JP2004318105A - Zoom lens device - Google Patents

Zoom lens device Download PDF

Info

Publication number
JP2004318105A
JP2004318105A JP2004083260A JP2004083260A JP2004318105A JP 2004318105 A JP2004318105 A JP 2004318105A JP 2004083260 A JP2004083260 A JP 2004083260A JP 2004083260 A JP2004083260 A JP 2004083260A JP 2004318105 A JP2004318105 A JP 2004318105A
Authority
JP
Japan
Prior art keywords
lens
zoom lens
group
object side
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004083260A
Other languages
Japanese (ja)
Inventor
Hitoshi Hagimori
仁 萩森
Kazuhiko Ishimaru
和彦 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Photo Imaging Inc
Original Assignee
Konica Minolta Photo Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Photo Imaging Inc filed Critical Konica Minolta Photo Imaging Inc
Priority to JP2004083260A priority Critical patent/JP2004318105A/en
Publication of JP2004318105A publication Critical patent/JP2004318105A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zoom lens device suitable for a digital camera equipped with a zoom lens system which is bright even in the longest focal distance state though a zoom ratio is large, and whose length in an optical axis direction in housing is very short. <P>SOLUTION: The zoom lens device is equipped with the zoom lens system and an imaging device for converting an optical image formed by the zoom lens system into electric image data in order from an object side. Then, the zoom lens system is constituted of a 1st group having negative power, a 2nd group having positive power and a 3rd group having positive power in order from the object side. The 1st group is constituted of two or three lens elements including a negative meniscus lens turning its convex surface toward the object side nearest to the object side and a positive meniscus lens turning its convex surface toward the object side nearest to an image side, the 2nd group is constituted of a positive lens, a negative lens and a positive lens in order from the object side, and the 3rd group is a single positive lens and moves on an optical axis for the purpose of focusing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、CCD(Charge Coupled Device 電荷結合素子)やCMOSセンサ(Complementary
Metal-oxide Semiconductor 相補性金属酸化膜半導体センサ)等の受光面上に形成され
た光学像を電気信号に変換する撮像素子を備えたズームレンズ装置に関し、特にズームレ
ンズ系を備えた小型のズームレンズ装置に関する。
The present invention relates to a CCD (Charge Coupled Device) and a CMOS sensor (Complementary
The present invention relates to a zoom lens device having an image pickup device for converting an optical image formed on a light receiving surface such as a metal-oxide semiconductor (complementary metal oxide semiconductor sensor) into an electric signal, and in particular, a small zoom lens having a zoom lens system. Equipment related.

近年、銀塩フィルムの代わりにCCDやCMOSセンサなどの撮像素子を用いて、光学像を電
気信号に変換し、そのデータをデジタル化して記録したり転送したりするデジタルカメラ
が一般化している。このようなデジタルカメラにおいては、最近、200万画素や300万画素
といった高画素を有するCCDやCMOSセンサが比較的安価に提供されるようになったため、
高画素の撮像素子を装着した高性能なズームレンズ装置に対する需要が非常に増大してい
る。これらのズームレンズ装置のうちでも特に、画質を劣化させずに変倍が可能なズーム
レンズ系を搭載したコンパクトなズームレンズ装置が切望されている。
2. Description of the Related Art In recent years, a digital camera that converts an optical image into an electric signal by using an imaging device such as a CCD or a CMOS sensor instead of a silver halide film, digitizes the data, and records or transfers the digital image has become popular. In such digital cameras, CCD and CMOS sensors having high pixels such as 2 million pixels and 3 million pixels have recently been provided at relatively low cost.
The demand for a high-performance zoom lens device equipped with a high-pixel image sensor has been greatly increased. Among these zoom lens devices, in particular, a compact zoom lens device equipped with a zoom lens system capable of zooming without deteriorating image quality has been desired.

さらに、近年では、半導体素子等の画像処理能力の向上により、パーソナルコンピュー
タ,モバイルコンピュータ,携帯電話,情報携帯端末(PDA:Personal Digital Assistan
ce)等にズームレンズ装置が内蔵又は外付けされるようになっており、高性能なズームレ
ンズ装置に対する需要に拍車をかけている。
In recent years, with the improvement of image processing capability of semiconductor devices and the like, personal computers, mobile computers, mobile phones, and personal digital assistants (PDAs) have been developed.
ce) and the like, a zoom lens device is built in or externally attached, which has spurred demand for a high-performance zoom lens device.

このようなズームレンズ装置に用いられるズームレンズ系としては、最も物体側に配置
された群が負のパワーを有する、いわゆるマイナスリードのズームレンズ系が数多く提案
されている。マイナスリードのズームレンズ系は、広角化が容易であり、光学的ローパス
フィルタの挿入に必要なレンズバックを確保しやすい等の特徴を有している。
As a zoom lens system used in such a zoom lens device, a number of so-called minus-lead zoom lens systems have been proposed in which the group arranged closest to the object side has negative power. The minus lead zoom lens system has features such as easy widening of the angle and easy securing of a lens back necessary for insertion of an optical low-pass filter.

マイナスリードのズームレンズ系としては、従来から銀塩フィルム用カメラの撮影レン
ズ系として提案されたズームレンズ系がある。しかしながら、これらのズームレンズ系は
、特に最短焦点距離状態でのレンズ系の射出瞳位置が比較的像面の近くに位置するため、
特に高画素を有する撮像素子の各画素に対応して設けられたマイクロレンズの瞳と整合せ
ず、周辺光量が十分に確保できないという問題があった。また、変倍時に射出瞳位置が大
きく変動するため、マイクロレンズの瞳の設定が困難であるという問題もあった。また、
そもそも銀塩フィルムと撮像素子では、求められる空間周波数特性等の光学性能が全く異
なるため、撮像素子に要求される十分な光学性能を確保できなかった。このため、撮像素
子を備えたズームレンズ装置に最適化された専用のズームレンズ系を開発する必要が生じ
ている。
As a minus lead zoom lens system, there is a zoom lens system conventionally proposed as a photographing lens system of a camera for a silver halide film. However, in these zoom lens systems, in particular, the exit pupil position of the lens system in the shortest focal length state is relatively close to the image plane,
In particular, there is a problem that the pupil of the microlens provided corresponding to each pixel of the image sensor having a high number of pixels does not match, and a sufficient amount of peripheral light cannot be secured. In addition, since the exit pupil position fluctuates greatly at the time of zooming, there is also a problem that it is difficult to set the pupil of the micro lens. Also,
In the first place, the required optical performance such as spatial frequency characteristics is completely different between the silver halide film and the imaging device, and thus sufficient optical performance required for the imaging device cannot be secured. Therefore, there is a need to develop a dedicated zoom lens system optimized for a zoom lens device having an image sensor.

撮像素子を備えたズームレンズ装置用のマイナスリードのズームレンズ系としては、例
えば米国特許第5,745,301号には、負パワーの第1群と、正パワーの第2群からなる、2成
分構成のズームレンズ系が開示されている。
As a minus lead zoom lens system for a zoom lens device having an imaging device, for example, US Pat. No. 5,745,301 discloses a two-component zoom composed of a first group of negative power and a second group of positive power. A lens system is disclosed.

また、特開平1-191820号には、負パワーの第1群、正パワーの第2群、正パワーの第3
群からなる、3成分構成のビデオカメラ用ズームレンズ系が開示されている。
Japanese Patent Application Laid-Open No. 1-191820 discloses a first group of negative power, a second group of positive power, and a third group of positive power.
A three-component zoom lens system for a video camera comprising a group is disclosed.

また、特開平1-216310号には、負パワーの第1群、正パワーの第2群、負パワーの第3
群、正パワーの第4群からなる、4成分構成のビデオカメラ用ズームレンズ系が開示され
ている。
Japanese Patent Application Laid-Open No. 1-216310 discloses a first group of negative power, a second group of positive power, and a third group of negative power.
There is disclosed a zoom lens system for a video camera having a four-component configuration including a group and a fourth group having a positive power.

さらに、特開平9-179026号には、負パワーの第1群、正パワーの第2群、負パワーの第
3群、正パワーの第4群からなる4成分構成の電子スチルカメラ用ズームレンズ系が開示
されている。
Further, Japanese Patent Application Laid-Open No. Hei 9-79026 discloses a zoom lens for an electronic still camera having a four-component configuration including a first group of negative power, a second group of positive power, a third group of negative power, and a fourth group of positive power. A system is disclosed.

米国特許第5,745,301号U.S. Pat.No. 5,745,301

特開平1-191820号JP-A 1-191820 特開平1-216310号JP-A 1-216310 特開平9-179026号JP-A-9-79026

しかしながら、上記米国特許第5,745,301号、特開平1-191820号あるいは特開平1-21631
0号に開示されているズームレンズ系は、ズーム比が2倍程度であり、ズーム比が小さい
という問題があった。
However, the above-mentioned U.S. Patent No. 5,745,301, JP-A-1-191820 or JP-A-1-21631
The zoom lens system disclosed in No. 0 has a problem that the zoom ratio is about twice and the zoom ratio is small.

また、特開平9-179026号に開示されているズームレンズ系は、ズーム比が3倍程度であ
るが、最長焦点距離状態でのFナンバーが7と大きく、明るいズームレンズ系ではないと
いう問題があった。
Further, the zoom lens system disclosed in Japanese Patent Application Laid-Open No. 9-179026 has a zoom ratio of about three times, but has a problem that the F-number in the longest focal length state is as large as 7 and is not a bright zoom lens system. there were.

さらに、いずれのズームレンズ系も、数多くのレンズ素子を必要としており、コンパク
ト性、特に収納時(沈胴時)の光軸方向のコンパクト性に欠けるという問題があった。
Further, each zoom lens system requires a large number of lens elements, and has a problem that it lacks compactness, particularly compactness in the optical axis direction when stored (when retracted).

本発明の目的は、ズーム比が大きいにも拘わらず、収納時の光軸方向の長さが十分に小
さいズームレンズ系を備えたズームレンズ装置を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a zoom lens device including a zoom lens system having a sufficiently short length in the optical axis when stored, despite a large zoom ratio.

本発明のさらなる目的は、最長焦点距離状態でも明るく、収納時の光軸方向の長さが十
分に小さいズームレンズ系を備えたズームレンズ装置を提供することである。
A further object of the present invention is to provide a zoom lens device including a zoom lens system that is bright even in the longest focal length state and has a sufficiently small length in the optical axis direction when housed.

上記課題を解決するために、請求項1に記載されたズームレンズ装置は、物体側から順
に、ズームレンズ系と、ズームレンズ系が形成した光学像を電気的画像データに変換する
撮像素子と、を備えたズームレンズ装置であって、前記ズームレンズ系は、物体側から順
に、負のパワーを有する第1群と、正のパワーを有する第2群と、正のパワーを有する第
3群と、から構成され、前記第1群は、最も物体側に配置された物体側に凸面を向けた負
メニスカスレンズと最も像側に配置された物体側に凸面を向けた正メニスカスレンズを含
む2枚あるいは3枚のレンズ素子から構成されており、前記第2群は、物体側から順に、正
レンズ、負レンズ、正レンズの3枚から構成されており、第3群は、正の単レンズであっ
て、物体距離の変化にともなうフォーカシング調整のために光軸上を移動することを特徴
とする。
In order to solve the above problem, a zoom lens device according to claim 1 includes, in order from an object side, a zoom lens system, and an image sensor that converts an optical image formed by the zoom lens system into electrical image data. Wherein the zoom lens system includes, in order from the object side, a first unit having negative power, a second unit having positive power, and a third unit having positive power. And the first group includes a negative meniscus lens having a convex surface facing the object side disposed closest to the object side and a positive meniscus lens having a convex surface facing the object side disposed closest to the image side. Alternatively, the second group includes three lens elements, a positive lens, a negative lens, and a positive lens, in order from the object side, and the third group includes a single positive lens. There is a change in the object distance Characterized in that it moves along the optical axis for Kashingu adjustment.

また、本発明の別の側面は、上記ズームレンズ装置を含むデジタルカメラであることを
特徴とする。なお、デジタルカメラの語は、従来は専ら光学的な静止画を記録するものを
指していたが、動画を同時に扱えるものや家庭用のデジタルビデオカメラも提案されてお
り、現在では特に区別されなくてなってきている。したがって、この明細書で用いるデジ
タルカメラの語は、デジタルスチルカメラ、デジタルムービーカメラ、ウェッブカメラ(
開放型、プライベートを問わずネットワークに接続されて画像の送受信を可能にする機器
に接続されるカメラであって、ネットワークに直接接続されるもの、又はパーソナルコン
ピュータ等の情報処理機能を有する機器を介して接続されるものの両方を含む)等の受光
面上に形成された光学像を電気信号に変換する撮像素子を備えた撮像装置を主たる構成要
素とするカメラをすべて含む。
Another aspect of the present invention is a digital camera including the zoom lens device. In the past, the term digital camera used to refer exclusively to those that record optical still images, but those that can simultaneously handle moving pictures and digital video cameras for home use have also been proposed, and at present there is no particular distinction between them. It is getting better. Therefore, the term digital camera used in this specification refers to a digital still camera, a digital movie camera, a web camera (
An open or private camera connected to a network that can transmit and receive images regardless of whether it is connected directly to the network or via a device having an information processing function such as a personal computer. And cameras connected to the optical device, and includes an image pickup device having an image pickup device that converts an optical image formed on a light receiving surface into an electric signal.

また、本発明の別の側面は、上記ズームレンズ装置を含む携帯情報機器であることを特
徴とする。ここで、携帯情報機器とは、携帯電話端末やPDA(Personal Digital Assistan
t)等の個人ユースの小型で携帯可能な情報機器端末を意味することとする。
Another aspect of the present invention is a portable information device including the zoom lens device. Here, the portable information device is a mobile phone terminal or a PDA (Personal Digital Assistan
It means a small and portable information device terminal for personal use such as t).

以上説明したように、本発明に係るズームレンズ装置によれば、ズーム比が大きいにも
拘わらず、収納時の光軸方向の長さが十分に小さいズームレンズ系を備えたズームレンズ
装置を提供することができる。
As described above, according to the zoom lens device of the present invention, there is provided a zoom lens device including a zoom lens system having a sufficiently small length in the optical axis direction when housed, despite a large zoom ratio. can do.

また、本発明に係るズームレンズ装置によれば、最長焦点距離状態でも明るく、収納時
の光軸方向の長さが十分に小さいズームレンズ系を備えたズームレンズ装置を提供するこ
とができる。
Further, according to the zoom lens device of the present invention, it is possible to provide a zoom lens device including a zoom lens system which is bright even in the longest focal length state and has a sufficiently small length in the optical axis direction when housed.

以下、図面を参照して、本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本発明の一実施形態である撮像装置は、例えば図7に示すように、物体側(被写体側)
から順に、物体の光学像を変倍可能に形成するズームレンズ系とTL、光学的ローパスフィ
ルタLPFと、ズームレンズ系TLにより形成された光学像を電気的な信号に変換する撮像素
子SRと、で構成されている。撮像装置は、デジタルカメラ;ビデオカメラ;パーソナルコ
ンピュータ,モバイルコンピュータ,携帯電話,情報携帯端末(PDA:Personal Digital
Assistance)等に内蔵又は外付けされるカメラの主たる構成要素である。
An image pickup apparatus according to an embodiment of the present invention includes, for example, as shown in FIG.
In order, the zoom lens system and TL that form an optical image of the object to be variable in magnification, an optical low-pass filter LPF, and an image sensor SR that converts the optical image formed by the zoom lens system TL into an electric signal, It is composed of An imaging device is a digital camera; a video camera; a personal computer, a mobile computer, a mobile phone, and a personal digital assistant (PDA).
Assistance) is a main component of a camera built in or externally attached to the camera.

光学ローパスフィルタLPFは、撮影レンズ系の空間周波数特性を調整し撮像素子で発生
する色モアレを解消するための特定の遮断周波数を有している。実施形態の光学ローパス
フィルタは、結晶軸を所定方向に調整された水晶等の複屈折材料や偏光面を変化させる波
長板等を積層して作成された複屈折型ローパスフィルタである。なお、光学ローパスフィ
ルタとしては、必要な光学的な遮断周波数の特性を回折効果により達成する位相型ローパ
スフィルタ等を採用してもよい。
The optical low-pass filter LPF has a specific cutoff frequency for adjusting the spatial frequency characteristics of the taking lens system and eliminating color moiré generated in the image sensor. The optical low-pass filter according to the embodiment is a birefringent low-pass filter formed by laminating a birefringent material such as quartz whose crystal axis is adjusted in a predetermined direction, a wave plate that changes the plane of polarization, and the like. Note that, as the optical low-pass filter, a phase-type low-pass filter or the like that achieves the required optical cutoff frequency characteristic by the diffraction effect may be employed.

撮像素子SRは、複数の画素を有するCCDからなり、ズームレンズ系が形成した光学像をC
CDで電気信号に変換する。撮像素子SRで生成された信号は、必要に応じて所定のデジタル
画像処理や画像圧縮処理等を施されてデジタル映像信号としてメモリー(半導体メモリー
,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号に変換
されたりして他の機器に伝送される。なお、CCDの代わりにCMOSセンサ(Complementary M
etal-oxide Semiconductor)を用いてもよい。
The image sensor SR is composed of a CCD having a plurality of pixels, and converts an optical image formed by a zoom lens system into a CCD.
Convert to an electric signal with CD. The signal generated by the image sensor SR is subjected to predetermined digital image processing and image compression processing as required, and is recorded as digital video signals in a memory (semiconductor memory, optical disk, etc.). The signal is transmitted to another device through the device or converted into an infrared signal. Note that instead of a CCD, a CMOS sensor (Complementary M
etal-oxide Semiconductor) may be used.

図1は、第1実施形態のズームレンズ系の構成を示すレンズ構成図である。このズーム
レンズ系は、物体側から順に、物体側に凸面を向けた負メニスカス形状の第1レンズL1,
物体側に凸面を向けた負メニスカス形状の第2レンズL2及び物体側に凸面を向けた正メニ
スカス形状の第3レンズL3から構成される第1群Gr1と、絞りST,物体側に凸面を向けた正
メニスカス形状の第4レンズL4,両凹形状の第5レンズL5及び両凸形状の第6レンズL6から
構成される第2群Gr2と、物体側に凸面を向けた正メニスカス形状の第7レンズL7のみから
なる第3群Gr3と、から成る。最短焦点距離状態から最長焦点距離状態へのズーミングに際
して、第1群Gr1は像側に凸のUターンの軌跡を描きながら移動し、第2群Gr2は物体側へ単
調に移動し、第3群Gr3は物体側に凸の軌跡を描きながら移動する。また、無限遠合焦状態
から有限物体合焦状態へのフォーカシングに際して、第7レンズL7を単独で物体側へ移動
させる。
FIG. 1 is a lens configuration diagram illustrating a configuration of a zoom lens system according to the first embodiment. The zoom lens system includes, in order from the object side, a negative meniscus first lens L1 having a convex surface facing the object side.
A first group Gr1 including a negative meniscus second lens L2 having a convex surface facing the object side and a positive meniscus third lens L3 having a convex surface facing the object side, and an aperture ST, having the convex surface facing the object side. The second group Gr2 includes a positive meniscus fourth lens L4, a biconcave fifth lens L5, and a biconvex sixth lens L6, and a positive meniscus seventh lens having a convex surface facing the object side. A third unit Gr3 including only the lens L7. During zooming from the shortest focal length state to the longest focal length state, the first group Gr1 moves while drawing a locus of a U-turn convex to the image side, the second group Gr2 moves monotonously to the object side, and the third group Gr2. Gr3 moves while drawing a convex trajectory toward the object side. In focusing from an infinity in-focus condition to a finite object in-focus condition, the seventh lens L7 is independently moved to the object side.

図2は、第2実施形態のズームレンズ系の構成を示すレンズ構成図である。このズーム
レンズ系は、物体側から順に、物体側に凸面を向けた負メニスカス形状の第1レンズL1及
び物体側に凸面を向けた正メニスカス形状の第2レンズL2からなる第1群Gr1と、絞りST,
物体側に凸面を向けた正メニスカス形状の第3レンズL3,両凹形状の第4レンズL4及び両凸
形状の第5レンズL5からなる第2群Gr2と、物体側に凸面を向けた正メニスカス形状の第6レ
ンズのみからなる第3群Gr3と、から成る。最短焦点距離状態から最長焦点距離状態へのズ
ーミングに際して、第1群Gr1は像側に凸のUターンの軌跡を描きながら移動し、第2群Gr2
は物体側へ単調に移動し、第3群Gr3は像側へ移動する。また、無限遠合焦状態から有限物
体合焦状態へのフォーカシングに際して、第6レンズL6を単独で物体側へ移動させる。
FIG. 2 is a lens configuration diagram illustrating a configuration of a zoom lens system according to a second embodiment. The zoom lens system includes, in order from the object side, a first group Gr1 including a negative meniscus first lens L1 having a convex surface facing the object side and a positive meniscus second lens L2 having a convex surface facing the object side. Aperture ST,
A second lens unit Gr2 including a positive meniscus third lens L3 having a convex surface facing the object side, a biconcave fourth lens L4, and a biconvex fifth lens L5, and a positive meniscus having a convex surface facing the object side And a third group Gr3 including only a sixth lens having a shape. During zooming from the shortest focal length state to the longest focal length state, the first group Gr1 moves while drawing a locus of a U-turn convex on the image side, and the second group Gr2
Moves monotonously to the object side, and the third lens unit Gr3 moves to the image side. In focusing from an infinity in-focus condition to a finite object in-focus condition, the sixth lens L6 is independently moved to the object side.

各実施形態のズームレンズ系は、物体側から順に、負のパワーを有する第1群と、正の
パワーを有する第2群と、正のパワーを有する第3群と、から構成され、前記第1群は、
最も物体側に配置された物体側に凸面を向けた負メニスカスレンズと最も像側に配置され
た物体側に凸面を向けた正メニスカスレンズを含む2枚あるいは3枚のレンズ素子から構成
され、第2群は、物体側から順に、正レンズ、負レンズ、正レンズの3枚から構成されて
いる。光学性能を維持したままコンパクト化を図ろうとすると、第1群の枚数削減は難し
い。そこで、第2群を正負正のトリプレットというシンプルな構成とすることにより、枚
数削減を実現することができる。特に、第2群を正負正の3枚で構成することにより、軸上
球面収差を良好に補正することが可能となる。
The zoom lens system of each embodiment includes, in order from the object side, a first unit having negative power, a second unit having positive power, and a third unit having positive power. One group is
It is composed of two or three lens elements including a negative meniscus lens having a convex surface facing the object side disposed closest to the object side and a positive meniscus lens having a convex surface facing the object side disposed closest to the image side. The second group includes, in order from the object side, a positive lens, a negative lens, and a positive lens. It is difficult to reduce the number of units in the first lens group when trying to reduce the size while maintaining optical performance. Therefore, the number of sheets can be reduced by forming the second lens unit with a simple configuration of positive, negative, and positive triplets. In particular, by forming the second lens unit with three positive, negative, positive lenses, it is possible to satisfactorily correct axial spherical aberration.

また、第3群は、正の単レンズであって、物体距離の変化にともなうフォーカシング調
整のために光軸上を移動する構成となっている。最も像側に配置された第3群をフォーカ
ス群とすることにより、駆動系の負担の小さいレンズ素子をフォーカスすることができ望
ましい。
The third unit is a positive single lens, and is configured to move on the optical axis for focusing adjustment according to a change in object distance. It is desirable that the third lens group disposed closest to the image side be the focus group, so that the lens element with a small load on the drive system can be focused.

また、各実施形態のズームレンズ系は、以下の条件式(1)を満足することが望ましい。   Further, it is desirable that the zoom lens system according to each of the embodiments satisfies the following conditional expression (1).

0.6 < Tsum / fw < 2.6 (1)
ただし、
Tsum:ズームレンズ系に含まれるすべてのレンズ素子の心厚の和、
fw:最短焦点距離状態でのズームレンズ系の焦点距離、
である。
0.6 <Tsum / fw <2.6 (1)
However,
Tsum: Sum of the thicknesses of all the lens elements included in the zoom lens system,
fw: focal length of the zoom lens system in the shortest focal length state,
It is.

条件式(1)は、ズームレンズ系に含まれるすべてのレンズ素子の心厚の和を規定してい
る。ズームレンズ系の沈胴時の光軸方向大きさは、デジタルカメラや携帯情報機器の厚み
方向の大きさを概略決定してしまう最大要因である。そして、沈胴時の光軸方向大きさは
、レンズ素子の心厚の和より物理的に小さくなることができない。したがって、Tsumを小
さくすることができなければ、沈胴時にコンパクトなズームレンズ系を達成することがで
きないのである。条件式(1)はまさに、この沈胴時の厚みを規定する条件式である。条件
式の下限を超えると、物理的に光学系を構成することが困難になる。一方、上限を超える
とレンズの厚みが大きくなりすぎ、デジタルカメラや携帯情報機器において許容される限
界を超えてしまう。なお、条件式(4)は、さらに以下の範囲とすることにより、より効果
的である。
Conditional expression (1) defines the sum of the thicknesses of all the lens elements included in the zoom lens system. The size in the optical axis direction of the zoom lens system when retracted is the largest factor that roughly determines the size in the thickness direction of a digital camera or a portable information device. The size in the optical axis direction at the time of collapsing cannot be physically smaller than the sum of the thicknesses of the lens elements. Therefore, if Tsum cannot be reduced, a compact zoom lens system cannot be achieved when retracted. Conditional expression (1) is exactly a conditional expression that defines the thickness when retracted. If the lower limit of the conditional expression is exceeded, it becomes difficult to physically configure the optical system. On the other hand, when the value exceeds the upper limit, the thickness of the lens becomes too large, which exceeds the limit allowed in digital cameras and portable information devices. It is to be noted that conditional expression (4) is more effective when it is set in the following range.

Tsum / fw < 2.2 (1)'
Tsum / fw < 2.0 (1)''
以上説明した第1〜第2の実施の形態を構成している各レンズ群は、入射光線を屈折に
より偏向させる屈折型レンズのみで構成されているが、これに限らない。例えば、回折に
より入射光線を偏向させる回折型レンズ,回折作用と屈折作用との組み合わせで入射光線
を偏向させる屈折・回折ハイブリッド型レンズ等で、各レンズ群を構成してもよい。
Tsum / fw <2.2 (1) '
Tsum / fw <2.0 (1) ''
Each lens group constituting the first and second embodiments described above is constituted only by a refraction type lens which deflects an incident light beam by refraction, but is not limited to this. For example, each lens group may be composed of a diffractive lens that deflects an incident light beam by diffraction, a hybrid refraction / diffraction lens that deflects an incident light beam by a combination of a diffraction action and a refraction action, or the like.

また、各レンズ群内やレンズ群間に存在する空気間隔を適当に調整して、入射光軸を折
り曲げる反射部材を追加してもよい。入射光軸を折り曲げることにより、光学系の配置の
自由度が向上するとともに、入射光軸方向の光学機器の厚みを小さくすることができ望ま
しい。
Further, a reflecting member that bends the incident optical axis may be added by appropriately adjusting the air gap existing in each lens group or between the lens groups. Bending the incident optical axis is preferable because the degree of freedom of arrangement of the optical system can be improved and the thickness of the optical device in the direction of the incident optical axis can be reduced.

以下、本発明を実施したズームレンズの構成を、コンストラクションデータ,収差図等
を挙げて、更に具体的に説明する。なお、以下に挙げる実施例1〜2は、前述した第1〜
第2の実施の形態にそれぞれ対応しており、第1〜第2の実施の形態を表すレンズ構成図
(図1〜図2http://www.ipdl.jpo-miti.go.jp/Tokujitu/tjitemdrw.ipdl?N0000=231&N05
00=1E_N/;>>=;=>:6///&N0001=148&N0552=9&N0553=000012)は、対応する実施例1〜2のレ
ンズ構成をそれぞれ示している。
Hereinafter, the configuration of the zoom lens embodying the present invention will be described more specifically with reference to construction data, aberration diagrams, and the like. In addition, the following Examples 1 and 2 are the first to the first
Lens configuration diagrams respectively corresponding to the second embodiment and representing the first and second embodiments
(Figures 1 and 2 http://www.ipdl.jpo-miti.go.jp/Tokujitu/tjitemdrw.ipdl?N0000=231&N05
00 = 1E_N /; >>=;=>: 6 /// & N0001 = 148 & N0552 = 9 & N0553 = 000012) shows the corresponding lens configurations of Examples 1 and 2.

各実施例のコンストラクションデータにおいて、ri (i = 1,2,3,...)は物体側から数え
てi番目の面の曲率半径、di(i = 1,2,3,...)は物体側から数えてi番目の軸上面間隔を示
しており、Ni (i = 1,2,3,...), νi (i = 1,2,3,...)は物体側から数えてi番目の光学要
素のd線に対する屈折率(Nd),アッベ数(νd)を示している。また、コンストラクションデ
ータ中、ズーミングにおいて変化する軸上面間隔(可変間隔)は、最短焦点距離状態(短焦
点距離端)[W]〜ミドル(中間焦点距離状態)[M]〜最長焦点距離状態(長焦点距離端)[T]
での各レンズ群間の軸上空気間隔である。各焦点距離状態[W], [M], [T]に対応する全
系の焦点距離f及びFナンバーFNOを併せて示す。
In the construction data of each embodiment, ri (i = 1, 2, 3, ...) is the radius of curvature of the i-th surface counted from the object side, di (i = 1, 2, 3, ...) Indicates the i-th axial distance from the object side, and Ni (i = 1,2,3, ...) and νi (i = 1,2,3, ...) The refractive index (Nd) and Abbe number (νd) of the i-th optical element counted for the d-line are shown. In the construction data, the axial top surface interval (variable interval) that changes during zooming is from the shortest focal length state (short focal length end) [W] to the middle (intermediate focal length state) [M] to the longest focal length state (long). Focal length end) [T]
Is the axial air spacing between each lens group. The focal length f and the F-number FNO of the entire system corresponding to each focal length state [W], [M], [T] are also shown.

曲率半径riに*が付された面は、非球面で構成された面であることを示し、非球面の面
形状を表す以下の式(AS)で定義されるものとする。各実施例の非球面データを他のデー
タと併せて示す。
A surface with * added to the radius of curvature ri indicates a surface constituted by an aspheric surface, and is defined by the following formula (AS) representing the surface shape of the aspheric surface. The aspherical surface data of each example is shown together with other data.

Z(h)=r-(r^2-ε・h^2)^1/2+(A4・h^4+A6・h^6+A8・h^8+…) (AS)
r:非球面の近軸曲率半径、
ε:楕円係数、
Ai:非球面のi次の非球面係数、

<実施例1>
f = 4.6 - 9.0 - 13.2 mm
FNo.= 2.48 - 3.19 - 4.00
[曲率半径] [軸上面間隔] [屈折率(Nd)] [アッベ数]
r1*= 17.532
d1 = 1.000 N1 = 1.83130 ν1 = 41.7
r2 = 6.828
d2 = 2.710
r3 = 23.417
d3 = 1.000 N2 = 1.52510 ν2 = 56.38
r4*= 6.095
d4 = 1.967
r5 = 11.146
d5 = 2.110 N3 = 1.84666 ν3 = 23.78
r6 = 26.577
d6 = 16.386 - 4.389 - 1.000
r7 = ∞
d7 = 0.600
r8 = 6.850
d8 = 1.863 N4 = 1.82879 ν4 = 41.94
r7 = 45.202
d9 = 1.547
r8 = -13.689
d10= 1.000 N5 = 1.70405 ν5 = 26.37
r9 = 6.002
d11= 0.100
r12*= 6.111
d12= 1.988 N6 = 1.52510 ν6 = 56.38
r13*= -8.632
d13 = 5.514 - 10.734 - 17.333
r14= 10.647
d14= 1.445 N7 = 1.52510 ν7 = 56.38
r15 = 32.538
d15 = 2.271 - 2.578 - 1.207
r16 = ∞
d16 = 2.500 N8 = 1.51633 ν8 = 64.14
r17 = ∞

[非球面係数]
r4
ε = 1.0000E+00
A4 = -6.7060E-04
A6 = -1.7530E-05
A8 = 4.5843E-07
A10 = -2.0557E-08

r12
ε = 1.0000E+00
A4 = -4.4664E-04
A6 = 1.7277E-05
A8 = 2.2515E-06
A10= 6.2964E-07

r13
ε = 1.0000E+00
A4 = 6.5827E-04
A6 = -5.4681E-05
A8 = 2.7981E-05
A10= -3.5378E-06
A12= 2.5910E-07

r14
ε = 1.0000E+00
A4 = -3.7480E-04
A6 = 3.8380E-05
A8 = -2.3902E-06
A10= 5.7640E-08

<実施例2>
f = 5.8 - 11.4 - 16.7 mm
FNo.= 2.55 - 3.31 - 4.10
[曲率半径] [軸上面間隔] [屈折率(Nd)] [アッベ数]
r1 = 86.761
d1 = 1.000 N1 = 1.75975 ν1 = 50.67
r2*= 6.379
d2 = 2.721
r3 = 12.040
d3 = 1.936 N2 = 1.84666 ν2 = 23.78
r4 = 24.841
d4 = 18.257 - 5.090 - 1.000
r5 = ∞
d5 = 0.600
r6 = 7.714
d6 = 1.964 N3 = 1.78555 ν3 = 46.83
r7 = 67.389
d7 = 2.166
r8 = -14.995
d8 = 1.000 N4 = 1.80518 ν4 = 25.43
r9*= 9.471
d9 = 0.722
r10= 15.351
d10= 2.537 N5 = 1.75450 ν5 = 51.57
r11= -11.485
d11= 5.143 - 12.942 - 20.477
r12*= 9.438
d12= 1.525 N6 = 1.52510 ν6 = 56.38
r13*= 20.696
d13= 3.927 - 3.054 - 1.521
r14= ∞
d14= 2.500 N7 = 1.51633 ν7 = 64.14
r15= ∞

[非球面係数]
r2
ε = 1.0000E+00
A4 = -3.1282E-04
A6 = -1.2185E-05
A8 = 4.0718E-07
A10 = -1.3528E-08

r9
ε = 1.0000E+00
A4 = 4.0197E-04
A6 = 4.7244E-06
A8 = -8.7786E-07
A10= 3.9925E-08

r12
ε = 1.0000E+00
A4 = 2.0421E-04
A6 = 1.1890E-05
A8 = -7.4750E-07
A10= 5.3768E-08

r13
ε = 1.0000E+00
A4 = 6.5428E-04
A6 = -1.9795E-05
A8 = 8.8594E-07
A10= 4.0482E-08

図3〜図6は、実施例1〜実施例2の収差図であり、図3〜図4は、無限遠合焦状態で
の実施例1〜2の各収差、図5〜図6は、近接物体(物体距離40cm)合焦点状態での実施
例1〜2の各収差を示している。各収差図中、上段は最短焦点距離状態,中段はミドル,
下段は最長焦点距離状態における諸収差(左から順に、球面収差等,非点収差,歪曲;Y':
像高)を示している。また、球面収差図中の実線(d)、一点鎖線(g)はそれぞれd線、g線
に対する球面収差、破線(SC)は正弦条件を表しており、非点収差図中の破線(DM)と実線(D
S)は、メリディオナル面とサジタル面でのd線に対する非点収差をそれぞれ表わしている
Z (h) = r- (r ^ 2-ε ・ h ^ 2) ^ 1/2 + (A4 ・ h ^ 4 + A6 ・ h ^ 6 + A8 ・ h ^ 8 + ...) (AS)
r: radius of paraxial curvature of aspheric surface
ε: elliptic coefficient,
Ai: the i-th aspherical coefficient of the aspherical surface,

<Example 1>
f = 4.6-9.0-13.2 mm
FNo. = 2.48-3.19-4.00
[Curvature radius] [Shaft upper surface interval] [Refractive index (Nd)] [Abbe number]
r1 * = 17.532
d1 = 1.000 N1 = 1.83130 ν1 = 41.7
r2 = 6.828
d2 = 2.710
r3 = 23.417
d3 = 1.000 N2 = 1.52510 ν2 = 56.38
r4 * = 6.095
d4 = 1.967
r5 = 11.146
d5 = 2.110 N3 = 1.84666 ν3 = 23.78
r6 = 26.577
d6 = 16.386-4.389-1.000
r7 = ∞
d7 = 0.600
r8 = 6.850
d8 = 1.863 N4 = 1.82879 ν4 = 41.94
r7 = 45.202
d9 = 1.547
r8 = -13.689
d10 = 1.000 N5 = 1.70405 ν5 = 26.37
r9 = 6.002
d11 = 0.100
r12 * = 6.111
d12 = 1.988 N6 = 1.52510 ν6 = 56.38
r13 * = -8.632
d13 = 5.514-10.734-17.333
r14 = 10.647
d14 = 1.445 N7 = 1.52510 ν7 = 56.38
r15 = 32.538
d15 = 2.271-2.578-1.207
r16 = ∞
d16 = 2.500 N8 = 1.51633 ν8 = 64.14
r17 = ∞

[Aspheric coefficient]
r4
ε = 1.0000E + 00
A4 = -6.7060E-04
A6 = -1.7530E-05
A8 = 4.5843E-07
A10 = -2.0557E-08

r12
ε = 1.0000E + 00
A4 = -4.4664E-04
A6 = 1.7277E-05
A8 = 2.2515E-06
A10 = 6.2964E-07

r13
ε = 1.0000E + 00
A4 = 6.5827E-04
A6 = -5.4681E-05
A8 = 2.7981E-05
A10 = -3.5378E-06
A12 = 2.5910E-07

r14
ε = 1.0000E + 00
A4 = -3.7480E-04
A6 = 3.8380E-05
A8 = -2.3902E-06
A10 = 5.7640E-08

<Example 2>
f = 5.8-11.4-16.7 mm
FNo. = 2.55-3.31-4.10
[Curvature radius] [Shaft upper surface interval] [Refractive index (Nd)] [Abbe number]
r1 = 86.761
d1 = 1.000 N1 = 1.75975 ν1 = 50.67
r2 * = 6.379
d2 = 2.721
r3 = 12.040
d3 = 1.936 N2 = 1.84666 ν2 = 23.78
r4 = 24.841
d4 = 18.257-5.090-1.000
r5 = ∞
d5 = 0.600
r6 = 7.714
d6 = 1.964 N3 = 1.78555 ν3 = 46.83
r7 = 67.389
d7 = 2.166
r8 = -14.995
d8 = 1.000 N4 = 1.80518 ν4 = 25.43
r9 * = 9.471
d9 = 0.722
r10 = 15.351
d10 = 2.537 N5 = 1.75450 ν5 = 51.57
r11 = -11.485
d11 = 5.143-12.942-20.477
r12 * = 9.438
d12 = 1.525 N6 = 1.52510 ν6 = 56.38
r13 * = 20.696
d13 = 3.927-3.054-1.521
r14 = ∞
d14 = 2.500 N7 = 1.51633 ν7 = 64.14
r15 = ∞

[Aspheric coefficient]
r2
ε = 1.0000E + 00
A4 = -3.1282E-04
A6 = -1.2185E-05
A8 = 4.0718E-07
A10 = -1.3528E-08

r9
ε = 1.0000E + 00
A4 = 4.0197E-04
A6 = 4.7244E-06
A8 = -8.7786E-07
A10 = 3.9925E-08

r12
ε = 1.0000E + 00
A4 = 2.0421E-04
A6 = 1.1890E-05
A8 = -7.4750E-07
A10 = 5.3768E-08

r13
ε = 1.0000E + 00
A4 = 6.5428E-04
A6 = -1.9795E-05
A8 = 8.8594E-07
A10 = 4.0482E-08

3 and 6 are aberration diagrams of Examples 1 and 2, FIGS. 3 and 4 are aberrations of Examples 1 and 2 in an infinity in-focus state, and FIGS. 9 shows respective aberrations of Examples 1 and 2 in a focused state of a close object (object distance of 40 cm). In each aberration diagram, the upper part is the shortest focal length state, the middle part is middle,
The lower row shows various aberrations in the longest focal length state (in order from the left, spherical aberration, astigmatism, distortion; Y ′:
(Image height). Further, the solid line (d) in the spherical aberration diagram, the dashed line (g) indicates the spherical aberration for the d-line and the g-line, respectively, and the dashed line (SC) indicates the sine condition, and the dashed line (DM) in the astigmatism diagram. And the solid line (D
S) represents astigmatism with respect to d-line on the meridional surface and the sagittal surface, respectively.

本発明の第1の実施形態(実施例1)を表すレンズ構成図1 is a lens configuration diagram illustrating a first embodiment (Example 1) of the present invention. 本発明の第2の実施形態(実施例2)を表すレンズ構成図FIG. 4 is a lens configuration diagram illustrating a second embodiment (Example 2) of the present invention. 本発明の第1の実施形態(実施例1)の無限遠合焦状態の収差図Aberration diagram of the first embodiment (Example 1) of the present invention when focused on infinity 本発明の第2の実施形態(実施例2)の無限遠合焦状態の収差図Aberration diagram of the second embodiment (Example 2) of the present invention when focused on infinity 本発明の第1の実施形態(実施例1)の近接物体合焦状態の収差図Aberration diagram of the first embodiment (Example 1) of the present invention when a close object is in focus 本発明の第2の実施形態(実施例2)の近接物体合焦状態の収差図Aberration diagram of the second embodiment (Example 2) of the present invention in a state where a close object is in focus 本発明のズームレンズ装置の概略構成を示す図FIG. 1 is a diagram showing a schematic configuration of a zoom lens device according to the present invention.

符号の説明Explanation of reference numerals

ズームレンズ系(TL)
第1レンズ群(Gr1)
第2レンズ群(Gr2)
第3レンズ群(Gr3)
第4レンズ群(Gr4)
フィルタ(LPF)
撮像素子(SR)
Zoom lens system (TL)
First lens group (Gr1)
Second lens group (Gr2)
Third lens group (Gr3)
4th lens group (Gr4)
Filter (LPF)
Image sensor (SR)

Claims (4)

物体側から順に、ズームレンズ系と、ズームレンズ系が形成した光学像を電気的画像デー
タに変換する撮像素子と、を備えたズームレンズ装置であって、
前記ズームレンズ系は、物体側から順に、負のパワーを有する第1群と、正のパワーを
有する第2群と、正のパワーを有する第3群と、から構成され、
前記第1群は、最も物体側に配置された物体側に凸面を向けた負メニスカスレンズと最
も像側に配置された物体側に凸面を向けた正メニスカスレンズを含む2枚あるいは3枚のレ
ンズ素子から構成されており、
前記第2群は、物体側から順に、正レンズ、負レンズ、正レンズの3枚から構成されて
おり、
第3群は、正の単レンズであって、物体距離の変化にともなうフォーカシング調整のた
めに光軸上を移動することを特徴とするズームレンズ装置。
A zoom lens device including, in order from the object side, a zoom lens system, and an imaging element that converts an optical image formed by the zoom lens system into electrical image data,
The zoom lens system includes, in order from the object side, a first group having negative power, a second group having positive power, and a third group having positive power,
The first lens unit includes two or three lenses including a negative meniscus lens having a convex surface facing the object side closest to the object side and a positive meniscus lens having a convex surface facing the object side closest to the image side. It is composed of elements,
The second group includes, in order from the object, a positive lens, a negative lens, and a positive lens.
The third lens unit is a positive single lens, and moves on the optical axis for focusing adjustment according to a change in object distance.
以下の条件式(1)を満足することを特徴とする請求項1記載のズームレンズ装置。
0.6 < Tsum / fw < 2.6
ただし、
Tsum:ズームレンズ系に含まれるすべてのレンズ素子の心厚の和、
fw:最短焦点距離状態でのズームレンズ系の焦点距離、
である。
2. The zoom lens device according to claim 1, wherein the following conditional expression (1) is satisfied.
0.6 <Tsum / fw <2.6
However,
Tsum: Sum of the thicknesses of all the lens elements included in the zoom lens system,
fw: focal length of the zoom lens system in the shortest focal length state,
It is.
請求項1又は2のズームレンズ装置を備えたデジタルカメラ。   A digital camera comprising the zoom lens device according to claim 1. 請求項1又は2のズームレンズ装置を備えた携帯情報機器。

A portable information device comprising the zoom lens device according to claim 1.

JP2004083260A 2003-03-31 2004-03-22 Zoom lens device Pending JP2004318105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083260A JP2004318105A (en) 2003-03-31 2004-03-22 Zoom lens device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003093536 2003-03-31
JP2004083260A JP2004318105A (en) 2003-03-31 2004-03-22 Zoom lens device

Publications (1)

Publication Number Publication Date
JP2004318105A true JP2004318105A (en) 2004-11-11

Family

ID=33478601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083260A Pending JP2004318105A (en) 2003-03-31 2004-03-22 Zoom lens device

Country Status (1)

Country Link
JP (1) JP2004318105A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001431A1 (en) * 2004-06-29 2006-01-05 Matsushita Electric Industrial Co., Ltd. Zoom lens system, imaging device, and camera
JP2006343534A (en) * 2005-06-09 2006-12-21 Olympus Imaging Corp Zoom lens and electronic imaging apparatus using the same
US9122041B2 (en) 2011-09-02 2015-09-01 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus including the same
CN115616746A (en) * 2022-12-01 2023-01-17 安徽科创中光科技股份有限公司 Seven-piece wide-angle camera lens

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001431A1 (en) * 2004-06-29 2006-01-05 Matsushita Electric Industrial Co., Ltd. Zoom lens system, imaging device, and camera
JPWO2006001431A1 (en) * 2004-06-29 2008-04-17 松下電器産業株式会社 Zoom lens system, imaging device and camera
US7369323B2 (en) 2004-06-29 2008-05-06 Matsushita Electric Industrial Co., Ltd. Zoom lens system, imaging device and camera
US7697215B2 (en) 2004-06-29 2010-04-13 Panasonic Corporation Zoom lens system, imaging device and camera
JP4792395B2 (en) * 2004-06-29 2011-10-12 パナソニック株式会社 Zoom lens system, imaging device and camera
JP2006343534A (en) * 2005-06-09 2006-12-21 Olympus Imaging Corp Zoom lens and electronic imaging apparatus using the same
US9122041B2 (en) 2011-09-02 2015-09-01 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus including the same
CN115616746A (en) * 2022-12-01 2023-01-17 安徽科创中光科技股份有限公司 Seven-piece wide-angle camera lens

Similar Documents

Publication Publication Date Title
US6754446B2 (en) Imaging device and digital camera using the imaging device
US6728482B2 (en) Imaging device and digital camera using the imaging device
JP3896988B2 (en) Imaging lens device
JP4942091B2 (en) Wide-angle high-magnification zoom lens and imaging apparatus using the same
JP4103475B2 (en) Imaging lens device
US8085476B2 (en) Zoom lens system and an image pickup apparatus including the same
JP2012208378A (en) Zoom lens and imaging apparatus using the same
JP2002082284A (en) Imaging lens device
US7522346B2 (en) Imaging device and digital camera using the imaging device
JP2009037125A (en) Three-group zoom lens system and image pickup apparatus using the same
JP2010049189A (en) Zoom lens and imaging device including the same
JP2011252962A (en) Imaging optical system and imaging apparatus having the same
US6853807B2 (en) Imaging device and digital camera using the imaging device
JP2004318097A (en) Zoom lens device
JP3821087B2 (en) Imaging lens device
JP2005266175A (en) Zoom lens and imaging device
US7440195B2 (en) Zoom lens system and imaging device having the same
JP2004318107A (en) Zoom lens device
JP2004318108A (en) Zoom lens device
JP2004318106A (en) Zoom lens device
JP4821207B2 (en) Variable magnification optical system and image pickup apparatus including the same
JP2004318103A (en) Zoom lens device
JP2004037925A (en) Imaging apparatus
US7042650B2 (en) Zoom lens device
JP2004318099A (en) Zoom lens device