例1で作製したNbインゴットを熱間押出し、冷間圧延加工して押出し後の減面率が10%の状態で最終形状に加工した後、950℃で1時間の最終焼鈍を行って、再結晶率:74%、0.2%耐力:210MPa、平均結晶粒径:81μm、平均ビッカース硬さHv:128、伸び:42%のNb棒を作製した。
(Comparative Example 2)
The Nb ingot produced in Comparative Example 1 was hot-extruded, cold-rolled and processed into a final shape with an area reduction of 10% after extrusion, and then subjected to final annealing at 950 ° C. for 1 hour, A Nb rod having a recrystallization ratio of 74%, 0.2% proof stress: 210 MPa, average crystal grain size: 81 μm, average Vickers hardness Hv: 128, and elongation: 42% was prepared.

直径:67mmのCu−15%Sn−0.3%Tiインゴットに、直径:8.0mmの穴を19個空け、前記Nb棒19本を挿入して電子ビーム溶接を行い、一次スタック材用のビレットを作製した。これを600℃で静水圧押出しし、途中で焼鈍を行いながら減面加工して、対辺間距離:2.5mmの断面が六角である一次スタック材に加工した。この一次スタック材を433本束ね、その外周に厚さ0.2mmのNbシート巻き、それらを一体化して外径:67mm、内径:60mmの純銅パイプに挿入して、電子ビーム溶接を行い、二次スタック材のビレット(二次多芯ビレット)を作製した。   19 holes with a diameter of 8.0 mm are drilled in a Cu-15% Sn-0.3% Ti ingot with a diameter of 67 mm, 19 Nb bars are inserted, and electron beam welding is performed. Billets were made. This was hydrostatically extruded at 600 ° C., and subjected to surface reduction while annealing in the middle, and processed into a primary stack material having a hexagonal cross section with a distance between opposite sides of 2.5 mm. 433 bundles of this primary stack material are wound around the outer periphery of an Nb sheet having a thickness of 0.2 mm, and they are integrated and inserted into a pure copper pipe having an outer diameter of 67 mm and an inner diameter of 60 mm, and electron beam welding is performed. The billet (secondary multi-core billet) of the next stack material was produced.

上記二次多芯ビレットを600℃に加熱し、14mmの直径に熱間静水圧押出しした(押出し比22.9)。押出し後の部材の断面を観察したところ、比較例1と同様にNb芯が内部で断線し欠落していることがわかった。   The secondary multi-core billet was heated to 600 ° C. and subjected to hot isostatic pressing to a diameter of 14 mm (extrusion ratio 22.9). When the cross section of the member after extrusion was observed, it was found that the Nb core was disconnected inside and was missing as in Comparative Example 1.

(比較例3)
比較例1で作製した、Nbインゴットを熱間押出し、冷間圧延加工して押出し後の減面率が50%の状態で最終形状に加工した後、1100℃で1時間の最終焼鈍を行って、再結晶率:93%、0.2%耐力:224MPa、平均結晶粒径:117μm、平均ビッカース硬さHv:125、伸び:40%のNb棒を作製した。
(Comparative Example 3)
The Nb ingot produced in Comparative Example 1 was hot-extruded, cold-rolled and processed into a final shape with a reduction in area after extrusion of 50%, and then subjected to final annealing at 1100 ° C. for 1 hour. An Nb bar having a recrystallization ratio of 93%, 0.2% proof stress: 224 MPa, average crystal grain size: 117 μm, average Vickers hardness Hv: 125, and elongation: 40% was prepared.

直径:67mmのCu−15%Sn−0.3%Tiインゴットに、直径:8.0mmの穴を19個空け、前記Nb棒19本を挿入して電子ビーム溶接を行い、一次スタック材用のビレットを作製した。   19 holes with a diameter of 8.0 mm are drilled in a Cu-15% Sn-0.3% Ti ingot with a diameter of 67 mm, 19 Nb bars are inserted, and electron beam welding is performed. Billets were made.

上記一次スタック材用のビレットを600℃で静水圧押出しし、途中で焼鈍を行いながら減面加工して、対辺間距離:2.5mmの断面が六角である一次スタック材に加工した。この一次スタック材を433本束ね、その外周に厚さ:0.2mmのNbシート巻き、それらを一体化して外径:67mm、内径:60mmの純銅パイプに挿入して、電子ビーム溶接を行い、二次スタック材のビレット(二次多芯ビレット)を作製した。これを600℃に加熱し、14mmの直径に熱間静水圧押出しした(押出し比22.9)。押出し後の部材の断面を観察したところ、比較例1と同様にNb芯が内部で断線し欠落していることがわかった。   The billet for the primary stack material was hydrostatically extruded at 600 ° C., and surface-reduced while annealing in the middle, and processed into a primary stack material having a cross-section with a hexagonal cross section of 2.5 mm across the distance. 433 bundles of this primary stack material, Nb sheet winding with a thickness of 0.2 mm on the outer periphery thereof, integrated them and inserted into a pure copper pipe with an outer diameter of 67 mm and an inner diameter of 60 mm, and performing electron beam welding, A billet of secondary stack material (secondary multi-core billet) was produced. This was heated to 600 ° C. and subjected to hot isostatic pressing to a diameter of 14 mm (extrusion ratio 22.9). When the cross section of the member after extrusion was observed, it was found that the Nb core was disconnected inside and was missing as in Comparative Example 1.

(比較例4)
Nbの電子ビーム溶解の回数を2回として、酸素、水素の不純物濃度が夫々192ppm、19ppm(比較例1〜3で用いたインゴットよりも高い)のインゴットを作製した。このインゴットを熱間押出し後に減面率:30%の冷間圧延加工を施して、900〜1800℃の温度領域、1〜20時間の最終焼鈍を試みたが[下記(a)〜(c)]、再結晶率:78%以上、0.2%耐力:220MPa以下の両要件を満足するNb棒を作製することができなかった。
(Comparative Example 4)
The number of times of electron beam melting of Nb was set to 2 to produce ingots having oxygen and hydrogen impurity concentrations of 192 ppm and 19 ppm (higher than the ingots used in Comparative Examples 1 to 3, respectively). The ingot was subjected to cold rolling with a surface reduction ratio of 30% after hot extrusion, and a final annealing was attempted in a temperature range of 900 to 1800 ° C. for 1 to 20 hours [the following (a) to (c) The recrystallization rate: 78% or more and the 0.2% proof stress: 220 MPa or less could not be produced.

(a)1200℃で1時間の最終焼鈍
再結晶率:92%、0.2%耐力:253MPa
(b)1200℃で5時間の最終焼鈍
再結晶率:95%、0.2%耐力:243MPa
(c)1200℃で20時間の最終焼鈍
再結晶率:96%、0.2%耐力:243MPa
(A) Final annealing for 1 hour at 1200 ° C. Recrystallization rate: 92%, 0.2% yield strength: 253 MPa
(B) Final annealing at 1200 ° C. for 5 hours Recrystallization rate: 95%, 0.2% yield strength: 243 MPa
(C) Final annealing at 1200 ° C. for 20 hours Recrystallization rate: 96%, 0.2% yield strength: 243 MPa

(実施例1)
比較例1で作製したNbインゴットを熱間押出し、冷間圧延加工して押出し後の減面率が約20%以上の状態で最終形状に加工した後、約1200℃で約1時間最終焼鈍を行って、再結晶率:78%、0.2%耐力:205MPa、平均結晶粒径:63μm、平均ビッカース硬さHv:122、伸び:45%、のNb棒を作製した。
Example 1
The Nb ingot produced in Comparative Example 1 was hot-extruded, cold-rolled and processed into a final shape with an area reduction after extrusion of about 20% or more, and then subjected to final annealing at about 1200 ° C. for about 1 hour. Then, an Nb bar having a recrystallization ratio of 78%, 0.2% proof stress: 205 MPa, average crystal grain size: 63 μm, average Vickers hardness Hv: 122, and elongation: 45% was produced.

直径:67mmのCu−15%Sn−0.3%Tiインゴットに、直径:8.0mmの穴を19個空け、前記Nb棒19本を挿入して電子ビーム溶接を行い、一次スタック材用のビレットを作製した。   19 holes with a diameter of 8.0 mm are drilled in a Cu-15% Sn-0.3% Ti ingot with a diameter of 67 mm, 19 Nb bars are inserted, and electron beam welding is performed. Billets were made.

