JP4119998B2 - Anaerobic treatment tank equipped with nitrogen removal tank and sewage septic tank - Google Patents

Anaerobic treatment tank equipped with nitrogen removal tank and sewage septic tank Download PDF

Info

Publication number
JP4119998B2
JP4119998B2 JP2003111449A JP2003111449A JP4119998B2 JP 4119998 B2 JP4119998 B2 JP 4119998B2 JP 2003111449 A JP2003111449 A JP 2003111449A JP 2003111449 A JP2003111449 A JP 2003111449A JP 4119998 B2 JP4119998 B2 JP 4119998B2
Authority
JP
Japan
Prior art keywords
tank
anaerobic treatment
liquid
chamber
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003111449A
Other languages
Japanese (ja)
Other versions
JP2004313935A (en
Inventor
宏 山下
信義 片貝
Original Assignee
株式会社日立ハウステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハウステック filed Critical 株式会社日立ハウステック
Priority to JP2003111449A priority Critical patent/JP4119998B2/en
Publication of JP2004313935A publication Critical patent/JP2004313935A/en
Application granted granted Critical
Publication of JP4119998B2 publication Critical patent/JP4119998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、屎尿、その他の生活排水、又はこれらの合併汚水(以下、汚水ともいう)を処理するための汚水浄化槽用の嫌気処理槽、及び汚水浄化槽に関する。更に詳しくは、特に窒素を有効に除去できる(汚水浄化槽用)嫌気処理槽、及びこれを組み込んだ汚水浄化槽に関する。
【0002】
【従来の技術】
汚水浄化槽における従来の窒素除去方法としては、主に微生物の作用を利用した生物的硝化・脱窒法が用いられている。この方法は、好気的条件下において流入汚水中の窒素の主成分であるアンモニア性窒素を亜硝酸菌の作用により亜硝酸性窒素に、更に硝酸菌の作用により硝酸性窒素に酸化する硝化工程と、無酸素条件下で亜硝酸性窒素及び(又は)硝酸性窒素を脱窒菌の作用により窒素ガスに還元する脱窒工程とからなる。
図9は、従来の汚水浄化槽の一例で、上流側から、嫌気濾床槽第一室51、嫌気濾床槽第二室52、生物濾過槽53、処理水槽54及び消毒槽55が配置されている(例えば、特許文献1参照)。この汚水浄化槽では、生物濾過槽53において流入汚水中のアンモニア性窒素を硝酸性窒素に酸化(硝化)し、この液の一部を嫌気濾床槽第一室51へ戻して液中の硝酸性窒素を窒素ガスへ還元(脱窒)することにより窒素の除去を行っている。
【0003】
【特許文献1】
特開2001−96285号公報
【0004】
【発明が解決しようとする課題】
しかしながら、このような生物処理による窒素除去方法では、特に運転初期において、増殖速度の遅い亜硝酸菌及び硝酸菌が一定量以上に増殖するまではアンモニア性窒素の硝化が行われず、窒素を有効に除去できない。また、冬期では微生物の活性が低下して処理能が低下するため、これを補うために槽容量を大きくしなければならない。
本発明は、これらの問題を解消しようとするものであり、運転初期や冬期にも安定して窒素を除去でき、また浄化槽全体の容量を従来よりもコンパクトにできる汚水浄化槽及びこの汚水浄化槽に好適に組み込まれる嫌気処理槽を提供することを課題とする。
【0005】
【課題を解決するための手段】
上記課題を達成するため、本発明では次の構成をとった。すなわち、本発明は、
槽内に、物理化学的に窒素を除去する窒素除去槽4と、
最低水位(L.W.L)の液水準から槽内液を汲み上げる揚水ポンプ5と、
この揚水ポンプ5に接続されてなるもので、汲み上げた液の一部を槽外へ移送するとともに、余剰液8を窒素除去槽4へ戻す流量調整装置6とを設け、
窒素除去槽4から出た液は槽内を循環させる、(単槽構造の)汚水浄化槽用の嫌気処理槽1である。
【0006】
ここで、上記嫌気処理槽は単槽とするのではなく、上流側から、第一室1aと第二室1bとに区分した(2室構造の)嫌気処理槽とすることができる。この場合には、第一室1aの一画に、窒素除去槽4を設ける。また、第二室1bの一画には、L.W.Lの液水準から槽内液を汲み上げる揚水ポンプ5と、その揚水ポンプ5に接続されてなるもので、汲み上げた液の一部を槽外へ移送するとともに、余剰液を窒素除去槽4へ戻す流量調整装置6とを設ける。さらに、第一室1aと第二室1bとの間の仕切22には、L.W.Lの液水準に連通口23を設ける。
【0007】
また、ここで、嫌気処理槽1の槽体(外壁部)又は次槽との仕切壁には、通常、汚水を受けるための流入口2と出口となる放流口7とを設けていて、揚水ポンプ5で汲み上げた液の一部は流量調整装置6を介して放流口7から次槽へ送る。
【0008】
また、窒素除去槽4として好ましいものは、電気分解によって窒素を除去する槽(電気分解槽)である。電気分解によれば窒素除去のための制御及び維持管理が容易であり、窒素を安定して除去できる。
【0009】
また、嫌気処理槽1の槽内の、最低水位の液水準より下方には、濾床20を設けることが好ましい。嫌気処理槽1が第一室1aと第二室1bとに区分されている場合は、第一室1aか第二室1bのいずれかに、あるいはその両室に、濾床20を設けることが好ましい。濾床20を設けると、流入汚水中に含まれる夾雑物を分離して異物による揚水ポンプ5の詰りを防止できるとともに、濾床20内に嫌気性微生物を保持して汚水に含まれる有機物の嫌気分解、硝酸性窒素の脱窒、及び堆積汚泥の減量化等を効果的に行うことができる。
【0010】
本発明は、また上記嫌気処理槽を組み込んだ汚水浄化槽でもある。嫌気処理槽が単槽の嫌気処理槽1である場合には、その汚水浄化槽は、典型的には、上流から、嫌気処理槽1、その後流に順に配される嫌気処理槽第二室1b、好気処理槽30、処理水槽54(沈殿槽)及び消毒槽33を備える汚水浄化槽である。
【0011】
嫌気処理槽が第一室1aと第二室1bとに区分された嫌気処理槽である場合には、その汚水浄化槽は、典型的には、上流から、上記嫌気処理槽1(第一室1a及び第二室1b)、その後流に順に配される好気処理槽30、処理水槽54(沈殿槽)及び消毒槽33を備える汚水浄化槽である。
なお、上記の好気処理槽30、処理水槽54(沈殿槽)あるいは消毒槽33には種々のタイプのものが使え、特に限定するものではない。場合によっては、このうちの処理水槽54(沈殿槽)及び消毒槽33のいずれか、又はその両方を省くことも可能である。
【0012】
【発明の実施の形態】
以下、図面を参照して、本発明を更に具体的に説明する。
図1は、本発明の単槽構造の嫌気処理槽の一例(第1実施例)である。嫌気処理槽1の槽体24には、槽内液面より上方の高さに汚水流入口2を設け、その反対側の槽体24に放流口7を設け、槽内の一画には、窒素を除去する電気分解槽(窒素除去槽)4を設けている。また、放流口7を設けた壁側には、L.W.Lの液水準から槽内液を汲み上げる揚水ポンプ5と、揚水ポンプ5に接続されてなるもので汲み上げた液の一部を放流口7へ移送するとともに、余剰液8を電気分解槽(窒素除去槽)4内へ戻す流量調整装置6を設けている。また、揚水ポンプ5の周囲には、流入汚水に含まれる夾雑物の流入や汚水の短絡を防ぐためにバッフル管11を設けている。
【0013】
嫌気処理槽1の全体形状は、図1では平面視で略四角形状(箱型)である。この形状は、平面視で円形や楕円形等にすることもできるが、単純さで略四角形状が好ましい。
【0014】
電気分解槽(窒素除去槽)4へは、流量調整装置6における余剰液8が供給され、電気分解槽(窒素除去槽)4から溢れ出た液は嫌気処理槽1に戻るようにしている。なお、図1では、電気分解槽(窒素除去槽)4は嫌気処理槽1内の一画に設けてあるが、余剰液8が供給され、そこから出た液が嫌気処理槽1に戻るのであれば、槽外に設けることもできる。また、反応の効率化を図るために、電気分解槽(窒素除去槽)4内に撹拌装置を設けてもよい。(図示省略)
【0015】
揚水ポンプ5の吸込み口10はL.W.Lの位置に設けている。そうすると、嫌気処理槽1の液水準は、汚水の流入液量が流量調整装置6から移送される液量よりも多いか少ないかによって、L.W.Lと最高水位(H.W.L)との間を変動する。ただし、H.W.Lは予め安全をみて設定されているので、流入汚水がその水位(H.W.L)を越えて槽外へ溢れ出ることはない。
【0016】
なお、揚水ポンプ5は、図1ではエアリフトポンプ式を示しているが、エアリフトポンプ式に代えて密閉容器の空気圧送による間欠定量ポンプや電動ポンプ等を用いることもできる。
【0017】
流量調整装置6は、一定液量を放流口7に移送し、その余剰液8を窒素除去槽4に戻すように調整できるものであれば、いずれも用いることができる。好ましくは、槽内の液水準がL.W.Lの場合に、揚水ポンプ5で汲み上げられた汚水の全量が窒素除去槽4に移送されるように調整可能なもの、例えば、堰を用いた流量調整装置である。このような流量調整装置6を用いると、汚水が流入しない時間帯では、嫌気処理槽1の槽内液が電気分解槽(窒素除去槽)4へ繰り返し移送されるので、槽内液中の窒素分は効果的に除去される。
【0018】
放流口7に移送させる液に対する余剰液8の流量比(以後、循環比と呼ぶ)は、通常、1〜10、好ましくは3〜5である。循環比が1より小さいと、流入汚水中の窒素が電気分解槽(窒素除去槽)4であまり除去されずに放流口7から槽外へ流れやすくなる。また、循環比が10よりも大きい場合には流入汚水をオーバフローさせないために流量調整部12の容量を大きくする必要が生じる。
【0019】
嫌気処理槽1の槽内には、L.W.Lの液水準よりも下方に濾床20が設けられている。濾床20の上端をL.W.Lの液水準よりも上にすると、濾床20の上部が水面下になったり、露出したりの繰返しになるので、濾材への汚泥付着の安定性に悪い影響を及ぼす。
【0020】
濾床20の形状としては、特に限定するものではなく、ヘチマ様、波板状、多孔質状等の板状部材、蜂の巣状(ハニカムコア)部材などが好ましく用いられる。骨格球状、網様円筒状部材なども用いることができる。なお、濾床20は省くこともできる。
【0021】
電気分解槽4について更に詳しく説明する。電気分解槽4の槽内には、一対またはそれ以上の電極17が配置され、陽極において汚水中に含まれる塩化物イオンを酸化して塩素ガスを発生させ、これと水とを反応させて次亜塩素酸を発生させる。この次亜塩素酸により流入汚水中の窒素分の大部分を占めるアンモニア性窒素を窒素ガスまで酸化し、大気中に放出させることにより窒素を除去する。このときの反応式は、次の(1)式と推測される。
2NH +3HClO→N↑+3HCl+3HO+2H …(1)
この(1)式の反応は、水温、pH、微生物量等の影響をほとんど受けないので、微生物が充分に増殖していない運転初期や微生物の反応速度が低下する低水温期にも安定して窒素を除去することができる。
【0022】
ここで、電極17の材質には、例えば白金で被覆されたチタン電極、イリジウム、パラジウム、ルテニウム、ロジウム、オスミウムおよび/又はその酸化物の1種以上で被覆されたチタン電極、フェライト、カーボン、二酸化鉛等を用いることができ、好ましくは不溶性のものである。
【0023】
電極17の形状は、特に限定するものではなく、装置形状に応じて、例えば、板状、棒状、筒状、メッシュ状、粒状等のものを用いることができる。電極17の表面には、凹凸を設けて、表面積を大きくすることが好ましい。また、電極17の極性は固定させても良いが、好ましくは定期的に反転させる。これにより、一方の電極の消耗を防止でき、電極の寿命を長くすることができる。
【0024】
電気分解により供給する次亜塩素酸の物質量(モル量)は、窒素除去槽4に流入するアンモニア性窒素量に対して、モル比で1〜15倍、好ましくは、2〜6倍である。次亜塩素酸の量が1倍より少ない場合には流入汚水中のアンモニア性窒素の除去性能が低下し、また15倍よりも多い場合には次亜塩素酸が必要以上に過剰となり、ランニングコストの増加に繋がる。
【0025】
流入汚水中の塩化物イオン濃度が低い場合には、電気分解槽4の槽内に塩化ナトリウム、塩化カリウム等の塩化物等を添加して槽内の塩化物イオン濃度を高めると、所定の次亜塩素酸生成量を確保することができる。また、塩化物の代りに臭化ナトリウム、臭化カリウム等の臭化物、その他のハロゲン化物を添加してもよい。この場合、電気分解により次亜臭素酸もしくは次亜ハロゲン酸が発生し、前記(1)式と同様の反応により窒素を除去することができる。
【0026】
次亜塩素酸の量が流入汚水中のアンモニア性窒素量に対して過剰の場合には、汚水に含まれる有機物もしくは嫌気処理槽1の底部に蓄積されている汚泥により消費されるため、有機物分解または汚泥減量化に対して有利に働く。
【0027】
流入汚水中のアンモニア性窒素の濃度変動等により、汚水中の有機物及び底部堆積汚泥による次亜塩素酸消費量以上に次亜塩素酸が過剰になる可能性がある場合には、嫌気処理槽1に戻す前に、その過剰の次亜塩素酸を吸着・除去するために、電気分解槽4の出口側に活性炭等の吸着剤を設けて次亜塩素酸を吸着分解したり、電気分解槽4の出口側付近でばっ気を行い、余剰の次亜塩素酸を塩素ガスもしくは塩化水素ガスとして気中に放散させることができる。また、電気分解槽4の槽内にアンモニア性窒素濃度センサーを設置し、アンモニア性窒素濃度に応じて電気分解の電流値(電圧値)等を変化させて次亜塩素酸発生量を制御することができる。
【0028】
なお、電気分解に代わる窒素除去手段として、化学的酸化(酸化剤添加)、吸着、イオン交換等の物理化学的方法も用いることができる。
【0029】
図2は、電気分解槽の代わりに酸化剤添加槽を備える単槽構造の嫌気処理槽(第2実施例)である。図1と重複する部分の説明は省略し、次に、酸化剤添加槽に係る酸化剤とその供給手段について説明する。なお、酸化剤を用いたときの窒素除去の化学反応式は、先の(1)式と同様である。
【0030】
酸化剤供給装置3は、酸化剤添加槽4bの上方、もしくは流量調整装置6からの余剰液8の移送管9の下流側に設ける。窒素除去槽4b内には、反応を効率的に行わせるため、槽内液を撹拌する装置を設けてもよい(図示省略)。
【0031】
酸化剤としては、次亜塩素酸、次亜塩素酸塩、次亜臭素酸、次亜臭素酸塩、イソシアヌル酸塩等の次亜ハロゲン酸、次亜ハロゲン酸塩、次亜ハロゲン酸を供給できる物質等を用いることができる。
【0032】
酸化剤の供給方法として、液体の酸化剤を用いる場合には、酸化剤タンクを嫌気処理槽1の槽内もしくは槽外に設置し、ポンプ等を用いて酸化剤添加槽4b内に供給する。
酸化剤の供給量は、酸化剤添加槽4bに流入するアンモニア性窒素量に対して、モル比で1〜15倍、好ましくは、2〜6倍である。
【0033】
また、固体の酸化剤を用いる場合には、酸化剤を移送管9の下流側に設置し、余剰水8により溶解させて流入させる方法等を用いることができる。この場合、酸化剤の供給量は、酸化剤と余剰液8との接触面積により調整することができる。
【0034】
図3は、電気分解槽の代わりに吸着剤充填槽を備える単槽構造の嫌気処理槽(第3実施例)である。吸着剤充填槽4cには吸着剤やイオン交換体15を充填し、これにより余剰液8に含まれる窒素分の大部分を占めるアンモニア性窒素を吸着・除去する。
【0035】
吸着剤としては、ゼオライト等の天然鉱物、層間粘土鉱物、活性炭、ケイ酸塩等があり、いずれも用いることができる。
【0036】
吸着剤やイオン交換体15が破過した場合には、これらを取り出して別の破過していない吸着剤(またはイオン交換体)15に交換してもよいし、取り出した吸着剤(またはイオン交換体)15を再生し、これを充填してもよい。
【0037】
吸着剤(またはイオン交換体)15の充填層の閉塞を防止するために、定期的に洗浄することが好ましい。洗浄方法の一例としては、吸着剤充填層の下方に、空気を送る洗浄用散気管を設けて空気洗浄するとともに、この洗浄排水をポンプ等を用いて嫌気処理槽1に移送する方法がある(図示省略)。なお、この洗浄方法は一例であって、これに限るものではない。
【0038】
図4は、本発明の、電気分解槽を備える2室構造の嫌気処理槽(第4実施例)である。
嫌気処理槽1の第一室1aには、槽内液面より上方の高さに汚水流入口2を設け、室内の一画には窒素を除去する電気分解槽(窒素除去槽)4を設けている。また、第二室1bには、汚水流入口2と反対側の槽体24に放流口7を設け、その付近の壁側には、L.W.Lの液水準から槽内液を汲み上げる揚水ポンプ5と、揚水ポンプ5に接続され、汲み上げた液の一部を放流口7へ移送するとともに、余剰液8を窒素除去槽4の槽内へ戻す流量調整装置6を設けている。また、揚水ポンプ5の周囲には、バッフル管11を設けている。また、第一室1aと第二室1bとの仕切22には、連通口23を設けている。
【0039】
汚水(原水)は汚水流入口2から第一室1aに流入し、ここで、汚水中に存在する沈降しやすい固形物を先ず沈殿分離させる。固形物を沈殿分離させた後の汚水は、連通口23から第二室1bに移流する。第二室1bに移流した汚水は、さらに固形物の除去が行われた後、バッフル管11内のL.W.Lに設けた揚水ポンプ5の吸込み口10から流量調整装置6へ汲み上げられ、液の一部を放流口7から槽外に排出させるとともに、余剰液8を電気分解槽4に流入させ、汚水中の窒素を電気分解によって除去する。
【0040】
図5は、本発明の、酸化剤添加槽を備える2室構造の嫌気処理槽(第5実施例)である。電気分解槽の代わりに酸化剤添加槽を用いたほかは、上記図4の嫌気処理槽と同じなので,詳しい説明は省略する。
【0041】
図6は、本発明の、吸着剤充填槽を備える2室構造の嫌気処理槽(第6実施例)である。電気分解槽の代わりに吸着剤充填槽を用いたほかは、上記図4の嫌気処理槽と同じなので,これも詳しい説明は省略する。
【0042】
図7は、本発明の第1実施例の嫌気処理槽を組み込んだ汚水浄化槽の一例であり、図8は、本発明の第4実施例の嫌気処理槽を組み込んだ汚水浄化槽の一例である。
以下は、図7を参照しながら、この汚水浄化槽について説明する。汚水浄化槽は、この嫌気処理槽1の後流に、嫌気処理槽第二室1b、(好気的)生物反応室31及び濾過室32を並置させた好気処理槽30、並びに消毒槽33を備えている。
【0043】
嫌気処理槽1については、上述した通りであるので説明は省略する。
嫌気処理槽第二室1bには、液水準より下方に濾床20を設けている。濾床20の形状としては、特に限定するものではなく、ヘチマ様、波板状、多孔質状等の板状部材、蜂の巣状(ハニカムコア)部材などが好ましく用いられる。骨格球状、網様円筒状部材なども用いることができる。
【0044】
好気処理槽30を構成する(好気的)生物反応室31には、底部から曝気するための反応用散気部材(散気管)34を配置し、ブロワ35からの空気を吐出させる。また、生物反応室31には担体(微生物担体、微生物付着材、接触材)を充填させた生物反応床31aが形成されており、生物反応床31aで汚水を好気処理する。ここで生物反応床31aは流動床でも固定床でもよい。微生物担体の形状は、板状、網板状、ヘチマ状、多孔質状、筒状、棒状、骨格球状、紐状、更には粒状、不定形な塊状、立方体状、繊維塊状等の種々の形状に加工したものを用いることができる。また、その基材としては、例えばポリ塩化ビニル、ポリエステル、ポリ塩化ビニリデン、ポリビニルフォルマール、ポリウレタン、メラミン樹脂等の合成樹脂製加工物、セラミックス、珪砂等の無機製加工物、アンスラサイト等の化石加工物、活性炭等で、比重約1又は1以上のもの、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスチレン等の比重約1又は1以下のもののいずれも用いることができる。
【0045】
濾過室32には、濾材が充填された濾過床32aが形成されていて、流れ込む液中のSSをそこで捕捉する。充填される濾材としては、液中で浮上するものを用いることができるが、好ましくは沈降性濾材である。沈降性濾材には、例えば、ポリ塩化ビニル、ポリエステル、ポリ塩化ビニリデン、ポリビニルフォルマール、ポリウレタン、メラミン樹脂等の合成樹脂製加工物、セラミックス、珪砂等の無機製加工物、アンスラサイト等の化石加工物、活性炭等の、比重約1又は1以上のもの、又はポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリスチレン等に充填剤を添加して比重約1又は1以上に調整したものがあり、これを粒状、塊状、筒状、網状、棒状、繊維塊状等、更には多孔質状等に成形、加工したものでもよい。
また、濾過室32の底部には濾過床32aを逆洗するための洗浄用散気部材(散気管)36が配され、これは空気を供給するブロワ35に接続されている。
【0046】
運転を続けると、濾過床32aは蓄積したSSで目詰まりするので、濾過床32aを定期的又は適宜に(逆)洗浄して除く。この洗浄は、ブロワ35の空気を洗浄用散気部材36から吐出させ、濾過床32aをバブリングするとともに、ブロワ35の空気の一部を洗浄排水引抜きポンプ(エアリフトポンプ)37にも供給する。剥離したSSは槽内液とともに洗浄排水となって濾過床32aを下降し、洗浄排水引抜きポンプ37によって洗浄排水排出管37aを経て、嫌気処理槽1へ戻る。槽内液の全てを洗浄排水として濾過室32の底部から引き抜くことができるので、濾過床32aの洗浄は良好に行われる。なお、洗浄排水引抜きポンプ37には電動ポンプ等を用いることもできる。濾過床32aの洗浄は、嫌気処理槽1の水位がL.W.Lのとき(すなわち、深夜に)行うことが好ましい。一般家庭では、通常、深夜は汚水が排出されることが少なく、嫌気処理槽1はL.W.Lになるからである。
【0047】
濾過室32の下方または処理水槽54には、濾過室32を経た液を嫌気処理槽第二室1bに移送する循環ポンプ41が設けられている。好気処理槽30で硝酸性窒素が生成した場合、この液を嫌気処理槽第二室1bに移送すると、嫌気処理槽第二室1bにおいて窒素ガスとして除去できるためである。
なお、図4では、循環ポンプ41にエアリフトポンプ式を示しているが、エアリフトポンプ式に代えて密閉容器の空気圧送による間欠定量ポンプや電動ポンプ等を用いることもできる。
【0048】
消毒槽33は、濾過室32からの移流液を薬筒38と接触させて消毒又は殺菌させる槽である。汚水浄化槽は、各槽の点検清掃等の維持管理が行えるようにマンホールを設け、通常マンホールカバー39を取り付けている。
【0049】
次に、汚水浄化槽における汚水の処理を説明する。汚水(原水)は汚水流入口2から嫌気処理槽1に入り、固形物の沈殿分離が行われる。嫌気処理槽1では、沈降した汚泥(固形物)の濃縮貯留が槽底部で行われ、嫌気化して発生したスカムの貯留が槽上部で行われる。嫌気処理槽1からの液の移流は、揚水ポンプ5で行い、この際、移流液をL.W.Lの吸込み口10から汲み上げて、揚水ポンプ5に接続された流量調整装置6から所定量(ほぼ一定量)を放流口7から嫌気処理槽第二室1bへ移流させ、余剰液8を移送管9を経て電気分解槽4に移送させる。
このとき、流入する原水量が揚水ポンプ5の移送量よりも多い場合には、嫌気処理槽1の水位はL.W.LからH.W.Lへと上昇するが、嫌気処理槽1の流量調整部12の容量はH.W.Lを越えないように設計されているので、通常、上記水位はH.W.Lを越えて上昇しない。
【0050】
嫌気処理槽第二室1bからの移流液は、生物反応室31に入り、移流液中の有機物を好気的に生物分解させる。この際、ほぼ一定量の移流液が負荷されるので安定した処理が行われる。生物反応室31からの移流液は、次に濾過室32に入り、移流液に含まれるSSの捕捉・除去が行われ、場合によっては生物反応室31から持ち込まれる溶存酸素によって更に好気的生物処理が行われる。濾過室32を経た液の一部は、循環ポンプ41により嫌気処理槽第二室1bに移送して、液内に含まれる硝酸性窒素の脱窒を行う。濾過室32を経た移流液は、処理水槽54を経て消毒槽33に入り消毒された後、処理水として放流口40から放流される。
【0051】
【発明の効果】
本発明の嫌気処理槽では、上述したように水温、pH、微生物量等の影響をほとんど受けずに、汚水中の窒素を除去できるので、微生物が充分に増殖していない運転初期や微生物の反応速度が低下する冬期にも安定して窒素を除去することができる。
本発明の汚水浄化槽では、(汚水浄化槽用の)嫌気処理槽において流入汚水中の窒素が効果的に除去されるので、槽全体の容量をコンパクトにでき、更に安定して窒素を除去できる。
【図面の簡単な説明】
【図1】本発明の、電気分解槽を備える嫌気処理槽(第1実施例)で、(a)は概略平面図、(b)は(a)のA―A矢視における概略縦断面図。
【図2】本発明の、酸化剤添加槽を備える嫌気処理槽(第2実施例)で、(a)は概略平面図、(b)は(a)のA―A矢視における概略縦断面図。
【図3】本発明の、吸着剤充填槽を備える嫌気処理槽(第3実施例)で、(a)は概略平面図、(b)は(a)のA−A矢視における概略縦断面図。
【図4】本発明の、電気分解槽を備える別の嫌気処理槽(第4実施例)で、(a)は概略平面図、(b)は(a)のA―A矢視における概略縦断面図。
【図5】本発明の、酸化剤添加槽を備える別の嫌気処理槽(第5実施例)の概略縦断面図。
【図6】本発明の、吸着剤充填槽を備える別の嫌気処理槽(第6実施例)の概略縦断面図。
【図7】本発明の第1実施例の嫌気処理槽を組み込んだ汚水浄化槽の概略縦断面図。
【図8】本発明の第4実施例の嫌気処理槽を組み込んだ汚水浄化槽の概略縦断面図。
【図9】従来例の汚水浄化槽の概略縦断面図。
【符号の説明】
1:(汚水浄化槽用の)嫌気処理槽
1a:(嫌気処理槽)第一室
1b:(嫌気処理槽)第二室
2:汚水流入口
3:酸化剤供給装置
4:電気分解槽(窒素除去槽)
4b:酸化剤添加槽(窒素除去槽)
4c:吸着剤充填槽(窒素除去槽)
5:揚水ポンプ 6:流量調整装置
7:放流口 8:余剰液
9:移送管 10:吸込み口
11:バッフル管 12:流量調整部
13:バッフル管 14:流出口
15:吸着剤(又はイオン交換体)
17:電極 20:濾床
22:仕切 23:連通口
24:槽体
30:好気処理槽(31+32)
31:(好気的)生物反応室 31a:生物反応床
32:濾過室 32a:濾過床
33:消毒槽 34:反応用散気部材(散気管)
35:ブロワ 36:洗浄用散気部材(散気管)
37:洗浄排水引抜きポンプ(エアリフトポンプ)
37a:洗浄排水排出管
38:薬筒 39:マンホールカバー
40:放流口 41:循環ポンプ
51:嫌気濾床槽第一室 52:嫌気濾床槽第二室
53:生物濾過槽 54:処理水槽
55:消毒槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anaerobic treatment tank for a sewage septic tank and a sewage septic tank for treating manure, other domestic wastewater, or combined sewage (hereinafter also referred to as sewage). More specifically, the present invention relates to an anaerobic treatment tank (for a sewage septic tank) that can effectively remove nitrogen, and a sewage septic tank incorporating the same.
[0002]
[Prior art]
As a conventional nitrogen removal method in a sewage septic tank, a biological nitrification / denitrification method using the action of microorganisms is mainly used. This method is a nitrification process in which ammonia nitrogen, which is the main component of nitrogen in influent wastewater, is oxidized to nitrite nitrogen by the action of nitrite bacteria and further to nitrate nitrogen by the action of nitrate bacteria under aerobic conditions. And a denitrification step of reducing nitrite nitrogen and / or nitrate nitrogen to nitrogen gas by the action of denitrifying bacteria under anoxic conditions.
FIG. 9 shows an example of a conventional sewage septic tank. An anaerobic filter bed first chamber 51, an anaerobic filter bed second chamber 52, a biological filtration tank 53, a treated water tank 54, and a disinfection tank 55 are arranged from the upstream side. (For example, refer to Patent Document 1). In this sewage septic tank, ammonia nitrogen in the influent sewage is oxidized (nitrified) into nitrate nitrogen in the biological filtration tank 53, and a part of this liquid is returned to the anaerobic filter bed tank first chamber 51 to be nitrated in the liquid. Nitrogen is removed by reducing (denitrifying) nitrogen to nitrogen gas.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-96285 [0004]
[Problems to be solved by the invention]
However, in such a method for removing nitrogen by biological treatment, ammonia nitrogen is not nitrified until nitrous acid bacteria and nitrate bacteria with a slow growth rate grow to a certain amount or more, particularly in the initial stage of operation. It cannot be removed. Moreover, since the activity of microorganisms decreases in winter and the processing ability decreases, the tank capacity must be increased to compensate for this.
The present invention is intended to solve these problems, and is suitable for a sewage septic tank and a sewage septic tank that can stably remove nitrogen even in the initial stage of operation and winter, and can make the entire capacity of the septic tank more compact than before. It is an object of the present invention to provide an anaerobic treatment tank that is incorporated into the slab.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration. That is, the present invention
In the tank, a nitrogen removal tank 4 for removing nitrogen physically and chemically,
A pump 5 for pumping up the liquid in the tank from the liquid level of the lowest water level (LW L);
It is connected to this pump 5 and is provided with a flow rate adjusting device 6 for transferring a part of the pumped liquid to the outside of the tank and returning the excess liquid 8 to the nitrogen removing tank 4.
The liquid discharged from the nitrogen removal tank 4 is an anaerobic treatment tank 1 for a sewage purification tank (having a single tank structure) that circulates in the tank.
[0006]
Here, the anaerobic treatment tank is not a single tank, but can be an anaerobic treatment tank (having a two-chamber structure) divided into a first chamber 1a and a second chamber 1b from the upstream side. In this case, the nitrogen removal tank 4 is provided in a section of the first chamber 1a. In addition, a part of the second chamber 1b is composed of a pump 5 for pumping the liquid in the tank from the liquid level of LW L, and a pump connected to the pump 5. A flow rate adjusting device 6 for returning the excess liquid to the nitrogen removal tank 4 is provided while being transferred to the outside of the tank. Further, the partition 22 between the first chamber 1a and the second chamber 1b is provided with a communication port 23 at a liquid level of L.W.L.
[0007]
In addition, here, the tank body (outer wall portion) of the anaerobic treatment tank 1 or the partition wall with the next tank is usually provided with an inlet 2 for receiving sewage and a discharge outlet 7 serving as an outlet. A part of the liquid pumped up by the pump 5 is sent from the outlet 7 to the next tank via the flow rate adjusting device 6.
[0008]
Moreover, what is preferable as the nitrogen removal tank 4 is a tank (electrolysis tank) that removes nitrogen by electrolysis. According to electrolysis, control and maintenance for nitrogen removal are easy, and nitrogen can be removed stably.
[0009]
Moreover, it is preferable to provide the filter bed 20 below the liquid level of the lowest water level in the tank of the anaerobic treatment tank 1. When the anaerobic treatment tank 1 is divided into the first chamber 1a and the second chamber 1b, a filter bed 20 may be provided in either the first chamber 1a or the second chamber 1b or in both chambers. preferable. When the filter bed 20 is provided, impurities contained in the inflowing sewage can be separated to prevent clogging of the pump 5 due to foreign matter, and anaerobic microorganisms are retained in the filter bed 20 and anaerobic of organic matter contained in the sewage. It is possible to effectively perform decomposition, denitrification of nitrate nitrogen, and reduction of sediment sludge.
[0010]
The present invention is also a sewage septic tank incorporating the anaerobic treatment tank. When the anaerobic treatment tank is a single tank anaerobic treatment tank 1, the sewage purification tank is typically anaerobic treatment tank second chamber 1 b arranged in order from the upstream, anaerobic treatment tank 1, and its downstream. This is a sewage purification tank including an aerobic treatment tank 30, a treated water tank 54 (precipitation tank) and a disinfection tank 33.
[0011]
In the case where the anaerobic treatment tank is an anaerobic treatment tank divided into a first chamber 1a and a second chamber 1b, the sewage purification tank typically has the anaerobic treatment tank 1 (first chamber 1a) from upstream. And a second chamber 1b), a sewage purification tank comprising an aerobic treatment tank 30, a treated water tank 54 (precipitation tank), and a disinfection tank 33, which are sequentially arranged in the downstream.
Various types of aerobic treatment tank 30, treated water tank 54 (sedimentation tank) or disinfection tank 33 can be used and are not particularly limited. Depending on the case, it is possible to omit one or both of the treated water tank 54 (precipitation tank) and the disinfection tank 33.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to the drawings.
FIG. 1 is an example (first embodiment) of an anaerobic treatment tank having a single tank structure according to the present invention. The tank body 24 of the anaerobic tank 1 is provided with the sewage inlet 2 at a height above the liquid level in the tank, the outlet 24 is provided in the tank body 24 on the opposite side, An electrolysis tank (nitrogen removal tank) 4 for removing nitrogen is provided. Also, on the wall side where the discharge port 7 is provided, a pump 5 for pumping the liquid in the tank from the liquid level of LW L and a part of the pumped liquid connected to the pump 5 are discharged. A flow rate adjusting device 6 is provided for transferring the excess liquid 8 into the electrolysis tank (nitrogen removal tank) 4 while transferring it to the port 7. Further, a baffle pipe 11 is provided around the pumping pump 5 in order to prevent inflow of foreign substances contained in the inflowing sewage and a short circuit of the sewage.
[0013]
The overall shape of the anaerobic treatment tank 1 is a substantially square shape (box shape) in plan view in FIG. This shape can be circular or elliptical in plan view, but is preferably a substantially square shape for simplicity.
[0014]
The excess liquid 8 in the flow rate adjusting device 6 is supplied to the electrolysis tank (nitrogen removal tank) 4 so that the liquid overflowing from the electrolysis tank (nitrogen removal tank) 4 returns to the anaerobic treatment tank 1. In FIG. 1, the electrolysis tank (nitrogen removal tank) 4 is provided in a part of the anaerobic treatment tank 1, but the surplus liquid 8 is supplied, and the liquid discharged from it returns to the anaerobic treatment tank 1. If present, it can be provided outside the tank. In order to increase the efficiency of the reaction, a stirring device may be provided in the electrolysis tank (nitrogen removal tank) 4. (Not shown)
[0015]
The suction port 10 of the pump 5 is provided at the LW L position. Then, the liquid level of the anaerobic treatment tank 1 depends on whether the influent amount of sewage is larger or smaller than the amount of liquid transferred from the flow control device 6 and the maximum water level (HWL). Fluctuate between. However, since H.W.L is set in advance for safety, the inflowing sewage does not overflow beyond the water level (H.W.L).
[0016]
In addition, although the pumping pump 5 has shown the air lift pump type in FIG. 1, it can replace with an air lift pump type and can also use the intermittent fixed_quantity | quantitative_assay pump, electric pump, etc. by pneumatic feeding of an airtight container.
[0017]
Any device can be used as long as it can adjust the flow rate adjusting device 6 so as to transfer a certain amount of liquid to the outlet 7 and return the excess liquid 8 to the nitrogen removing tank 4. Preferably, when the liquid level in the tank is LWL, an adjustable one such as a weir is used so that the entire amount of sewage pumped up by the pump 5 is transferred to the nitrogen removal tank 4 It is a flow control device. When such a flow control device 6 is used, the liquid in the tank of the anaerobic treatment tank 1 is repeatedly transferred to the electrolysis tank (nitrogen removal tank) 4 in a time zone in which sewage does not flow. Minutes are effectively removed.
[0018]
The flow rate ratio of the surplus liquid 8 to the liquid to be transferred to the discharge port 7 (hereinafter referred to as the circulation ratio) is usually 1 to 10, preferably 3 to 5. When the circulation ratio is less than 1, nitrogen in the inflowing sewage is not easily removed by the electrolysis tank (nitrogen removal tank) 4 and easily flows from the outlet 7 to the outside of the tank. Further, when the circulation ratio is larger than 10, it is necessary to increase the capacity of the flow rate adjusting unit 12 in order to prevent the inflowing sewage from overflowing.
[0019]
In the tank of the anaerobic treatment tank 1, a filter bed 20 is provided below the liquid level of L.W.L. When the upper end of the filter bed 20 is made higher than the liquid level of L.W.L, the upper part of the filter bed 20 becomes repeatedly below the surface of the water or exposed, so that the stability of sludge adhesion to the filter medium is improved. It has a bad effect.
[0020]
The shape of the filter bed 20 is not particularly limited, and plate-like members such as a loofah-like shape, a corrugated plate shape, and a porous shape, and a honeycomb-like (honeycomb core) member are preferably used. Skeletal spherical, mesh-like cylindrical members and the like can also be used. The filter bed 20 can be omitted.
[0021]
The electrolysis tank 4 will be described in more detail. A pair of or more electrodes 17 are disposed in the tank of the electrolysis tank 4, and the chloride ions contained in the sewage are oxidized at the anode to generate chlorine gas, which is then reacted with water. Generates chlorous acid. This hypochlorous acid oxidizes ammonia nitrogen, which occupies most of the nitrogen content in the influent sewage, to nitrogen gas and releases it into the atmosphere to remove nitrogen. The reaction formula at this time is assumed to be the following formula (1).
2NH 4 + + 3HClO → N 2 ↑ + 3HCl + 3H 2 O + 2H + (1)
Since the reaction of the formula (1) is hardly affected by the water temperature, pH, amount of microorganisms, etc., it is stable even in the initial stage of operation where the microorganisms are not sufficiently grown or in the low water temperature period where the reaction rate of the microorganisms is reduced. Nitrogen can be removed.
[0022]
Here, the material of the electrode 17 includes, for example, a titanium electrode coated with platinum, a titanium electrode coated with one or more of iridium, palladium, ruthenium, rhodium, osmium and / or an oxide thereof, ferrite, carbon, carbon dioxide. Lead or the like can be used and is preferably insoluble.
[0023]
The shape of the electrode 17 is not particularly limited, and for example, a plate shape, a rod shape, a cylindrical shape, a mesh shape, a granular shape, or the like can be used according to the device shape. It is preferable to provide unevenness on the surface of the electrode 17 to increase the surface area. Further, the polarity of the electrode 17 may be fixed, but is preferably reversed periodically. Thereby, consumption of one electrode can be prevented and the lifetime of an electrode can be lengthened.
[0024]
The amount (molar amount) of hypochlorous acid supplied by electrolysis is 1 to 15 times, preferably 2 to 6 times in molar ratio to the amount of ammoniacal nitrogen flowing into the nitrogen removal tank 4. . When the amount of hypochlorous acid is less than 1 time, the performance of removing ammonia nitrogen from the influent wastewater is reduced, and when it is more than 15 times, the amount of hypochlorous acid is excessive and more than necessary. Leading to an increase in
[0025]
If the chloride ion concentration in the influent sewage is low, adding chloride such as sodium chloride or potassium chloride to the tank of the electrolysis tank 4 to increase the chloride ion concentration in the tank The amount of chlorous acid produced can be secured. Further, bromides such as sodium bromide and potassium bromide, and other halides may be added instead of chloride. In this case, hypobromite or hypohalous acid is generated by electrolysis, and nitrogen can be removed by a reaction similar to the above formula (1).
[0026]
When the amount of hypochlorous acid is excessive with respect to the amount of ammoniacal nitrogen in the influent sewage, it is consumed by the organic matter contained in the sewage or the sludge accumulated at the bottom of the anaerobic treatment tank 1, so that the organic matter is decomposed. Or it works favorably for sludge reduction.
[0027]
Anaerobic treatment tank 1 when hypochlorous acid is likely to be in excess of the amount of hypochlorous acid consumed by organic matter and bottom sediment sludge due to fluctuations in the concentration of ammoniacal nitrogen in the influent sewage In order to adsorb and remove the excess hypochlorous acid, the adsorbent such as activated carbon is provided on the outlet side of the electrolysis tank 4 to adsorb and decompose hypochlorous acid, or the electrolysis tank 4 Aeration is performed in the vicinity of the outlet side, and excess hypochlorous acid can be diffused into the air as chlorine gas or hydrogen chloride gas. In addition, an ammonia nitrogen concentration sensor is installed in the electrolysis tank 4 and the amount of hypochlorous acid generated is controlled by changing the current value (voltage value) of electrolysis according to the ammonia nitrogen concentration. Can do.
[0028]
It should be noted that physicochemical methods such as chemical oxidation (addition of an oxidizing agent), adsorption, and ion exchange can also be used as nitrogen removal means instead of electrolysis.
[0029]
FIG. 2 shows an anaerobic treatment tank (second embodiment) having a single tank structure provided with an oxidizing agent addition tank instead of the electrolysis tank. The description of the same parts as those in FIG. 1 is omitted, and next, an oxidant and its supply means according to the oxidant addition tank will be described. In addition, the chemical reaction formula of nitrogen removal when using an oxidizing agent is the same as the previous formula (1).
[0030]
The oxidant supply device 3 is provided above the oxidant addition tank 4 b or on the downstream side of the transfer pipe 9 for the surplus liquid 8 from the flow rate adjusting device 6. In the nitrogen removal tank 4b, an apparatus for stirring the liquid in the tank may be provided in order to efficiently perform the reaction (not shown).
[0031]
As oxidizing agents, hypochlorous acid, hypochlorite, hypobromite, hypobromite, isocyanurate, etc. can be supplied hypohalous acid, hypohalite, hypohalous acid. Substances can be used.
[0032]
As a method for supplying the oxidant, when a liquid oxidant is used, the oxidant tank is installed inside or outside the anaerobic treatment tank 1 and supplied into the oxidant addition tank 4b using a pump or the like.
The supply amount of the oxidant is 1 to 15 times, preferably 2 to 6 times in molar ratio with respect to the amount of ammoniacal nitrogen flowing into the oxidant addition tank 4b.
[0033]
Moreover, when using a solid oxidizing agent, the method etc. which install an oxidizing agent in the downstream of the transfer pipe | tube 9, make it melt | dissolve with the surplus water 8, and can flow in can be used. In this case, the supply amount of the oxidizing agent can be adjusted by the contact area between the oxidizing agent and the excess liquid 8.
[0034]
FIG. 3 shows an anaerobic treatment tank (third embodiment) having a single tank structure provided with an adsorbent filling tank instead of an electrolysis tank. The adsorbent filling tank 4 c is filled with an adsorbent and an ion exchanger 15, thereby adsorbing and removing ammonia nitrogen occupying most of the nitrogen content contained in the surplus liquid 8.
[0035]
Examples of the adsorbent include natural minerals such as zeolite, interlayer clay minerals, activated carbon, silicate, and the like, and any of them can be used.
[0036]
When the adsorbent or the ion exchanger 15 breaks through, the adsorbent or the ion exchanger 15 may be taken out and replaced with another adsorbent (or ion exchanger) 15 that is not broken through, or the adsorbent (or ions taken out) is removed. The exchanger 15) may be regenerated and filled.
[0037]
In order to prevent clogging of the packed bed of the adsorbent (or ion exchanger) 15, it is preferable to clean periodically. As an example of the cleaning method, there is a method in which a cleaning air diffuser pipe for sending air is provided below the adsorbent packed bed to perform air cleaning, and this cleaning wastewater is transferred to the anaerobic treatment tank 1 using a pump or the like ( (Not shown). This cleaning method is an example, and the present invention is not limited to this.
[0038]
FIG. 4 shows a two-chamber anaerobic treatment tank (fourth embodiment) equipped with an electrolysis tank of the present invention.
The first chamber 1a of the anaerobic treatment tank 1 is provided with a sewage inlet 2 at a height above the liquid level in the tank, and an electrolysis tank (nitrogen removal tank) 4 for removing nitrogen is provided in a section of the chamber. ing. Further, in the second chamber 1b, a discharge port 7 is provided in the tank body 24 on the opposite side to the sewage inflow port 2, and the L. W. A pump 5 for pumping up the liquid in the tank from the liquid level of L and a pump connected to the pump 5 for transferring a part of the pumped liquid to the outlet 7 and returning the excess liquid 8 into the tank of the nitrogen removing tank 4. A flow rate adjusting device 6 is provided. A baffle pipe 11 is provided around the pumping pump 5. A communication port 23 is provided in the partition 22 between the first chamber 1a and the second chamber 1b.
[0039]
The sewage (raw water) flows from the sewage inlet 2 into the first chamber 1a, where the solid matter that tends to settle in the sewage is first precipitated and separated. The sewage after the solid matter is precipitated and separated is transferred from the communication port 23 to the second chamber 1b. The sewage that has flowed into the second chamber 1b is further removed from the L. W. The pump is pumped up from the suction port 10 of the pump 5 provided in the L to the flow rate adjusting device 6, and a part of the liquid is discharged from the discharge port 7 to the outside of the tank, and the surplus liquid 8 is caused to flow into the electrolysis tank 4 to Nitrogen is removed by electrolysis.
[0040]
FIG. 5 is a two-chamber anaerobic treatment tank (fifth embodiment) equipped with an oxidant addition tank of the present invention. Since an oxidizing agent addition tank is used instead of the electrolysis tank, it is the same as the anaerobic treatment tank shown in FIG.
[0041]
FIG. 6 is a two-chamber anaerobic treatment tank (sixth embodiment) equipped with an adsorbent filling tank of the present invention. Since an adsorbent filling tank is used instead of the electrolysis tank, it is the same as the anaerobic treatment tank shown in FIG.
[0042]
FIG. 7 is an example of the sewage purification tank incorporating the anaerobic treatment tank of the first embodiment of the present invention, and FIG. 8 is an example of the sewage purification tank incorporating the anaerobic treatment tank of the fourth embodiment of the present invention.
Below, this sewage septic tank is demonstrated, referring FIG. The sewage septic tank has an anaerobic treatment tank 30 in which an anaerobic treatment tank second chamber 1b, a (aerobic) biological reaction chamber 31 and a filtration chamber 32 are juxtaposed in the downstream of the anaerobic treatment tank 1, and a disinfection tank 33. I have.
[0043]
Since the anaerobic treatment tank 1 is as described above, the description thereof is omitted.
The anaerobic treatment tank second chamber 1b is provided with a filter bed 20 below the liquid level. The shape of the filter bed 20 is not particularly limited, and plate-like members such as a loofah-like shape, a corrugated plate shape, and a porous shape, and a honeycomb-like (honeycomb core) member are preferably used. Skeletal spherical, mesh-like cylindrical members and the like can also be used.
[0044]
A reaction aeration member (aeration tube) 34 for aeration from the bottom is disposed in the (aerobic) biological reaction chamber 31 constituting the aerobic treatment tank 30, and air from the blower 35 is discharged. The biological reaction chamber 31 is formed with a biological reaction bed 31a filled with a carrier (a microbial carrier, a microorganism adhering material, and a contact material), and sewage is aerobically treated in the biological reaction bed 31a. Here, the biological reaction bed 31a may be a fluidized bed or a fixed bed. The shape of the microbial carrier can be various shapes such as plate, net plate, loofah, porous, cylinder, rod, skeleton sphere, string, and granular, irregular lump, cube, and fiber lump. What was processed into can be used. Examples of the base material include synthetic resin processed products such as polyvinyl chloride, polyester, polyvinylidene chloride, polyvinyl formal, polyurethane, and melamine resin, inorganic processed products such as ceramics and silica sand, and fossils such as anthracite. A processed product, activated carbon or the like having a specific gravity of about 1 or 1 or more, a polyolefin resin such as polyethylene or polypropylene, or a specific gravity of about 1 or 1 or less such as polystyrene can be used.
[0045]
A filtration bed 32a filled with a filter medium is formed in the filtration chamber 32, and the SS in the flowing liquid is captured there. As the filter medium to be filled, one that floats in the liquid can be used, but a sedimentation filter medium is preferable. Examples of sedimentary filter media include synthetic resin processed products such as polyvinyl chloride, polyester, polyvinylidene chloride, polyvinyl formal, polyurethane, and melamine resin, inorganic processed products such as ceramics and quartz sand, and fossil processing such as anthracite. Products, activated carbon, etc., with specific gravity of about 1 or more, or polyolefin resin such as polyethylene, polypropylene, etc., and those with a specific gravity of about 1 or more adjusted by adding fillers to polystyrene. It may be formed and processed into a lump shape, a cylindrical shape, a net shape, a rod shape, a fiber lump shape, or a porous shape.
Further, at the bottom of the filtration chamber 32, a cleaning air diffuser member (air diffuser pipe) 36 for backwashing the filter bed 32a is disposed, and this is connected to a blower 35 for supplying air.
[0046]
If the operation is continued, the filtration bed 32a is clogged with the accumulated SS, and therefore the filtration bed 32a is removed periodically or appropriately (reversely). In this cleaning, the air in the blower 35 is discharged from the cleaning air diffuser 36 to bubbling the filter bed 32a, and a part of the air in the blower 35 is also supplied to the cleaning drainage pump (air lift pump) 37. The peeled SS becomes cleaning wastewater together with the liquid in the tank, descends the filtration bed 32a, and returns to the anaerobic treatment tank 1 through the cleaning drainage discharge pipe 37a by the cleaning drainage pump 37. Since all of the liquid in the tank can be drawn out from the bottom of the filtration chamber 32 as washing wastewater, the filtration bed 32a is washed well. Note that an electric pump or the like can be used as the cleaning drainage pump 37. The filtration bed 32a is preferably washed when the water level of the anaerobic treatment tank 1 is LWL (that is, at midnight). This is because, in general households, sewage is rarely discharged at midnight, and the anaerobic treatment tank 1 becomes LW L.
[0047]
A circulation pump 41 that transfers the liquid that has passed through the filtration chamber 32 to the anaerobic treatment tank second chamber 1b is provided below the filtration chamber 32 or in the treated water tank 54. This is because when nitrate nitrogen is generated in the aerobic treatment tank 30, when this liquid is transferred to the anaerobic treatment tank second chamber 1b, it can be removed as nitrogen gas in the anaerobic treatment tank second chamber 1b.
In FIG. 4, an air lift pump type is shown for the circulation pump 41, but an intermittent metering pump or an electric pump by pneumatically feeding a sealed container can be used instead of the air lift pump type.
[0048]
The disinfection tank 33 is a tank that disinfects or sterilizes the advection liquid from the filtration chamber 32 by contacting the medicine barrel 38. The septic tank is provided with a manhole so that maintenance and management such as inspection and cleaning of each tank can be performed, and a manhole cover 39 is usually attached.
[0049]
Next, treatment of sewage in the sewage septic tank will be described. The sewage (raw water) enters the anaerobic treatment tank 1 from the sewage inflow port 2 and the solid matter is separated and precipitated. In the anaerobic treatment tank 1, the concentrated sludge (solid matter) that has settled is stored at the bottom of the tank, and the scum generated by anaerobic storage is stored at the top of the tank. The liquid advection from the anaerobic treatment tank 1 is performed by a pumping pump 5, and at this time, the advancing liquid is pumped up from a suction port 10 of L.W.L, and a predetermined amount is supplied from a flow control device 6 connected to the pumping pump 5. (A substantially constant amount) is transferred from the discharge port 7 to the anaerobic treatment tank second chamber 1b, and the surplus liquid 8 is transferred to the electrolysis tank 4 through the transfer pipe 9.
At this time, when the amount of raw water flowing in is larger than the transfer amount of the pump 5, the water level in the anaerobic treatment tank 1 rises from LWL to HWL, but the anaerobic treatment tank 1 Since the capacity of the flow rate adjusting unit 12 is designed not to exceed H.W.L, the water level does not normally rise above H.W.L.
[0050]
The advection liquid from the anaerobic treatment tank second chamber 1b enters the biological reaction chamber 31, and aerobically biodegrades organic matter in the advection liquid. At this time, since a substantially constant amount of advection liquid is loaded, stable processing is performed. The advection liquid from the biological reaction chamber 31 then enters the filtration chamber 32, where SS contained in the advection liquid is captured and removed, and in some cases, aerobic organisms are further dissolved by dissolved oxygen brought from the biological reaction chamber 31. Processing is performed. A part of the liquid that has passed through the filtration chamber 32 is transferred to the anaerobic treatment tank second chamber 1b by the circulation pump 41 to denitrify nitrate nitrogen contained in the liquid. The advection liquid that has passed through the filtration chamber 32 enters the disinfection tank 33 through the treated water tank 54 and is sterilized, and then discharged from the outlet 40 as treated water.
[0051]
【The invention's effect】
In the anaerobic treatment tank of the present invention, as described above, nitrogen in sewage can be removed almost without being affected by the water temperature, pH, amount of microorganisms, etc. Nitrogen can be stably removed even in winter when the speed is low.
In the sewage septic tank of the present invention, nitrogen in the influent sewage is effectively removed in the anaerobic septic tank (for the sewage septic tank), so that the capacity of the entire tank can be made compact and nitrogen can be removed more stably.
[Brief description of the drawings]
FIG. 1 is an anaerobic treatment tank (first embodiment) provided with an electrolysis tank of the present invention, in which (a) is a schematic plan view, and (b) is a schematic longitudinal sectional view taken along line AA in (a). .
FIG. 2 is an anaerobic treatment tank (second embodiment) provided with an oxidant addition tank according to the present invention, in which (a) is a schematic plan view, and (b) is a schematic longitudinal cross-sectional view taken along line AA in (a). Figure.
FIG. 3 is an anaerobic treatment tank (third embodiment) having an adsorbent filling tank according to the present invention, in which (a) is a schematic plan view, and (b) is a schematic longitudinal cross-sectional view taken along line AA in (a). Figure.
FIG. 4 is another anaerobic treatment tank (fourth embodiment) provided with an electrolysis tank of the present invention, in which (a) is a schematic plan view, and (b) is a schematic longitudinal section taken along line AA in (a). Plan view.
FIG. 5 is a schematic longitudinal sectional view of another anaerobic treatment tank (fifth embodiment) including an oxidizing agent addition tank according to the present invention.
FIG. 6 is a schematic longitudinal sectional view of another anaerobic treatment tank (sixth embodiment) including an adsorbent filling tank according to the present invention.
FIG. 7 is a schematic longitudinal sectional view of a sewage purification tank incorporating the anaerobic treatment tank of the first embodiment of the present invention.
FIG. 8 is a schematic longitudinal sectional view of a sewage purification tank incorporating an anaerobic treatment tank according to a fourth embodiment of the present invention.
FIG. 9 is a schematic longitudinal sectional view of a conventional sewage septic tank.
[Explanation of symbols]
1: Anaerobic treatment tank 1a (for sewage purification tank): (anaerobic treatment tank) first chamber 1b: (anaerobic treatment tank) second chamber 2: sewage inflow port 3: oxidant supply device 4: electrolysis tank (nitrogen removal) Tank)
4b: oxidizing agent addition tank (nitrogen removal tank)
4c: Adsorbent filling tank (nitrogen removal tank)
5: Pumping pump 6: Flow rate adjusting device 7: Discharge port 8: Surplus liquid 9: Transfer pipe 10: Suction port 11: Baffle pipe 12: Flow rate adjusting unit 13: Baffle pipe 14: Outlet 15: Adsorbent (or ion exchange) body)
17: Electrode 20: Filter bed 22: Partition 23: Communication port 24: Tank body 30: Aerobic treatment tank (31 + 32)
31: (aerobic) biological reaction chamber 31a: biological reaction bed 32: filtration chamber 32a: filtration bed 33: disinfection tank 34: aeration member for the reaction (aeration tube)
35: Blower 36: Air diffuser for cleaning (air diffuser)
37: Cleaning drainage pump (air lift pump)
37a: Washing drain discharge pipe 38: Medicine cylinder 39: Manhole cover 40: Outlet 41: Circulation pump 51: Anaerobic filter bed tank first chamber 52: Anaerobic filter bed tank second chamber 53: Biofiltration tank 54: Treated water tank 55 : Disinfection tank

Claims (5)

槽内に、物理化学的に窒素を除去する窒素除去槽と、
最低水位の液水準から槽内液を汲み上げる揚水ポンプと、
前記揚水ポンプに接続されてなるもので、汲み上げた液の一部を槽外へ移送するとともに、余剰液を前記窒素除去槽へ戻す流量調整装置とを設け、
前記窒素除去槽から出た液は槽内を循環させる、汚水浄化槽用の嫌気処理槽。
In the tank, a nitrogen removal tank that physically removes nitrogen,
A pump that pumps the liquid in the tank from the lowest liquid level,
The pump is connected to the pump, and a part of the pumped liquid is transferred to the outside of the tank, and a flow rate adjusting device for returning the excess liquid to the nitrogen removal tank is provided.
An anaerobic treatment tank for a sewage septic tank in which the liquid discharged from the nitrogen removal tank is circulated in the tank.
槽内を、上流側から、第一室と第二室とに区分し、
前記第一室の一画に、窒素除去槽を設け、
前記第二室の一画に、最低水位の液水準から槽内液を汲み上げる揚水ポンプと、前記揚水ポンプに接続されてなるもので、汲み上げた液の一部を槽外へ移送するとともに、余剰液を前記窒素除去槽へ戻す流量調整装置とを設け、
前記第一室と前記第二室の間の仕切には、最低水位の液水準に連通口を設けている、請求項1の嫌気処理槽。
The tank is divided into the first chamber and the second chamber from the upstream side.
A portion of the first chamber is provided with a nitrogen removal tank,
In the second chamber, a pump is connected to the pump to pump up the liquid in the tank from the lowest water level, and a part of the pumped liquid is transferred to the outside of the tank and surplus A flow rate adjusting device for returning the liquid to the nitrogen removal tank,
The anaerobic treatment tank according to claim 1, wherein the partition between the first chamber and the second chamber is provided with a communication port at a liquid level at the lowest water level.
窒素除去槽は、電気分解によって窒素を除去する電気分解槽である、請求項1又は2の嫌気処理槽。The anaerobic treatment tank according to claim 1 or 2, wherein the nitrogen removal tank is an electrolysis tank that removes nitrogen by electrolysis. 槽内の最低水位の液水準より下方に濾床を設けている、請求項1の嫌気処理槽。The anaerobic treatment tank according to claim 1, wherein a filter bed is provided below the liquid level at the lowest water level in the tank. 請求項1〜3のいずれかの嫌気処理槽を備える汚水浄化槽。A sewage septic tank provided with the anaerobic processing tank in any one of Claims 1-3.
JP2003111449A 2003-04-16 2003-04-16 Anaerobic treatment tank equipped with nitrogen removal tank and sewage septic tank Expired - Fee Related JP4119998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003111449A JP4119998B2 (en) 2003-04-16 2003-04-16 Anaerobic treatment tank equipped with nitrogen removal tank and sewage septic tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003111449A JP4119998B2 (en) 2003-04-16 2003-04-16 Anaerobic treatment tank equipped with nitrogen removal tank and sewage septic tank

Publications (2)

Publication Number Publication Date
JP2004313935A JP2004313935A (en) 2004-11-11
JP4119998B2 true JP4119998B2 (en) 2008-07-16

Family

ID=33471998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003111449A Expired - Fee Related JP4119998B2 (en) 2003-04-16 2003-04-16 Anaerobic treatment tank equipped with nitrogen removal tank and sewage septic tank

Country Status (1)

Country Link
JP (1) JP4119998B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6001295B2 (en) * 2012-03-28 2016-10-05 フジクリーン工業株式会社 Water treatment equipment

Also Published As

Publication number Publication date
JP2004313935A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4508694B2 (en) Water treatment method and apparatus
JP3370576B2 (en) Ultrapure water production equipment
WO2012036408A2 (en) Submerged-membrane bioreactor that easily responds to load regulation, and method of treating wastewater using the same
CN102897898A (en) Method for treating biogas slurry after recovery of nitrogen and phosphorus in pig farm by adopting biological aerated filter
EP1934146B1 (en) System and method involving biological treatment and solids removal
JP2006289153A (en) Method of cleaning sewage and apparatus thereof
JP4119997B2 (en) Wastewater septic tank
JP4119998B2 (en) Anaerobic treatment tank equipped with nitrogen removal tank and sewage septic tank
CN110921976A (en) Integrated sewage purification equipment with micro-nano bubble generator
JP2004148144A (en) Method for treating sewage
KR100745974B1 (en) Apparatus for on-site treating night soil and waste water in vessels
JP3263267B2 (en) Septic tank
JP4117361B2 (en) Anaerobic treatment tank equipped with ozone aeration chamber and sewage septic tank
JP6043111B2 (en) Wastewater treatment equipment
JP4286580B2 (en) Wastewater treatment method incorporating electrochemical treatment
JP2005161219A (en) Device for removing phosphorus in wastewater
JP2006095466A (en) Electrolyzer, purifying tank having the electrolyzer and electrolytic method
JP2006075784A (en) Biological purifying and circulating system tray
KR20050024524A (en) High intergated Biological Nutrient Removal System
JP4022815B2 (en) Solid-liquid separation tank and sewage septic tank having a filter medium layer in the second chamber
KR20190033317A (en) Membrane water treatment apparatus using micro-bubble
KR0119265Y1 (en) Dairy waste treating equipment by using efeective microorganisms
KR200171727Y1 (en) Processing system for excretions of animals
CN219429820U (en) Combined equipment for sewage treatment
CN218089110U (en) MBR membrane method sewage treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080327

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees