JP5598825B2 - Nb3Al superconducting wire manufacturing method - Google Patents

Nb3Al superconducting wire manufacturing method Download PDF

Info

Publication number
JP5598825B2
JP5598825B2 JP2013001537A JP2013001537A JP5598825B2 JP 5598825 B2 JP5598825 B2 JP 5598825B2 JP 2013001537 A JP2013001537 A JP 2013001537A JP 2013001537 A JP2013001537 A JP 2013001537A JP 5598825 B2 JP5598825 B2 JP 5598825B2
Authority
JP
Japan
Prior art keywords
wire
superconducting wire
refractory metal
manufacturing
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013001537A
Other languages
Japanese (ja)
Other versions
JP2013140801A (en
Inventor
信哉 伴野
孝夫 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2013001537A priority Critical patent/JP5598825B2/en
Publication of JP2013140801A publication Critical patent/JP2013140801A/en
Application granted granted Critical
Publication of JP5598825B2 publication Critical patent/JP5598825B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/06Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element
    • C22C47/062Pretreatment of the fibres or filaments by forming the fibres or filaments into a preformed structure, e.g. using a temporary binder to form a mat-like element from wires or filaments only
    • C22C47/068Aligning wires
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices

Description


本発明は、NbAl超伝導線材製造方法に関する。さらに詳しくは、本発明は、NbAl細線の構造を工夫し、実用化に向けて特性が改善されたNbAl超伝導線材製造する製造方法に関する。

The present invention relates to a method of manufacturing a Nb 3 Al superconductive wire. More specifically, the present invention relates to a manufacturing method for manufacturing a Nb 3 Al superconducting wire whose characteristics are improved for practical use by devising the structure of the Nb 3 Al thin wire.

現在、実用化が見込まれている高磁場特性に優れたNbAl超伝導線材は、急熱急冷・変態法と呼ばれる方法によって製造されている(特許文献1、2)。急熱急冷・変態法の概略は以下の通りである。 At present, Nb 3 Al superconducting wires excellent in high magnetic field characteristics that are expected to be put into practical use are manufactured by a method called a rapid heating / quenching / transformation method (Patent Documents 1 and 2). The outline of the rapid heating / cooling / transformation method is as follows.

(1)数十〜数百μm程度の厚さのNbシートとAlシートとをジェリーロール状に巻いた後、押出加工し、必要に応じて伸線加工して、一次線材を作製する。 (1) A Nb sheet having a thickness of about several tens to several hundreds of μm and an Al sheet are wound into a jelly roll, and then extruded and drawn as necessary to produce a primary wire.

(2)一次線材を複数本束ね、NbまたはTa管に組み込んだ後、押出加工、伸線加工を順に施し、二次複合多芯線材を作製する。 (2) A plurality of primary wires are bundled and incorporated into an Nb or Ta tube, and then subjected to extrusion and wire drawing in order to produce a secondary composite multicore wire.

(3)二次複合多芯線材を1900℃以上の温度に加熱した後、直ちに急冷却し、ジェリーロール状に拡散対を構成していたNbとAlとを反応させてNb(Al)過飽和固溶体とし、多数のNb(Al)過飽和固溶体細線を内部に有する複合多芯過飽和固溶体線材を作製する。 (3) After heating the secondary composite multifilamentary wire to a temperature of 1900 ° C. or higher, it is immediately cooled rapidly, and Nb and Al constituting the diffusion pair in the form of a jelly roll are reacted with each other to react with Nb (Al) supersaturated solid solution. And a composite multi-core supersaturated solid solution wire having a number of Nb (Al) supersaturated solid solution fine wires therein is prepared.

(4)複合多芯過飽和固溶体線材に追加熱処理を施し、Nb(Al)過飽和固溶体細線をNbAl超伝導体細線ヘ相変態させ、複合多芯構造のNbAl超伝導線材を作製する。 (4) subjecting the additional heat treatment to the composite multifilamentary supersaturated solid solution wire, Nb (Al) a supersaturated solid solution thin line Nb 3 Al superconducting thin line f-phase is transformed to produce a Nb 3 Al superconductive wire of the composite multi-core structure.

このような急熱急冷・変態法によって作製されるNbAl超伝導線材については、実用化に向けて特性のさらなる改善が急務とされている。 For the Nb 3 Al superconducting wire produced by such a rapid heating / quenching / transformation method, further improvement of characteristics is urgently required for practical use.

一つに、限界歪みの改善がある。現状、NbAl超伝導線材の損傷に至る限界歪みは実用NbSn超伝導線材に比べて小さい。極細多芯構造を有する超伝導線材は、一般に、細線径が小さいほど限界歪みが向上する傾向にある。NbAl超伝導線材は、上記の通り、極細多芯構造を有するが、細線径は100μm前後であり、限界歪みという観点からは必ずしも十分小さい値とはいえない。 One is the improvement of critical distortion. At present, the limit strain leading to damage of the Nb 3 Al superconducting wire is smaller than that of the practical Nb 3 Sn superconducting wire. In general, the superconducting wire having an ultrafine multi-core structure tends to improve the limit strain as the diameter of the fine wire is smaller. As described above, the Nb 3 Al superconducting wire has an ultrafine multi-core structure, but the diameter of the fine wire is around 100 μm, which is not necessarily a sufficiently small value from the viewpoint of limit strain.

また、上記急熱急冷・変態法によるNbAl超伝導線材の製造において、細線径を100μm以下に縮小することは、Alの硬度がNbの硬度に比べかなり低いことに起因するNb/Al複合体の加工限界に加え、製造工程の大幅な増大を招くなどの理由からきわめて困難となっている。 Further, in the production of the Nb 3 Al superconducting wire by the rapid thermal quenching / transformation method, the reduction of the fine wire diameter to 100 μm or less is caused by the fact that the hardness of Al is considerably lower than the hardness of Nb / Al composite. In addition to the processing limit of the body, it is extremely difficult for reasons such as causing a significant increase in the manufacturing process.

もう一つには、安定化材と金属マトリクスとの接合性の改善がある。急熱急冷・変態法では、上記の通り、加熱温度が1900℃以上の高温であるため、二次複合多芯線材の金属マトリクスはNbなどの高融点金属に限られており、安定化材として利用されているCuなどの良導電性材料は、融点が約1000℃と低く、急加熱急冷却処理時に蒸発してしまう。   Another is an improvement in the bondability between the stabilizer and the metal matrix. In the rapid heating / cooling / transformation method, as described above, since the heating temperature is a high temperature of 1900 ° C. or higher, the metal matrix of the secondary composite multi-core wire is limited to refractory metals such as Nb. A highly conductive material such as Cu used has a melting point as low as about 1000 ° C., and evaporates during the rapid heating and cooling process.

そこで、従来、急加熱急冷処理後に安定化材を形成する方法が数多く提案されているが、いずれも、NbAl超伝導線材の特性改善という見地に立つと、抜本的な解決策となってはいない。 Therefore, many methods for forming a stabilizing material after rapid heating and quenching have been proposed in the past. However, any of these methods is a radical solution from the standpoint of improving the characteristics of the Nb 3 Al superconducting wire. No.

たとえば、Nb(Al)過飽和固溶体の延性を利用し、急加熱急冷却処理後のNb(Al)過飽和固溶体複合多芯線材の周りに機械的にCuシートを付着させる方法が提案されている(特許文献3)。しかしながら、この方法では、CuとNb(Al)過飽和固溶体複合多芯線材のNbマトリクスの表面との間に機械的および電気的に十分に良好な界面を得ることが困難であり、また、NbAl超伝導体部分の断面積が限られるため、大電流容量化が難しいという問題がある。 For example, a method has been proposed in which a Cu sheet is mechanically attached around an Nb (Al) supersaturated solid solution composite multi-core wire after rapid heating and rapid cooling treatment using the ductility of Nb (Al) supersaturated solid solution (patent) Reference 3). However, with this method, it is difficult to obtain a sufficiently good interface mechanically and electrically between Cu and the surface of the Nb matrix of the Nb (Al) supersaturated solid solution composite multifilamentary wire, and Nb 3 Since the cross-sectional area of the Al superconductor portion is limited, there is a problem that it is difficult to increase the current capacity.

また、Nb/Al複合多芯前駆体線材の最外部ではなく、内部にCuやAgなどの安定化材を配置する内部安定化法が提案されている(特許文献4)。しかしながら、この方法では、安定化材比を増加させることが極めて困難である。それというのも、安定化材を内部に組み込むと、NbAl超伝導体部分が減少するからである。安定化材比0.3以上では、高い電流容量を有するNbAl超伝導線材を作製することは原理的に難しい。 In addition, an internal stabilization method has been proposed in which a stabilizing material such as Cu or Ag is disposed inside the Nb / Al composite multicore precursor wire instead of the outermost portion (Patent Document 4). However, with this method, it is extremely difficult to increase the stabilizing material ratio. This is because the Nb 3 Al superconductor portion is reduced when the stabilizer is incorporated inside. When the stabilizing material ratio is 0.3 or more, it is theoretically difficult to produce an Nb 3 Al superconducting wire having a high current capacity.

この他、安定化方法として、Nb(Al)過飽和固溶体複合多芯線材のNbマトリクスの表面上にCuをイオンプレーティングし、NbとCuとの間の機械的および電気的接合を改善させる方法が提案されている。しかしながら、この方法では、装置が複雑で、製造コストがかかり、また、上記方法と同様に、NbAl超伝導体部分の断面積が限られ、大電流容量化が難しい。 In addition, as a stabilization method, there is a method in which Cu is ion-plated on the surface of the Nb matrix of the Nb (Al) supersaturated solid solution composite multi-core wire to improve mechanical and electrical bonding between Nb and Cu. Proposed. However, with this method, the apparatus is complicated and expensive to manufacture, and, like the above method, the cross-sectional area of the Nb 3 Al superconductor portion is limited, and it is difficult to increase the current capacity.

特開平6−283059号公報JP-A-6-283059 特開平10−144162号公報JP-A-10-144162 特開2000−113748号公報JP 2000-1113748 A 特開2000−243158号公報JP 2000-243158 A


本発明は、以上の通りの事情に鑑みてなされたものであり、限界歪みや安定化材と金属マトリクスとの接合性などの問題を解消し、NbAl細線の構造を工夫し、実用化に向けて特性が改善されたNbAl超伝導線材製造する製造方法を提供することを課題としている。

The present invention has been made in view of the circumstances as described above, solves problems such as critical strain and bondability between the stabilizing material and the metal matrix, and devise the structure of the Nb 3 Al fine wire to put it into practical use. properties towards has an object to provide a method of producing an improved Nb 3 Al superconducting wire.


本発明のNbAl超伝導線材の製造方法は、1900℃より融点が高い高融点金属から形成された高融点金属マトリクス中にNb(Al)過飽和固溶体の細線が多数本配置された多芯構造体の複数本を束ねて金属管内に配置した後、高融点マトリックスが破壊しない程度に伸線加工を行い、高融点金属マトリクスを構成する各セル中に同様な高融点金属マトリクスが形成された重複マトリクス構造を形成させる第一工程後、熱処理して、Nb(Al)過飽和固溶体をNbAl超伝導体に変態させることを特徴としている。
本発明のNb Al超伝導線材の製造方法は、1900℃より融点が高い高融点金属から形成された高融点金属マトリクス中にNb(Al)過飽和固溶体の細線が多数本配置された多芯構造体の複数本を束ねて金属管内に配置した後、高融点マトリックスが破壊しない程度に伸線加工を行い、高融点金属マトリクスを構成する各セル中に同様な高融点金属マトリクスが形成された重複マトリクス構造を形成させる第一工程と、重複マトリクス構造を有する線材の複数本を束ねて金属管内に配置した後、伸線加工して多重マトリックス構造を形成させる第二工程とを一回以上繰り返した後、熱処理して、Nb(Al)過飽和固溶体をNb Al超伝導体に変態させることを特徴としている。

The Nb 3 Al superconducting wire manufacturing method of the present invention has a multi-core structure in which a number of fine wires of Nb (Al) supersaturated solid solution are arranged in a refractory metal matrix formed of a refractory metal having a melting point higher than 1900 ° C. After multiple bundles are bundled and placed in a metal tube, wire drawing is performed to the extent that the refractory matrix does not break, and the same refractory metal matrix is formed in each cell constituting the refractory metal matrix. After the first step of forming the matrix structure , heat treatment is performed to transform the Nb (Al) supersaturated solid solution into an Nb 3 Al superconductor.
The manufacturing method of the Nb 3 Al superconducting wire of the present invention is a multi-core structure in which a number of fine wires of Nb (Al) supersaturated solid solution are arranged in a refractory metal matrix formed from a refractory metal having a melting point higher than 1900 ° C. After multiple bundles are bundled and placed in a metal tube, wire drawing is performed to the extent that the refractory matrix does not break, and the same refractory metal matrix is formed in each cell constituting the refractory metal matrix. The first step of forming a matrix structure and the second step of bundling a plurality of wires having an overlapping matrix structure and placing them in a metal tube and then drawing them to form a multiple matrix structure were repeated one or more times. Thereafter, heat treatment is performed to transform the Nb (Al) supersaturated solid solution into an Nb 3 Al superconductor.


本発明のNbAl超伝導線材の製造方法において、好ましくは、伸線加工の減面加工率を50%以上とするとよい。
本発明のNbAl超伝導線材の製造方法において、好ましくは、熱処理温度を600℃〜1000℃とするとよい。
本発明のNb Al超伝導線材の製造方法において、好ましくは、高融点金属が、Nb、Taまたはその合金であるとよい。
本発明のNbAl超伝導線材の製造方法において、好ましくは、金属管の内、最終伸線工程で用いる金属管が常温で導電性を有する良導電性金属から形成されているとよい。
本発明のNbAl超伝導線材の製造方法において、好ましくは、高融点金属マトリクスの内外皮をなす部分がTaまたはその合金であるとよい。
本発明のNbAl超伝導線材の製造方法において、好ましくは、良導電性金属がCu、Agまたはその合金であるとよい。
本発明のNbAl超伝導線材の製造方法において、好ましくは、伸線加工をダイス引きにより行うとよい。

In the method for producing a Nb 3 Al superconducting wire of the present invention, it is preferable that the area reduction rate of wire drawing is 50% or more.
The method of manufacturing a Nb 3 Al superconducting wire of the present invention, preferably, the heat treatment temperature or equal to 600 ° C. to 1000 ° C..
In the method for producing a Nb 3 Al superconducting wire of the present invention , preferably, the refractory metal is Nb, Ta or an alloy thereof.
In the method for producing an Nb 3 Al superconducting wire of the present invention, it is preferable that the metal tube used in the final wire drawing step is made of a highly conductive metal having conductivity at room temperature.
In the method for producing a Nb 3 Al superconducting wire of the present invention, it is preferable that the portion forming the inner and outer layers of the refractory metal matrix is Ta or an alloy thereof.
In the method for producing a Nb 3 Al superconducting wire of the present invention, preferably, the highly conductive metal is Cu, Ag, or an alloy thereof.
In the method for producing a Nb 3 Al superconducting wire of the present invention, it is preferable to perform the wire drawing by dicing.

本発明によれば、超伝導細線中に微細なTaなどの高融点金属が導入された新しい構造を有するNbAl超伝導線材が提供され、このNbAl超伝導線材では超伝導細線の強度が大幅に改善されるため、NbAl超伝導線材が損傷に至る限界歪みを大幅に改善することができる。 According to the present invention, there is provided an Nb 3 Al superconducting wire having a new structure in which a refractory metal such as fine Ta is introduced into the superconducting thin wire. In this Nb 3 Al superconducting wire, the strength of the superconducting thin wire is provided. Is greatly improved, the critical strain that causes damage to the Nb 3 Al superconducting wire can be greatly improved.

また、本発明によれば、限界歪みが大幅に改善されたNbAl超伝導線材を特殊な設備などを付加することなく製造することができる。 Further, according to the present invention, it is possible to manufacture an Nb 3 Al superconducting wire material whose critical strain is greatly improved without adding special equipment.

さらに、本発明によれば、高融点金属マトリクスを構成する各セル中に同様な高融点金属マトリクスが形成された重複マトリクス構造を有し、最小のセル中にNbAl細線が位置し、NbAl超伝導線材の外周に常温で導電性を有する良導電性金属層が形成された新しい構造を有するNbAl超伝導線材が提供される。このNbAl超伝導線材では、安定化材としての良導電性金属と高融点金属マトリクスとの間で良好な電気的および機械的界面が形成されるため、NbAl超伝導線材における安定化材と高融点金属マトリクスとの接合性が改善される。 Furthermore, according to the present invention, each cell constituting the refractory metal matrix has an overlapping matrix structure in which the same refractory metal matrix is formed, and the Nb 3 Al fine wire is located in the smallest cell. Nb 3 Al superconducting wire having the outer periphery of the 3 Al superconductive wire a new structure highly conductive metal layer is formed having a conductivity at room temperature is provided. In this Nb 3 Al superconducting wire, since a good electrical and mechanical interface is formed between the highly conductive metal as the stabilizing material and the refractory metal matrix, the stabilization in the Nb 3 Al superconducting wire Bondability between the material and the refractory metal matrix is improved.

さらにまた、本発明によれば、安定化材と高融点金属マトリクスとの接合性が改善されたNbAl超伝導線材を製造することができる。 Furthermore, according to the present invention, it is possible to manufacture an Nb 3 Al superconducting wire in which the bonding property between the stabilizing material and the refractory metal matrix is improved.

したがって、本発明によれば、実用化に向けて特性が改善されたNbAl超伝導線材製造方法が提供される。
Therefore, according to the present invention, Nb 3 Al manufacturing method of a superconducting material properties for practical use has been improved is provided.

本発明に関連する一実施例を示すNbAl超伝導線材の横断面を模式的に示した概略図である。The cross section of the Nb 3 Al superconductive wire showing an embodiment relating to the present invention is a schematic diagram schematically showing. 本発明に関連する一実施例を示すNbAl超伝導線材の製造方法の概要を示した流れ図である。Description of Nb 3 Al manufacturing method of a superconducting material showing an embodiment relating to the present invention is a flow diagram illustrating. 本発明の一実施例を示すNbAl超伝導線材の横断面を模式的に示した概略図である。The cross section of the Nb 3 Al superconductive wire showing one embodiment of the present invention is a schematic diagram schematically showing. 本発明の一実施例を示すNbAl超伝導線材の製造方法の概要を例示した工程図である。It is a process diagram illustrating an outline of a manufacturing method of the Nb 3 Al superconductive wire showing one embodiment of the present invention. 実施例1で用いた急熱急冷装置の構成を模式的に示した概略図である。It is the schematic which showed typically the structure of the rapid heating rapid cooling apparatus used in Example 1. FIG. a、bは、それぞれ、実施例1で得られたNbAl超伝導線材の断面像を示した図である。a and b are cross-sectional images of the Nb 3 Al superconducting wire obtained in Example 1, respectively. 曲げ治具にNbAl超伝導線材を挟み込んだ状態を示した図である。A bending jig is a diagram showing a state in which sandwich the Nb 3 Al superconductive wire. aは、歪み0.52%が加えられたときの比較線材の長手方向縦断面像を示した図であり、bは、歪み0.83%が加えられたときの実施例1で得られたNbAl超伝導線材の長手方向縦断面像を示した図を示した図である。a is a view showing a longitudinal cross-sectional image of a comparative wire when a strain of 0.52% is applied, and b is obtained in Example 1 when a strain of 0.83% is applied. nb 3 Al is a diagram illustrating a diagram illustrating a longitudinal vertical sectional image of a superconducting material. 左図は実施例2で得られたNbAl超伝導線材Cの断面像を示した図であり、右図はその部分拡大図である。The left figure is a diagram showing a cross-sectional image of the Nb 3 Al superconducting wire C obtained in Example 2, and the right figure is a partially enlarged view thereof. aは、実施例2においてNb(Al)過飽和固溶体複合多芯線材Bに曲げ歪みを加えたときの状態を示した図であり、bは、比較線材Dの状態を示した図である。a is the figure which showed the state when bending distortion was added to the Nb (Al) supersaturated solid solution composite multi-core wire B in Example 2, and b is the figure which showed the state of the comparison wire D. FIG. 実施例2で得られたNbAl超伝導線材Cと比較線材Dの臨界電流密度特性を示した図である。FIG. 5 is a diagram showing critical current density characteristics of Nb 3 Al superconducting wire C and comparative wire D obtained in Example 2.

1 NbAl超伝導線材
2 良導電性金属
3、30 高融点金属
4 NbAl細線
10 セル
20 最小のセル
1 Nb 3 Al superconducting wire 2 Good conductive metal 3, 30 refractory metal 4 Nb 3 Al fine wire 10 cell 20 smallest cell

本発明に関連する一実施例を示すNbAl超伝導線材は、金属マトリクス中にNbAl細線が多数本配置された多芯構造を有し、NbAl細線中に、Nb、Alの両融点より融点が高く、かつNbAl細線の太さに比べ極細いファイバー状の高融点金属が、長手方向を線心方向に沿わせた状態で分散配置している構造を有するNbAl超伝導線材である。 An Nb 3 Al superconducting wire showing an embodiment related to the present invention has a multi-core structure in which a large number of Nb 3 Al fine wires are arranged in a metal matrix, and Nb 3 Al fine wires are arranged in Nb 3 Al fine wires. Nb 3 Al having a structure in which melting points higher than both melting points and a fiber-like refractory metal that is extremely thin compared to the thickness of the Nb 3 Al fine wire are dispersedly arranged in a state in which the longitudinal direction is aligned with the wire center direction. Superconducting wire.

具体的には、上記NbAl超伝導線材では、図1に示したように、横断面において、厚さ100nm〜1μmの高融点金属ファイバーが、NbAl細線中に、半径方向に100nm〜20μmの範囲内の間隔で、また、周方向に連続的にまたは20μmの範囲内の間隔で分散配置している。高融点金属ファイバーは、横断面では面積は微小であるものの、ほぼ層状に存在し、また、NbAl超伝導線材の線心方向に連続的または断続的に分布している。つまり、NbAl超伝導線材では、高融点金属ファイバーによってNbAl細線が実効的に分割されており、NbAl細線に生じうる微細なクラックの発生および進展を抑制し、NbAl超伝導線材が損傷に至る限界歪みを大幅に改善させている。図1に示したNbAl超伝導線材では、NbAl細線は19本であるが、NbAl細線の本数は十数本〜数百本程度とすることができる。 Specifically, in the Nb 3 Al superconducting wire, as shown in FIG. 1, the refractory metal fiber having a thickness of 100 nm to 1 μm in the transverse cross section is 100 nm to 100 nm in the radial direction in the Nb 3 Al thin wire. They are distributed at intervals in the range of 20 μm, continuously in the circumferential direction, or at intervals in the range of 20 μm. Although the area of the refractory metal fiber is small in cross section, it exists in a layered manner and is distributed continuously or intermittently in the direction of the core of the Nb 3 Al superconducting wire. That is, in the Nb 3 Al superconducting wire, the Nb 3 Al fine wire is effectively divided by the high melting point metal fiber, and the generation and progress of fine cracks that can occur in the Nb 3 Al fine wire are suppressed, and the Nb 3 Al super wire is suppressed. The critical strain that leads to damage to the conductive wire is greatly improved. In Nb 3 Al superconducting wire shown in FIG. 1, Nb 3 Al thin line is a nineteen, the number of Nb 3 Al thin wire may be a dozen to several hundred or so.

図1に例示されるような本発明に関連する一実施例を示すNbAl超伝導線材は、本発明に関連する一実施例を示すNbAl超伝導線材の製造方法によって製造することができ、本発明に関連する一実施例を示すNbAl超伝導線材の製造方法によれば、限界歪みの改善に加え、高い化学量論組成を有するNbAl超伝導相が得られ、より優れた超伝導特性を有するNbAl超伝導線材が実現される。 An Nb 3 Al superconducting wire showing an embodiment related to the present invention as illustrated in FIG. 1 may be manufactured by a method of manufacturing an Nb 3 Al superconducting wire showing an embodiment related to the present invention. In addition, according to the method of manufacturing an Nb 3 Al superconducting wire showing an embodiment related to the present invention, an Nb 3 Al superconducting phase having a high stoichiometric composition can be obtained in addition to the improvement of the limit strain. An Nb 3 Al superconducting wire having excellent superconducting properties is realized.

本発明に関連する一実施例を示すNbAl超伝導線材の製造方法では、Nbシート、AlシートおよびNb、Alの両融点より融点が高い高融点金属のシートを重ねて巻き、ジェリーロール複合材を得、ジェリーロール複合材を伸線加工して一次線材を得、一次線材の複数本を束ねて金属管内に配置した後、高融点金属がファイバー状に分散するように伸線加工し、次いで加熱してNb(Al)過飽和固溶体を生成させた後、直ちに急冷却し、再度加熱してNb(Al)過飽和固溶体をNbAl超伝導体に変態させる。 In a method of manufacturing an Nb 3 Al superconducting wire showing an embodiment related to the present invention, a Nb sheet, an Al sheet, and a sheet of a refractory metal having a melting point higher than both melting points of Nb and Al are stacked and wound, After obtaining a wire, drawing a jelly roll composite material to obtain a primary wire, bundling a plurality of primary wires and placing them in a metal tube, the wire is drawn so that the refractory metal is dispersed in a fiber shape, Next, after heating to produce a Nb (Al) supersaturated solid solution, it is immediately cooled rapidly and heated again to transform the Nb (Al) supersaturated solid solution into a Nb 3 Al superconductor.

具体的には、図2に示したように、Nb、Alおよび高融点金属のシートを重ねて巻き、ジェリーロール複合材を得、ジェリーロール複合材を伸線加工し、その複数本を束ね、金属マトリクスを構成する金属管内に挿入、配置し(スタッキング)、伸線加工した後、1900℃以上かつ高融点金属の融点未満の温度に加熱し、Nb(Al)過飽和固溶体を生成させた後、直ちに急冷却し(急熱急冷処理)、再度600℃〜1000℃の温度に加熱してNb(Al)過飽和固溶体をNbAl超伝導体に変態させる(追加熱処理)。 Specifically, as shown in FIG. 2, a sheet of Nb, Al and a refractory metal is overlapped and wound to obtain a jelly roll composite, the jelly roll composite is drawn, and a plurality of the bundles are bundled. After being inserted into a metal tube constituting the metal matrix, arranged (stacking), and drawn, after heating to a temperature of 1900 ° C. or higher and lower than the melting point of the refractory metal, an Nb (Al) supersaturated solid solution was generated, Immediately cool down (rapid heat quenching treatment) and heat again to a temperature of 600 ° C. to 1000 ° C. to transform the Nb (Al) supersaturated solid solution into Nb 3 Al superconductor (additional heat treatment).

NbおよびAlには、純Nb、純Alまたは急熱急冷・変態法により形成されるNbAl超伝導体の超伝導特性を損なうことのない組成を有するNb合金またはAl合金を用いることができる。 Nb and Al may be pure Nb, pure Al, or an Nb alloy or Al alloy having a composition that does not impair the superconducting properties of the Nb 3 Al superconductor formed by the rapid thermal quenching / transformation method. .

高融点金属には、伸線加工が可能で、Nb、Alの両融点より融点が高く、NbとAlとを合金化させる際の熱処理温度においてもNbAl細線中にファイバー状に存在することのできる各種の金属または合金を採用することができる。具体的には、Taまたはその合金が好適に例示され、Taまたはその合金は、高融点材料であり、また、NbおよびAlとの反応性が低い。したがって、1900℃以上融点未満の高温からの急熱急冷処理においてもNbAl細線中でファイバー状を維持することができ、Nb/Alの反応に与える影響が小さい。 Refractory metals can be drawn, have melting points higher than the melting points of Nb and Al, and exist in the form of fibers in the Nb 3 Al fine wire even at the heat treatment temperature when alloying Nb and Al. Various metals or alloys that can be used can be employed. Specifically, Ta or an alloy thereof is preferably exemplified, and Ta or an alloy thereof is a high melting point material and has low reactivity with Nb and Al. Therefore, even in the rapid thermal quenching process from a high temperature of 1900 ° C. or higher and lower than the melting point, the fiber shape can be maintained in the Nb 3 Al fine wire, and the influence on the Nb / Al reaction is small.

上記のNb、Alおよび高融点金属は、所定の大きさおよび厚さのシートとして使用される。   The Nb, Al, and refractory metal are used as a sheet having a predetermined size and thickness.

ジェリーロール複合材を伸線加工して作製した一次線材の複数本を束ね、金属管内に配置し、高融点金属がファイバー状に分散するように伸線加工して作製した伸線加工後の複合多芯前駆体線材におけるNbとAlの体積比(Nb/Al)は、2.5〜3.5程度の範囲を好ましいものとして例示することができる。高融点金属の割合は、厳密には規定されないが、NbAl細線中において体積率で40%以下とすることが好ましい。高融点金属の体積率が増加するにつれてNbAl細線中のNbAl超伝導体部が減少し、得られるNbAl超伝導線材の通電電流特性が低下するのを抑制するためである。また、複合多芯前駆体線材における高融点金属の形状およびサイズについてもファイバー状である限り厳密に規定されないが、直径または厚さは100nm以上1μm以下であることが好ましい。直径または厚さが100nm未満であると、急加熱急冷処理においてNbまたはAlと容易に反応してしまい、NbAl細線が変質し、1μmを超えると、NbAl細線中におけるNbAl超伝導体部が著しく減少し、いずれの場合もNbAl超伝導線材の超伝導特性が低下する恐れがある。 A composite after wire drawing made by bundling a plurality of primary wires made by drawing a jelly roll composite material, placing them in a metal tube, and drawing them so that the refractory metal is dispersed in a fiber shape. The volume ratio of Nb to Al (Nb / Al) in the multicore precursor wire can be exemplified as a preferable range of about 2.5 to 3.5. The ratio of the refractory metal is not strictly defined, but is preferably 40% or less by volume in the Nb 3 Al fine wire. This is because the Nb 3 Al superconductor portion in the Nb 3 Al fine wire decreases as the volume fraction of the refractory metal increases, and the current-carrying current characteristics of the obtained Nb 3 Al superconductive wire are suppressed from decreasing. Further, the shape and size of the refractory metal in the composite multicore precursor wire is not strictly defined as long as it is fiber-like, but the diameter or thickness is preferably from 100 nm to 1 μm. If the diameter or the thickness is less than 100 nm, will readily react with Nb or Al in rapid heating and quenching treatment, Nb 3 Al thin wire is altered, it exceeds 1 [mu] m, Nb 3 Al than in Nb 3 Al thin line The conductor portion is significantly reduced, and in any case, the superconducting properties of the Nb 3 Al superconducting wire may be deteriorated.

複合多芯前駆体線材において、ファイバー状の高融点金属が、NbAl細線中に、半径方向に100nm〜20μmの範囲内の間隔で、また、周方向に連続的にまたは20μmの範囲内の間隔で分散配置させるようにするのが好ましい。このようなファイバー状の高融点金属の分散配置が得られるように、前工程のジェリーロール複合材の作製に使用するNb、Alおよび高融点金属のシートの厚さなどの形状や伸線加工の条件などを適宜設定する。100nm以上の間隔は、NbAl細線を実効的に分割することのできる距離であるとともに、NbAl細線に対する高融点金属の割合を抑えるのに有効となる。一方、20μm超の間隔で高融点金属を導入することは、製造上難しいと考えられる。 In the composite multi-core precursor wire, the fiber-like refractory metal is dispersed in the Nb 3 Al fine wire at intervals in the range of 100 nm to 20 μm in the radial direction and continuously in the circumferential direction or in the range of 20 μm. It is preferable to disperse them at intervals. In order to obtain such a dispersive arrangement of fiber-like refractory metals, shapes such as the thickness of Nb, Al and refractory metal sheets used in the preparation of the jelly roll composite material in the previous process, and wire drawing Set conditions as appropriate. Interval of at least 100nm, along a distance which can be split Nb 3 Al thin wires effectively, it is effective for suppressing the proportion of high-melting metal to the Nb 3 Al thin line. On the other hand, it is considered difficult to manufacture the refractory metal at intervals exceeding 20 μm.

NbAl超伝導線材の金属マトリクスは、一次線材の複数本が束ねられて内部に挿入、配置される金属管により形成されるが、金属管を形成する金属には、電気伝導度が高く、NbAl超伝導線材を安定化させることができる、常温で導電性を有する金属が適用可能である。具体的には、Nb、Ta、Cu、Agまたはそれらの合金を使用することができる。なお、後工程で1900℃以上の高温に加熱する場合には、Nb、Taまたはこれらの合金が例示される。一方、NbAl超伝導線材の製造は、たとえば、特開平9−204826号公報、特開平6−260040号公報などに開示されているような全製造工程を1000℃以下の温度での拡散反応により行うこともできる。この場合、金属管には、融点が約1000℃のCu、Agまたはそれらの合金も使用可能である。ただし、拡散反応を利用するNbAl超伝導線材の製造では、化学両論組成の高いNbAl相を得るのが難しいという難点がある。 The metal matrix of the Nb 3 Al superconducting wire is formed by a metal tube in which a plurality of primary wires are bundled and inserted and arranged inside, but the metal forming the metal tube has high electrical conductivity, A metal having conductivity at room temperature, which can stabilize the Nb 3 Al superconducting wire, is applicable. Specifically, Nb, Ta, Cu, Ag, or an alloy thereof can be used. In the case of heating to a high temperature of 1900 ° C. or higher in the subsequent process, Nb, Ta or an alloy thereof is exemplified. On the other hand, the production of the Nb 3 Al superconducting wire is carried out by, for example, performing a diffusion reaction at a temperature of 1000 ° C. or less as disclosed in Japanese Patent Laid-Open Nos. 9-204826 and 6-260040. Can also be performed. In this case, Cu, Ag or an alloy thereof having a melting point of about 1000 ° C. can be used for the metal tube. However, in the production of a Nb 3 Al superconducting wire using a diffusion reaction, there is a difficulty that it is difficult to obtain an Nb 3 Al phase having a high stoichiometric composition.

金属マトリクス比は、急熱急冷処理を施すまたは拡散反応を利用するいずれの場合にも、得られるNbAl超伝導線材の横断面において、NbAl細線の断面積に対して0.5〜2の割合となるよう調整することが好ましい。金属マトリクス比が0.5より小さいと伸線加工が困難となり、2を超えるとNbAl超伝導線材の電流密度が低下するために現実的でない。 The metal matrix ratio is 0.5 to 0.5 with respect to the cross-sectional area of the Nb 3 Al fine wire in the transverse cross section of the obtained Nb 3 Al superconducting wire in any case where the rapid heating and quenching treatment is performed or the diffusion reaction is used. It is preferable to adjust the ratio to 2. If the metal matrix ratio is less than 0.5, wire drawing is difficult, and if it exceeds 2, the current density of the Nb 3 Al superconducting wire decreases, which is not realistic.

急熱急冷処理は、複合多芯前駆体線材に対し、1900℃以上高融点金属の融点未満の温度に加熱し、NbとAlとを反応させてNb(Al)過飽和固溶体を生成させた後、直ちに急冷却することにより行われる。急熱急冷処理後は、再度600℃〜1000℃で追加熱処理し、Nb(Al)固溶体をNbAl超伝導体に変態させる。 The rapid heating and quenching treatment is performed by heating the composite multi-core precursor wire to a temperature of 1900 ° C. or higher and lower than the melting point of the refractory metal, and reacting Nb and Al to generate an Nb (Al) supersaturated solid solution. Immediately cooled quickly. After the rapid heating and quenching treatment, additional heat treatment is performed again at 600 ° C. to 1000 ° C. to transform the Nb (Al) solid solution into an Nb 3 Al superconductor.

急熱急冷処理において加熱温度を1900℃以上高融点金属の融点未満の温度とするのは、到達温度が1900℃未満であると、NbAl相が直接生成してしまい、Nb(Al)固溶体が生成しないためである。高温で直接生成されたNbAl相は、結晶粒径が大きく、優れた超伝導特性を示さず、実用的でない。加熱温度が高融点金属の融点以上となると、高融点金属が融解してしまい、ファイバー状の高融点金属の上記の通りの分散配置が実現されない。追加熱処理の温度範囲を600℃〜1000℃とするのは、600℃未満で変態させると、NbAl相の規則化が難しくなり、1000℃を超える温度で熱処理すると、望ましくない相、たとえばNbAl相の生成が促進されて特性が劣化してしまうなどのためである。なお、上記の温度範囲は厳密に限定されるものではなく、誤差を含め、多少の増減は許容される。 In the rapid thermal quenching process, the heating temperature is set to 1900 ° C. or higher and lower than the melting point of the refractory metal. If the ultimate temperature is lower than 1900 ° C., the Nb 3 Al phase is directly generated, and the Nb (Al) solid solution Is not generated. The Nb 3 Al phase produced directly at high temperature has a large crystal grain size, does not exhibit excellent superconducting properties, and is impractical. When the heating temperature is equal to or higher than the melting point of the refractory metal, the refractory metal is melted, and the dispersive arrangement of the fiber-like refractory metal as described above is not realized. The temperature range of the additional heat treatment is set to 600 ° C. to 1000 ° C. When the transformation is performed at a temperature lower than 600 ° C., it becomes difficult to order the Nb 3 Al phase, and when the heat treatment is performed at a temperature exceeding 1000 ° C., an undesirable phase, for example, Nb 2 This is because the generation of Al phase is promoted and the characteristics deteriorate. Note that the above temperature range is not strictly limited, and a slight increase or decrease including an error is allowed.

追加熱処理後、本発明に関連する一実施例を示す、限界歪みが大幅に改善されたNbAl超伝導線材が得られる。 After the additional heat treatment, an Nb 3 Al superconducting wire with greatly improved critical strain is obtained, which represents an embodiment related to the present invention.

本発明の一実施例を示すNbAl超伝導線材は、Nb、Alの両融点より融点が高い高融点金属から形成された高融点金属マトリクス中にNbAl細線が多数本配置された多芯構造を有し、高融点金属マトリクスを構成する各セル中に同様な高融点金属マトリクスが形成された重複マトリクス構造を有し、最小のセル中にNbAl細線が位置し、NbAl超伝導線材の外周に常温で導電性を有する良導電性金属層が形成されているNbAl超伝導線材である。 An Nb 3 Al superconducting wire showing an embodiment of the present invention has a large number of Nb 3 Al thin wires arranged in a refractory metal matrix formed of a refractory metal having a melting point higher than both melting points of Nb and Al. Each cell constituting the refractory metal matrix has a core structure and has an overlapping matrix structure in which the same refractory metal matrix is formed. Nb 3 Al fine wires are located in the smallest cell, and Nb 3 Al This is a Nb 3 Al superconducting wire in which a highly conductive metal layer having conductivity at room temperature is formed on the outer periphery of the superconducting wire.

具体的には、上記NbAl超伝導線材は、図3に示したように、良導電性金属2の層の内側の領域が高融点金属3を介して複数のセル10に区分され、各セル10内が、高融点金属30によりさらにセル状に多数に区切られた、あたかも各セル10の中に、さらにセル20が存在するような重複セル構造を有している。そして、最小のセル20中にNbAl細線4が位置しているまたは最小のセル20がNbAl細線4である。重複度合いを二重、三重、四重とすることに何ら困難性はない。NbAl超伝導線材1の直径が大きい場合は、重複度合いを多くし、1本のNbAl細線4自体の太さを太くすることなく、NbAl超伝導線材1を太くすることが可能である。 Specifically, in the Nb 3 Al superconducting wire, as shown in FIG. 3, the region inside the layer of the highly conductive metal 2 is divided into a plurality of cells 10 via the refractory metal 3. The inside of the cell 10 is further divided into a large number of cells by the refractory metal 30 and has an overlapping cell structure as if the cell 20 exists in each cell 10. The Nb 3 Al fine wire 4 is located in the smallest cell 20 or the smallest cell 20 is the Nb 3 Al fine wire 4. There is no difficulty in setting the degree of overlap to double, triple, or quadruple. When the diameter of the Nb 3 Al superconducting wire 1 is large, the degree of overlap is increased, and the Nb 3 Al superconducting wire 1 can be thickened without increasing the thickness of one Nb 3 Al thin wire 4 itself. Is possible.

このようなNbAl超伝導線材1におけるNbAl細線4の直径(最大径)は、20μm以下、たとえば10μm程度と、従来に比べて大幅に縮小されたものとして実現することができる。NbAl細線4は、NbAl超伝導線材として機能する各種のものを採用することができる。好ましくは、Nb−22〜28at%Al程度の範囲の組成を有するもの、さらに好ましくは、化学量論組成であるNb−25at%Alの組成にできるだけ近いものが例示される。具体的には、本発明に関連する一実施例を示すNbAl超伝導線材と同様な、Nb、Alの両融点より融点が高く、かつNbAl細線の太さに比べ極細いファイバー状の高融点金属が、長手方向を線心方向に沿わせた状態で分散配置されたNbAl細線が例示される。 Such Nb 3 Al superconductive wire 1 in the Nb 3 Al thin wires 4 diameter (maximum diameter) can be realized 20μm or less, and for example 10μm approximately, as having been significantly reduced as compared with the prior art. As the Nb 3 Al thin wire 4, various types that function as an Nb 3 Al superconducting wire can be adopted. Preferably, those having a composition in the range of about Nb-22 to 28 at% Al, more preferably those having a composition as close as possible to the composition of Nb-25 at% Al, which is a stoichiometric composition, are exemplified. Specifically, similar to the Nb 3 Al superconducting wire showing one embodiment related to the present invention, the melting point is higher than both melting points of Nb and Al, and is extremely thin compared to the thickness of the Nb 3 Al thin wire. Nb 3 Al fine wires in which the refractory metal is distributed in a state where the longitudinal direction is aligned with the direction of the wire center are exemplified.

高融点金属3は、NbAl細線4を区分する役割を果たし、後述の製造工程を考慮して、伸線加工が可能で、急加熱急冷却処理においてNb(Al)過飽和固溶体の反応に与える影響が小さい金属が好適である。そのような金属として、融点が1900℃より高い高融点金属が例示され、具体的には、Nb、Taまたはその合金が例示される。なお、セル10を区分する高融点金属3とNbAl細線4を区分する高融点金属30とは、同一でも相違してもよい。高融点金属3、30のNbAl細線4に対する合計の体積比は、0.5〜2.0程度が例示される。加工上高融点金属の体積比を0.5以上とすることが好ましいが、体積比が2.0を超えると、NbAl細線4の割合が減少するため、電流密度が低下する。 The refractory metal 3 plays a role of dividing the Nb 3 Al thin wire 4 and can be drawn in consideration of the manufacturing process described later, and is given to the reaction of the Nb (Al) supersaturated solid solution in the rapid heating and rapid cooling process. A metal having a small influence is preferred. As such a metal, a refractory metal having a melting point higher than 1900 ° C. is exemplified, and specifically, Nb, Ta or an alloy thereof is exemplified. The refractory metal 3 that separates the cells 10 and the refractory metal 30 that separates the Nb 3 Al fine wires 4 may be the same or different. The total volume ratio of the refractory metals 3 and 30 to the Nb 3 Al fine wires 4 is exemplified by about 0.5 to 2.0. Although the volume ratio of the refractory metal is preferably 0.5 or more in terms of processing, when the volume ratio exceeds 2.0, the ratio of the Nb 3 Al fine wires 4 decreases, and thus the current density decreases.

良導電性金属2は、NbAl超伝導線材1において安定化材として機能するものであり、電気伝導性の高い金属またはその合金を用いることができる。具体的には、優れた導電性を持つCu、Agまたはその合金が例示される。NbAl超伝導線材1における良導電性金属2の体積比は高く設定することができる。良導電性金属2の体積比は、用途によって必要量が変化するため、明確に限定されるものではないが、良導電性金属2以外の部分に対する体積比として、0.3以上とすることができ、伸線加工上好ましい値として、たとえば0.5以上、より好適には0.7以上が例示される。なお、たとえば加速器用マグネットに用いる場合には、1.0以上とすることも可能である。良導電性金属2の良導電性金属2以外の部分に対する体積比の上限は、応用機器から要求される電流密度の仕様に応じて適宜設定することができる。良導電性金属2の体積比が大きくなると、その分NbAl超伝導線材1の電流容量が減少する。一応の目安として上限は2が例示される。 The highly conductive metal 2 functions as a stabilizing material in the Nb 3 Al superconducting wire 1, and a metal having high electrical conductivity or an alloy thereof can be used. Specifically, Cu, Ag, or an alloy thereof having excellent conductivity is exemplified. The volume ratio of the highly conductive metal 2 in the Nb 3 Al superconducting wire 1 can be set high. The volume ratio of the highly conductive metal 2 is not specifically limited because the required amount varies depending on the application, but the volume ratio with respect to the portion other than the highly conductive metal 2 may be 0.3 or more. For example, 0.5 or more, more preferably 0.7 or more is exemplified as a preferable value for wire drawing. For example, when it is used for an accelerator magnet, it may be 1.0 or more. The upper limit of the volume ratio of the good conductive metal 2 to the portion other than the good conductive metal 2 can be set as appropriate according to the specification of the current density required from the application equipment. As the volume ratio of the highly conductive metal 2 increases, the current capacity of the Nb 3 Al superconducting wire 1 decreases accordingly. The upper limit is exemplified as a temporary guide.

なお、NbAl超伝導線材1の径や所望の特性、さらに製造上の制約にもよるため一概には言えないが、セル10は、直径が20μm〜200μm程度の大きさとすることができ、最小のセル20の直径は20μm以下とすることができる。また、セル10は、高融点金属3によりたとえば19〜130区画程度に、また、最小のセル20は、高融点金属30により19〜300区画程度に区切ることができる。この場合、NbAl細線4は、NbAl超伝導線材1中に300〜39000本程度配置される。 Note that the cell 10 can have a diameter of about 20 μm to 200 μm, although it cannot be generally stated because it depends on the diameter and desired characteristics of the Nb 3 Al superconducting wire 1 and manufacturing restrictions. The diameter of the smallest cell 20 can be 20 μm or less. Further, the cell 10 can be divided into, for example, about 19 to 130 sections by the refractory metal 3, and the smallest cell 20 can be divided into about 19 to 300 sections by the refractory metal 30. In this case, about 300 to 39000 Nb 3 Al thin wires 4 are arranged in the Nb 3 Al superconducting wire 1.

また、NbAl超伝導線材1では、セル10間の高融点金属3の平均厚さと最小のセル20間の高融点金属30の平均厚さとが異なり、高融点金属3より高融点金属30の平均厚さが薄い。最小のセル20間の高融点金属30については、厚さを非常に薄くすることが可能であり、高融点金属30を非常に薄くかつ高密度化することで、臨界電流密度の向上に関わる磁束のピンニングセンターとしての効果が期待される。そのような高融点金属30の平均厚さ、特にNbAl細線4により形成されている場合の最小のセル20の隔壁としての平均厚さは、2μm以下が例示される。 Further, in the Nb 3 Al superconducting wire 1, the average thickness of the refractory metal 3 between the cells 10 and the average thickness of the refractory metal 30 between the smallest cells 20 are different, and the refractory metal 30 is higher than the refractory metal 3. The average thickness is thin. The thickness of the refractory metal 30 between the smallest cells 20 can be made very thin. By making the refractory metal 30 very thin and high in density, the magnetic flux involved in improving the critical current density. The effect as a pinning center is expected. The average thickness of such a refractory metal 30, particularly the average thickness as a partition of the smallest cell 20 in the case where it is formed by the Nb 3 Al thin wire 4, is 2 μm or less.

セル10および最の小セル20は、図3では、略円形に図示されているが、実際のNbAl超伝導線材1では、横断面形状は円形または略円形に限定されることなく、たとえば多角形状、星型形状またはそれらが崩れた形状などであってよい。一方、NbAl超伝導線材1の横断面形状は、円形または略円形状とすることが好適であるが、これに限定されない。 Although the cell 10 and the smallest cell 20 are illustrated in a substantially circular shape in FIG. 3, in the actual Nb 3 Al superconducting wire 1, the cross-sectional shape is not limited to a circular shape or a substantially circular shape. It may be a polygonal shape, a star shape, or a shape in which they are broken. On the other hand, the cross-sectional shape of the Nb 3 Al superconducting wire 1 is preferably circular or substantially circular, but is not limited thereto.

上記の通りの本発明の一実施例を示すNbAl超伝導線材は、たとえば臨界温度17K以上のものとして実現される。 Nb 3 Al superconductive wire showing one embodiment of the present invention as described above is implemented, for example, as more than the critical temperature 17K.

本発明の一実施例を示すNbAl超伝導線材は、本発明の一実施例を示すNbAl超伝導線材の製造方法によって製造することができる。本発明の一実施例を示すNbAl超伝導線材の製造方法では、Nb、Alの両融点より融点が高い高融点金属から形成された高融点金属マトリクス中にNb(Al)過飽和固溶体の細線が多数本配置された多芯構造体の複数本を束ねて金属管内に配置した後、高融点マトリックスが破壊しない程度に伸線加工を行い、高融点金属マトリクスを構成する各セル中に同様な高融点金属マトリクスが形成された重複マトリクス構造を形成させる第一工程と、重複マトリクス構造を有する線材の複数本を束ねて金属管内に配置した後、伸線加工して多重マトリックス構造を形成させる第二工程とを一回以上繰り返した後、または第二工程を行わずに熱処理して、Nb(Al)過飽和固溶体をNbAl超伝導体に変態させる。本発明の一実施例を示すNbAl超伝導線材の製造方法では、従来法において追加熱処理される状態のNb(Al)過飽和固溶体複合多芯線材を再度束ねて伸線加工を施すのである。 The Nb 3 Al superconducting wire showing one embodiment of the present invention can be manufactured by the method for manufacturing the Nb 3 Al superconducting wire showing one embodiment of the present invention. In the method of manufacturing an Nb 3 Al superconducting wire showing one embodiment of the present invention, a thin wire of Nb (Al) supersaturated solid solution in a refractory metal matrix formed from a refractory metal having a melting point higher than both melting points of Nb and Al. After bundled a plurality of multi-core structures arranged in a metal tube, wire drawing is performed to such an extent that the refractory matrix does not break, and the same is applied to each cell constituting the refractory metal matrix. A first step of forming an overlapping matrix structure in which a refractory metal matrix is formed; a first step of bundling a plurality of wires having the overlapping matrix structure and arranging them in a metal tube; The Nb (Al) supersaturated solid solution is transformed into a Nb 3 Al superconductor by repeating the two steps one or more times or by heat treatment without performing the second step. In the method of manufacturing an Nb 3 Al superconducting wire showing an embodiment of the present invention, the Nb (Al) supersaturated solid solution composite multi-core wire that is additionally heat-treated in the conventional method is bundled again and subjected to wire drawing.

出発材料としての高融点金属マトリクス中にNb(Al)過飽和固溶体の細線が多数本配置された多芯構造体は、ジェリーロール法やロッドインチューブ法などの各種の方法を利用して作製することができる。好適には、図4に示したように、巻芯の周りにNbおよびAlのシートを重ねて巻き、巻き上がったものの周りに、後に細線間の隔壁として機能する高融点金属のシートを巻き付け、ジェリーロール複合材を構成し、ジェリーロール複合材を伸線加工し、伸線加工後の線材の複数本を高融点金属製の高融点金属管内に挿入、配置して伸線加工した後、1900℃以上高融点金属の融点未満の温度に加熱し、直ちに急冷却したNb(Al)過飽和固溶体複合多芯線材などを用いることができる。なお、ジェリーロール法は、加工度が比較的小さくても、最終的なNbとAlとの拡散対のサイズを500nm程度に微細化することができるため、実用的に適している。   A multi-core structure in which a number of fine wires of Nb (Al) supersaturated solid solution are arranged in a refractory metal matrix as a starting material must be prepared using various methods such as the jelly roll method and the rod-in-tube method. Can do. Preferably, as shown in FIG. 4, a sheet of refractory metal that functions as a partition wall between thin wires is wound around the rolled up sheet of Nb and Al stacked around the core, After forming the jelly roll composite material, drawing the jelly roll composite material, inserting and arranging a plurality of wire materials after drawing into a refractory metal tube made of refractory metal, and drawing the wire 1900 An Nb (Al) supersaturated solid solution composite multifilamentary wire heated to a temperature not lower than the melting point of the high melting point metal and below the melting point of the refractory metal and immediately cooled can be used. Note that the jelly roll method is practically suitable because the size of the final diffusion pair of Nb and Al can be reduced to about 500 nm even if the degree of processing is relatively small.

高融点金属管を形成する金属は、Nb、Taまたはその合金であることが好ましい。特にTaまたはその合金は、急熱急冷処理に冷媒として使用される液体金属Gaとの反応性が低く、伸線加工に望ましくない化合物相の生成を抑制することができる。この場合、高融点金属マトリクスの内、外皮をなす部分がTaまたはその合金から形成される。   The metal forming the refractory metal tube is preferably Nb, Ta or an alloy thereof. In particular, Ta or an alloy thereof has low reactivity with the liquid metal Ga used as a refrigerant in the rapid heating and quenching process, and can suppress the formation of a compound phase that is not desirable for wire drawing. In this case, the inner part of the refractory metal matrix is formed from Ta or an alloy thereof.

巻芯には、高融点金属や高融点金属で敷居したCuなどの線材を用いることができる。また、ジェリーロール複合材を断面六角形状に加工しておくと、スタックして伸線加工する際にジェリーロール複合材の配置ずれを抑えるのに効果的である。ずれを抑えることができれば、高融点金属管内に挿入、配置したジェリーロール複合材毎の加工度が均一化し、伸線時の断線リスクを減らすことができ、設計形状を維持することもできる。なお、ジェリーロール複合材は、断面丸形状としても、スタックして伸線加工する際に、線材が加工中に密着し、自然な配置により六角形状に近づいていくため、断面六角形状への加工は必須のものではない。   For the core, a high melting point metal or a wire such as Cu laid with a high melting point metal can be used. Further, if the jelly roll composite material is processed into a hexagonal cross section, it is effective to suppress the misalignment of the jelly roll composite material when stacking and wire drawing. If the deviation can be suppressed, the degree of processing for each jelly roll composite material inserted and arranged in the refractory metal tube can be made uniform, the risk of disconnection during wire drawing can be reduced, and the design shape can be maintained. In addition, even if the jelly roll composite material has a round cross-sectional shape, when it is stacked and drawn, the wire sticks closely during processing and approaches the hexagonal shape due to its natural arrangement. Is not essential.

Nb(Al)過飽和固溶体芯の組成については、NbへのAlの固溶量を22〜28at%程度の範囲にすることが好ましく、Alの固溶量を化学量論組成の25at%に可能な限り近づけることがより好ましい。Nb(Al)過飽和固溶体複合多芯線材の芯数、スタック数などについては、再スタックにおけるNb(Al)過飽和固溶体の加工限界が減面加工率で99.9%以下程度であることを目安とし、最終的なNbAl超伝導線材に含まれるNbAl細線の直径が20μm以下となるように、適宜設定することができる。 As for the composition of the Nb (Al) supersaturated solid solution core, it is preferable that the solid solution amount of Al in Nb is in the range of about 22 to 28 at%, and the solid solution amount of Al can be 25 at% of the stoichiometric composition. It is more preferable to make them as close as possible. The number of cores and stacks of Nb (Al) supersaturated solid solution composite multifilamentary wire is based on the fact that the processing limit of Nb (Al) supersaturated solid solution in restacking is about 99.9% or less in terms of surface reduction. The diameter of the Nb 3 Al fine wire contained in the final Nb 3 Al superconducting wire can be appropriately set so as to be 20 μm or less.

高融点金属マトリクスとしての高融点金属は、1900℃以上高融点金属の融点未満の温度に加熱する急熱急冷処理を考慮し、適当な金属を選択することができる。好ましくは、Nb、Taまたはその合金が例示される。   As the refractory metal as the refractory metal matrix, an appropriate metal can be selected in consideration of a rapid thermal quenching process in which the metal is heated to a temperature of 1900 ° C. or higher and lower than the melting point of the refractory metal. Preferably, Nb, Ta or an alloy thereof is exemplified.

上記Nb(Al)過飽和固溶体複合多芯線材の複数本を所定の内外径を有する良導電性金属管内に束ねて挿入、配置し、減面加工率50%以上の伸線加工を施す。良導電性金属管を形成する良導電性金属としては、上記の通り、Cu、Agまたはその合金が好ましい。良導電性金属管は、NbAl超伝導線材の製造に用いられる金属管の内、最終伸線工程で用いる金属管として適用される。良導電性金属管に挿入する線材には、Nb(Al)過飽和固溶体複合多芯線材のみでなく、良導電性金属線材を含めることもできる。良導電性金属の厚さを増加させることおよび良導電性金属線材の本数を増やすことにより、安定化材比、すなわち、良導電性金属以外の部分に対する良導電性金属の体積比を容易に増加させることができる。 A plurality of Nb (Al) supersaturated solid solution composite multi-core wires are bundled and inserted into a highly conductive metal tube having a predetermined inner / outer diameter, and subjected to wire drawing with a surface reduction ratio of 50% or more. As described above, Cu, Ag, or an alloy thereof is preferable as the highly conductive metal that forms the highly conductive metal tube. The highly conductive metal tube is applied as a metal tube used in the final wire drawing step among the metal tubes used for manufacturing the Nb 3 Al superconducting wire. The wire inserted into the highly conductive metal tube can include not only the Nb (Al) supersaturated solid solution composite multi-core wire but also a highly conductive metal wire. By increasing the thickness of the good conductive metal and increasing the number of good conductive metal wires, the stabilizer ratio, that is, the volume ratio of the good conductive metal to the portion other than the good conductive metal can be easily increased. Can be made.

減面加工率50%以上の伸線加工によって、NbAl細線径のさらなる微細化が図れるとともに、良導電性金属管の内壁と高融点マトリクスの表面との接合性を高めることができる。なお、伸線加工の手法はいずれも特に限定されるものではないが、等方的に線材表面に変形圧力を加えることができ、また、伸線加工中に良導電性金属管の内壁と高融点マトリクスの表面との接合性を効果的に改善させることができるとの観点から、ダイス引き(ダイス伸線加工)により行うことが好ましい。ダイス引きは、大きな引抜力で伸線加工を行うため、伸線加工を阻害しないように、Nb(Al)過飽和固溶体複合多芯線材の表面の異物を十分除去しておくことが必要である。 The wire drawing with a surface reduction ratio of 50% or more can further reduce the diameter of the Nb 3 Al thin wire, and can improve the bondability between the inner wall of the highly conductive metal tube and the surface of the refractory matrix. The wire drawing method is not particularly limited, but deformation pressure can be applied isotropically to the surface of the wire, and the inner wall of the highly conductive metal tube can From the viewpoint that the bonding property with the surface of the melting point matrix can be effectively improved, it is preferable to carry out by die drawing (die wire drawing). Since die drawing is performed with a large drawing force, it is necessary to sufficiently remove foreign matters on the surface of the Nb (Al) supersaturated solid solution composite multicore wire so as not to hinder the drawing.

50%以上の減面加工率とは、Nb(Al)過飽和固溶体に加えられる加工率であるが、もし減面加工率が95%以上であっても、特性を劣化させることなく優れた超伝導特性を維持することができる。   The surface reduction rate of 50% or more is the processing rate added to the Nb (Al) supersaturated solid solution. Even if the surface reduction rate is 95% or more, excellent superconductivity without deteriorating the characteristics. Characteristics can be maintained.

熱処理は、本発明に関連する一実施例を示すNbAl超伝導線材において採用することのできる追加熱処理と同等のものとして行うことができる。600℃〜1000℃に加熱し、Nb(Al)過飽和固溶体をNbAl超伝導体に変態させる。600℃未満で変態させるとNbAl相の規則化が難しくなり、1000℃を超えると、Cuが溶融し、また、望ましくない相、たとえばNb2Al相などの生成が促進され、超伝導特性が劣化するなどの問題が生じる。一方、熱処理の温度範囲は、上記の範囲に厳密に限定されることはなく、誤差を含め、多少の増減は許容される。 The heat treatment can be carried out as an equivalent to the additional heat treatment that can be employed in the Nb 3 Al superconducting wire showing one embodiment related to the present invention. Heat to 600 ° C. to 1000 ° C. to transform the Nb (Al) supersaturated solid solution into Nb 3 Al superconductor. When transformation is performed at a temperature lower than 600 ° C., it becomes difficult to order the Nb 3 Al phase. When the temperature exceeds 1000 ° C., Cu is melted, and formation of an undesirable phase such as an Nb 2 Al phase is promoted to deteriorate the superconducting properties. Problems occur. On the other hand, the temperature range of the heat treatment is not strictly limited to the above range, and a slight increase or decrease including an error is allowed.

熱処理後、良導電性金属と高融点金属マトリクスとの間の機械的および電気的接合性が良好なNbAl超伝導線材が得られる。 After the heat treatment, an Nb 3 Al superconducting wire having good mechanical and electrical bondability between the highly conductive metal and the refractory metal matrix can be obtained.

また、本発明の一実施例を示すNbAl超伝導線材によれば、Nb(Al)過飽和固溶体複合多芯線材の複数本を再スタックして伸線加工を行うことができるため、NbAl超伝導線材における超伝導断面積を任意かつ容易に増加させることができ、NbAl超伝導線材の大電流容量化が可能となる。 In addition, according to the Nb 3 Al superconducting wire which shows an embodiment of the present invention, a plurality of Nb (Al) supersaturated solid solution composite multi-core wires can be restacked for wire drawing, so that Nb 3 The superconducting cross-sectional area in the Al superconducting wire can be increased arbitrarily and easily, and a large current capacity of the Nb 3 Al superconducting wire can be achieved.

さらに、上記再スタックおよび伸線加工により、NbAl細線径が縮小し、磁気的不安定性の問題も改善されたNbAl超伝導線材が得られる。 Furthermore, the Nb 3 Al superconducting wire material in which the Nb 3 Al fine wire diameter is reduced and the problem of magnetic instability is improved is obtained by the above restacking and wire drawing.

加えて、伸線加工をダイス引きにより行う場合には、寸法精度を向上させることができ、これまでNbAl超伝導線材に指摘されていた問題をほぼすべて解決することができる。 In addition, when the wire drawing is performed by die drawing, the dimensional accuracy can be improved, and almost all the problems that have been pointed out to the Nb 3 Al superconducting wire can be solved.

以下、実施例を示し、本発明のNbAl超伝導線材とその製造方法についてさらに詳しく説明する。 Hereinafter, Examples, Nb 3 Al superconducting wire and its manufacturing method of the present invention is described in more detail.

図2に示したNbAl超伝導線材の製造方法にしたがってNbAl超伝導線材を製造した。厚さ90μmで所定の幅と長さを有するNbシート、厚さ30μmで所定の幅と長さを有するAlシートおよび厚さ90μmで所定の幅と長さを有するTaのシートを重ね、直径3.0mmのNb巻芯を中心にしてジェリーロール状に巻いてジェリーロール積層複合体を作製した。このとき、NbシートとAlシートとの体積比(Nb/Al)は、3とした。なお、NbおよびAlの体積率を増やすため、Nbシート、Alシートを交互に6層積層した後、Taシート1枚を重ね、総積層数を7層とした。 It was produced Nb 3 Al superconducting wire according to the manufacturing method of the Nb 3 Al superconducting wire shown in FIG. 2. A Nb sheet having a thickness of 90 μm and a predetermined width and length, an Al sheet having a thickness of 30 μm and a predetermined width and length, and a Ta sheet having a thickness of 90 μm and a predetermined width and length are stacked. A jelly roll laminated composite was produced by winding in a jelly roll shape around a 0.0 mm Nb core. At this time, the volume ratio (Nb / Al) between the Nb sheet and the Al sheet was set to 3. In order to increase the volume ratio of Nb and Al, six layers of Nb sheets and Al sheets were alternately stacked, one Ta sheet was stacked, and the total number of layers was set to seven.

作製したジェリーロール積層複合体を所定の長さおよび内外径を有するNb管内に挿入、配置し、このNb管を所定の長さおよび内外径を有するCu管内に挿入、配置した後、押出加工、ダイス伸線などを施し、次いで外皮であるCuを除去してTa/Nb/Alジェリーロール単芯線を作製した。   The produced jelly roll laminated composite is inserted and arranged in an Nb pipe having a predetermined length and inner and outer diameter, and this Nb pipe is inserted and arranged in a Cu pipe having a predetermined length and inner and outer diameter, and then extrusion processing. Die wire drawing etc. were given, Cu which was an outer skin was then removed, and a Ta / Nb / Al jelly roll single core wire was produced.

1本のNbダミー線を中心にして、84本のTa/Nb/Alジェリーロール単芯線を束ね、所定の長さおよび内外径を有するNb管内に挿入、配置した。Ta/Nb/Alジェリーロール単芯線が挿入、配置されたNb管を、所定の長さおよび内外径を有するCu−Ni管内に挿入、配置し、多芯ビレットを作製した。   Around one Nb dummy wire, 84 Ta / Nb / Al jelly roll single-core wires were bundled and inserted into an Nb tube having a predetermined length and inner and outer diameters. The Nb tube in which the Ta / Nb / Al jelly roll single core wire was inserted and arranged was inserted and arranged in a Cu—Ni tube having a predetermined length and inner and outer diameters, and a multi-core billet was produced.

作製した多芯ビレットに押出加工、ダイス伸線などを施した後、外皮であるCu−Niを除去し、金属マトリクスとしてのNbマトリクスの中に多数本のTa/Nb/Al細線が配置された外径1mmの複合多芯前駆体線を作製した。   The produced multi-core billet was subjected to extrusion processing, die drawing, etc., and then Cu-Ni as the outer skin was removed, and a large number of Ta / Nb / Al fine wires were arranged in the Nb matrix as the metal matrix. A composite multi-core precursor wire having an outer diameter of 1 mm was produced.

作製した複合多芯前駆体線を、図5に示した急熱急冷装置を用い、約0.3m/sの速度で連続的に巻き取りながら、自己通電加熱により1900℃以上Taの融点未満の高温に加熱し、1秒以内で直ちに電極を兼ねた液体金属Ga浴中に突入させて急冷した。NbとAlとを反応させ、Nb(Al)過飽和固溶体を生成させた。このとき、高融点金属であるTaは、細線中にファイバー状の形態を変えることなく残存する。   The composite multi-core precursor wire thus produced was continuously wound at a rate of about 0.3 m / s using the rapid heating and quenching apparatus shown in FIG. It was heated to a high temperature and immediately entered into a liquid metal Ga bath that also served as an electrode within 1 second, and then rapidly cooled. Nb and Al were reacted to form a Nb (Al) supersaturated solid solution. At this time, Ta, which is a refractory metal, remains in the fine wire without changing the fiber form.

このNb(Al)過飽和固溶体を有する複合多芯前駆体線材に対し、800℃で10時間保持の条件で追加熱処理を行い、Nb(Al)固溶体をNbAl超伝導体に変態させ、NbAl超伝導線材を得た。表1に得られたNbAl超伝導線材の主な諸元を示した。また、図6(a)(b)中の細線内に黒い点として散見されるのがTaファイバーの端面である。
得られたNbAl超伝導線材については、臨界磁場約20Tの超伝導特性が得られた。
The composite multi-core precursor wire having this Nb (Al) supersaturated solid solution is subjected to additional heat treatment at 800 ° C. for 10 hours to transform the Nb (Al) solid solution into Nb 3 Al superconductor, and Nb 3 An Al superconducting wire was obtained. Table 1 shows the main specifications of the Nb 3 Al superconducting wire obtained. Further, the end faces of the Ta fibers are scattered as black dots in the thin lines in FIGS. 6 (a) and 6 (b).
With respect to the obtained Nb 3 Al superconducting wire, a superconducting characteristic with a critical magnetic field of about 20 T was obtained.

得られたNbAl超伝導線材を曲線状の隙間を有する冶具に挟み込み、室温において曲げ歪みを加え、NbAl超伝導線材の耐歪み特性、すなわち、どの程度の歪みに耐えられるかを調べた。 The obtained Nb 3 Al superconducting wire is sandwiched between jigs with curved gaps, bending strain is applied at room temperature, and the strain resistance characteristics of the Nb 3 Al superconducting wire, that is, how much strain it can withstand is investigated. It was.

曲線状の隙間の曲率半径は6〜10cmであり、曲げ歪みは以下の通り定義される。   The radius of curvature of the curved gap is 6 to 10 cm, and the bending strain is defined as follows.

曲げ歪み(%)=線材半径/(線材半径+曲率半径)×100 (1) Bending strain (%) = wire radius / (wire radius + curvature radius) × 100 (1)

図7にNbAl超伝導線材を挟み込んだ様子を示す。分散配置されたTaファイバーの効果を調べるために、Taファイバーを含まないNbAl超伝導線材を比較線材として用意した。比較線材は、Taシートをジェリーロール単芯線に含まない点を除いて上記と同様の工程で製造されたものである。比較線材の諸元を表2に示す。 FIG. 7 shows a state in which the Nb 3 Al superconducting wire is sandwiched. In order to investigate the effect of the dispersed Ta fibers, a Nb 3 Al superconducting wire containing no Ta fibers was prepared as a comparative wire. The comparative wire is manufactured in the same process as described above except that the Ta sheet is not included in the jelly roll single core wire. Table 2 shows the specifications of the comparative wire.

図8(b)に示した実施例1で得られたNbAl超伝導線材には、NbAl細線の内部に線心方向に多数の筋が確認された。この筋は導入されたTaファイバーである。また、図8(a)(b)の対比から明らかであるように、比較線材(図8(a))では、0.52%の歪みにおいて明らかに亀裂が生じているのに対し、実施例1で得られたNbAl超伝導線材には、0.83%の歪みが加えられたにも関わらす、内部に亀裂は全く確認されなかった。 In the Nb 3 Al superconducting wire obtained in Example 1 shown in FIG. 8B, a large number of streaks were confirmed in the direction of the wire core inside the Nb 3 Al thin wire. This streak is an introduced Ta fiber. Further, as is clear from the comparison between FIGS. 8A and 8B, the comparative wire (FIG. 8A) clearly has cracks at a strain of 0.52%. In the Nb 3 Al superconducting wire obtained in No. 1, no cracks were found inside although a strain of 0.83% was applied.

NbAl細線内部にTaファイバーを分散配置させることによって、NbAl細線内部の亀裂の発生が抑制され、NbAl超伝導線材が損傷する限界歪みが大幅に改善される。 Nb 3 Al thin wire inside by dispersing arranged Ta fibers, generation of Nb 3 Al thin wires inside the crack is suppressed, the limit strain Nb 3 Al superconductive wire is damaged is greatly improved.

線径0.8mm、細線径63.2μm、細線数66本、高融点金属マトリクス((Nb(隔壁として)+Ta(外皮として))比1.654の諸元をもつNb(Al)過飽和固溶体複合多芯線材Aを用意した。線材A54本を同サイズの1本の銅線を中心にして束ね、内径6.9mm、外径9mmの銅パイプに挿入、配置して複合体とし、複合体に対して、超硬ダイスにより1リダクションにつき約15%の減面加工率で伸線加工を施した。最終的に、外径1mm、細線数3564本、細線径約10μm、高融点金属マトリクス比1.654、Cu比0.88のNb(Al)過飽和固溶体複合多芯線材Bが得られた。伸線加工により、Nb(Al)過飽和固溶体には95%以上の減面加工が施された。   Nb (Al) supersaturated solid solution composite with specifications of wire diameter 0.8mm, fine wire diameter 63.2μm, number of fine wires 66, refractory metal matrix ((Nb (as partition walls) + Ta (as outer skin)) ratio 1.654 A multi-core wire A was prepared, and 54 wires A were bundled around one copper wire of the same size, and inserted into a copper pipe having an inner diameter of 6.9 mm and an outer diameter of 9 mm to form a composite. On the other hand, wire drawing was performed with a carbide die at a surface reduction rate of about 15% per reduction, and finally the outer diameter was 1 mm, the number of fine wires was 3564, the fine wire diameter was about 10 μm, and the refractory metal matrix ratio was 1. A Nb (Al) supersaturated solid solution composite multi-core wire B having a .654 and Cu ratio of 0.88 was obtained, and the Nb (Al) supersaturated solid solution was subjected to a surface reduction work of 95% or more by wire drawing.

その後、800℃で10時間保持し、Nb(Al)過飽和固溶体を変態させ、NbAl超伝導線材Cを得た。 Then held at 800 ° C. 10 hours, to transform the Nb (Al) supersaturated solid solution to obtain a Nb 3 Al superconductive wire C.

図9から確認されるように、NbAl超伝導線材Cは、外皮をCuとし、内部がTaで複数の小領域に区切られていたセル状構造を有している。また、個々のセルの拡大図から、NbAl超伝導線材Cは、Nbで細分化された重複セル構造を有していることがわかる。最小のセルを形成しているNbAl細線のサイズは径の10μm前後と、20μmよりも大幅に小さい。 As can be seen from FIG. 9, the Nb 3 Al superconducting wire C has a cellular structure in which the outer skin is made of Cu and the inside is divided by Ta into a plurality of small regions. Moreover, it can be seen from the enlarged view of each cell that the Nb 3 Al superconducting wire C has an overlapping cell structure subdivided with Nb. The size of the Nb 3 Al fine wire forming the smallest cell is about 10 μm in diameter and is much smaller than 20 μm.

安定化材としてのCu外皮と高融点金属マトリクスとの間の接合性を確認するために、Nb(Al)過飽和固溶体複合多芯線材Bを室温において90°以上に曲げ、Cu外皮が高融点金属マトリクスから剥離するかどうか調べた。比較のために、特開2000−113748号公報に開示されている方法により作製された、Cuクラッド線材(相変態前の状態)を比較線材Dとして用意した。比較線材Dの諸元は、厚さ0.8mm、幅1.8mm、細線径75.5μm、細線数132本、マトリクス比0.8、Cu比0.39である。図10(a)(b)に示したように、比較線材Dには約35%の曲げ歪みが加わっており、Cuが破損し、Cuがマトリクスから剥離している。一方、Nb(Al)過飽和固溶体複合多芯線材Bは、約50%の曲げ歪みが加わっているにも関わらず、Cuの剥離や破損は見られず、接合性が改善されていることが確認される。なお、曲げ歪みは上記式(1)で定義される。   In order to confirm the bondability between the Cu shell as a stabilizing material and the refractory metal matrix, the Nb (Al) supersaturated solid solution composite multi-core wire B is bent at 90 ° or more at room temperature, and the Cu shell is a refractory metal. It was investigated whether it peeled from a matrix. For comparison, a Cu clad wire (state before phase transformation) produced by the method disclosed in Japanese Patent Laid-Open No. 2000-113748 was prepared as a comparative wire D. The specifications of the comparative wire D are 0.8 mm in thickness, 1.8 mm in width, 75.5 μm in fine wire diameter, 132 fine wires, a matrix ratio of 0.8, and a Cu ratio of 0.39. As shown in FIGS. 10A and 10B, the comparative wire D is subjected to a bending strain of about 35%, Cu is broken, and Cu is peeled off from the matrix. On the other hand, Nb (Al) supersaturated solid solution composite multifilamentary wire B was confirmed to have improved bondability, with no Cu peeling or breakage, despite about 50% bending strain. Is done. The bending strain is defined by the above formula (1).

次に、実施例2で得られたNbAl超伝導線材CのNbAl相当たりの臨界電流密度特性を測定した。図11にその結果を示す。図11には、比較線材Dの相変態熱処理後の臨界電流密度特性を併せて示した。実施例2で得られたNbAl超伝導線材Cは、臨界電流密度特性に優れている。また、通電電流値をNbAl超伝導体部の総面積で除したNbAl超伝導体部当たりの臨界電流密度は、4.2Kの温度、15Tの磁場中で、1000A/mm以上であった。このことから、95%以上のNb(Al)過飽和固溶体の減面加工によっても優れた臨界電流密度特性が維持されることが確認された。 Next, to measure the critical current density characteristics per Nb 3 Al phase of the resulting Nb 3 Al superconducting wire C in Example 2. FIG. 11 shows the result. FIG. 11 also shows the critical current density characteristics of the comparative wire D after the phase transformation heat treatment. The Nb 3 Al superconducting wire C obtained in Example 2 is excellent in critical current density characteristics. The critical current density of the Nb 3 Al superconductive body per divided by the total area of the energizing current value Nb 3 Al superconductor unit, 4.2 K temperature, in a magnetic field of 15T, 1000A / mm 2 or more Met. From this, it was confirmed that excellent critical current density characteristics were maintained even by surface reduction of 95% or more Nb (Al) supersaturated solid solution.

また、比較線材Dでは、12T以下の磁界下でしばしば磁気的不安定性を誘発したが、実施例2で得られたNbAl超伝導線材Cでは、磁気的不安定が生じることなく、良好に測定することができた。実施例2で得られたNbAl超伝導線材Cでは、磁気的不安定性が抑制されることも確認された。 The comparative wire D often induced magnetic instability under a magnetic field of 12 T or less. However, the Nb 3 Al superconducting wire C obtained in Example 2 was excellent without causing magnetic instability. It was possible to measure. It was also confirmed that the magnetic instability was suppressed in the Nb 3 Al superconducting wire C obtained in Example 2.

なお、Nb(Al)過飽和固溶体複合多芯線材Bの作製に際し、線径が1.13mmのところでCu外皮にひびが発生することがあった。このときの線材のCu比は0.193であり、Cu比が少ないために伸線加工中に表面に割れが生じたと考えられる。その後の試作の結果、Cuなどの良導電性金属の比が0.3以上において良好な伸線加工が可能となることがわかった。   When the Nb (Al) supersaturated solid solution composite multi-core wire B was produced, the Cu outer shell sometimes cracked when the wire diameter was 1.13 mm. The Cu ratio of the wire at this time is 0.193, and it is considered that cracking occurred on the surface during wire drawing because the Cu ratio was small. As a result of the subsequent trial production, it was found that good wire drawing can be performed when the ratio of a highly conductive metal such as Cu is 0.3 or more.

実施例1で作製した、高融点金属であるTaが細線中にファイバー状に残存したNb(Al)過飽和固溶体線材(線径1.01mm)の表面の不純物相を十分除去した後、この線材36本を同サイズの1本の銅線を中心にして束ね、内径7.4mm、外径9.3mmのCuパイプに挿入、配置して複合体とし、この複合体に対して、超硬ダイスにより1リダクションにつき約15%の減面加工率でダイス伸線加工を施した。最終的に外径1.0mm、細線数3024本、細線径約15μm、高融点金属マトリクス比0.8、Cu比0.9のNb(Al)過飽和固溶体複合多芯線材が得られた。その後、800℃で10時間保持し、Nb(Al)過飽和固溶体を変態させてNbAl超伝導線材が得られた。
得られたNbAl超伝導線材については、臨界磁場約20Tの超伝導特性が得られた。
After sufficiently removing the impurity phase on the surface of the Nb (Al) supersaturated solid solution wire (wire diameter: 1.01 mm) in which the high melting point metal Ta produced in Example 1 remains in the form of fibers in the fine wire, this wire 36 is removed. A book is bundled around a single copper wire of the same size, and inserted into a Cu pipe having an inner diameter of 7.4 mm and an outer diameter of 9.3 mm to form a composite. Die drawing was performed at a surface reduction rate of about 15% per reduction. Finally, an Nb (Al) supersaturated solid solution composite multifilamentary wire having an outer diameter of 1.0 mm, a number of fine wires of 3024, a fine wire diameter of about 15 μm, a refractory metal matrix ratio of 0.8, and a Cu ratio of 0.9 was obtained. Then held at 800 ° C. 10 hours, Nb 3 Al superconductive wire is obtained by transformation of Nb (Al) supersaturated solid solution.
With respect to the obtained Nb 3 Al superconducting wire, a superconducting characteristic with a critical magnetic field of about 20 T was obtained.

NbAl超伝導線材の信頼性を高めることができるため、線材が強力な電磁力を受ける核融合実験炉用マグネット、NMRマグネット、高エネルギー粒子加速器マグネット等の大型マグネットの信頼性および安全性を高めることができる。また、長寿命のマグネットを実現することができ、経費削減が見込まれる。さらに、複雑な形状のケーブリングも可能となり、応用範囲が広く、たとえば加速器用マグネットに使用されるようなラザフォードタイプのケーブルなどに特に適する。

Because the reliability of Nb 3 Al superconducting wire can be increased, the reliability and safety of large magnets such as fusion experimental reactor magnets, NMR magnets, and high-energy particle accelerator magnets, where the wires are subjected to strong electromagnetic force Can be increased. In addition, a long-life magnet can be realized, and cost reduction is expected. Furthermore, cabling with a complicated shape is possible, and the application range is wide. For example, it is particularly suitable for a Rutherford type cable used for an accelerator magnet.

Claims (9)


1900℃より融点が高い高融点金属から形成された高融点金属マトリクス中にNb(Al)過飽和固溶体の細線が多数本配置された多芯構造体の複数本を束ねて金属管内に配置した後、高融点マトリックスが破壊しない程度に伸線加工を行い、高融点金属マトリクス中に配置された各セルの内部にも高融点金属マトリクスが形成された重複マトリクス構造を形成させる第一工程後、熱処理して、Nb(Al)過飽和固溶体をNbAl超伝導体に変態させることを特徴とするNbAl超伝導線材の製造方法。

After bundling a plurality of multi-core structures in which a number of fine wires of Nb (Al) supersaturated solid solution are arranged in a refractory metal matrix formed from a refractory metal having a melting point higher than 1900 ° C. After the first step, wire drawing is performed to the extent that the refractory matrix does not break, and an overlapping matrix structure in which the refractory metal matrix is also formed inside each cell arranged in the refractory metal matrix is heat treated. A method for producing a Nb 3 Al superconducting wire, comprising transforming a Nb (Al) supersaturated solid solution into a Nb 3 Al superconductor.
1900℃より融点が高い高融点金属から形成された高融点金属マトリクス中にNb(Al)過飽和固溶体の細線が多数本配置された多芯構造体の複数本を束ねて金属管内に配置した後、高融点マトリックスが破壊しない程度に伸線加工を行い、高融点金属マトリクス中に配置された各セルの内部にも高融点金属マトリクスが形成された重複マトリクス構造を形成させる第一工程と、
重複マトリクス構造を有する線材の複数本を束ねて金属管内に配置した後、伸線加工する第二工程と
を一回以上繰り返した後、熱処理して、Nb(Al)過飽和固溶体をNbAl超伝導体に変態させることを特徴とするNbAl超伝導線材の製造方法。
After bundling a plurality of multi-core structures in which a number of fine wires of Nb (Al) supersaturated solid solution are arranged in a refractory metal matrix formed from a refractory metal having a melting point higher than 1900 ° C. A first step of performing wire drawing to such an extent that the refractory matrix does not break, and forming an overlapping matrix structure in which the refractory metal matrix is also formed inside each cell disposed in the refractory metal matrix;
After bundling a plurality of wires having an overlapping matrix structure and placing them in a metal tube, the second step of drawing is repeated one or more times, and then heat-treated to convert the Nb (Al) supersaturated solid solution to Nb 3 Al A method for producing a Nb 3 Al superconducting wire characterized by transforming into a conductor.
請求項1又は2に記載のNbAl超伝導線材の製造方法において、伸線加工の減面加工率を50%以上とすることを特徴とするNbAl超伝導線材の製造方法。 The method of manufacturing a Nb 3 Al superconducting wire according to claim 1 or 2, the manufacturing method of the Nb 3 Al superconductive wire, which comprises a reduction process rate of wire drawing of 50% or more. 請求項1ないし3いずれか一項に記載のNbAl超伝導線材の製造方法において、熱処理温度を600℃〜1000℃とすることを特徴とするNbAl超伝導線材の製造方法。 The manufacturing method of claims 1 to 3 any one Nb 3 Al superconducting wire according to method of manufacturing a Nb 3 Al superconductive wire, characterized in that the heat treatment temperature and 600 ° C. to 1000 ° C.. 請求項1ないし4いずれか一項に記載のNbAl超伝導線材の製造方法において、高融点金属が、Nb、Taまたはその合金であることを特徴とするNbAl超伝導線材の製造方法。 The method of manufacturing a Nb 3 Al superconducting wire according to claims 1 to 4 any one method of the refractory metal is, Nb, Ta or Nb 3 Al superconducting wire, characterized in that the alloy . 請求項1ないし5いずれか一項に記載のNbAl超伝導線材の製造方法において、金属管の内、最終伸線工程で用いる金属管が常温で導電性を有する良導電性金属から形成されていることを特徴とするNbAl超伝導線材の製造方法。 6. The method of manufacturing an Nb 3 Al superconducting wire according to claim 1, wherein the metal tube used in the final wire drawing step is made of a highly conductive metal having conductivity at room temperature. Nb 3 Al manufacturing method of a superconducting wire, characterized by that. 請求項1ないし6いずれか一項に記載のNbAl超伝導線材の製造方法において、高融点金属マトリクスの内外皮をなす部分がTaまたはその合金であることを特徴とするNbAl超伝導線材の製造方法。 The method of manufacturing a Nb 3 Al superconducting wire according to claims 1 to 6 any one, Nb 3 Al superconductive that portion forming the inner and outer skin of the refractory metal matrix characterized in that it is a Ta or an alloy thereof A manufacturing method of a wire. 請求項に記載のNbAl超伝導線材の製造方法において、良導電性金属がCu、Agまたはその合金であることを特徴とするNbAl超伝導線材の製造方法。 The method of manufacturing a Nb 3 Al superconducting wire according to claim 6, highly conductive metal is Cu, Ag or Nb 3 Al manufacturing method of a superconducting material characterized by its alloys. 請求項1ないし8のいずれか一項に記載のNbAl超伝導線材の製造方法において、伸線加工をダイス引きにより行うことを特徴とするNbAl超伝導線材の製造方法。
The method of manufacturing a Nb 3 Al superconducting wire according to any one of claims 1 to 8, a manufacturing method of Nb 3 Al superconducting wire which is characterized in that the wire drawing by dies pulling.
JP2013001537A 2006-05-12 2013-01-09 Nb3Al superconducting wire manufacturing method Expired - Fee Related JP5598825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013001537A JP5598825B2 (en) 2006-05-12 2013-01-09 Nb3Al superconducting wire manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006134541 2006-05-12
JP2006134542 2006-05-12
JP2006134542 2006-05-12
JP2006134541 2006-05-12
JP2013001537A JP5598825B2 (en) 2006-05-12 2013-01-09 Nb3Al superconducting wire manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008515500A Division JP5207304B2 (en) 2006-05-12 2007-05-09 Nb3Al superconducting wire manufacturing method

Publications (2)

Publication Number Publication Date
JP2013140801A JP2013140801A (en) 2013-07-18
JP5598825B2 true JP5598825B2 (en) 2014-10-01

Family

ID=38693808

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008515500A Expired - Fee Related JP5207304B2 (en) 2006-05-12 2007-05-09 Nb3Al superconducting wire manufacturing method
JP2013001537A Expired - Fee Related JP5598825B2 (en) 2006-05-12 2013-01-09 Nb3Al superconducting wire manufacturing method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008515500A Expired - Fee Related JP5207304B2 (en) 2006-05-12 2007-05-09 Nb3Al superconducting wire manufacturing method

Country Status (2)

Country Link
JP (2) JP5207304B2 (en)
WO (1) WO2007132713A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5067560B2 (en) * 2008-02-14 2012-11-07 日立電線株式会社 Manufacturing method of Nb3Al compound superconducting wire and Nb3Al compound superconducting wire
CN110556215B (en) * 2018-06-04 2021-04-20 西部超导材料科技股份有限公司 Method for assembling NbTi multi-core superconducting ingot blank

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291813A (en) * 1986-06-11 1987-12-18 昭和電線電纜株式会社 Manufacture of nb3al superconductor
JPH03283318A (en) * 1990-03-30 1991-12-13 Showa Electric Wire & Cable Co Ltd Manufacture of nb3al multicore superconductor
JPH06176639A (en) * 1992-12-03 1994-06-24 Mitsubishi Cable Ind Ltd Manufacture of superconductive raw material and nb-al superconductive wire
JPH08138469A (en) * 1994-11-08 1996-05-31 Mitsubishi Cable Ind Ltd Manufacture of superconductive material and nb-al superconductive wire
JP2000067667A (en) * 1998-08-25 2000-03-03 Kobe Steel Ltd PRECURSOR FOR Nb3 Al BASED SUPERCONDUCTIVE WIRE ROD, Nb3 Al BASED SUPERCONDUCTIVE WIRE ROD AND ITS MANUFACTURE
JP4042933B2 (en) * 1998-10-09 2008-02-06 独立行政法人物質・材料研究機構 Nb3 Al compound-based superconducting wire and manufacturing method thereof
JP2006100063A (en) * 2004-09-29 2006-04-13 Kobe Steel Ltd MANUFACTURING METHOD OF Nb3X COMPOUND BASED SUPERCONDUCTING WIRE MATERIAL

Also Published As

Publication number Publication date
JPWO2007132713A1 (en) 2009-09-24
JP2013140801A (en) 2013-07-18
JP5207304B2 (en) 2013-06-12
WO2007132713A1 (en) 2007-11-22

Similar Documents

Publication Publication Date Title
US9711262B2 (en) Compound superconducting wire and method for manufacturing the same
JP2009301928A (en) Method for manufacturing superconducting wire
KR100970813B1 (en) PRECURSOR FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE ROD, AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP5598825B2 (en) Nb3Al superconducting wire manufacturing method
JP2003217370A (en) Magnesium diboride superconductive wire
Kikuchi et al. Ultra-fine Nb 3 Al mono-core wires and cables
JPH06251645A (en) Wire for nb3x system superconducting wire
JP4723306B2 (en) Manufacturing method of Nb3Al-based superconducting wire, primary composite material for manufacturing Nb3Al-based superconducting wire and manufacturing method thereof, and multi-core composite material for manufacturing Nb3Al-based superconducting wire
JP6086469B2 (en) Nb3Al superconducting wire manufacturing method
JP2010282930A (en) Nb3Al MULTICORE SUPERCONDUCTIVE WIRE ROD
JP5557086B2 (en) Nb3Al superconducting wire
JP5164815B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP2009004128A (en) BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF
Takeuchi et al. Development of internally stabilized RHQT Nb3Al superconductors
JP4791346B2 (en) Nb3Sn superconducting wire, precursor therefor, and Nb composite single core wire for precursor
JP4013335B2 (en) Nb3Sn compound superconductor precursor wire and method for manufacturing the same, Nb3Sn compound superconductor conductor manufacturing method, and Nb3Sn compound superconductor coil manufacturing method
JP4723345B2 (en) Method for producing Nb3Sn superconducting wire and precursor therefor
WO2023089919A1 (en) Niobium-aluminum precursor wire, niobium-aluminum precursor twisted wire, niobium-aluminum superconducting wire, and niobium-aluminum superconducting twisted wire
JP4135561B2 (en) Nb3Al compound-based superconducting wire manufacturing method and Nb3Al compound-based superconducting wire manufacturing apparatus
JP3948291B2 (en) Nb3Al compound superconducting wire and method for producing the same
JP2010182470A (en) Nb3Al SUPERCONDUCTING MULTI-CORE WIRE
JP3663948B2 (en) Nb3Al compound-based superconducting wire and manufacturing method thereof
JPH09204830A (en) Manufacture of nb3al superconducting wire
JPH09204828A (en) Manufacture of nb3al superconducting wire
JP2002063816A (en) MANUFACTURING METHOD OF Nb3Al-SYSTEM SUPERCONDUCTING WIRE

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R150 Certificate of patent or registration of utility model

Ref document number: 5598825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees