KR100691962B1 - Treatment Facilities and Method of Organic Carbon and Nitrogen in CPP Regeneration Wastewater - Google Patents

Treatment Facilities and Method of Organic Carbon and Nitrogen in CPP Regeneration Wastewater Download PDF

Info

Publication number
KR100691962B1
KR100691962B1 KR1020050134876A KR20050134876A KR100691962B1 KR 100691962 B1 KR100691962 B1 KR 100691962B1 KR 1020050134876 A KR1020050134876 A KR 1020050134876A KR 20050134876 A KR20050134876 A KR 20050134876A KR 100691962 B1 KR100691962 B1 KR 100691962B1
Authority
KR
South Korea
Prior art keywords
tank
wastewater
electrode plate
treatment
electrolysis
Prior art date
Application number
KR1020050134876A
Other languages
Korean (ko)
Other versions
KR20060004898A (en
Inventor
황덕흥
Original Assignee
황덕흥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황덕흥 filed Critical 황덕흥
Priority to KR1020050134876A priority Critical patent/KR100691962B1/en
Publication of KR20060004898A publication Critical patent/KR20060004898A/en
Application granted granted Critical
Publication of KR100691962B1 publication Critical patent/KR100691962B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4604Treatment of water, waste water, or sewage by electrochemical methods for desalination of seawater or brackish water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/005Combined electrochemical biological processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

본 발명은 냉각수 pH조절제로서 난분해성 유기물질인 에타놀아민 등을 사용하는 복수탈염설비에서 발생되는 재생폐수를 효과적으로 유기탄소와 질소를 처리할 수 있는 복수탈염설비의 재생폐수 처리장치 및 처리방법을 개시한다. 본 발명에 따른 복수탈염설비의 재생폐수 처리장치는 폐수 중의 부유물질을 제거하기 위해 응집제를 첨가하여 응집시킨 후에 침전조에서 응집된 부유물질들을 제거하는 응집침전조와, 침전조에서 제거되지 못한 잔류부유물질들을 제거하기 위한 모래여과장치와, 부유물질들이 제거된 재생폐수에서 에탄놀아민과 같은 난분해성물질을 전기분해되기 쉬운 물질로 변화시키기 위한 오존처리장치와, 오존처리된 재생폐수를 효과적으로 전기분해처리할 수 있도록 하기 위해 재생폐수를 전기분해 촉매인 해수와 혼합하여 촉매혼합수를 만드는 촉매혼합조와, 촉매혼합조로부터 유입되는 재생폐수 촉매혼합수가 양극과 음극이 장착된 전극판 모듈을 이용하여 전기분해시킴으로서 직접 및 간접산화되도록 촉매혼합수를 처리하는 전기분해처리장치와, 전기분해처리된 촉매혼합수에 잔존하는 염소산화제와 산화부산물을 활성탄을 이용하여 제거하는 활성탄 여과조와, 장시간 전기분해처리를 함에 따라 오염된 전극판을 효율적이며 경제적으로 세정하기 위한 전극판세정조를 포함하여 구성되는 특징이 있다. 특히 복수탈염설비 재생폐수를 전기분해처리하기 위한 촉매제로 염소이온을 다량 함유되어 있는 해수를 사용함으로써 전기분해처리의 직접산화 및 간접산화 효과를 최대한 이용할 수 있는 장점이 있으며, 폐수 중 유기탄소 뿐만 아니라 질소에 대한 처리효과 도 향상시킬 수 있다.The present invention discloses a regeneration wastewater treatment apparatus and treatment method for regeneration wastewater of a multi-desalting plant that can effectively treat organic carbon and nitrogen from regeneration wastewater generated in a desalination plant using a hardly decomposable organic substance ethanolamine as a pH adjusting agent of the cooling water . do. Regeneration wastewater treatment apparatus of a multiple desalination plant according to the present invention is a flocculation settling tank to remove the flocculated suspended solids in the settling tank after the flocculating agent is added to flocculate to remove the suspended solids in the waste water, and the remaining suspended substances not removed in the settling tank Sand filtration to remove, ozone treatment equipment to convert hardly decomposable substances such as ethanolamine from electrolyzed wastewater from suspended solids, and electrolyzed ozone treated wastewater. In order to make it possible, the regeneration wastewater is mixed with seawater, which is an electrolysis catalyst, to form a catalyst mixture, and the regeneration wastewater catalyst mixture flowing from the catalyst mixing tank is electrolyzed by using an electrode plate module equipped with an anode and a cathode. Electrolysis treatment apparatus for treating catalyst mixture water to be directly and indirectly oxidized, and It includes an activated carbon filtration tank that removes chlorine oxidant and oxidative by-products from activated catalyst mixture using activated carbon, and an electrode plate cleaning tank for efficient and economical cleaning of contaminated electrode plates through long time electrolysis. There is a characteristic. In particular, the use of seawater containing a large amount of chlorine ions as a catalyst for electrolytic treatment of regenerated wastewater in multiple desalination facilities has the advantage of making the most of the direct and indirect oxidation effects of electrolysis treatment. The treatment effect on nitrogen can also be improved.

복수탈염설비, 재생폐수, 에타놀아민, 응집침전조, 오존처리조, 전기분해처리조, 전극판세정조, 해수 Multiple desalination plant, recycled wastewater, ethanolamine, flocculation settling tank, ozone treatment tank, electrolysis treatment tank, electrode plate cleaning tank, seawater

Description

복수탈염설비 재생폐수의 유기탄소와 질소 처리장치 및 처리방법{Treatment Facilities and Method of Organic Carbon and Nitrogen in CPP Regeneration Wastewater}Treatment Facilities and Methods of Organic Carbon and Nitrogen Treatment for Regeneration Wastewater in Multiple Desalination Plants {Treatment Facilities and Method of Organic Carbon and Nitrogen in CPP Regeneration Wastewater}

도 1은 본 발명에 따른 복수탈염설비의 재생폐수 처리장치를 나타낸 개략도이고, 도 2는 본 발명에 따른 전극판 모듈의 사시도이고, 도 3은 본 발명에 따른 재생폐수 처리방법의 흐름도이다.1 is a schematic view showing a regeneration wastewater treatment apparatus of a plurality of desalination plant according to the present invention, Figure 2 is a perspective view of the electrode plate module according to the present invention, Figure 3 is a flow chart of the regeneration wastewater treatment method according to the present invention.

♠ 도면의 주요 부분에 대한 부호의 설명 ♠♠ Explanation of symbols for the main parts of the drawing ♠

1 : 유량조정조 3 : 응집침전조1: flow rate adjusting tank 3: flocculation settling tank

5 : 모래여과조 7 : 오존처리조5: sand filtration tank 7: ozone treatment tank

9 : 촉매혼합조 11 : 전기분해처리조9: catalyst mixing tank 11: electrolysis treatment tank

13 : 활성탄 여과조 15 : 전극판 세정조13: activated carbon filtration tank 15: electrode plate cleaning tank

17 : 방류조 20 : 전극판 모듈17 discharge tank 20 electrode plate module

본 발명은 복수탈염설비의 재생폐수 처리장치 및 처리방법에 관한 것으로 더욱 상세하게는 복수탈염설비로부터 발생되는 재생폐수에 촉매제로 해수를 첨가한 후 해수와 혼합된 재생폐수를 오존처리와 전기분해처리하는 복수탈염설비의 재생폐수 처리장치 및 처리방법에 관한 것이다. 원자력 발전소 등에 사용되는 고온 고압의 보일러에는 복수(復水)에 함유된 불순물들이 제거된 고순도의 냉각수가 급수된다. 복수 중에 함유된 불순물들은 복수탈염설비의 이온교환수지에 흡착되게 되며 포화된 이온교환수지의 재생과정에서 재생폐액이 발생하게 되는데, 이 과정에서 COD 유발물질인 에탄올아민(ETA)이 다량 함유된 재생폐수가 발생된다. 에탄올아민은 복수탈염설비의 이온교환수지를 재생하는 과정에서도 방출되어 재생폐수의 유기물질 및 질소 농도가 증가하게 된다. 재생폐수에 포함되어 있는 에탄올아민은 일반적인 물리 화학적 처리인 응집침전공정이나, 생물학적 난분해성 폐수를 처리를 이용하여 처리할 수 있다. 그런데, 응집 침전공정으로 에탄올아민을 제거할 경우에는 에탄올아민의 제거효율이 매우 낮으며, 에탄올아민에 대한 생물학적 처리는 아직 처리 시스템이 개발되어 있지 않다. 이러한 문제점을 개선하기 위하여 철이나 알루미늄으로 만들어진 방식용 전극판 모듈을 이용하여 재생폐수를 전기분해하여 처리하는 전기분해 부상방법이 많이 이용되고 있다. 전기분해 부상방법은 전극판의 전기응집에 의하여 재생폐수가 처리는 것으로, 전기응집 시 많은 양의 슬러지가 발생되고, 슬러지가 전극판에 흡착되어 전극판이 부식되므로, 전극판을 자주 교체해 주어야 하는 등의 문제가 발생되고 있다. 이와 같은 문제점들을 개선하기 위하여 최근에는 전기분해처리 시 사용되는 전극판을 불용성 전극판으로 대체하는 연구가 활발하게 진행되고 있다. 그러나 불용성 전극판을 이용한 전기분해처리 역시 재생폐수에 포함되어 있는 염소이온 등의 전해질이 부족하면 전기 전도도가 저하되어 전 기분해 효율이 떨어져 재생폐수를 전기분해할 때 더 많은 전력을 공급하여야 하는 문제점이 초래되고 있다. 또한, 불용성 전극판이 판 형태로 제작되어 있어서 전극판의 전류밀도를 높이기 위해서는 전극판에 많은 전류를 인가하여야 하기 때문에 전력비가 상승하는 문제점이 있다.The present invention relates to a regeneration wastewater treatment apparatus and a treatment method of a plurality of desalination facilities, and more particularly, to the regeneration wastewater generated from a plurality of desalination facilities, after adding seawater as a catalyst, the regeneration wastewater mixed with seawater is treated with ozone and electrolysis. It relates to a regeneration wastewater treatment apparatus and treatment method of a plurality of desalination plant. High-temperature, high-pressure boilers used in nuclear power plants are supplied with high-purity cooling water from which impurities contained in plural water are removed. Impurities contained in the plurality are adsorbed on the ion exchange resin of the multiple desalination plant, and regeneration waste water is generated during the regeneration of the saturated ion exchange resin. Wastewater is generated. Ethanolamine is also released during the regeneration of the ion exchange resin in the multiple desalination plant, increasing the concentration of organic substances and nitrogen in the regeneration wastewater. Ethanolamine contained in the regenerated wastewater can be treated by flocculation sedimentation process, which is a general physicochemical treatment, or biologically hardly decomposable wastewater by treatment. However, when ethanolamine is removed by the coagulation precipitation process, the removal efficiency of ethanolamine is very low, and biological treatment for ethanolamine is not yet developed. In order to improve this problem, an electrolytic flotation method of electrolytically treating regenerated wastewater using an electrode plate module made of iron or aluminum has been widely used. The electrolytic flotation method is to treat regenerated waste water by electrocoagulation of electrode plate. When electroaggregation, a large amount of sludge is generated and the sludge is adsorbed on the electrode plate and the electrode plate is corroded. The problem is occurring. In order to improve such a problem, the research which replaces the electrode plate used at the time of an electrolysis process with an insoluble electrode plate is actively performed recently. However, the electrolysis treatment using insoluble electrode plate also has a problem that if the electrolyte such as chlorine ions contained in the recycled wastewater is insufficient, the electrical conductivity is lowered and the efficiency is lowered. This is causing. In addition, since the insoluble electrode plate is manufactured in the form of a plate, in order to increase the current density of the electrode plate, a large current must be applied to the electrode plate, which causes a problem in that the power ratio increases.

본 발명은 상기와 같은 종래기술의 여러 가지 문제점들을 보안하기 위하여 개발된 것으로서, 본 발명의 목적은 오존처리를 통해 재생폐수 중 난분해성 유기물질을 전기분해가능한 물질로 변화시키고, 이렇게 오존처리된 재생폐수를 촉매제로 염소이온이 함유되어 있는 해수를 이용하여 전기분해처리함으로서 처리효과를 향상시킬 수 있을 뿐만 아니라, 재생폐수에 함유되어 있는 유기물질과 질소가 직접 및 간접산화되도록 전기분해하여 제거할 수 있는 복수탈염설비의 재생폐수 처리장치 및 처리방법을 제공하는 데 있다. 본 발명의 다른 목적은 장시간 전기분해처리 함에 따라 오염된 전극판을 주기적으로 세정하여 전극판에 잔존하는 오염물을 제거함으로써, 전기분해처리 효율을 높임과 동시에 전극판의 부식 등에 의한 내구성을 향상시킬 수 있는 복수탈염설비의 재생폐수 처리장치 및 처리방법을 제공하는 데 있다. 본 발명의 또 다른 목적은 전극판의 양극을 망 형태로 제작하여 전극판의 전류밀도를 높임으로써, 전기분해 시 사용되는 전력을 감소시킬 수 있는 복수탈염설비의 재생폐수 처리장치 및 처리방법을 제공하는 데 있다.The present invention was developed to secure various problems of the prior art as described above, and an object of the present invention is to change the non-degradable organic material in the regeneration wastewater into an electrolytic material through ozone treatment, and thus regenerate the ozone treatment. By treating the wastewater with seawater containing chlorine ions as a catalyst, not only can the treatment effect be improved, but the organic matter and nitrogen contained in the regenerated wastewater can be directly and indirectly oxidized to remove it. The present invention provides a regeneration wastewater treatment apparatus and treatment method for a multiple desalination plant. Another object of the present invention is to periodically clean the contaminated electrode plate by electrolytic treatment for a long time to remove the contaminants remaining on the electrode plate, thereby improving the electrolytic treatment efficiency and at the same time improve the durability due to corrosion of the electrode plate. The present invention provides a regeneration wastewater treatment apparatus and treatment method for a multiple desalination plant. Still another object of the present invention is to provide a regeneration wastewater treatment apparatus and treatment method of a plurality of desalination facilities that can reduce the power used during electrolysis by increasing the current density of the electrode plate by making the anode of the electrode plate in a net form. There is.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 복수탈염설비의 재생폐수 처리장치는 복수탈염설비에서 발생되는 재생폐수가 유입되며 재생폐수에 응집제를 첨가하여 재생폐수에 함유되어 있는 부유물질들을 응집하여 침전시키는 응집침전조와, 응집된 부유물질을 제거하는 모래여과장치와, 부유물질들이 제거된 재생폐수 중의 난분해성 유기물질을 전기분해가능한 유기물질로 변화시키는 오존처리장치와, 오존처리된 재생폐수가 유입되어 전기분해처리 할 수 있도록 촉매제인 해수와 혼합하여 혼합수를 만드는 촉매혼합조와, 양극판과 음극판이 장착된 전극판 모듈을 이용하여 촉매혼합조로부터 유입되는 혼합수가 전기분해에 의해 직접 및 간접산화되도록 처리하는 전기분해처리장치와, 전기분해된 혼합수에 잔존하는 염소산화제와 산화부산물을 활성탄을 이용하여 제거하는 활성탄 여과장치와, 오염된 전극판을 세정하기 위한 전극판 세정조를 포함하여 구성된 것을 특징한다. 또한, 본 발명에 따른 복수탈염설비의 재생폐수 처리방법은 복수탈염설비에서 발생되는 재생폐수에 응집제를 첨가하여 상기 재생폐수에 함유되어 있는 부유물질들을 침전하는 침전단계와, 부유물질들이 침전된 상기 재생폐수에 잔존하는 미세 응집물질들을 여과하는 모래여과단계와, 상기 여과단계에서 여과된 상기 재생폐수를 오존처리하는 오존처리단계와, 오존처리된 재생폐수를 전기분해할 수 있도록 부유물질 및 해양생물들이 제거된 해수와 혼합하여 혼합수를 만드는 촉매혼합단계와, 상기 혼합수에 포함되어 있는 오염물질들이 직접 및 간접산화되도록 상기 혼합수를 전기분해하는 전기분해처리단계와, 전기분해처리된 상기 혼합수 내에 잔존하는 염소산화제 및 산화부산물 등을 활성탄을 이용하여 제거하는 활성탄 여과단계와, 장시간 운전으로 오염된 전극판을 세정하는 전극판세정단계로 이루어지는 것을 특징으로 한다. 이하, 본 발명 에 따른 복수탈염설비의 재생폐수 처리장치 및 처리방법을 첨부된 도면을 참고하여 상세히 설명한다. 도 1을 참조하면, 복수탈염설비의 재생폐수 처리장치는 재생폐수의 유량과 수질을 일정하게 유지시키는 유량조정조(1)와, 재생폐수의 부유물질들을 침전시키는 침전조(3)와, 응집된 부유물질을 여과하는 모래여과장치와(5), 난분해성 유기물질을 전기분해가능한 유기물질로 변화시키는 오존처리장치(7)와 재생폐수를 해수와 혼합하여 혼합수를 만드는 촉매혼합조(9)와, 혼합수를 전기분해하는 전기분해처리장치(11)와, 전기분해처리된 처리수의 염소산화제 및 산화부산물을 제거하는 활성탄 여과장치(13)와 오염된 전극판을 세정하는 전극판 세정장치(15)로 구성되어 있다. 유량조정조(1)는 복수탈염설비에서 발생되는 재생폐수가 유입관을 통하여 유량조정조(1)에 수용되고, 유량조정조(1)에 수용된 재생폐수는 유량조정조(1) 내에서 교반에 의해 수질이 일정하게 유지되면서 응집침전조(3)로 유출된다. 응집침전조(3)의 바닥면은 그 중앙으로 하향 경사져 있고 중앙부에는 응집물 즉 슬러지가 모이는 슬러지배출부(3a)가 마련되어 있다. 침전조(3)의 바닥면에 침전된 각종 응집물은 경사면에 의하여 슬러지배출부(3a)로 모은 후 배출파이프(3b)를 통해 배출된다. 모래여과조(5)의 내부에는 침전조(3)에서 제거되지 않은 재생폐수의 부유물질과 미세 응집물을 여과되도록 모래(5a)가 적층되어 있다. 재생폐수는 모래층(5a)을 통과하면서 침전조에 침전제거되지 못한 잔여 부유물질 및 미세 응집물들이 제거된다. 오존처리조(7)는 오존발생기(7a), 가스공급장치(7b)와 오존접촉노즐(7c)로 구성되는데, 여과조(5)를 통과한 재생폐수가 오존처리됨으로서 난분해성 유기물질들이 전기분해가능한 유기물질로 변화시키게 된다. 오존처리된 재생폐수는 촉매혼합조(9)로 배출된다. 촉매혼합조(9)에서는 오존처리된 재생폐수와 촉매제인 해수가 혼합되어 혼합수가 만들어진다. 촉매혼합조(9)의 일측에는 재생폐수와 해수를 일정 비율로 혼합할 수 있도록 해수펌프(9a)가 설치되어 있으며 내부에는 폭기장치(9b)가 설치되어 있다. 폭기장치(9b)는 혼합조(9)에 유입되는 재생폐수와 해수를 교반한다. 한편, 해수는 해수여과장치(10)에서 부유물질과 해양생물들이 제거된 후 혼합조(9)로 유입된다. 전기분해처리조(11)의 내부에는 촉매혼합조(9)에서 유입되는 혼합수를 전기분해할 수 있도록 전원공급부(11a)에서 전류를 인가 받는 전극판 모듈(20)이 설치되어 있다. 전원공급부(11a)는 전극판 모듈(20)에 전류를 조절함으로서 전력을 전극판 모듈에 인가한다. 본 발명에 따른 전기분해처리조(11)는 전극판에 혼합수가 효율적으로 접촉하여 전기분해될 수 있도록 전극판 모듈을 다수 설치되는 것이 바람직하다. 활성탄여과조(13)에서는 전기분해처리과정 중에 발생되는 산화제 중 잔류산화제와 산화부산물을 제거하기 과정으로서 입상활성탄이 충진된 활성탄 여과조(13)를 통과시켜 제거하게 된다. 도 2를 참조하면, 본 발명에 따른 전극판 모듈(20)의 전극판(21)은 재생폐수 혼합수를 직접 및 간접산화 시키는 양극(22) 및 음극(23)으로 이루어져 있으며, 양극(22)은 티타늄(Ti)에 이산화이리듐(IrO2)이 전착되어 있고 음극(23)은 스테인레스 스틸로 제작되어 있다. 전극판 모듈(20)의 양극(22)은 낮은 전류에서 높은 전류밀도를 가지기 위하여 망 형태로 제작되어 있다. 한편, 촉매혼합수를 전기분해하는 과정에서 전극판 모듈(20)의 전극판 표면에는 오염물질 즉 스케일, 슬러지 등이 많이 부착되는데, 이를 제거하기 위 하여 전극판 모듈(20)을 세정할 수 있는 전극판 세정조(15)가 마련된다. 전극판 모듈(20)은 전기분해처리조(11)에 설치되어 있는 전극판 모듈이송장치(12)에 의하여 전극판 세정조(13)로 이송된다. 전극판 세정조(15)의 내부에는 세정액에 의해 전극판 모듈(20)이 효율적으로 세정될 수 있도록 교반용 노즐(15a)이 설치되어 있다. 전극판 모듈(20)의 세정에 사용되는 세정액은 염산을 이용하여 pH를 2 이하로 유지시키는 것이 바람직하다. 그리고 전극판 모듈(20)을 세정한 후 발생되는 세정폐액은 유량조정조(1)로 반송되어 재생폐수와 혼합시켜 처리한다. 전기분해처리조(11)에서 전기분해된 처리수는 활성탄 여과조(13)로 배출된다. 활성탄 여과조(13)에는 처리수에 남아있는 염소산화제와 산화부산물을 제거하기 위하여 활성탄이 마련되어 있으며, 활성탄 여과조(13)에서 최종적으로 처리된 최종처리수는 방류조(17)에 유입된 후 해양으로 방류된다. 지금부터는 상기와 같은 구성을 갖는 복수탈염설비의 재생폐수 처리장치에 따른 재생폐수 처리방법을 설명한다. 도 1과 도 3을 참조하면, 응집침전조(3)에서는 유입된 재생폐수에 잔존하는 부유물질을 침전시키기 위하여 재생폐수에 응집제를 첨가하는 응집침전단계(S50)가 진행된다. 응집침전단계(S50)에서는 재생폐수에 응집제로서 황산알루미늄과 응집보조제를 첨가하여 재생폐수 내에 잔존하는 부유물질을 응집시켜 침전성을 증가시켜 침전시킨다. 응집침전단계(S50)에서 침전되지 않은 미세 응집물들은 재생폐수가 모래여과조(5)를 통과하면서 모래층(5a)에 의하여 여과된다(S52). 오존처리단계(S54)에서는 모래여과단계(S110)를 거친 재생폐수는 오존처리조(7)에서 난분해성 유기물질을 전기분해가능한 유기물질로 변화시키는 과정을 거쳐 촉매혼합조(9)에서 해수와 혼합되는 혼합단계 (S56)가 진행된다. 촉매혼합단계(S56)에서는 재생폐수를 용이하게 전기분해할 수 있도록 재생폐수에 염소이온이 다량 함유되어 있는 해수가 혼합되어 혼합수가 만들어진다. 해수에 함유되어 있는 염소이온은 재생폐수를 전기분해 때 촉매로 사용되는 것이다. 촉매혼합단계(S56)에서는 폭기장치(9b)에 의하여 재생폐수와 해수가 완전히 교반된다. 본 발명에 따른 재생폐수와 해수의 혼합비율은 혼합수 전체에 대하여 재생폐수 70~80 중량% : 해수 20~30 중량%로 혼합되는 것이 바람직하다. 전기분해처리조(11)에서는 유입된 혼합수를 양극판과 음극판이 장착된 전극판 모듈(20)을 이용하여 전기분해하는 전기분해처리단계(S58)가 진행된다. 전기분해처리단계(S58)에서는 혼합수 내에 함유되어 있는 오염물질 전극판 모듈(20)에 의하여 직접 및 간접산화된다. 전기분해단계(S58)는 다수 설치되어 있는 전기분해처리조(11)에서 이루어지므로 혼합수에 의한 전기저항을 줄이고 전해질을 충분히 이용할 수 있으므로 인해 오염물질의 처리효율을 상승시킬 수 있을 뿐만 아니라 전류밀도를 낮출 수 있기 때문에 전력비를 감소시킬 수 있다. 본 발명에 따른 전기분해처리단계(S58)는 전극판 모듈(20)의 전류밀도를 2~5 A/dm로 유지한 상태에서 혼합수를 1~2 시간 정도 전기분해 하는 것이 바람직하다. 활성탄여과조(13)에서는 전기분해처리단계(S58)에서 처리된 처리수가 유입되어 여과되는 활성탄 여과단계(S60)가 진행된다. 활성탄 여과단계(S60)에서는 입상활성탄을 이용하여 전기분해처리된 처리수에 잔존하는 염소산화제 및 산화부산물 등을 제거한다. 그리고 활성탄 여과단계(S60)를 거친 최종처리수는 방류조(17)에 수용된 후 해양으로 방류된다. 전극판 세정조(15)에서는 장시간 전기분해처리됨에 따라 오염된 전극판 산을 이용하여 세정하는 전극판 세정단계가 진해된다. 지금부터는 본 발명에 따른 오존처리단계(S54)와 전기분해처리단계(S58)에서의 전기분해 산화 원리를 상세히 설명한다. 먼저, 재생폐수에 포함되어 있는 난분해성 유기물질들은 강력한 산화력을 가진 오존에 의해 유기물질 분자 내의 이중결합을 공격하여 연결을 절단하게 됨으로서 분해가능한 유기물지로 변화하게 된다.Regeneration wastewater treatment apparatus of a plurality of desalination plant according to the present invention for achieving the above object is introduced into the regeneration wastewater generated in the plurality of desalination facilities and by adding a flocculant to the regeneration wastewater to agglomerate suspended solids contained in the regeneration wastewater Coagulation sedimentation tank for sedimentation, sand filtration device for removing flocculated suspended solids, ozone treatment apparatus for converting non-degradable organic substances in regenerated wastewater from which suspended solids are removed to electrolytic organic substances, and ozonated recycled wastewater A catalyst mixing tank that mixes with seawater, which is a catalyst, to be mixed and introduced into the electrolysis process, and the mixed water introduced from the catalyst mixing tank using an electrode plate module equipped with a positive electrode plate and a negative electrode plate is directly and indirectly oxidized by electrolysis. Electrolysis treatment apparatus to treat as possible, and chlorine oxidant and oxidation part remaining in the electrolyzed mixed water And characterized in that configured to include with the activated carbon to remove the water using activated carbon filtering device, three electrode plates for cleaning a contaminated tub electrode plate. In addition, the method for treating regenerated wastewater in a plurality of desalination facilities according to the present invention includes a precipitation step of precipitating suspended solids contained in the regenerated wastewater by adding a flocculant to the regenerated wastewater generated in the plurality of desalination facilities, and the suspended solids precipitated. A sand filtration step for filtering the fine aggregates remaining in the regeneration wastewater, an ozone treatment step for ozone treatment of the regeneration wastewater filtered in the filtration step, and a floating material and a marine organism to electrolyze the regeneration wastewater treated by the ozone treatment. A catalyst mixing step of mixing the removed seawater to form mixed water, an electrolysis step of electrolyzing the mixed water so that the contaminants contained in the mixed water are directly and indirectly oxidized, and the electrolyzed mixing Activated carbon filtration step for removing chlorine oxidant and oxidative by-products remaining in water using activated carbon, and for a long time The electrode plate comprising a cleaning step of cleaning a contaminated electrode plate as characterized. Hereinafter, with reference to the accompanying drawings, an apparatus and a treatment method for regeneration wastewater treatment of a plurality of desalination facilities according to the present invention will be described in detail. Referring to FIG. 1, a regeneration wastewater treatment apparatus of a plurality of desalination facilities includes a flow rate adjustment tank 1 for maintaining a constant flow rate and water quality of the regeneration wastewater, a settling tank 3 for precipitating suspended solids of the regeneration wastewater, and flocculation flotation. A sand filtration apparatus for filtering the substance (5), an ozone treatment apparatus (7) for converting the hardly decomposable organic substance into an electrolysable organic substance, and a catalyst mixing tank (9) for mixing the regeneration wastewater with seawater to form mixed water And an electrolytic treatment device 11 for electrolyzing the mixed water, an activated carbon filter device 13 for removing chlorine oxidizer and oxidative by-product of the electrolyzed treated water, and an electrode plate cleaning device for cleaning the contaminated electrode plate. It consists of 15). The flow regulating tank 1 is accommodated in the flow regulating tank 1 through the inflow pipe of the regeneration waste water generated from the multiple desalination plant, and the regeneration waste water contained in the flow regulating tank 1 is agitated in the flow regulating tank 1 by agitation. It is discharged to the coagulation sedimentation tank 3 while being kept constant. The bottom surface of the flocculation sedimentation tank 3 is inclined downward to the center, and the sludge discharge part 3a which collect | aggregates aggregates, ie, sludge, is provided in the center part. Various aggregates precipitated on the bottom surface of the settling tank 3 are collected in the sludge discharge portion 3a by the inclined surface and then discharged through the discharge pipe 3b. The sand 5a is stacked in the sand filtration tank 5 so as to filter suspended matter and fine aggregates of the regenerated waste water which have not been removed from the settling tank 3. The regenerated wastewater passes through the sand layer 5a to remove residual suspended matter and fine aggregates which are not precipitated in the settling tank. The ozone treatment tank 7 is composed of an ozone generator 7a, a gas supply device 7b, and an ozone contact nozzle 7c. The regeneration wastewater that has passed through the filtration tank 5 is ozonated, and the hardly decomposable organic substances are electrolyzed. It is transformed into organic material as much as possible The ozonated recycle wastewater is discharged to the catalyst mixing tank 9. In the catalyst mixing tank 9, mixed water is made by mixing ozone-treated regenerated wastewater and seawater, which is a catalyst. One side of the catalyst mixing tank 9 is provided with a seawater pump 9a so as to mix regeneration wastewater and seawater at a predetermined ratio, and an aeration device 9b is installed therein. The aeration device 9b agitates the regeneration wastewater and the seawater flowing into the mixing tank 9. On the other hand, the seawater is introduced into the mixing tank (9) after the suspended matter and marine life is removed from the seawater filtration device (10). In the electrolysis treatment tank 11, an electrode plate module 20 receiving current from the power supply unit 11a is installed to electrolyze the mixed water flowing from the catalyst mixing tank 9. The power supply 11a applies electric power to the electrode plate module by adjusting a current to the electrode plate module 20. The electrolytic treatment tank 11 according to the present invention is preferably provided with a plurality of electrode plate modules so that the mixed water can be electrolytically contacted with the electrode plate. The activated carbon filtration tank 13 removes residual oxidant and oxidative by-products from the oxidant generated during the electrolysis process and passes through the activated carbon filtration tank 13 filled with granular activated carbon. 2, the electrode plate 21 of the electrode plate module 20 according to the present invention is composed of a positive electrode 22 and a negative electrode 23 for directly and indirectly oxidizing the recycle wastewater mixed water, the positive electrode 22 Iridium dioxide (IrO 2 ) is electrodeposited on silver titanium (Ti), and the cathode 23 is made of stainless steel. The anode 22 of the electrode plate module 20 is manufactured in a net form in order to have a high current density at a low current. On the other hand, in the process of electrolyzing the catalyst mixture water, a lot of contaminants, that is, scale, sludge, etc. are attached to the electrode plate surface of the electrode plate module 20, in order to remove the electrode plate module 20 can be cleaned The electrode plate cleaning tank 15 is provided. The electrode plate module 20 is transferred to the electrode plate cleaning tank 13 by the electrode plate module transfer device 12 installed in the electrolysis treatment tank 11. The inside of the electrode plate cleaning tank 15 is provided with a stirring nozzle 15a so that the electrode plate module 20 can be efficiently cleaned by the cleaning liquid. It is preferable that the washing | cleaning liquid used for the cleaning of the electrode plate module 20 maintains pH below 2 using hydrochloric acid. The washing waste liquid generated after washing the electrode plate module 20 is returned to the flow rate adjusting tank 1 and mixed with the regeneration waste water for treatment. The treated water electrolyzed in the electrolysis treatment tank 11 is discharged to the activated carbon filtration tank 13. Activated carbon filtration tank 13 is provided with activated carbon to remove chlorine oxidant and oxidative by-products remaining in the treated water, and the final treated water finally treated in the activated carbon filtration tank 13 flows into the discharge tank 17 to the ocean. Discharged. The regeneration wastewater treatment method according to the regeneration wastewater treatment apparatus of the multiple desalination plant having the above configuration will now be described. 1 and 3, in the flocculation sedimentation tank 3, a flocculation sedimentation step (S50) of adding a flocculant to the regeneration wastewater in order to precipitate the suspended matter remaining in the regeneration wastewater introduced therein is performed. In the coagulation sedimentation step (S50), aluminum sulfate and a coagulant aid are added to the regeneration wastewater to coagulate the suspended solids remaining in the regeneration wastewater, thereby increasing the settling property to precipitate. Fine aggregates not precipitated in the flocculation sedimentation step (S50) are filtered by the sand layer (5a) while the regeneration waste water passes through the sand filtration tank (5) (S52). In the ozone treatment step (S54), the regenerated wastewater passed through the sand filtration step (S110) is subjected to a process of changing the hardly decomposable organic material into an electrolytically degradable organic material in the ozone treatment tank (7) and the seawater in the catalyst mixing tank (9). The mixing step S56 is performed. In the catalyst mixing step (S56), mixed water is made by mixing seawater containing a large amount of chlorine ions in the regenerated wastewater so as to easily electrolyze the regenerated wastewater. Chlorine ions in seawater are used as catalysts in the electrolysis of recycled wastewater. In the catalyst mixing step S56, the regeneration wastewater and the seawater are completely stirred by the aeration device 9b. The mixing ratio of the recycled wastewater and the seawater according to the present invention is preferably mixed with the recycled wastewater 70 to 80% by weight: seawater 20 to 30% by weight based on the total mixed water. In the electrolysis treatment tank 11, an electrolysis treatment step (S58) of electrolyzing the mixed water introduced using the electrode plate module 20 equipped with the positive electrode plate and the negative electrode plate is performed. In the electrolytic treatment step (S58) is directly and indirectly oxidized by the contaminant electrode plate module 20 contained in the mixed water. Since the electrolysis step (S58) is made in a plurality of electrolysis treatment tanks 11 are installed, it is possible to reduce the electrical resistance by the mixed water and to fully use the electrolyte, thereby increasing the treatment efficiency of the contaminants and increasing the current density. Since it can lower the power ratio. In the electrolytic treatment step S58 according to the present invention, it is preferable to electrolyze the mixed water for about 1 to 2 hours while maintaining the current density of the electrode plate module 20 at 2 to 5 A / dm. In the activated carbon filtration tank 13, the activated carbon filtration step S60 is performed in which the treated water treated in the electrolytic treatment step S58 is introduced and filtered. Activated carbon filtration step (S60) is used to remove chlorine oxidant and oxidative by-products remaining in the electrolyzed treated water using granular activated carbon. And the final treated water after the activated carbon filtration step (S60) is received in the discharge tank 17 is discharged to the ocean. In the electrode plate cleaning tank 15, as the electrolysis is performed for a long time, the electrode plate cleaning step of cleaning using the contaminated electrode plate acid is increased. Hereinafter, the principle of electrolytic oxidation in the ozone treatment step (S54) and the electrolysis treatment step (S58) according to the present invention will be described in detail. First, the hardly degradable organic substances contained in the regenerated wastewater are transformed into degradable organic substances by attacking the double bonds in the molecules of the organic substance by the strong oxidizing ozone to break the connection.

오존처리에 의한 분해 과정은 아래와 같다.The decomposition process by ozone treatment is as follows.

O2 + 고전압 -> O3 O 2 + high voltage-> O 3

O3 + 유기물 -> 산화부산물 + H2O + CO2 O 3 + Organics-> Oxidation Byproducts + H 2 O + CO 2

그리고 오존처리된 재생폐수가 촉매혼합조에서 오존처리된 폐수와 해수가 혼합된 혼합수에 포함되어 있는 분해가능한 오염물질은 직접양극산화나 간접산화공정으로 제거된다. 직접양극산화에서 오염물질이 양극판에 접견함으로서 양성전자 교환에 의하여 제거된다. 간접산화는 전기분해에서 전기화학적으로 생성된 차아염소산 같은 강력한 산화제에 의해 혼합수 내의 오염물질이 산화된다. 따라서 해수는 전해질이 풍부하기 때문에 직접산화와 염소에 의한 간접산화가 빠르게 진행되기 때문에 짧은 시간에 산화 효과를 얻을 수 있는 것이다. 이러한, 전기분해처리는 혼합수 내에 존재하는 유기물질을 산화시키는 동시에 질소 등의 오염물질들을 안정한 물질로 완전하게 산화시켜 제거할 뿐만 아니라 대장균 및 병원성 세균도 직접 혹은 간접산화 과정을 통해 파괴시킬 수 있다. 상기와 같은 이유로 본 발명에서는 염소이온이 다량 함유되어 있는 해수를 촉매로 사용하는 것이며, 염소의 전기분해 과정 은 아래와 같다.Decomposable contaminants contained in the mixed water mixed with ozonated wastewater and seawater in the catalytic mixing tank are removed by direct anodization or indirect oxidation. In direct anodization, contaminants are removed by positive electron exchange by contacting the positive plate. Indirect oxidation oxidizes contaminants in mixed water by powerful oxidants, such as hypochlorous acid, produced electrochemically in electrolysis. Therefore, since seawater is rich in electrolytes, direct oxidation and indirect oxidation by chlorine proceed rapidly, so that an oxidizing effect can be obtained in a short time. The electrolytic treatment not only oxidizes organic substances present in the mixed water, but also completely oxidizes and removes contaminants such as nitrogen into stable substances, and can destroy E. coli and pathogenic bacteria through direct or indirect oxidation. . For the above reason, in the present invention, seawater containing a large amount of chlorine ions is used as a catalyst, and the electrolysis process of chlorine is as follows.

양극 : 2Cl- -> Cl2(dissolved) + 2e- Anode: 2Cl - -> Cl 2 ( dissolved) + 2e -

음극 : 2H2O + 2e- -> 2OH- + H2 Cathode: 2H 2 O + 2e - - > 2OH - + H 2

전극간 반응 : Cl2 + H2O -> HOCl + Cl- + H+ Inter-electrode reaction: Cl 2 + H 2 O - > HOCl + Cl - + H +

HOCl -> OCl- + H+ HOCl -> OCl - + H +

즉, 양극에서 차아염소산(HOCl), 음극에서 차아염소산 이온(OCl-)이 생성되어 이러한 중간생성물은 수중에서 유기물질 등을 간접산화하게 된다. 다음으로, 전기분해에 의한 유기물 제거를 살펴보면, 전해액이 산성인 용액의 금속이온은 전기분해과정에서 안정 상태에서 들뜬 상태로 산화되며 중간산물인 반응체가 생성된다. 양극에서 많은 양의 유기물질이 산화되어 이산화탄소로 용액 내에 확산되며 반응식은 아래와 같다.That is, hypochlorous acid (HOCl) at the anode and hypochlorite ions (OCl ) are generated at the cathode, and the intermediate product indirectly oxidizes organic substances in water. Next, looking at the removal of organic matter by electrolysis, the metal ions of the solution in which the electrolyte is acidic is oxidized from the stable state to the excited state during the electrolysis process to produce a reactant as an intermediate product. A large amount of organic material is oxidized at the anode and diffused into the solution with carbon dioxide.

xMn + -> xM(n+1)+ + xe- xM n + -> xM (n + 1) + + xe -

xM(n+1)+ + reacting agent + xe- -> xMn+ + yCO2 xM (n + 1) + + + xe reacting agent - -> xM + n + yCO 2

즉, 유기물질의 전기분해는 양극에서 산화되지만 물의 전기분해에 의한 수산화 이온이 전극표면에 흡착되어 유기물을 산화하는 직접산화와 염소의 전기분해에 의해 생성된 차아염소산 등의 중간산물에 의한 간접산화로 구분할 수 있다. 도 4a 와 도 4b를 참고하여 직접산화 및 간접산화를 상세히 설명한다.In other words, the electrolysis of organic materials is oxidized at the anode, but the direct oxidation of hydroxide ions due to the electrolysis of water on the electrode surface to oxidize the organic matter and the indirect oxidation by intermediate products such as hypochlorous acid produced by the electrolysis of chlorine. Can be divided into Direct oxidation and indirect oxidation will be described in detail with reference to FIGS. 4A and 4B.

<직접산화>Direct Oxidation

직접산화에 의한 유기물질 제거는 아래의 식과 같이, 전극표면(M[ ])에서 물의 전기분해에 의해 생성되는 수산화 이온이 양극에 흡착된다.In the organic material removal by direct oxidation, hydroxide ions generated by electrolysis of water are adsorbed on the anode, as shown in the following equation.

H2O + M[ ] -> M[OH] + H+ + e- H 2 O + M [] - > M [OH] + H + + e -

전극표면에 흡수 병합된 수산화 이온에 의해 유기물질이 산화되며, 반응식은 아래와 같으며 높은 전류밀도의 산성용액에서 잘 진행된다. The organic material is oxidized by the hydroxide ions absorbed and merged on the surface of the electrode. The reaction formula is as follows and proceeds well in the acid solution of high current density.

R + M[OH] -> M[ ] + RO + H+ + e- R + M [OH] -> M [] + RO + H + + e -

여기서, RO는 계속적으로 형성되는 수산화 이온에 의해 산화된 유기물질이며 수중에서 양극방전을 계속한다. 그리고 산화된 양극(MOx)에 물의 전기분해에 의해 생성된 수산화 이온이 흡착되고, 이미 발생된 산소와 반응하여 더 산화된 양극(MOx+1)을 형성한다. 또한, 유기물질(R)은 이 산화성 양극에 흡착된 수산화 이온과 반응하여 이산화탄소, 물 혹은 수소 이온으로 분해되며, 식은 아래와 같다.Here, RO is an organic material oxidized by hydroxide ions which are continuously formed, and continues the anode discharge in water. And the hydroxide ion produced by the electrolysis of water in the oxidized anode (MO x) is adsorbed and reacts with the already generated oxygen to form more oxidized anode (MO x + 1). In addition, the organic substance (R) is decomposed into carbon dioxide, water or hydrogen ions by reacting with hydroxide ions adsorbed on the oxidizing anode, and the equation is as follows.

MOx + H2O -> MOx[OH] + H+ + e- MO x + H 2 O -> MO x [OH] + H + + e -

R + MOx[OH]z -> CO2 + zH+ + ze- + MOx R + MO x [OH] z -> CO 2 + zH + + ze - + MO x

<간접산화>Indirect Oxidation

간접산화로 제거되는 유기물질의 전기화학반응은 전기분해 중 염소의 양극산 화가 동시에 발생하며 차아염소산이 전극표면에 형성된다. 이렇게 양극에서 생성된 차아염소산에 의해 유기물질이 산화되는 반응은 식 아래와 같다.In the electrochemical reaction of organic substances removed by indirect oxidation, anodization of chlorine occurs simultaneously during electrolysis, hypochlorous acid is formed on the electrode surface. The reaction in which the organic material is oxidized by the hypochlorous acid generated at the anode is as follows.

H2O + M[ ] + Cl- -> M[HOCl] + H+ + 2e- H 2 O + M [] + Cl - -> M [HOCl] + H + + 2e -

R + M[HOCl] -> M[ ] + RO + H+ + Cl- R + M [HOCl] -> M [] + RO + H + + Cl -

전기분해 과정의 예를 아래와 같이 나타내었다. Benzoquinone로 산화되었다가 계속하여 Maleic, 이산화탄소로 산화되는데, 산소발생 반응과 경쟁관계에 있으며 높은 산소과전압에서 산소발생보다 우선적으로 반응한다.An example of the electrolysis process is shown below. It is oxidized to benzoquinone and then oxidized to maleic and carbon dioxide, competing with the oxygen evolution reaction and preferentially reacting with oxygen generation at high oxygen overvoltages.

C6H7N + 2H2O -> C6H4O2 + 3H+ + NH4 + + 4e- C 6 H 7 N + 2H 2 O -> C 6 H 4 O 2 + 3H + + NH 4 + + 4e -

C6H4O2 + 6H2O -> C4H4O4 + 2CO2 + 12H+ + 12e- C 6 H 4 O 2 + 6H 2 O -> C 4 H 4 O 4 + 2CO 2 + 12H + + 12e -

C4H4O4 + 5H2O -> H2O + 4CO2 + 12H+ + 12e- C 4 H 4 O 4 + 5H 2 O -> H 2 O + 4CO 2 + 12H + + 12e -

한편, 재생폐수 중에서 질소오염물의 제거 메카니즘을 살펴보면 아래의 식과 같다. On the other hand, the removal mechanism of nitrogen contaminants in the regeneration wastewater is as follows.

Cl2 + H2O -> HOCl + Cl- + H+ Cl 2 + H 2 O -> HOCl + Cl - + H +

2NH3 + 3HOCl -> N2(gas) + 3H2O + HCl2NH 3 + 3HOCl-> N 2 (gas) + 3H 2 O + HCl

생성된 염소 가스가 반응성이 좋은 암모니아성 질소와 먼저 결합하여 결합잔류염소를 생성하고, 그 후에 수중 분해되어 유리 잔류염소가 존재하게 된다. 따라 서 결합잔류염소는 염소 가스/유리잔류염소 등에 의해 한번 더 산화되어서 질소 가스로 소비되므로 제거되게 된다. 상기와 같은 전기분해반응에 의하여 처리되는 재생폐수는 전기분해처리조(11)에서 전기분해되는 시간 즉, 혼합수가 전기분해저리조(11)에 머무르는 체류시간에 따라 처리수의 수질이 변하게 된다. <표 1> 오존처리와 전기분해처리를 연계에 따른 처리수의 COD 농도 변화.The produced chlorine gas first combines with the highly reactive ammonia nitrogen to produce combined residual chlorine, which is then decomposed in water to form free residual chlorine. Therefore, the combined residual chlorine is oxidized once more by chlorine gas / free residual chlorine and consumed as nitrogen gas. The recycled wastewater treated by the electrolysis reaction as described above changes the water quality of the treated water according to the time of electrolysis in the electrolysis treatment tank 11, that is, the mixing time of the mixed water staying in the electrolysis treatment tank 11. <Table 1> Changes in COD Concentrations in Treated Waters Associated with Ozone Treatment and Electrolysis Treatment.

처리방법 및 처리시간 (분)Treatment method and processing time (minutes) COD농도 (mg/L)COD concentration (mg / L) 오존처리 (농도 190 g/㎥)Ozone treatment (concentration 190 g / ㎥) 0분0 min 68.068.0 30분30 minutes 65.265.2 60분60 minutes 62.462.4 전기분해처리 (전류 50A)Electrolysis Treatment (Current 50A) 0분0 min 62.462.4 30분30 minutes 21.521.5 60분60 minutes 5.8 5.8

또한, 전기분해처리조(11)의 최적 조건에서 BOD 및 T-N(총질소량) 제거 정도를 각각 살펴보면, <표 2>와 같다. In addition, looking at the degree of removal of BOD and T-N (total nitrogen) at the optimum conditions of the electrolytic treatment tank 11, as shown in Table 2.

<표 2> 전기분해처리에 의한 BOD 및 T-N 제거 특성.TABLE 2 BOD and T-N removal characteristics by electrolysis.

시료채취지점Sampling point 농도(mg/L)Concentration (mg / L) BODBOD 유입inflow 5757 유출outflow 8 8 T-NT-N 유입inflow 4040 유출outflow 1010

<표2>에 나타낸 바와 같이 전기분해처리조에 유입 전 BOD농도가 57 mg/L에서 전기분해 처리수의 BOD는 8 mg/L로 나타나 86 % 정도의 제거율을 얻었다. 그리고 T-N의 경우는 유입 전 40 mg/L에서 전기분해 후 10 mg/L로 나타나 75 % 정도의 제거율을 나타낸다. 따라서 본 전기분해처리장치의 최적조건에서 COD와 더불어 BOD 및 T-N까지도 효과적으로 제거할 수 있었다.As shown in Table 2, the BOD concentration of the electrolyzed water was 8 mg / L at a BOD concentration of 57 mg / L before inflow into the electrolytic treatment tank, thereby obtaining a removal rate of about 86%. In the case of T-N, 10 mg / L after electrolysis at 40 mg / L before the inflow shows a removal rate of about 75%. Therefore, BOD and T-N as well as COD could be effectively removed at the optimum condition of the electrolytic treatment device.

이상에서 설명한 바와 같이 본 발명에 따른 복수탈염설비의 재생폐수 처리장 치 및 처리방법에 의하면, 재생폐수를 오존처리와 촉매제로 염소이온이 다량 함유되어 있는 해수가 사용된 전기분해처리를 통해 재생폐수의 처리효과가 향상될 뿐만 아니라, 재생폐수에 함유되어 있는 유기물질과 질소가 직접 및 간접산화에 의하여 효과적으로 처리되는 장점이 있다. 또한, 전극판 모듈의 양극을 망 형태로 제작되어 있어 전극판 모듈의 전류밀도가 높아져 전기분해 시 사용되는 전력이 감소될 뿐만 아리라, 촉매로 해수를 사용하므로 유지관리비가 절감되는 효과가 있다. 또한, 전기분해 처리과정에서 살균 등의 부가적인 효과로 인해 소독을 위한 부속처리 시설이 필요 없다. 또한, 전극판 모듈을 주기적으로 세정하여 전극판 모듈에 잔존하는 슬러지를 제거하므로써, 전극판 모듈의 전기분해 효율을 향상됨과 동시에 전극판 모듈의 부식이 방지될 뿐만 아니라, 전극판 모듈에 사용된 세정폐액을 재생폐수의 촉매로 사용할 수 있어 재생폐수의 처리효과를 향상시킬 수 있는 장점이 있다.As described above, according to the regeneration wastewater treatment apparatus and treatment method of the multiple desalination plant according to the present invention, the regeneration wastewater is treated by ozone treatment and electrolysis treatment using seawater containing a large amount of chlorine ions as a catalyst. As well as the treatment effect is improved, there is an advantage that the organic substances and nitrogen contained in the regeneration wastewater is effectively treated by direct and indirect oxidation. In addition, since the anode of the electrode plate module is manufactured in the form of a net, the current density of the electrode plate module increases, so that the power used for electrolysis will be reduced, and the use of seawater as a catalyst has the effect of reducing the maintenance cost. In addition, there is no need for an accessory treatment facility for disinfection due to additional effects such as sterilization during the electrolysis process. In addition, by periodically cleaning the electrode plate module to remove the sludge remaining in the electrode plate module, not only improves the electrolysis efficiency of the electrode plate module, but also prevents corrosion of the electrode plate module, and also cleans used in the electrode plate module. The waste liquid can be used as a catalyst of the regeneration wastewater, thereby improving the treatment effect of the regeneration wastewater.

Claims (5)

복수탈염설비에서 발생되는 재생폐수가 유입되며 상기 재생폐수에 응집제를 첨가하여 상기 재생폐수에 함유되어 있는 부유물질들을 응집하여 침전시키는 응집침전조와; 상기 잔류부유물질들을 여과하여 제거하는 모래여과조와; 상기 모래여과조에서 유입되는 상기 재생폐수를 오존발생기와 오존접촉조를 이용하여 산화분해처리를 하는 오존처리조와; 상기 오존처리조에서 유입되는 상기 재생폐수를 전기분해처리 할 수 있도록 해수와 혼합하여 혼합수를 만드는 촉매혼합조와; 전극판이 장착된 전극판 모듈을 이용하여 상기 촉매혼합조에서 유입되는 상기 촉매혼합수가 직접 및 간접산화되도록 상기 혼합수를 전기분해하는 전기분해처리조와; 전기분해된 상기 혼합수에 잔존하는 염소산화제와 산화부산물을 활성탄을 이용하여 제거하는 활성탄 여과조와; 장기간 운전함에 따라 오염되는 전극판을 세정하는 전극판세정조를 포함하여 구성되는 것을 특징으로 하는 복수탈염설비의 재생폐수 처리장치.       A coagulation sedimentation tank in which regeneration wastewater generated in a plurality of desalination facilities is introduced and coagulates and precipitates suspended solids contained in the regeneration wastewater by adding a coagulant to the regeneration wastewater; A sand filtration tank for filtering and removing the residual suspended solids; An ozone treatment tank for oxidatively treating the regenerated wastewater introduced from the sand filtration tank by using an ozone generator and an ozone contact tank; A catalyst mixing tank for mixing the regenerated wastewater introduced from the ozone treatment tank with seawater to make mixed water; An electrolysis tank that electrolyzes the mixed water to directly and indirectly oxidize the catalyst mixed water flowing from the catalyst mixing tank using an electrode plate module equipped with an electrode plate; An activated carbon filtration tank for removing chlorine oxidant and oxidative by-products remaining in the electrolyzed mixed water using activated carbon; Regeneration wastewater treatment apparatus for a plurality of desalination plant comprising an electrode plate cleaning tank for cleaning the electrode plate contaminated with long term operation. 제 1 항에 있어서, 상기 전극판 모듈의 표면에 부착되어 있는 오염물질들을 이동형 전극판 모듈 이송장치와 세정액을 이용하여 제거하는 전극판세정조가 더 구비되어 있는 것을 특징으로 하는 복수탈염설비의 재생폐수 처리장치.The regeneration wastewater of the multiple desalination plant according to claim 1, further comprising an electrode plate cleaning tank for removing contaminants adhering to the surface of the electrode plate module using a movable electrode plate module transfer device and a cleaning liquid. Processing unit. 제 1 항 내지 제 2 항 중 어느 한 항에 있어서, 상기 전기분해처리조는 다수 마련되어 있는 것을 특징으로 하는 복수탈염설비의 재생폐수 처리장치.The regeneration wastewater treatment apparatus according to any one of claims 1 to 2, wherein a plurality of electrolysis treatment tanks are provided. 제 1 항 내지 제 2 항 중 어느 한 항에 있어서, 상기 전극판 모듈의 양극은 망 형태로 티타늄(Ti)에 이산화이리듐(IrO)이 전착되어 있고, 음극은 판 형태로 스테인레스 스틸로 제작되어 있는 것을 특징으로 하는 복수탈염설비의 재생폐수 처리장치.The electrode of the electrode plate module according to any one of claims 1 to 2, wherein iridium dioxide (IrO) is electrodeposited on titanium (Ti) in a net form, and the cathode is made of stainless steel in a plate form. Regeneration wastewater treatment apparatus for a plurality of desalination plant, characterized in that. 복수탈염설비에서 발생되는 재생폐수에 응집제를 첨가하여 상기 재생폐수에 함유되어 있는 부유물질들을 침전하는 응집침전단계; 부유물질들이 침전된 상기 재생폐수에 잔존하는 미세 응집물질들을 여과하는 모래여과단계; 상기 여과단계에서 여과된 상기 재생폐수를 오존처리할 수 있도록 하는 오존처리단계; 상기 오존처리단계에서 오존처리된 상기 재생폐수를 전기분해처리 촉매로 부유물질 및 해양생물들이 제거하여 해수와 혼합하여 혼합수를 만드는 혼합단계; 상기 혼합수에 포함되어 있는 오염물질들이 직접 및 간접산화되도록 상기 혼합수를 전극판 모듈을 이용하여 전기분해하는 전기분해처리단계; 상기 전기분해처리된 혼합수 내에 잔존하는 염소산화제 및 산화부산물 등을 활성탄을 이용하여 제거하는 활성탄 여과단계; 상기 전기분해처리단계를 통해 오염된 전극판 세정하는 전극판세정단계로 이루어지는 복수탈염설비의 재생폐수 처리방법.A flocculation sedimentation step of precipitating suspended solids contained in the regeneration wastewater by adding a flocculant to the regeneration wastewater generated in a plurality of desalination facilities; A sand filtration step of filtering the fine aggregated substances remaining in the regenerated wastewater in which suspended solids are precipitated; An ozone treatment step of allowing ozone treatment of the regenerated wastewater filtered in the filtration step; A mixing step of removing the suspended substances and marine organisms by electrolysis treatment catalyst to remove the regenerated waste water which has been ozone treated in the ozone treatment step and mixing them with sea water to make mixed water; An electrolysis step of electrolyzing the mixed water using an electrode plate module so that the contaminants included in the mixed water are directly and indirectly oxidized; Activated carbon filtration step of removing chlorine oxidant and oxidative by-products remaining in the electrolyzed mixed water using activated carbon; Regeneration wastewater treatment method of a plurality of desalination plant consisting of an electrode plate cleaning step of cleaning the contaminated electrode plate through the electrolytic treatment step.
KR1020050134876A 2005-12-30 2005-12-30 Treatment Facilities and Method of Organic Carbon and Nitrogen in CPP Regeneration Wastewater KR100691962B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050134876A KR100691962B1 (en) 2005-12-30 2005-12-30 Treatment Facilities and Method of Organic Carbon and Nitrogen in CPP Regeneration Wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050134876A KR100691962B1 (en) 2005-12-30 2005-12-30 Treatment Facilities and Method of Organic Carbon and Nitrogen in CPP Regeneration Wastewater

Publications (2)

Publication Number Publication Date
KR20060004898A KR20060004898A (en) 2006-01-16
KR100691962B1 true KR100691962B1 (en) 2007-03-09

Family

ID=37117073

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050134876A KR100691962B1 (en) 2005-12-30 2005-12-30 Treatment Facilities and Method of Organic Carbon and Nitrogen in CPP Regeneration Wastewater

Country Status (1)

Country Link
KR (1) KR100691962B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455048B1 (en) 2012-11-20 2014-10-28 광주과학기술원 Non-biodegradable materials removing installation and non-biodegradable materials removing method using the same
CN108275809A (en) * 2018-01-31 2018-07-13 常州市武进天工机械制造有限公司 Chemical nickel plating, electroplated zinc nickel alloy wastewater treatment method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664683B1 (en) * 2005-07-07 2007-01-03 한국수력원자력 주식회사 Apparatus and method for treating reproduction wastewater of condensate polisher
KR100779423B1 (en) * 2006-08-16 2007-11-29 주식회사 선양 Post processing ship with electrolysis device for seawater sludge and method for treating the same
KR100670629B1 (en) * 2006-09-29 2007-01-17 한성크린텍주식회사 Electrolysis treatment facilities and method of cpp regeneration wastewater
CN104961271B (en) * 2015-06-12 2017-01-11 国核电力规划设计研究院 Quick starting method of condensate polishing system of nuclear power station
CN106007265B (en) * 2016-07-29 2019-02-01 台州学院 A kind of deep treatment method of pharmaceutical waste water biochemical tail water
KR101951691B1 (en) * 2017-12-08 2019-06-03 소프트에코 주식회사 A wastewater treatment apparatus
CN108249551A (en) * 2017-12-29 2018-07-06 海天水务集团股份公司 A kind of processing method for removing sewage total nitrogen
JP7000000B2 (en) * 2019-02-19 2022-01-19 株式会社オメガ Wastewater treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393428A (en) 1992-09-06 1995-02-28 Solvay Deutschland Gmbh Process for treating waste water containing chlorinated organic compounds from production of epichlorohydrin
JPH07100466A (en) * 1993-10-04 1995-04-18 Nippon Shokubai Co Ltd Method for treating waste water
KR100365556B1 (en) 2000-05-12 2002-12-26 한국수자원공사 Advanced Wastewater Treatment System Adding Dechlorination Process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393428A (en) 1992-09-06 1995-02-28 Solvay Deutschland Gmbh Process for treating waste water containing chlorinated organic compounds from production of epichlorohydrin
JPH07100466A (en) * 1993-10-04 1995-04-18 Nippon Shokubai Co Ltd Method for treating waste water
KR100365556B1 (en) 2000-05-12 2002-12-26 한국수자원공사 Advanced Wastewater Treatment System Adding Dechlorination Process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455048B1 (en) 2012-11-20 2014-10-28 광주과학기술원 Non-biodegradable materials removing installation and non-biodegradable materials removing method using the same
CN108275809A (en) * 2018-01-31 2018-07-13 常州市武进天工机械制造有限公司 Chemical nickel plating, electroplated zinc nickel alloy wastewater treatment method

Also Published As

Publication number Publication date
KR20060004898A (en) 2006-01-16

Similar Documents

Publication Publication Date Title
KR100691962B1 (en) Treatment Facilities and Method of Organic Carbon and Nitrogen in CPP Regeneration Wastewater
Asfaha et al. Hybrid process of electrocoagulation and electrooxidation system for wastewater treatment: a review
JP3913923B2 (en) Water treatment method and water treatment apparatus
US20170029307A1 (en) Method and integral system for treating water for cooling towers and processess requiring removal of silica from the water
KR100687095B1 (en) Electrodialysis reversal and electrochemical wastewater treatment process of compound containing nitrogen
US20170113957A1 (en) Systems and methods for reduction of total organic compounds in wastewater
KR100664683B1 (en) Apparatus and method for treating reproduction wastewater of condensate polisher
Gasmi et al. Electrocoagulation process for removing dyes and chemical oxygen demand from wastewater: operational conditions and economic assessment–a review
KR100372849B1 (en) Advanced apparatus for treating wastewater using the electrolysis and coagulation
KR100492471B1 (en) A continuous electrical analytic oxidation reactor of waste water with high concentrated nitrogen compound
KR100670629B1 (en) Electrolysis treatment facilities and method of cpp regeneration wastewater
CN201777951U (en) Sewage treatment system
KR100460022B1 (en) Process and apparatus for ammonia removal and disinfection in high density aquaculture system
JP4237582B2 (en) Surplus sludge reduction device and method
JP4165919B2 (en) Purification method and apparatus for water or waste water
JP2006231177A (en) Endocrine disrupting chemical substance decomposing method and apparatus
KR100650333B1 (en) Device and method of advanced disposal and stink removal disposal of dirty waste water by using electrolysis and rotation filtration
JP4286580B2 (en) Wastewater treatment method incorporating electrochemical treatment
CA3140295C (en) Methods and systems for marine wastewater treatment
KR102705521B1 (en) Non-degradable wastewater treatment system
JP2005138035A (en) Method and apparatus for electrolytic treatment of sewage
JP2008200667A (en) Method and apparatus for deodorizing, decolorizing and sterilizing water
KR102004483B1 (en) Treatment Apparatus of Non-biodegradable Organic Wastewater or Anaerobic Digestion Effluent
JPH06269785A (en) Treatment of water for decomposing reducing nitrogen with alkali hybromite
KR200333663Y1 (en) A continuous electrical analytic oxidation reactor of waste water with high concentrated nitrogen compound

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100831

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee