JP2004313902A - Sewage purifying tank equipped with electrolytic cell - Google Patents

Sewage purifying tank equipped with electrolytic cell Download PDF

Info

Publication number
JP2004313902A
JP2004313902A JP2003110165A JP2003110165A JP2004313902A JP 2004313902 A JP2004313902 A JP 2004313902A JP 2003110165 A JP2003110165 A JP 2003110165A JP 2003110165 A JP2003110165 A JP 2003110165A JP 2004313902 A JP2004313902 A JP 2004313902A
Authority
JP
Japan
Prior art keywords
tank
treatment tank
anaerobic
nitrogen
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003110165A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Katagai
信義 片貝
Hiroshi Yamashita
宏 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Housetec Inc
Original Assignee
Housetec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Housetec Inc filed Critical Housetec Inc
Priority to JP2003110165A priority Critical patent/JP2004313902A/en
Publication of JP2004313902A publication Critical patent/JP2004313902A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sewage purifying tank equipped with an electrolytic cell capable of more stably removing BOD than before and capable of also efficiently removing nitrogen. <P>SOLUTION: In the sewage purifying tank 1 having an anaerobic biological treatment tank (2 or 3), an aerobic biological treatment tank 6 and a treated water tank 7 successively provided thereto from an upstream side, the electrolytic cell 5 having a nitrogen removing function is provided between the anaerobic biological treatment tank (2 or 3) and the aerobic biological treatment tank 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、屎尿、その他の生活排水、又はこれらの合併汚水(以下、汚水ともいう)を物理的及び生物化学的に浄化処理する汚水浄化槽に関するものである。
【0002】
【従来の技術】
家庭等で用いられる汚水浄化槽は、従来から種々知られている。図3は、嫌気処理槽と好気処理槽とを組み合わせた従来の汚水浄化槽の一つで、上流側から、嫌気濾床槽第一室51、嫌気濾床槽第二室52、生物濾過槽53、処理水槽54及び消毒槽55が配置されている。槽内の嫌気濾床槽第一室51及び嫌気濾床槽第二室52には短時間における汚水の多量流入を緩和するため、水量変動吸収部56を設け、また、嫌気濾床槽第二室52を下降流で通過した後のポンプ槽57に流入する液を後段の生物濾過槽53へ一定流速で供給する移送用エアリフトポンプ58を設けている。また、処理水槽54には、生物濾過槽53での処理済み液(一部)と底部に沈殿する汚泥とを嫌気濾床槽第一室51へ戻す循環用エアリフト管59を立設している(例えば、特許文献1参照)。
【0003】
この汚水浄化槽では、嫌気濾床槽第一室51において、流入する汚水中の固形物が槽低部へ沈殿し、あるいはスカム化によって槽上部へ浮上して、汚水中の固形物の分離が起こる。また、その濾床では有機物の嫌気的生物分解が進む。この際、窒素成分はアンモニア態窒素に転換される。嫌気濾床槽第二室52では、嫌気濾床槽第一室51と同様の固形物の分離や有機物の嫌気的生物分解が更に進行する。生物濾過槽53では、残留する有機物の好気的生物分解が更に進み、また、アンモニア態窒素の硝化(硝酸態窒素化)が進む。処理水槽54では、循環用エアリフト管59を稼動させ、生物濾過槽53の処理済み液の一部を嫌気濾床槽第一室51へ戻す。これによって、嫌気濾床槽第一室51では、処理済み液に含まれる硝酸態窒素の生物的窒素除去(窒素ガス化)が進む。以上の処理によって、BOD(生物化学的酸素要求量)やT−N(総窒素)が除去された処理水は汚水浄化槽外へ放流される。
【0004】
別に、電気分解で低濃度の窒素化合物を効率的に除去する窒素処理方法又は窒素処理システムも最近提案されている(特許文献2参照)。一例は、活性汚泥処理槽で処理された後の流出液を窒素処理システムに導いて処理するものである。ここで、活性汚泥処理槽では有機物の好気的生物分解が進むと共に、アンモニア態窒素の硝化(硝酸態窒素化)も進む。窒素処理システムでは、電気分解により硝酸態窒素をアンモニア態窒素に変え、このアンモニア態窒素を同時に発生する次亜塩素酸で窒素ガス化させて窒素を除去する。この際、次亜塩素酸で殺菌も行なう。
【0005】
【特許文献1】
特開2001―96285号公報
【特許文献2】
特開2002―248473号公報
【0006】
【発明が解決しようとする課題】
上記従来の汚水浄化槽では、微生物を利用する方式であるため、負荷変動や処理水温等の影響を大きく受けやすく、特に、アンモニア態窒素の硝化及び硝酸態窒素の脱窒素(窒素除去)が充分に達成されない傾向となる。また、T−N(総窒素)を高度に除去(例えば、20mg/L以下)しようとすると、汚水浄化槽の容量を大きくしなければならない。ところが、寒冷地などでは微生物活性がほとんど停止する液温(例えば、13℃)になるため、汚水浄化槽の容量を大きくしてもそれに見合うほどの効果を得にくい。
【0007】
上記活性汚泥槽の流出液を電気分解して窒素除去する場合には、活性汚泥槽でせっかく硝化した硝酸態窒素を電気分解で再度還元して生じたアンモニア態窒素を脱窒素するので、効率的とは思えない。
【0008】
本発明は、嫌気的生物処理槽、好気的生物処理槽及び処理水槽を備える従来の汚水浄化槽の弱点を補い、従来よりも効率がよく、安定してBODを除去でき、更には窒素も効率的に除去できる汚水浄化槽を提供することを課題とする。
【0009】
【課題を解決するための手段】
上記課題を達成するため、本発明では次の構成をとった。
すなわち、本発明は、上流から順に、嫌気的生物処理槽(2や3)、好気的生物処理槽6及び処理水槽7を備える汚水浄化槽1であって、嫌気的生物処理槽(2や3)と好気的生物処理槽6との間に、窒素除去機能がある電気分解槽5を備えている汚水浄化槽1である。
【0010】
ここで、好気的生物処理槽6で処理された液の一部を嫌気的生物処理槽(2や3)へ戻す返送ポンプ18(その吸込口)を、処理水槽7の下部又は好気的生物処理槽6の下部に設けることが好ましい。
【0011】
【作用】
嫌気的生物処理槽で汚水を嫌気的に処理すると、汚水の有機物中の窒素分はアンモニア態窒素に低分子化(分解)する。次いで、この液を、カソード(陰極)及びアノード(陽極)を配した(窒素除去機能がある)電気分解槽中で電気分解すると、汚水中に含まれる塩素イオンが陽極で酸化されて次亜塩素酸となり((1)、(2)式)、この次亜塩素酸とアンモニア態窒素とが直接反応し、窒素が除去される((3)式)。
2Cl→Cl+2e (1)
Cl+HO→HClO+HCl (2)
2NH +4HClO→N↑+4HCl+4HO (3)
【0012】
【発明の実施の形態】
以下、図面を参照して、本発明を更に具体的に説明する。
図1は、本発明の汚水浄化槽の一例であり、(a)は概略平面図、(b)は(a)のA−A面における概略断面図である。汚水浄化槽1は、上流側から、嫌気的生物処理槽としての第一の嫌気処理槽2及び第二の嫌気処理槽3を備えており、第二の嫌気処理槽3の一部に移流管4を設け、この移流管4の上部には窒素除去機能がある電気分解槽5を設け、その後流に、好気的生物処理槽6、及びその好気的生物処理槽6の下部で連通する処理水槽7を備えており、この処理水槽7の上部に消毒槽8を備えている。
【0013】
更に詳しく説明すると、第一の嫌気処理槽2には汚水流入管9が設けられ、また汚水流入管9の下方には上部及び下部が開口する箱状の流入バッフル10が設けられ、更には汚水流入管2と反対側の仕切り壁には移流管11が設けられている。第一の嫌気処理槽2では、流入する汚水中の沈降しやすい固形物を沈殿分離させ、これを槽底部で濃縮貯留させる。このとき、槽底部に貯留する汚泥の一部は嫌気的生物反応によってスカムとなり、浮上して槽上部にて貯留する。また、濾床22では、嫌気的生物反応を進行させる。
第二の嫌気処理槽3では、第一の嫌気処理槽2と同様な処理機能を持たせ、スカム化による槽上部での汚泥貯留、濾床23での有機物分解、及び沈殿による底部での汚泥を貯留する。以上の嫌気的生物処理槽(第一の嫌気処理槽2、第二の嫌気処理槽3)で、有機物の分解に伴ってそれらに含まれる窒素分の多くはアンモニア態窒素に転換される。なお、濾床22、23は省くこともできる。
【0014】
第一の嫌気処理槽2及び第二の嫌気処理槽3のそれぞれの上部には、流入する汚水の変動を緩和させ次槽へ移流させるために、液水準が最高水位(H.W.L)及び最低水位(L.W.L)の間で変動可能な流量調整部12を設けている。また、第二の嫌気処理槽3内に配置した移流管4のL.W.Lには、電気分解槽5へ液を一定流速で移送させる移送ポンプ13の吸込口14を設けている。この場合、第一の嫌気処理槽2と第二の嫌気処理槽3との水位は、汚水の流入量が移送ポンプ13の送液量よりも多いか少ないかによってL.W.LとH.W.Lとの間を変動する。そうすることによって、汚水の流入量は平均化され、上記嫌気的生物処理槽(第一の嫌気処理槽2、第二の嫌気処理槽3)では、各槽のそれぞれの機能は良好に発揮される。なお、移送ポンプ13は、図1では、ブロワ15から送気される空気を用いるエアリフトポンプであるが、密閉容器に空気を圧送させる間欠定量ポンプや電動による水中ポンプ等を用いることもできる。
【0015】
電気分解槽5は、移送ポンプ13から送られる液を電気分解して、存在するアンモニア態窒素を窒素ガス化して脱窒素するもので、陽極と陰極とで構成する電極が備えられ、これに通電箱16から直流電流を供給する。嫌気処理された液を電気分解すると、液に含まれる塩素イオンはで陰極で酸化され次亜塩素酸を生成し、この次亜塩素酸とアンモニア態窒素とが反応して窒素ガスになる。
【0016】
電気分解の陽極の電極材には、白金、イリジウム、ルテニウム、パラジウム、ロジウム等貴金属又は貴金属の酸化物の1種以上で被覆されたチタン、二酸化鉛、フェライト、カーボン等を用いることができるが、好ましくはこれらのうち非溶出性電極である。また、陰極の電極材には、亜鉛、銅、銀、真鍮、金、ステンレス鋼、鉄、アルミニム、ジルコニウム、ニッケル合金、白金で被覆したチタン、パラジウム被覆した銅等を用いることができる。
【0017】
電気分解では、前記した(3)式に示す反応だけではなく、僅かながらアンモニア態窒素が酸化され硝酸態窒素を生じる場合もあるが、これは後段の好気的生物処理槽6に対してアンモニア態窒素負荷がなくなるので有機物の分解で有利となる。また、次亜塩素酸が残留することもあるが、有機物濃度が高いのでこの有機物の酸化に消費され、後段の好気的生物処理槽6における微生物への悪影響は低下し、むしろ有利に作用する。
【0018】
好気的生物処理槽6では、曝気するための散気管17を底部に配置し、ブロワ15からの空気を噴出させる。また、好気的生物処理槽6には微生物付着材(担体、微生物担体、接触材、接触濾材ともいう)を充填した床を形成させる。ここで、微生物付着材を充填した床は、微生物付着材が噴出する空気によって液と共に流動する流動床であっても、液のみが動く固定床であっても、あるいは流動床と固定床の両方を組み込んだものであってもよい。なお、流動床と固定床との両方を組み込む場合は、流動床を上側に、固定床を下側に上下方向に配置させたり、流動床を前段に、固定床を後段に横方向に並置させたりすることができる。好気的生物処理槽6では、曝気を行い、(微生物が付着している)微生物付着材と液とが十分に混ざるようにし、あるいは、微生物付着材と液とが積極的に接触するようにし、これによって有機物を酸化・分解し、アンモニア態窒素が残留する場合には硝化も進む。
【0019】
用いる微生物付着材の形状は、板状、網板状、ヘチマ状、多孔質状、筒状、棒状、骨格球状、紐状、更には粒状、不定形な塊状、立方体状、繊維塊状等の種々の形状に加工したものを用いることができる。流動床にはこれら微生物付着材のうち、比較的小さく流動しやすい形状のものが好ましく用いられ、また、固定床には比較的大きく固定しやすい形状のものが好ましく用いられる。微生物付着材の材質としては、塩化ビニリデン、ポリビニルフォルマール、ポリウレタン、メラミン樹脂等の合成樹脂製加工物、セラミックス、珪砂等の無機製加工物、アンスラサイト等の化石加工物、活性炭等で、比重が約1又は1以上のもの、また、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスチレン等で、比重が約1又は1以下のもののいずれも用いることができる。
【0020】
好気的生物処理槽6と次槽の処理水槽7との境界部の下部(底部)は互いに連通させ、好気的生物処理槽6から処理水槽7へ移流する液を、処理水槽7の上部一画に設けた消毒槽8へ越流させる。処理水槽7には、液中のSSを沈殿分離させる機能もある。
【0021】
また、処理水槽7には、好気的生物処理槽6で処理した液の一部を第一の嫌気処理槽2へ戻す返送ポンプ18を立設している。好気的生物処理済み液を返送させることで、処理水槽7の底部に沈殿する汚泥を引抜くことができることや、硝酸態窒素がある場合には第一の嫌気処理槽2で生物的作用によって脱窒素できるからである。返送ポンプ18からの液の返送は、連続であっても間欠であってもよい。なお、返送ポンプ18は、図1ではブロワ15から送気するエアリフトポンプを示したが、密閉容器に空気を圧送させる間欠定量ポンプや電動ポンプ等を用いることもできる。
【0022】
消毒槽8では、処理水槽7からの移流液を薬筒19と接触させて消毒又は殺菌する。また、汚水浄化槽の各槽(各室)の上部には点検や清掃等の維持管理が容易に行えるようにマンホールを設けていて、通常、そこにマンホールカバー21を取り付けている。
【0023】
次に、汚水浄化槽における汚水の処理方法を説明する。
汚水(原水)は汚水流入口9から流入バッフル10を経て第一の嫌気処理槽2に入り、固形物の沈殿分離及び嫌気的生物分解が行われる。第一の嫌気処理槽2では、沈降した汚泥(固形物)の濃縮貯留が槽底部で行われ、嫌気化して発生したスカムの貯留が槽上部で行われる。第一の嫌気処理槽2からの移流液は、移流管11を通り第二の嫌気処理槽3に入り、固形物の沈殿分離や嫌気的処理、汚泥のスカム化が更に進む。第二の嫌気処理槽3から電気分解槽5への移流は、移送ポンプ13で行う。すなわち、移流液をL.W.Lの吸込口14から吸い込み、移送ポンプ13の上部から所定量(ほぼ一定量)を電気分解槽5へ移流させる。このとき、流入する汚水量が移送ポンプ13の移送量よりも多い場合には、第一の嫌気処理槽2および第二の嫌気処理槽3の水位はL.W.Lから徐々に上昇するが、流量調整部12の容量はH.W.Lを越えないように設計されているので、通常、水位はH.W.Lを越えて上昇しない。こうすることで、第一の嫌気処理槽2および第二の嫌気処理槽3のそれぞれの処理機能は良好に保たれる。
【0024】
移送ポンプ13から電気分解槽5へ供給された液は、電気分解によってアンモニア態窒素が窒素ガス化され、脱窒素される。好気的生物処理槽6では、微生物付着材及び散気管17からの空気に接触し、有機物の酸化分解や残留するアンモニア態窒素の硝化が進む。処理された液は好気的生物処理槽6の下部(又は底部)から処理水槽7に入り、次いで消毒槽8へ越流する。消毒槽8で消毒される液は放流口20から汚水浄化槽外へ排出される。なお、好気的生物処理済み液の一部は処理水槽7下部(又は底部)から第一の嫌気処理槽2へ、返送ポンプ18により返送される。この際、沈殿している汚泥や浮遊しているSSが存在する場合にはこれらも返送され、また、硝酸態窒素が存在する場合には、第一の嫌気処理槽2で脱窒素される。
【0025】
(実験例)
アンモニア態窒素を含む人工排水を用いて電気分解する脱窒素試験を行った。
人工排水は、炭酸水素ナトリウム0.25ミリモル、塩化カルシウム0.25ミリモル、硫酸マグネシウム0.25ミリモル、炭酸水素カリウム0.025ミリモル、塩化アンモニウム2.86ミリモルを蒸留水に溶かして1リットルとし、この水溶液0.5リットルを試験に用いた。
電極材は、陽極には白金・イリジウムをチタン板に被覆したもの、陰極には真鍮を用いた。電流は定電流にして、電流密度0.015A/cmに設定した。
電気分解60分まで行った試験結果を図2に示す。アンモニア態窒素35mg/Lが60分後では、3mg/Lに低下し、32mg/Lが除去できた。なお、硝酸態窒素は2mg/L生成したが、総窒素としては5mg/Lまでに低下した。
【0026】
【発明の効果】
本発明の汚水浄化槽は、嫌気的生物処理槽と好気的生物処理槽との間に窒素除去機能がある電気分解槽を設けたので、BODはもとより窒素を効率よく安定して除去することができる。また、好気的生物処理槽では硝化律速とされるアンモニア態窒素の硝化が必要ではなくなるので、好気的生物処理の容量をその分だけ小さくでき、汚水浄化槽を従来よりもさらに小型化できる。また、好気的生物処理済み液を嫌気的生物処理槽へ返送させることで、放流水中の窒素を大幅に低減できる。
【図面の簡単な説明】
【図1】本発明の汚水浄化槽の一例で、(a)は概略平面図、(b)は(a)のA―A面における概略断面図。
【図2】電気分解による脱窒素試験結果のグラフ。
【図3】従来の汚水浄化槽の一例の概略断面図。
【符号の説明】
1:汚水浄化槽 2:第一の嫌気処理槽
3:第二の嫌気処理槽 4:移流管
5:(窒素除去機能がある)電気分解槽
6:好気的生物処理槽
7:処理水槽 8:消毒槽
9:汚水流入口 10:バッフル
11:移流管 12:流量調整部
13:移送ポンプ 14:吸込口
15:ブロワ 16:通電箱
17:散気管 18:返送ポンプ
19:薬筒 20:放流口
21:マンホールカバー 22:濾床
23:濾床
51:嫌気濾床槽第一室 52:嫌気濾床槽第二室
53:生物濾過槽 54:処理水槽 55:消毒槽
56:水量変動吸収部 57:ポンプ槽
58:移送用エアリフトポンプ
59:循環用エアリフト管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sewage treatment tank for physically and biochemically purifying human waste, other domestic wastewater, or a combined wastewater thereof (hereinafter also referred to as wastewater).
[0002]
[Prior art]
2. Description of the Related Art Various types of sewage purification tanks used in homes and the like are conventionally known. FIG. 3 shows one of the conventional sewage purification tanks in which an anaerobic treatment tank and an aerobic treatment tank are combined. From the upstream side, an anaerobic filter tank first chamber 51, an anaerobic filter tank second chamber 52, and a biological filtration tank are shown. 53, a treatment water tank 54 and a disinfection tank 55 are arranged. The anaerobic filter bed first chamber 51 and the anaerobic filter tank second chamber 52 in the tanks are provided with a water amount fluctuation absorbing portion 56 to alleviate a large amount of wastewater flowing in a short time. A transfer air lift pump 58 is provided to supply the liquid flowing into the pump tank 57 after passing through the chamber 52 by the downward flow to the biological filtration tank 53 at the subsequent stage at a constant flow rate. In the treated water tank 54, an air lift pipe 59 for circulating the liquid (part) treated in the biological filtration tank 53 and the sludge settling at the bottom to the anaerobic filter bed first chamber 51 is provided. (For example, see Patent Document 1).
[0003]
In this sewage purification tank, in the first chamber 51 of the anaerobic filter bed tank, the solid matter in the inflowing sewage precipitates in the lower part of the tank, or floats to the upper part of the tank by scumming, and separation of the solid matter in the sewage occurs. . In addition, anaerobic biodegradation of organic matter proceeds in the filter bed. At this time, the nitrogen component is converted to ammonia nitrogen. In the anaerobic filter tank second chamber 52, the separation of solids and the anaerobic biodegradation of organic substances proceed further as in the anaerobic filter tank first chamber 51. In the biological filtration tank 53, aerobic biodegradation of the remaining organic matter further proceeds, and nitrification of ammonia nitrogen (nitrate nitration) proceeds. In the treated water tank 54, the circulation air lift pipe 59 is operated to return a part of the treated liquid in the biological filtration tank 53 to the first anaerobic filter bed tank 51. Thereby, in the first anaerobic filter bed tank 51, biological nitrogen removal (nitrogen gasification) of nitrate nitrogen contained in the treated liquid proceeds. By the above treatment, the treated water from which BOD (biochemical oxygen demand) and TN (total nitrogen) have been removed is discharged outside the sewage treatment tank.
[0004]
Separately, a nitrogen treatment method or a nitrogen treatment system for efficiently removing low-concentration nitrogen compounds by electrolysis has recently been proposed (see Patent Document 2). In one example, the effluent after being treated in the activated sludge treatment tank is guided to a nitrogen treatment system for treatment. Here, in the activated sludge treatment tank, aerobic biodegradation of organic matter proceeds, and nitrification of ammonia nitrogen (nitrate nitration) also proceeds. In the nitrogen treatment system, nitrate nitrogen is converted to ammonia nitrogen by electrolysis, and the ammonia nitrogen is gasified with hypochlorous acid, which is simultaneously generated, to remove nitrogen. At this time, sterilization is also performed with hypochlorous acid.
[0005]
[Patent Document 1]
JP 2001-96285 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-248473
[Problems to be solved by the invention]
In the above-mentioned conventional sewage treatment tank, since it is a system utilizing microorganisms, it is easily affected by load fluctuations, treatment water temperature, etc., and in particular, nitrification of ammonia nitrogen and denitrification (nitrogen removal) of nitrate nitrogen are sufficiently performed. It tends not to be achieved. Further, in order to highly remove TN (total nitrogen) (for example, 20 mg / L or less), the capacity of the sewage purification tank must be increased. However, in a cold region or the like, a liquid temperature (for example, 13 ° C.) at which the microbial activity is almost stopped is obtained. Therefore, even if the capacity of the sewage purification tank is increased, it is difficult to obtain an effect corresponding thereto.
[0007]
In the case where the effluent of the activated sludge tank is electrolyzed to remove nitrogen, the nitrate nitrogen that has been nitrified in the activated sludge tank is reduced again by electrolysis to remove ammonia-nitrogen, which is efficient. I don't think
[0008]
The present invention compensates for the weak points of the conventional sewage treatment tank provided with an anaerobic biological treatment tank, an aerobic biological treatment tank, and a treated water tank, and can remove BOD more efficiently and more stably than before, and furthermore, nitrogen is also efficiently used. It is an object of the present invention to provide a sewage purification tank that can be efficiently removed.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
That is, the present invention is a sewage purification tank 1 including an anaerobic biological treatment tank (2 or 3), an aerobic biological treatment tank 6 and a treated water tank 7 in order from the upstream, and the anaerobic biological treatment tank (2 or 3). ) And an aerobic biological treatment tank 6, the sewage purification tank 1 having an electrolysis tank 5 having a nitrogen removing function.
[0010]
Here, the return pump 18 (the suction port) for returning a part of the liquid treated in the aerobic biological treatment tank 6 to the anaerobic biological treatment tank (2 or 3) is connected to the lower part of the treatment water tank 7 or aerobic. It is preferable to provide the lower part of the biological treatment tank 6.
[0011]
[Action]
When sewage is anaerobically treated in the anaerobic biological treatment tank, the nitrogen content in the organic matter of the sewage is reduced (decomposed) to ammonia nitrogen. Next, when this solution is electrolyzed in an electrolysis tank provided with a cathode (cathode) and an anode (anode) (having a nitrogen removing function), chlorine ions contained in the sewage are oxidized at the anode to form hypochlorite. It becomes an acid (formulas (1) and (2)), and this hypochlorous acid directly reacts with ammonia nitrogen to remove nitrogen (formula (3)).
2Cl → Cl 2 + 2e (1)
Cl 2 + H 2 O → HClO + HCl (2)
2NH 4 + + 4HClO → N 2 ↑ + 4HCl + 4H 2 O (3)
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to the drawings.
FIG. 1 is an example of a sewage purification tank of the present invention, in which (a) is a schematic plan view and (b) is a schematic cross-sectional view taken along the line AA of (a). The sewage purification tank 1 includes, from the upstream side, a first anaerobic treatment tank 2 and a second anaerobic treatment tank 3 as anaerobic biological treatment tanks. And an electrolysis tank 5 having a nitrogen removing function is provided at the upper part of the advection pipe 4, and an aerobic biological treatment tank 6 and a treatment communicating with a lower part of the aerobic biological treatment tank 6 are connected to the subsequent stream. A water tank 7 is provided, and a disinfection tank 8 is provided above the treated water tank 7.
[0013]
More specifically, the first anaerobic treatment tank 2 is provided with a sewage inflow pipe 9, and below the sewage inflow pipe 9 is provided a box-shaped inflow baffle 10 having upper and lower openings. An advection pipe 11 is provided on the partition wall opposite to the inflow pipe 2. In the first anaerobic treatment tank 2, sediment that tends to settle out of the inflowing sewage is separated and separated and concentrated and stored at the bottom of the tank. At this time, part of the sludge stored at the bottom of the tank becomes scum due to an anaerobic biological reaction, floats and is stored at the top of the tank. In the filter bed 22, the anaerobic biological reaction proceeds.
The second anaerobic treatment tank 3 has a treatment function similar to that of the first anaerobic treatment tank 2, and stores sludge at the top of the tank by scumming, decomposes organic matter in the filter bed 23, and sludge at the bottom due to sedimentation. To store. In the above anaerobic biological treatment tanks (the first anaerobic treatment tank 2 and the second anaerobic treatment tank 3), most of the nitrogen contained therein is converted to ammonia nitrogen with the decomposition of organic substances. In addition, the filter beds 22 and 23 can be omitted.
[0014]
At the upper part of each of the first anaerobic treatment tank 2 and the second anaerobic treatment tank 3, the liquid level is the highest water level (HWL) in order to alleviate the fluctuation of the inflowing sewage and transfer it to the next tank. And a flow rate adjusting unit 12 that can be varied between a minimum water level (LWL). In addition, the L.F. of the advection tube 4 disposed in the second anaerobic treatment tank 3 W. L is provided with a suction port 14 of a transfer pump 13 for transferring the liquid to the electrolysis tank 5 at a constant flow rate. In this case, the water level in the first anaerobic treatment tank 2 and the second anaerobic treatment tank 3 depends on whether the inflow of sewage is larger or smaller than the amount of liquid sent from the transfer pump 13. W. L and H. W. L. By doing so, the inflow of sewage is averaged, and in the anaerobic biological treatment tanks (the first anaerobic treatment tank 2 and the second anaerobic treatment tank 3), the functions of the respective tanks are exhibited well. You. Although the transfer pump 13 is an air lift pump using air supplied from the blower 15 in FIG. 1, an intermittent fixed-quantity pump for pumping air into a closed container or an electrically driven submersible pump may be used.
[0015]
The electrolysis tank 5 electrolyzes the liquid sent from the transfer pump 13 and gasifies the existing ammonia nitrogen to denitrify the nitrogen. The electrode is composed of an anode and a cathode. A direct current is supplied from the box 16. When the solution subjected to anaerobic treatment is electrolyzed, chloride ions contained in the solution are oxidized at the cathode to generate hypochlorous acid, and the hypochlorous acid and ammonia nitrogen react to form nitrogen gas.
[0016]
For the electrode material of the anode of the electrolysis, platinum, iridium, ruthenium, palladium, titanium coated with at least one kind of noble metal or noble metal oxide such as rhodium, lead dioxide, ferrite, carbon and the like can be used. Of these, non-elutable electrodes are preferred. As the cathode electrode material, zinc, copper, silver, brass, gold, stainless steel, iron, aluminum, zirconium, nickel alloy, titanium coated with platinum, copper coated with palladium, or the like can be used.
[0017]
In the electrolysis, not only the reaction shown in the above formula (3) but also a slight oxidation of ammonia nitrogen to generate nitrate nitrogen may occur. Since the load of nitrogen is eliminated, it is advantageous in decomposing organic substances. In addition, although hypochlorous acid may remain, it is consumed for oxidation of the organic substance due to the high concentration of the organic substance, and the adverse effect on the microorganisms in the aerobic biological treatment tank 6 at the subsequent stage is reduced and acts rather advantageously. .
[0018]
In the aerobic biological treatment tank 6, a diffuser tube 17 for aeration is disposed at the bottom, and air from the blower 15 is blown out. In the aerobic biological treatment tank 6, a bed filled with a microorganism-adhering material (also referred to as a carrier, a microorganism carrier, a contact material, and a contact filter material) is formed. Here, the bed filled with the microorganism-adhering material may be a fluidized bed in which the microorganism-adhering material flows together with the liquid by the air ejected, a fixed bed in which only the liquid moves, or both a fluidized bed and a fixed bed. May be incorporated. When both the fluidized bed and the fixed bed are incorporated, the fluidized bed is arranged on the upper side and the fixed bed is arranged on the lower side in the vertical direction. Or you can. In the aerobic biological treatment tank 6, aeration is performed so that the microorganism-attached material (to which microorganisms are attached) and the liquid are sufficiently mixed, or the microorganism-attached material and the liquid are positively contacted. As a result, organic substances are oxidized and decomposed, and nitrification proceeds when ammonia nitrogen remains.
[0019]
The shape of the microorganism adhering material to be used can be various such as plate, mesh plate, loofah, porous, cylindrical, rod, skeleton spherical, string, and even granular, irregular mass, cube, fiber mass, etc. Can be used. Among these microorganism adhering materials, those having a relatively small and easy-to-flow shape are preferably used for the fluidized bed, and those having a relatively large and easy-to-fix shape are preferably used for the fixed bed. Examples of the material of the microorganism adhering material include synthetic resin products such as vinylidene chloride, polyvinyl formal, polyurethane, and melamine resin, inorganic products such as ceramics and silica sand, fossil products such as anthracite, and activated carbon. Can be used, and any of polyolefin resins such as polyethylene and polypropylene, polystyrene and the like having a specific gravity of about 1 or 1 or less can be used.
[0020]
The lower part (bottom part) of the boundary between the aerobic biological treatment tank 6 and the next treatment water tank 7 is communicated with each other, and the liquid flowing from the aerobic biological treatment tank 6 to the treatment water tank 7 is transferred to the upper part of the treatment water tank 7. Overflow to the disinfection tank 8 provided in one area. The treatment water tank 7 also has a function to precipitate and separate SS in the liquid.
[0021]
In the treated water tank 7, a return pump 18 for returning a part of the liquid treated in the aerobic biological treatment tank 6 to the first anaerobic treatment tank 2 is provided. By returning the aerobic biologically treated liquid, sludge settled at the bottom of the treated water tank 7 can be pulled out. This is because denitrification can be achieved. The return of the liquid from the return pump 18 may be continuous or intermittent. Although the return pump 18 is an air lift pump that supplies air from the blower 15 in FIG. 1, an intermittent fixed-quantity pump or an electric pump that pumps air into a closed container can be used.
[0022]
In the disinfecting tank 8, the advection liquid from the treatment water tank 7 is brought into contact with the medicine cartridge 19 to disinfect or sterilize. In addition, a manhole is provided above each tank (each room) of the sewage purification tank so that maintenance such as inspection and cleaning can be easily performed, and a manhole cover 21 is usually attached thereto.
[0023]
Next, a method for treating sewage in a sewage treatment tank will be described.
The sewage (raw water) enters the first anaerobic treatment tank 2 via the inflow baffle 10 from the sewage inflow port 9, and the sedimentation separation of solids and anaerobic biodegradation are performed. In the first anaerobic treatment tank 2, concentrated sludge (solid matter) is stored at the bottom of the tank, and scum generated by anaerobic treatment is stored at the top of the tank. The advection liquid from the first anaerobic treatment tank 2 passes through the advection pipe 11 and enters the second anaerobic treatment tank 3, where sedimentation and separation of solids, anaerobic treatment, and scumification of sludge further proceed. The transfer from the second anaerobic treatment tank 3 to the electrolysis tank 5 is performed by the transfer pump 13. That is, the advection liquid is L.P. W. L is sucked through the suction port 14, and a predetermined amount (almost constant amount) is transferred to the electrolysis tank 5 from above the transfer pump 13. At this time, when the amount of inflowing sewage is larger than the transfer amount of the transfer pump 13, the water levels of the first anaerobic treatment tank 2 and the second anaerobic treatment tank 3 are set to L.P. W. L, but the capacity of the flow rate adjusting unit 12 is H. W. L is usually designed so as not to exceed L. W. Does not rise above L. By doing so, the respective processing functions of the first anaerobic treatment tank 2 and the second anaerobic treatment tank 3 are kept good.
[0024]
In the liquid supplied from the transfer pump 13 to the electrolysis tank 5, ammonia nitrogen is gasified into nitrogen by electrolysis and denitrified. In the aerobic biological treatment tank 6, it comes into contact with the microorganism-adhering material and the air from the diffuser tube 17, and oxidative decomposition of organic substances and nitrification of remaining ammonia nitrogen proceed. The treated liquid enters the treatment water tank 7 from the lower part (or bottom) of the aerobic biological treatment tank 6 and then flows to the disinfection tank 8. The liquid to be disinfected in the disinfection tank 8 is discharged from the discharge port 20 to the outside of the sewage purification tank. In addition, a part of the aerobic biologically treated liquid is returned from the lower part (or bottom part) of the treated water tank 7 to the first anaerobic treatment tank 2 by the return pump 18. At this time, if there is settled sludge or floating SS, these are also returned, and if nitrate nitrogen is present, they are denitrified in the first anaerobic treatment tank 2.
[0025]
(Experimental example)
A denitrification test for electrolysis using artificial wastewater containing ammonia nitrogen was performed.
Artificial wastewater is prepared by dissolving 0.25 mmol of sodium hydrogen carbonate, 0.25 mmol of calcium chloride, 0.25 mmol of magnesium sulfate, 0.025 mmol of potassium hydrogen carbonate, and 2.86 mmol of ammonium chloride in distilled water to make 1 liter. 0.5 liter of this aqueous solution was used for the test.
As the electrode material, a platinum plate and iridium coated on a titanium plate were used for the anode, and brass was used for the cathode. The current was a constant current and the current density was set to 0.015 A / cm 2 .
FIG. 2 shows the results of tests performed up to 60 minutes of electrolysis. After 35 minutes, the ammonia nitrogen 35 mg / L was reduced to 3 mg / L after 60 minutes, and 32 mg / L could be removed. Incidentally, nitrate nitrogen was produced at 2 mg / L, but the total nitrogen was reduced to 5 mg / L.
[0026]
【The invention's effect】
The sewage purification tank of the present invention is provided with an electrolysis tank having a nitrogen removing function between the anaerobic biological treatment tank and the aerobic biological treatment tank, so that nitrogen can be efficiently and stably removed in addition to BOD. it can. Further, in the aerobic biological treatment tank, nitrification of ammonia-nitrogen, which is controlled by nitrification, is not required. Therefore, the capacity of the aerobic biological treatment can be reduced by that much, and the size of the sewage purification tank can be further reduced than before. Also, by returning the aerobic biologically treated liquid to the anaerobic biological treatment tank, nitrogen in the effluent can be significantly reduced.
[Brief description of the drawings]
FIG. 1 is an example of a sewage purification tank of the present invention, in which (a) is a schematic plan view, and (b) is a schematic cross-sectional view taken along the line AA of (a).
FIG. 2 is a graph showing the results of a denitrification test by electrolysis.
FIG. 3 is a schematic sectional view of an example of a conventional sewage purification tank.
[Explanation of symbols]
1: Sewage purification tank 2: First anaerobic treatment tank 3: Second anaerobic treatment tank 4: Advection tube 5: Electrolytic tank 6 (having nitrogen removal function) 6: Aerobic biological treatment tank 7: Treatment water tank 8: Disinfection tank 9: Sewage inlet 10: Baffle 11: Advection tube 12: Flow control unit 13: Transfer pump 14: Suction port 15: Blower 16: Electrical box 17: Diffusion tube 18: Return pump 19: Medicine tube 20: Discharge port 21: Manhole cover 22: Filter bed 23: Filter bed 51: Anaerobic filter bed tank first room 52: Anaerobic filter bed tank second chamber 53: Biological filtration tank 54: Treatment water tank 55: Disinfection tank 56: Water volume fluctuation absorption unit 57 : Pump tank 58: Air lift pump for transfer 59: Air lift pipe for circulation

Claims (2)

上流から順に、嫌気的生物処理槽、好気的生物処理槽及び処理水槽を備える汚水浄化槽であって、前記嫌気的生物処理槽と前記好気的生物処理槽との間に、窒素除去機能がある電気分解槽を備えている汚水浄化槽。In order from the upstream, an anaerobic biological treatment tank, an aerobic biological treatment tank, and a sewage purification tank including a treatment water tank, wherein a nitrogen removal function is provided between the anaerobic biological treatment tank and the aerobic biological treatment tank. A sewage treatment tank equipped with an electrolysis tank. 前記好気的生物処理槽で処理された液の一部を前記嫌気的生物処理槽へ戻す返送ポンプを、前記処理水槽の下部又は前記好気的生物処理槽の下部に設けている、請求項1の汚水浄化槽。A return pump for returning a part of the liquid processed in the aerobic biological treatment tank to the anaerobic biological treatment tank is provided at a lower part of the treatment water tank or a lower part of the aerobic biological treatment tank. 1 sewage septic tank.
JP2003110165A 2003-04-15 2003-04-15 Sewage purifying tank equipped with electrolytic cell Pending JP2004313902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110165A JP2004313902A (en) 2003-04-15 2003-04-15 Sewage purifying tank equipped with electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110165A JP2004313902A (en) 2003-04-15 2003-04-15 Sewage purifying tank equipped with electrolytic cell

Publications (1)

Publication Number Publication Date
JP2004313902A true JP2004313902A (en) 2004-11-11

Family

ID=33471097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110165A Pending JP2004313902A (en) 2003-04-15 2003-04-15 Sewage purifying tank equipped with electrolytic cell

Country Status (1)

Country Link
JP (1) JP2004313902A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202492A (en) * 2012-03-28 2013-10-07 Fuji Clean Co Ltd Water treatment apparatus
CN109896614A (en) * 2019-03-13 2019-06-18 北京泷涛环境科技有限公司 Deflector type three-dimension electrode-biofilm denitrification reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202492A (en) * 2012-03-28 2013-10-07 Fuji Clean Co Ltd Water treatment apparatus
CN109896614A (en) * 2019-03-13 2019-06-18 北京泷涛环境科技有限公司 Deflector type three-dimension electrode-biofilm denitrification reactor
CN109896614B (en) * 2019-03-13 2020-02-18 北京泷涛环境科技有限公司 Baffling type three-dimensional electrode-biological membrane denitrification reactor

Similar Documents

Publication Publication Date Title
US7329341B2 (en) Wastewater treatment device
US7175765B2 (en) Method for treating for-treatment water containing organic matter and nitrogen compound
KR100938463B1 (en) Biochemical sewage treatment system for marine use
KR100691962B1 (en) Treatment Facilities and Method of Organic Carbon and Nitrogen in CPP Regeneration Wastewater
KR102172075B1 (en) Electrolysis of tubular type for water waste and sweage treatment device including thereof
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
JP2008049343A (en) Organic waste water treatment device
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
KR20230035006A (en) Apparatus treatmenting wastewater
KR100745974B1 (en) Apparatus for on-site treating night soil and waste water in vessels
JP4286580B2 (en) Wastewater treatment method incorporating electrochemical treatment
JP3973508B2 (en) Water treatment equipment
JP2004313902A (en) Sewage purifying tank equipped with electrolytic cell
CN201777951U (en) Sewage treatment system
JP2006095466A (en) Electrolyzer, purifying tank having the electrolyzer and electrolytic method
JP4237582B2 (en) Surplus sludge reduction device and method
KR20170132454A (en) Electrolysis of tubular type for water waste and sweage treatment device including thereof
CN209128246U (en) A kind of integrated apparatus for Sewage from Ships processing
CN112777870A (en) Hospital wastewater treatment method and system
JP4117361B2 (en) Anaerobic treatment tank equipped with ozone aeration chamber and sewage septic tank
JP4351504B2 (en) Organic wastewater treatment equipment
JP4119998B2 (en) Anaerobic treatment tank equipped with nitrogen removal tank and sewage septic tank
JP2005144366A (en) Waste water treatment system
US11613482B2 (en) Methods and systems for marine wastewater treatment
KR102004483B1 (en) Treatment Apparatus of Non-biodegradable Organic Wastewater or Anaerobic Digestion Effluent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311