上記一次スタック材用のビレットを600℃で静水圧押出しし、途中で焼鈍を行いながら減面加工して、対辺間距離:2.5mmの断面が六角である一次スタック材に加工した。この一次スタック材を433本束ね、その外周に厚さ:0.2mmのNbシート巻き、それらを一体化して外径:67mm、内径:60mmの純銅パイプに挿入して、電子ビーム溶接を行い、二次スタック材のビレット(二次多芯ビレット)を作製した。これを600℃に加熱し、14mmの直径に熱間静水圧押出しした(押出し比22.9)。押出し後の部材の断面を観察したところ、Nb芯は全て健全に加工されていることが判明した。   The billet for the primary stack material was hydrostatically extruded at 600 ° C., and surface-reduced while annealing in the middle, and processed into a primary stack material having a cross-section with a hexagonal cross section of 2.5 mm across the distance. 433 bundles of this primary stack material, Nb sheet winding with a thickness of 0.2 mm on the outer periphery thereof, integrated them and inserted into a pure copper pipe with an outer diameter of 67 mm and an inner diameter of 60 mm, and performing electron beam welding, A billet of secondary stack material (secondary multi-core billet) was produced. This was heated to 600 ° C. and subjected to hot isostatic pressing to a diameter of 14 mm (extrusion ratio 22.9). When the cross section of the extruded member was observed, it was found that all the Nb cores were processed smoothly.

この部材を冷間引き抜き加工し、断面サイズが1.50×2.50mm2の前駆体線材を作製した。その前駆体に720℃×150時間の熱処理を行ってNb3Sn相を生成させた。熱処理後に、超電導特性を評価したところ、非銅部の臨界電流密度nonCu−Jc(=臨界電流/安定化銅を除いた部分の面積)が130A/mm2であり、n値は30であり、この温度、外部磁場の条件でNMR用線材として充分な特性を有することが確認できた。 This member was cold drawn to produce a precursor wire having a cross-sectional size of 1.50 × 2.50 mm 2 . The precursor was heat-treated at 720 ° C. for 150 hours to generate an Nb 3 Sn phase. When the superconducting properties were evaluated after the heat treatment, the critical current density of the non-copper part nonCu-Jc (= area of the part excluding critical current / stabilized copper) was 130 A / mm 2 , and the n value was 30; It was confirmed that the film had sufficient characteristics as a wire for NMR under the conditions of this temperature and external magnetic field.

(実施例2−6)
比較例1で作製したNbインゴットを用い、適当な減面率で冷間圧延加工と、適当な温度と時間で最終焼鈍を行って、下記表1に示すような各種再結晶率、0.2%耐力、平均結晶粒径、平均ビッカース硬さHvを、夫々有する各種Nb棒を作製した。
(Example 2-6)
Using the Nb ingot produced in Comparative Example 1, cold rolling with an appropriate area reduction rate and final annealing at an appropriate temperature and time, various recrystallization rates as shown in Table 1 below, 0.2 Various Nb bars having% proof stress, average crystal grain size, and average Vickers hardness Hv were prepared.

直径:67mmのCu−15%Sn−0.3%Tiインゴットに、直径:8.0mmの穴を19個空け、前記各Nb棒を19本挿入して電子ビーム溶接を行い、一次スタック材用のビレットを作製した。   For a primary stack material, 19 holes with a diameter of 8.0 mm are made in a Cu-15% Sn-0.3% Ti ingot with a diameter of 67 mm, 19 Nb bars are inserted, and electron beam welding is performed. Billet was prepared.

上記一次スタック材用のビレットを600℃で静水圧押出しし、途中で焼鈍を行いながら減面加工して、対辺間距離:2.5mmの断面が六角である一次スタック材に加工した。この一次スタック材を433本束ね、その外周に厚さ0.2mmのNbシート巻き、それらを一体化して外径:67mm、内径:60mmの純銅パイプに挿入して、電子ビーム溶接を行い、二次スタック材のビレット(二次多芯ビレット)を作製した。   The billet for the primary stack material was hydrostatically extruded at 600 ° C., and surface-reduced while annealing in the middle, and processed into a primary stack material having a cross-section with a hexagonal cross section of 2.5 mm across the distance. 433 bundles of this primary stack material are wound around the outer periphery of an Nb sheet having a thickness of 0.2 mm, and they are integrated and inserted into a pure copper pipe having an outer diameter of 67 mm and an inner diameter of 60 mm, and electron beam welding is performed. The billet (secondary multi-core billet) of the next stack material was produced.

これを600℃に加熱し、それぞれ異なる直径(実施例2−6の順に、φ13.5mm、φ13.0mm、φ12.7mm、φ12.5mm、φ12.2mm)に熱間静水圧押出しした。(押出し比は、実施例2−6の順に、24.6、26.6、27.8、28.7、30.2)。押出し後の部材の断面を観察したところ、全ての実施例でNb芯は全て健全に加工されていることが判明した。   This was heated to 600 ° C. and subjected to hot isostatic pressing to different diameters (in the order of Example 2-6, φ13.5 mm, φ13.0 mm, φ12.7 mm, φ12.5 mm, φ12.2 mm). (The extrusion ratio is 24.6, 26.6, 27.8, 28.7, 30.2 in the order of Example 2-6). Observation of the cross-section of the extruded member revealed that all the Nb cores were processed smoothly in all examples.

押出し後の各部材を冷間引き抜き加工し、断面サイズが1.50×2.50mm2の前駆体線材を作製した。その前駆体に720℃×150時間の熱処理を行ってNb3Sn相を生成させた。熱処理後に、超電導特性(臨界電流密度、n値)を評価したところ、下記表1に示すような非銅部の臨界電流密度nonCu−Jcとn値が得られ、上記温度、外部磁場の条件でNMR用線材として充分な特性を有することが確認できた。 Each member after extrusion was cold drawn to produce a precursor wire having a cross-sectional size of 1.50 × 2.50 mm 2 . The precursor was heat-treated at 720 ° C. for 150 hours to generate an Nb 3 Sn phase. When the superconducting properties (critical current density, n value) were evaluated after the heat treatment, the critical current density nonCu-Jc and n value of the non-copper part as shown in Table 1 below were obtained. It has been confirmed that it has sufficient characteristics as an NMR wire.

Figure 0005308683
Figure 0005308683

実施例1−6の順に、押出し比が高くなり、押出し条件が厳しくなっているにもかかわらず、超電導特性としては実施例1とほぼ同等か、それ以上の値が得られている。   Despite the fact that the extrusion ratio increased and the extrusion conditions became stricter in the order of Examples 1-6, the superconducting characteristics were almost the same as or higher than those of Example 1.

即ち、実施例1では、再結晶率:78%以上、0.2%耐力:220MPa以下にすることにより、押出し比が22.9でも健全な加工が可能となっているが、実施例2のようにさらに平均結晶粒径:50μm以下にすることにより、更に大きな押出し比でも、実施例1と同等以上の超電導特性を得られている。また、実施例3では、平均ビッカース硬さHvを120以下にすることにより、実施例2よりも大きな押出し比でも同等以上の超電導特性を得られていることが分かる。   That is, in Example 1, by making the recrystallization rate: 78% or more and 0.2% proof stress: 220 MPa or less, sound processing is possible even at an extrusion ratio of 22.9. In this way, by setting the average crystal grain size to 50 μm or less, superconducting characteristics equivalent to or higher than those in Example 1 can be obtained even with a larger extrusion ratio. In Example 3, it can be seen that by setting the average Vickers hardness Hv to 120 or less, superconducting characteristics equal to or higher than those in Example 2 can be obtained even at a larger extrusion ratio.

一方、実施例4では、再結晶率:93%以上、0.2%耐力:172MPa以下にすることにより、実施例1〜3よりも更に大きな押出し比でも、実施例1〜3と同等以上の超電導特性を得られている。また、実施例5では、平均結晶粒径を30μm以下にすることにより、実施例4よりも大きな押出し比で同等以上の超電導特性が得られ、実施例6では、平均ビッカース硬さHvを90以下にすることにより、実施例5よりも大きな押出し比で同等以上の超電導特性が得られていることが分かる。   On the other hand, in Example 4, recrystallization rate: 93% or more, 0.2% yield strength: 172 MPa or less, even at an extrusion ratio larger than that of Examples 1 to 3, it is equal to or more than that of Examples 1 to 3. Superconducting properties have been obtained. Moreover, in Example 5, superconducting characteristics equal to or higher than those in Example 4 can be obtained by setting the average crystal grain size to 30 μm or less. In Example 6, the average Vickers hardness Hv is 90 or less. Thus, it can be seen that superconducting characteristics equal to or higher than those obtained in Example 5 were obtained with a larger extrusion ratio.

(実施例7)
Nbの電子ビーム溶解の回数を4回として、酸素、窒素の不純物濃度が夫々10ppm、8ppmのインゴットを作製した。このNbインゴットを熱間押出し、冷間圧延加工して押出し後の減面率が約20%以上の状態で最終形状に加工した後、約1200℃で約1時間の最終焼鈍を行って、再結晶率:79%、0.2%耐力:55MPa、平均結晶粒径:61μm、平均ビッカース硬さHv:76、伸び:61%のNb棒を作製した。
(Example 7)
The number of times of Nb electron beam melting was set to 4 to produce ingots having oxygen and nitrogen impurity concentrations of 10 ppm and 8 ppm, respectively. This Nb ingot was hot-extruded, cold-rolled and processed into a final shape with an area reduction after extrusion of about 20% or more, and then subjected to final annealing at about 1200 ° C. for about 1 hour. An Nb bar having a crystal ratio of 79%, 0.2% proof stress: 55 MPa, average crystal grain size: 61 μm, average Vickers hardness Hv: 76, and elongation: 61% was prepared.

このNb棒を用い実施例1と同様にして二次スタック材のビレット(二次多芯ビレット)を作製した。これを600℃に加熱し、12.7mmの直径に熱間静水圧押出しした(押出し比27.8)。押出し後の部材の断面を観察したところ、Nb芯は全て健全に加工されていることが判明した。   Using this Nb bar, a billet of secondary stack material (secondary multi-core billet) was produced in the same manner as in Example 1. This was heated to 600 ° C. and hot isostatically extruded to a diameter of 12.7 mm (extrusion ratio 27.8). When the cross section of the extruded member was observed, it was found that all the Nb cores were processed smoothly.

この部材を冷間引き抜き加工し、断面サイズが1.50×2.50mm2の前駆体線材を作製した。その前駆体に720℃×150時間の熱処理を行ってNb3Sn相を生成した。熱処理後に、超電導特性を評価したところ、非銅部の臨界電流密度nonCu−Jcが135A/mm2、n値が32であり、この温度、外部磁場の条件でNMR用線材として充分な特性を有することが確認できた。 This member was cold drawn to produce a precursor wire having a cross-sectional size of 1.50 × 2.50 mm 2 . The precursor was heat-treated at 720 ° C. for 150 hours to generate an Nb 3 Sn phase. When the superconducting properties were evaluated after the heat treatment, the critical current density nonCu-Jc of the non-copper part was 135 A / mm 2 , and the n value was 32, and the characteristics sufficient for NMR wires under the conditions of this temperature and external magnetic field. I was able to confirm.

ブロンズ法によって製造されるNb3Sn超電導線材の二次多芯ビレット段階での断面構造を模式的に示した説明図である。The cross-sectional structure of the secondary multi-core billet stage of Nb 3 Sn superconducting wire produced by the bronze process is an explanatory view schematically showing. ブロンズ法によって製造されるNb3Sn超電導線材の二次多芯ビレット段階での断面構造の他の例を模式的に示した説明図である。Another example of a sectional structure of the secondary multi-core billet stage of Nb 3 Sn superconducting wire produced by the bronze process is an explanatory view schematically showing.

符号の説明Explanation of symbols

1 NbまたはNb基合金芯
2 Cu−Sn基合金製母材(ブロンズマトリックス)
3 拡散バリア層
4 安定化銅
5 一次スタック材
6 外層ケース
7 二次多芯ビレット
1 Nb or Nb base alloy core 2 Cu-Sn base alloy base material (bronze matrix)
3 Diffusion barrier layer 4 Stabilized copper 5 Primary stack material 6 Outer case 7 Secondary multi-core billet

Claims (6)

ブロンズ法によってNb3Sn超電導線材を製造するために用いられるNbまたはNb基合金棒であって、
軸心を通り長手方向に平行な面(縦断面)を、顕微鏡で観察したミクロ組織像より、100〜110の結晶粒を無作為に抽出し、長軸の長さを短軸の長さで除したアスペクト比(長軸の長さ/短軸の長さ)が2.5以下の結晶粒を再結晶粒とし、この再結晶粒の数を抽出した全結晶粒数で割った値を再結晶率としたとき、前記再結晶率が78%以上であり、且つ0.2%耐力の値が220MPa以下であることを特徴とするブロンズ法Nb3Sn超電導線材製造用NbまたはNb基合金棒。
A Nb or Nb-based alloy rod used for producing a Nb 3 Sn superconducting wire by a bronze method,
A plane (longitudinal section) that passes through the axis and is parallel to the longitudinal direction is randomly extracted from 100 to 110 crystal grains from the microstructure image observed with a microscope, and the length of the major axis is the length of the minor axis. Divide the crystal grains whose aspect ratio (long axis length / short axis length) is 2.5 or less into recrystallized grains, and then divide the number of recrystallized grains by the total number of extracted crystal grains. Nb or Nb-based alloy rod for producing a bronze Nb 3 Sn superconducting wire , wherein the recrystallization rate is 78% or more and the 0.2% proof stress is 220 MPa or less .
平均結晶粒径が10〜50μmである請求項1に記載のNbまたはNb基合金棒。   The Nb or Nb-based alloy rod according to claim 1, wherein the average crystal grain size is 10 to 50 µm. 外表面の平均ビッカース硬さHvが50〜120である請求項1または2に記載のNbまたはNb基合金棒。   The Nb or Nb-based alloy bar according to claim 1 or 2, wherein the outer surface has an average Vickers hardness Hv of 50 to 120. 請求項1〜3のいずれかに記載のNbまたはNb基合金棒を用い、Cu−Sn基合金と複合化して複合材とし、該複合材を押出し加工し、更に複数本を束ねて減面加工することによって線材化することを特徴とするNb3Sn超電導線材製造用前駆体の製造方法。 A Nb or Nb-based alloy rod according to any one of claims 1 to 3 is combined with a Cu-Sn-based alloy to form a composite material, the composite material is extruded, and a plurality of them are bundled to reduce the surface area. method for manufacturing a Nb 3 Sn superconducting wire precursor for manufacturing which is characterized in that the wire by that. 請求項1〜3のいずれかに記載のNbまたはNb基合金棒を用い、Cu−Sn基合金と複合化して複合材とし、該複合材を押出し加工し、更に複数本を束ねて減面加工することによって線材化したものであるNb3Sn超電導線材製造用前駆体。 A Nb or Nb-based alloy rod according to any one of claims 1 to 3 is combined with a Cu-Sn-based alloy to form a composite material, the composite material is extruded, and a plurality of them are bundled to reduce the surface area. A precursor for producing a Nb 3 Sn superconducting wire, which is made into a wire by doing so. 請求項5に記載のNb3Sn超電導線材製造用前駆体を熱処理して超電導相を形成することによって得られたものであるブロンズ法Nb3Sn超電導線材。 A bronze Nb 3 Sn superconducting wire obtained by heat-treating the precursor for producing a Nb 3 Sn superconducting wire according to claim 5 to form a superconducting phase.
JP2008018075A 2008-01-29 2008-01-29 Bronze method Nb3Sn superconducting wire production Nb or Nb-based alloy rod, Nb3Sn superconducting wire production precursor and production method thereof, and Nb3Sn superconducting wire Active JP5308683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018075A JP5308683B2 (en) 2008-01-29 2008-01-29 Bronze method Nb3Sn superconducting wire production Nb or Nb-based alloy rod, Nb3Sn superconducting wire production precursor and production method thereof, and Nb3Sn superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018075A JP5308683B2 (en) 2008-01-29 2008-01-29 Bronze method Nb3Sn superconducting wire production Nb or Nb-based alloy rod, Nb3Sn superconducting wire production precursor and production method thereof, and Nb3Sn superconducting wire

Publications (2)

Publication Number Publication Date
JP2009181744A JP2009181744A (en) 2009-08-13
JP5308683B2 true JP5308683B2 (en) 2013-10-09

Family

ID=41035559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018075A Active JP5308683B2 (en) 2008-01-29 2008-01-29 Bronze method Nb3Sn superconducting wire production Nb or Nb-based alloy rod, Nb3Sn superconducting wire production precursor and production method thereof, and Nb3Sn superconducting wire

Country Status (1)

Country Link
JP (1) JP5308683B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747597B (en) * 2022-11-23 2024-02-27 西部超导材料科技股份有限公司 NbTaHf alloy ingot and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126205A (en) * 1980-03-07 1981-10-03 Sumitomo Electric Industries Compound superconductive wire and method of producing same
JPH03247745A (en) * 1990-02-23 1991-11-05 Nippon Steel Corp Manufacture of pure niobium-rolled sheet for superconducting material
JPH07302520A (en) * 1994-05-02 1995-11-14 Sumitomo Electric Ind Ltd Manufacture of nb3sn superconductive wire
JP3063025B2 (en) * 1994-10-26 2000-07-12 古河電気工業株式会社 Nb3Sn superconducting wire and method of manufacturing the same
JP3178317B2 (en) * 1995-11-30 2001-06-18 日立電線株式会社 High strength superconducting wire
WO2001096620A2 (en) * 2000-05-22 2001-12-20 Cabot Corporation High purity niobium and products containing the same, and methods of making the same
JP4523861B2 (en) * 2005-03-10 2010-08-11 株式会社神戸製鋼所 Method for producing Nb3Sn superconducting wire
JP4034802B2 (en) * 2005-11-22 2008-01-16 株式会社神戸製鋼所 Nb or Nb-based alloy rod for production of superconducting wire and method for producing Nb3Sn superconducting wire

Also Published As

Publication number Publication date
JP2009181744A (en) 2009-08-13

Similar Documents

Publication Publication Date Title
EP2838091B1 (en) Compound superconductive wire and method for manufacturing the same
EP3128019B1 (en) Copper alloy wire material and manufacturing method thereof
KR101719889B1 (en) Copper-alloy wire rod and manufacturing method therefor
KR101719888B1 (en) Copper-alloy wire rod and manufacturing method therefor
CN111556902B (en) Aluminum alloy wire and method for manufacturing aluminum alloy wire
WO2007060819A1 (en) Nb-CONTAINING ROD-SHAPED MATERIAL FOR USE IN MANUFACTURE OF SUPERCONDUCTING WIRE AND METHOD FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE
US7476280B2 (en) Method for producing a superconductive element
JP6585519B2 (en) Precursor for producing Nb3Sn superconducting wire, and method for producing Nb3Sn superconducting wire
JP2007214002A (en) Method of manufacturing nb3sn superconductive wire rod and precursor for it
JP5308683B2 (en) Bronze method Nb3Sn superconducting wire production Nb or Nb-based alloy rod, Nb3Sn superconducting wire production precursor and production method thereof, and Nb3Sn superconducting wire
US20220205074A1 (en) Copper alloys with high strength and high conductivity, and processes for making such copper alloys
JP4527653B2 (en) Nb3Sn superconducting wire and precursor therefor
JP4723306B2 (en) Manufacturing method of Nb3Al-based superconducting wire, primary composite material for manufacturing Nb3Al-based superconducting wire and manufacturing method thereof, and multi-core composite material for manufacturing Nb3Al-based superconducting wire
JP5164815B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP2004342561A (en) Nb3sn superconductive wire
JP4652938B2 (en) Powder method Nb3Sn superconducting wire manufacturing method
JP2009004128A (en) BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF
JP5069948B2 (en) Nb or Nb-based alloy sheet for producing superconducting wire and precursor for producing superconducting wire
JP4699200B2 (en) Precursor for producing Nb3Sn superconducting wire and method for producing the same
WO2023089919A1 (en) Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire
JP2003045247A (en) Superconductive cable
US11613794B2 (en) Superconductivity stabilizing material, superconducting wire and superconducting coil
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
JP4687438B2 (en) Core wire for Nb3Sn superconducting wire, Nb3Sn superconducting wire, and manufacturing method thereof
JP5632767B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5308683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250