JP2004311989A - 光電変換装置および光発電装置 - Google Patents

光電変換装置および光発電装置 Download PDF

Info

Publication number
JP2004311989A
JP2004311989A JP2004089973A JP2004089973A JP2004311989A JP 2004311989 A JP2004311989 A JP 2004311989A JP 2004089973 A JP2004089973 A JP 2004089973A JP 2004089973 A JP2004089973 A JP 2004089973A JP 2004311989 A JP2004311989 A JP 2004311989A
Authority
JP
Japan
Prior art keywords
crystalline semiconductor
semiconductor layer
semiconductor particles
particles
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004089973A
Other languages
English (en)
Inventor
Makoto Sugawara
信 菅原
Akiko Komota
晶子 古茂田
Atsuo Kishu
淳雄 旗手
Hisao Arimune
久雄 有宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004089973A priority Critical patent/JP2004311989A/ja
Publication of JP2004311989A publication Critical patent/JP2004311989A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】 従来の結晶質半導体粒子を用いた光電変換装置では低変換効率であった。
【解決手段】 一方の電極となる基板1上に、第1導電型の結晶質半導体粒子3を多数配設し、この結晶質半導体粒子3上に第2導電型の半導体層4を形成し、この結晶質半導体粒子3間に絶縁体2を形成し、上部電極層5を形成した光電変換装置において、第2導電型の半導体層4における前記結晶質半導体粒子3の天頂部膜厚よりも下部膜厚を薄く形成した光電変換装置とする。これにより、高い変換効率を実現することができる。
【選択図】 図1

Description

本発明は太陽光発電に使用される光電変換装置に関し、特に結晶質半導体粒子を用いた光電変換装置および光発電装置に関する。
省資源かつ低コストの次世代太陽電池の出現が強く望まれている。省シリコンに有利な粒形もしくは球形のシリコン結晶粒子を用いる従来の光電変換装置を図9に示す(例えば、特許文献1を参照。)。この光電変換装置は、基板101上に低融点金属層108を形成し、この低融点金属層108上に第1導電型の半導体粒子103を配設している。半導体粒子103どうしの隙間には絶縁層102が充填される。この半導体粒子103上に第2導電型の非晶質半導体層104と透明導電層106を形成している。
また、図10に示すように、金属電極101上にアルミニウムペースト110を形成し、このアルミニウムペースト110上に半導体粒103を配設し、この半導体粒子103上に第2導電型の微結晶半導体層104と透明電極層106を上記アルミニウムペースト110との間に絶縁層102を介して形成する光電変換装置が開示されている(例えば、特許文献2を参照。)。
特許第2641800号公報 特開平3−228379号公報
しかしながら、図9に示す従来の光電変換装置では、半導体粒子103上の絶縁層102を研磨して半導体粒子103を露出させ、その露出させた表面に第2導電型の非晶質半導体層104を形成してpn接合を形成する。そのためにpn接合界面に研磨による物理的ダメージが残り、pn接合の品質が低下して変換効率が低下するとともに、このような研磨工程は生産性が悪いという問題点があった。
また、図10に示す従来の光電変換装置でも研磨により半導体粒子103を露出させた面にpn接合を形成するために、pn接合の品質が低下して変換効率が低下するとともに、このような研磨工程は生産性が悪いという問題点があった。
本発明は上記従来技術における問題点に鑑みてなされたものであり、その目的は高い変換効率を有する光電変換装置および光発電装置を提供することにある。
上記目的を達成するために、本発明の光電変換装置は、1)一方の電極となる基板上に、第1導電型の結晶質半導体粒子を多数配設し、この結晶質半導体粒子上に第2導電型の半導体層を形成し、この結晶質半導体粒子間に絶縁体を形成し、上部電極層を形成した光電変換装置において、前記第2導電型の半導体層における前記結晶質半導体粒子の天頂部膜厚よりも下部膜厚が薄いことを特徴とする。
また、2)下部電極となる基板と、該基板に接合された第1導電型の結晶質半導体粒子と、該結晶質半導体粒子の前記基板との接合部を除く領域上に形成された第2導電型の半導体層と、前記結晶質半導体粒子間に形成された絶縁体と、前記半導体層上に形成された上部電極とを有する光電変換装置であって、前記結晶質半導体粒子の天頂における前記半導体層の膜厚よりも、前記結晶質半導体粒子の前記天頂側からの平面視であらわれる輪郭線以下の前記半導体層の膜厚が薄いことを特徴とする。
また、3)上記1)または2)の光電変換装置であって、前記結晶質半導体粒子の前記輪郭線以下の前記半導体層の膜厚が、前記結晶質半導体粒子の前記天頂における前記半導体層の膜厚の70%以下であることを特徴とする。
また、4)上記1)または2)の光電変換装置であって、前記結晶質半導体粒子の前記輪郭線以下の表面に、前記結晶質半導体粒子の内側への段差を設けたことを特徴とする。
また、5)上記1)または2)の光電変換装置であって、前記結晶質半導体粒子の表面が粗面であることを特徴とする。
さらに、本発明の光発電装置は、6)上記1)〜5)のいずれかの光電変換装置を発電手段として用い、該光発電手段の発電電力を負荷へ供給するように成したことを特徴とする。
本発明の光電変換装置は、一方の電極となる基板上に、第1導電型の結晶質半導体粒子を多数配設し、この結晶質半導体粒子上に第2導電型の半導体層を形成し、この結晶質半導体粒子間に絶縁体を形成し、上部電極層を形成した光電変換装置において、前記第2導電型の半導体層における前記結晶質半導体粒子の天頂部膜厚よりも下部膜厚が薄いことを特徴とする。また、下部電極となる基板と、該基板に接合された第1導電型の結晶質半導体粒子と、該結晶質半導体粒子の前記基板との接合部を除く領域上に形成された第2導電型の半導体層と、前記結晶質半導体粒子間に形成された絶縁体と、前記半導体層上に形成された上部電極とを有し、前記結晶質半導体粒子の天頂における前記半導体層の膜厚よりも、前記結晶質半導体粒子の前記天頂側からの平面視であらわれる輪郭線以下の前記半導体層の膜厚が薄いので、発電に大きく寄与する結晶質半導体粒子の天頂部には、第2導電型の半導体層を厚く形成し確実なpn接合を形成することができる。結晶質半導体粒子の下部(輪郭線以下)の半導体層の膜厚を薄くすることにより、上部電極から半導体層を通って基板(下部電極)に流れるリーク電流を小さくすることができる。したがって、高い変換効率を実現できる。この効果は、特に、前記結晶質半導体粒子の前記輪郭線以下の前記半導体層の膜厚が、前記結晶質半導体粒子の前記天頂における前記半導体層の膜厚の70%以下である場合に顕著である。
また、本発明の光電変換装置は、前記結晶質半導体粒子の前記輪郭線以下の表面に、前記結晶質半導体粒子の内側への段差を設けたので、この段差があるために、この段差よりも上部電極から半導体層を通って基板に流れるリーク電流をさらに小さくすることができる。
また、前記結晶質半導体粒子の表面が粗面である場合は、第2導電型の半導体層の形成時に、天頂部の膜厚よりも輪郭線以下の膜厚を薄くすることができ、リーク電流の低減が実現できる。
さらに、本発明の光発電装置は、上記1)〜4)の光電変換装置を発電手段として用い、該光発電手段の発電電力を負荷へ供給するように成したので、高効率の優れた光発電装置を提供することができる。
以下、図面を参照しつつ本発明を詳細に説明する。
図1は本発明に係る光電変換装置の一実施形態を示す断面図である。1は基板、2は絶縁体、3は第1導電型の結晶質半導体粒子、4は第2導電型の半導体層、5は上部電極層である。
基板1としては、金属または絶縁体が用いられる。絶縁体には、ガラス、セラミックスまたは樹脂等があげられる。基板1として絶縁体を用いる場合には、基板1の表面に下部電極となる導電層を形成する必要がある。金属は、導電率が高いとともに、光を強く反射する高反射金属でることが好ましく、例えば銀、アルミニウム、銅等がある。基板1の反射率が大きければ、基板1で光を反射させて結晶質半導体粒子3へより多くの光を導くことができ、変換効率が向上するために好ましい。
特に、基板1はアルミニウムまたはアルミニウム合金であることが好ましい。結晶質半導体粒子3に第2導電型の半導体層4を形成するときに、基板1上にもこの半導体層4が形成されるが、基板1がアルミニウムまたはアルミニウム合金であれば、この基板1上の半導体層4をフッ酸、塩酸、硫酸または燐酸による処理により除去が可能となる。なぜなら、アルミニウムまたはアルミニウム合金からなる基板1をエッチングすることで、基板1上に形成された第2導電型の半導体層4を基板1の表層ごと剥離することができるためである。したがって、基板1はアルミニウムまたはアルミニウム合金であることが好ましい。
また、基板1の表面は粗面であることが好ましい。基板1の表面が粗面でない場合、基板1上に形成した第2導電型の半導体層4を除去しにくいからである。
絶縁体2は、正極と負極の分離を行なうために結晶質半導体粒子3間に充填する。絶縁体2としては、ガラス材料、樹脂材料、無機有機複合材料等を用いることができる。絶縁体2は結晶質半導体粒子3の表面に第2導電型の半導体層4を形成した後に形成する。第2導電型の半導体層4は結晶質半導体粒子3上にそれぞれ独立して形成されるだけであり、後述する上部電極層5で相互に接続される。
絶縁体2を形成する前にpn接合を形成することにより、結晶質半導体粒子3の表面から絶縁体2を除去する工程が不要となるという利点がある。さらに、絶縁体2を除去することによって発生する結晶質半導体粒子3の表面欠陥や絶縁体2による汚染がないので、pn接合の品質を低下させることが無く、高い変換効率が実現できる。絶縁体2の波長400nm〜1200nmの透過率は70%以上であることが好ましい。透過率が70%未満であれば、結晶質半導体粒子3へ入射する光の量が減少して変換効率が低下するため好ましくない。
結晶質半導体粒子3は、シリコン、ゲルマニウム等からなる。p型またはn型不純物であるB、P、Al、As、Sb等を含んでいてもよい。
結晶質半導体粒子3は、気相成長法、アトマイズ法、直流プラズマ法等で形成可能であるが、非接触環境下で半導体融液を落下させる融液落下法が好ましい。また、第1導電型の結晶質半導体粒子3はp型であることが好ましい。例えば、BやAlを1×1014〜1018atoms/cm程度添加したものとする。
ここで、図2を用いて結晶質半導体粒子3の座標を定義できる。図中の「EQUATOR(赤道)」とは、平面視で輪郭線となりかつ最も低い位置の線をいい、「ZENITH(天頂)」とは最大高さ位置の点をいうものとする。結晶質半導体粒子3が球状の場合は次のようにして座標を明確に定義できる。つまり、結晶質半導体粒子3の中心を原点とし、基板1に垂直な方向をzとする。zに直角な方向をx、yとする。x、yは、基板1の表面に平行となる。z=0の位置にある結晶質半導体粒子3の表面の線(輪郭線)が赤道となる。z>0かつx=y=0の位置にある結晶質半導体粒子3の表面の点を「天頂」となる。結晶質半導体粒子3の赤道と基板1の間の基板1に近い位置を結晶質半導体粒子3の「下部」という。
図3に示すように、結晶質半導体粒子3の下部表面で球内側へ段差Sを設けることが好ましい。結晶質半導体粒子3の下部表面で粒内側への段差Sを設けることにより、半導体層4が段差Sよりも下の領域に形成されないようにすることができる。すなわち、結晶質半導体粒子3の表面に形成される半導体層4の膜厚は、天頂で最も厚くなり、それより下にいくにしたがって徐々に薄くなり、段差Sより下の位置ではほぼ0となる。
結晶質半導体粒子3表面に、粒内側への段差Sを形成する方法として、(1)結晶質半導体粒子3を基板1へ溶着した後に、結晶質半導体粒子3の表面にレジスト膜を塗布して選択的にエッチングする方法、(2)結晶質半導体粒子3を基板に溶着した後に、基板1自体を選択的にエッチングする方法等がある。
図4は結晶質半導体粒子3の表面にレジスト膜を塗布する方法(1)を説明するための断面図である。硬い金属等からなるローラー軸7をスポンジ8のような多孔質のやわらかい部材で覆ったロールコーター(Roll Coater)を用いて、スポンジ8にレジスト液を含ませて、結晶質半導体粒子3の表面を転がしていくと、結晶質半導体粒子3の比較的上側の表面にレジスト液が塗布される。レジスト液が乾いた後、全体をシリコンなどの半導体で削るためのエッチング液に浸けて、レジスト膜のない結晶質半導体粒子3の下部表面を削りとる。これにより、結晶質半導体粒子3の下側に段差が発生する。
結晶質半導体粒子3に段差をつける時点は、結晶質半導体粒子3の表面に第2導電型の半導体層4を形成した後がよい。こうすれば、結晶質半導体粒子3の段差よりも下部に形成された半導体層4は、段差を設けると同時に削除されてしまうからである。
なお、結晶質半導体粒子3に半導体層4を形成する前でもよい。結晶質半導体粒子3に段差を設けておけば、半導体層4を形成するときに、段差の内側には形成されにくい。
図5は結晶質半導体粒子3を基板1に溶着した後に、基板1自体を選択エッチングする方法(2)で得られる段差を示す断面図である。選択エッチングする時点は、結晶質半導体粒子3の表面に第2導電型の半導体層4を形成した後でもよく前でもよい。
結晶質半導体粒子3の表面に第2導電型の半導体層4を形成した後に、選択エッチングする場合は、結晶質半導体粒子3を基板1に溶着した後に、結晶質半導体粒子3の表面に第2導電型の半導体層4を形成する。半導体層4は基板1の表面にも形成される。その後、全体をアルミニウムをエッチングするためのエッチング液に浸ける。
結晶質半導体粒子3の表面に第2導電がtの半導体層4を形成する前に、選択エッチングする場合は、結晶質半導体粒子3を基板1に溶着した後に、全体をアルミニウムをエッチングするためのエッチング液に浸ける。
エッチング液として、フッ酸、硝酸、塩酸、硫酸または燐酸があげられる。これにより、基板1の表面のアルミニウムがエッチングされるほか、結晶質半導体粒子3の下部のシリコンとアルミニウムとの共晶部分がエッチングされて、結晶質半導体粒子3の下部に段差が発生したようになる。図5のSはこのようにして発生した段差を示す。
なお、結晶質半導体粒子3に半導体層4を形成した後に選択エッチングする場合は、基板1の表面に残る半導体層4もアルミニウムのエッチングと同時に除去される。
基板1の表面に半導体層4が残るとまずい理由は、次の通りである。基板1に入射した光は、基板1で反射されてさらに、半導体に再入射することで一部利用される。ところが、基板1上に半導体層4が形成されていると、反射光が減少するため、光発生電流をロスしてしまう。
結晶質半導体粒子3表面は図6に示すように、粗面であることが好ましい。すなわち、粗面の算術平均粗さ(Ra)は0.01μm以上5μm以下が好ましい。結晶質半導体粒子3の表面をこのように粗面化することにより、半導体層4の膜を結晶質半導体粒子3の下部で薄く形成することができるため好ましい。結晶質半導体粒子3の表面を粗面化する方法として、RIEを用いたドライエッチング法、水酸化ナトリウム等を用いた選択ウエットエッチング法、サンドブラスト法等がある。
第2導電型の半導体層4は、プラズマCVD法、触媒CVD法、スパッタリング法等で形成する。
図7は、本発明の光電変換装置を製造するためのプラズマCVD装置の断面図である。プラズマ室の中に基板1を載せる台11と、台11に対向する電極12とを設置し、プラズマ室の中にSH、PHなどのガスを導入し、高周波電界を印加する。これにより、この結晶質半導体粒子3上に第2導電型の半導体層4を形成することができる。半導体層4の結晶構造は、非晶質、微結晶質、ナノ結晶質いずれであってもよい。
第2導電型の半導体層4は結晶質半導体粒子3の天頂部膜厚よりも下部膜厚(輪郭線以下の膜厚)が薄くなるように形成する。発電に大きく寄与する半導体粒子3の天頂部には半導体層4を厚く形成し確実なpn接合を形成するとともに、半導体層4における半導体粒子3の下部の厚を薄くすることにより、第2導電型の半導体層4を通って下部電極1に流れるリーク電流を小さくすることができ、高い変換効率を実現できる。結晶質半導体粒子3の下部とは半導体粒子3で基板1に近い位置を示し、例えば赤道部と基板1の間である。また、半導体層4は半導体粒子3の天頂部と基板1上に形成されるが、天頂部と基板1とでは分離していることが好ましい。半導体層4が下部で分離することで、さらに第2導電型の半導体層4を通って下部電極に流れるリーク電流が小さくなるため好ましい。
半導体層4を天頂部膜厚よりも下部膜厚の方が薄くなるように形成するには、成膜方向に方向性を持たせる。具体的には、成膜時の真空度を高くするほど、また、高周波のパワーを上げるほど方向性が出やすい。
成膜方向に方向性を持たせて、半導体層4を天頂部膜厚よりも下部膜厚の方が薄くなるように形成する効果は次の通りである。発電に大きく寄与する結晶質半導体粒子3の天頂部には、半導体層4を厚く形成し確実なpn接合を形成するとともに、結晶質半導体粒子3の下部の半導体層4の膜厚を薄くすることにより、半導体層4を通って下部電極1に流れるリーク電流を小さくすることができる。したがって、高い変換効率を実現できる。
この結晶質半導体粒子3上のみに第2導電型の半導体層4を形成することが好ましい。結晶質半導体粒子3上のみではなく、絶縁体2上にも第2導電型の半導体層4を形成する場合は、光吸収ロスが大きくなり、結晶質半導体粒子3へ入射する光が減少するため好ましくない。また、第2導電型の半導体層4を絶縁体2の形成前に形成することが好ましい。第2導電型の半導体層4を絶縁体2を形成した後に形成するとpn接合面積が絶縁体2の形状によって決定されるため好ましくない。第2導電型半導体層4を形成する際に絶縁体が工程上汚染原因となりpn接合品質が低下するため好ましくない。第2導電型の半導体層4で結晶質半導体粒子3表面を覆うことにより表面再結合を低減させ変換効率が向上するため好ましい。
第2導電型の半導体層4の膜厚は、天頂部において5nm以上100nm以下であることが好ましい。第2導電型の半導体層4の膜厚が5nm未満のとき、第2導電型の半導体層4の膜が結晶質半導体粒子3の表面に島状に形成され、半導体層4の被覆不良箇所が発生するため好ましくない。第2導電型の半導体層4の膜厚が100nmを超えるとき、第2導電型の半導体層4を通って基板1に流れるリーク電流が大きくなり、且つ第2導電型の半導体層4の光吸収が大きくなり、変換効率が低下するため好ましくない。また、第2導電型の半導体層4は非晶質、微結晶質、ナノ結晶質いずれであってもよい。
また、結晶質半導体粒子3の上部と下部で半導体層4が膜厚分布を有することが好ましい。
図8は、結晶質半導体粒子3が球状の場合、半導体層4の膜厚分布を示すグラフである。縦軸に垂直方向z、横軸に膜厚dをとっている。赤道よりも下部の膜厚は、天頂の70%以下であることが好ましい。さらに好ましくは、図8に示すように、40%以下である。下部の膜厚を薄くすることにより半導体層4を通って基板1に流れるリーク電流を小さくすることができる。
また、結晶質半導体粒子3と半導体層4との間に、酸化層または窒化層を形成することが望ましい。結晶質半導体粒子3と半導体層4との間に、半導体の酸化層または窒化層を数十Å形成したとき、トンネル現象でキャリアの移動ができることがわかった。この結果、短絡電流が増加したが、これは結晶質半導体粒子3の表面の再結合が低減されたためと思われる。
次に、半導体層4に含まれる微量元素の濃度について説明する。「微量元素」とは、半導体材料に添加するp型またはn型不純物元素(B,P,Al,As,Sb等)、酸素、窒素、炭素、水素等から選ばれる1種以上の元素をいう。
半導体層4中の微量元素濃度を結晶質半導体粒子3に近くなると低く、膜厚方向に順次濃度が高くなるように形成することが望ましい。
第2導電型の半導体層4の微量元素濃度を結晶質半導体粒子3側で低く形成することにより、半導体層4を介して基板1へ流れるリーク電流の低減、結晶質半導体粒子3の表面再結合の低減、絶縁体2との密着性向上、上部電極層5との密着性向上、上部電極層5と半導体層4間の直列抵抗の低減に効果がある。
特に、不純物元素(B,P,Al,As,Sb等)の濃度勾配により、半導体層4を介して基板1へ流れるリーク電流の低減、結晶質半導体粒子3の表面再結合の低減、上部電極層5と半導体層4間の直列抵抗の低減に効果が大きい。
また、酸素、窒素、炭素、水素の濃度勾配を設けると、絶縁体2との密着性向上、上部電極層5との密着性向上に効果が大きい。
半導体層4の微量元素濃度は、例えば結晶質半導体粒子3側で5×1015〜5×1019atoms/cm程度であり、上部電極層5側で1×1018〜5×1021atoms/cm程度であることが好ましい。
また、半導体層4の微量元素濃度は、低濃度側で真性半導体層(不純物なし)としてもよい。
微量元素の制御方法として、半導体層4の形成時に微量元素を含むガスを添加する方法がある。この方法は、半導体層4の成膜時に、最初はプラズマ室に導入するPHを低濃度にし、徐々に高濃度にする。
他の方法として、半導体層4の形成後に微量元素を含む雰囲気下で加熱処理する方法もある。
上部電極層5は、酸化錫、酸化インジウム、ITO等をスパッタリング法等で形成する。膜厚および屈折率を調整することにより反射防止効果をもたせることも可能である。さらに、その上に銀または銅ペーストを用いた適切なパターンで補助電極を形成してもよい。
さらに、上述のように構成した光電変換装置を発電手段として用い、この発電手段からの発電電力を負荷へ供給するように成した光発電装置とすることができる。すなわち、上述した光電変換装置またはこれをモジュール化したモジュールの1以上を(複数であれば、直列、並列または直並列に接続するなどして)光電変換パネルや光電変換パネルを複数接続した光電変換アレイに構成することができ、このようにして構成した発電手段から負荷へ発電電力を供給するようにしてもよい。
また、上述した光電変換装置、光電変換パネルまたは光電変換アレイを光発電手段として用い、これをインバータなどの電力変換手段を介して適当な電力に変換して負荷に供給することが可能な発電装置として構成してもよい。このような発電装置を建物に設置するなどして、各種態様の太陽光発電システム等の光発電装置として利用することも可能であ
このように、本発明の光電変換装置は、一方の電極となる基板上に、第1導電型の結晶質半導体粒子を多数配設し、この結晶質半導体粒子上に第2導電型の半導体層を形成し、この結晶質半導体粒子間に絶縁体を形成し、上部電極層を形成した光電変換装置において、前記第2導電型の半導体層における前記結晶質半導体粒子の天頂部膜厚よりも下部膜厚が薄いことを特徴とする。また、下部電極となる基板と、この基板に接合された第1導電型の結晶質半導体粒子と、この結晶質半導体粒子の前記基板との接合部を除く領域上に形成された第2導電型の半導体層と、前記結晶質半導体粒子間に形成された絶縁体と、前記半導体層上に形成された上部電極とを有し、前記結晶質半導体粒子の天頂における前記半導体層の膜厚よりも、前記結晶質半導体粒子の前記天頂側からの平面視であらわれる輪郭線以下の前記半導体層の膜厚が薄いので、発電に大きく寄与する結晶質半導体粒子の天頂部には、第2導電型の半導体層を厚く形成し確実なpn接合を形成することができる。結晶質半導体粒子の下部(輪郭線以下)の半導体層の膜厚を薄くすることにより、上部電極から半導体層を通って基板(下部電極)に流れるリーク電流を小さくすることができる。したがって、高い変換効率を実現できる。この効果は、特に、前記結晶質半導体粒子の前記輪郭線以下の前記半導体層の膜厚が、前記結晶質半導体粒子の前記天頂における前記半導体層の膜厚の70%以下である場合に顕著である。
また、本発明の光電変換装置は、前記結晶質半導体粒子の前記輪郭線以下の表面に、前記結晶質半導体粒子の内側への段差を設けたので、この段差があるために、この段差よりも上部電極から半導体層を通って基板に流れるリーク電流をさらに小さくすることができる。
また、前記結晶質半導体粒子の表面が粗面である場合は、第2導電型の半導体層の形成時に、天頂部の膜厚よりも輪郭線以下の膜厚を薄くすることができ、リーク電流の低減が実現できる。
さらに、本発明の光発電装置は、上記光電変換装置を発電手段として用い、該光発電手段の発電電力を負荷へ供給するように成したので、高効率の優れた光発電装置を提供することができる。
以上、本発明の実施形態を説明したが、本発明の実施は単一接合型の光電変換装置に限ったものではなく、複数の接合を有する光電変換装置においても同様の効果を期待できる。複数の接合を有する光電変換装置として、例えば、p型結晶半導体粒子上にn型微結晶質半導体層を形成し、その上に中間層を介してp型非晶質半導体層、i型非晶質半導体層、n型非晶質半導体層を順次形成したタンデム型光電変換装置等であってもよい。その他、本発明の範囲内で適宜種々の変更を施すことが可能である。
次に、本発明の光電変換装置の具体例を説明する。
まず、アルミニウム基板1上に平均粒径400μmの粒状結晶p型シリコン3を密に1層配設し、590〜600℃に加熱して基板1とシリコンからなる結晶質半導体粒子(結晶シリコン粒子)3を溶着させた。次に、基板温度を250℃で、n型微結晶質半導体層4をプラズマCVD法により、結晶質半導体粒子3の天頂部から下部にかけて成膜した。このとき、プラズマCVD装置の成膜圧力を150〜300Pa、成膜パワーを50〜300Wの条件で成長方向を生じさせた。膜厚は天頂部で最大、下部の成膜はこれより薄くなっていた。
次に、エポキシ樹脂を結晶質半導体粒子3間に充填し、硬化させて絶縁体2を形成した。その上にITOからなる上部電極層5を100nmの厚さに形成して評価した。このように、種々の条件で作製したn型微結晶質の半導体層4の膜厚と変換効率との関係について表1にまとめる。
Figure 2004311989
上記と同様の条件で基板1に結晶質半導体粒子3を形成し、その後、プラズマCVD装置の成膜圧力を300Pa、成膜パワーを100〜200Wの条件で半導体層4の天頂部での膜厚を50nmとした。また、フッ酸と硝酸とのエッチングにより球内側への段差部Sを形成した素子を試作評価した結果を表2にまとめる。
Figure 2004311989
上記結果から分かるように、結晶質半導体粒子3の輪郭線(赤道)以下の半導体層4の膜厚(下部膜厚)を薄く(70%以下に)形成することにより高い変換効率を実現できる。より好ましくは、天頂の膜厚に対し下部膜厚を40%以下とすることである。また、より好ましくは結晶シリコン表面が球内側へ段差部を有する構造とすることである。また、結晶質半導体粒子3の表面を粗面とすることがさらに好ましいことも判明した。
以上のように、この実施例においても、一方の電極となる基板上に、第1導電型の結晶質半導体粒子を多数配設し、この結晶質半導体粒子上に第2導電型の半導体層を形成し、この結晶質半導体粒子間に絶縁体を形成し、上部電極層を形成した光電変換装置において、この第2導電型の半導体層が前記結晶質半導体粒子の天頂部膜厚よりも下部膜厚が薄く形成されることにより、高い変換効率が実現できた。
本発明の光電変換装置を示す断面図である。 結晶質半導体粒子の座標図である。 本発明の光電変換装置の段差を形成した構造を示す断面図である。 本発明の結晶質半導体粒子の表面にレジスト膜を塗布する方法を説明するための模式図である。 本発明の光電変換装置の段差を形成した他の構造を示す断面図である。 本発明の光電変換装置の他の構造を示す断面図である。 本発明の光電変換装置を製造するためのプラズマCVD装置の模式図である。 本発明の光電変換装置の半導体層の膜厚分布を示すグラフである。 従来の光電変換装置を示す断面図である。 従来の他の光電変換装置を示す断面図である。
符号の説明
1・・・・基板(下部電極)
2・・・・絶縁体
3・・・・結晶質半導体粒子
4・・・・半導体層
5・・・・上部電極層

Claims (6)

  1. 一方の電極となる基板上に、第1導電型の結晶質半導体粒子を多数配設し、この結晶質半導体粒子上に第2導電型の半導体層を形成し、この結晶質半導体粒子間に絶縁体を形成し、上部電極層を形成した光電変換装置において、前記第2導電型の半導体層における前記結晶質半導体粒子の天頂部膜厚よりも下部膜厚が薄いことを特徴とする光電変換装置。
  2. 下部電極となる基板と、該基板に接合された第1導電型の結晶質半導体粒子と、該結晶質半導体粒子の前記基板との接合部を除く領域上に形成された第2導電型の半導体層と、前記結晶質半導体粒子間に形成された絶縁体と、前記半導体層上に形成された上部電極とを有する光電変換装置であって、前記結晶質半導体粒子の天頂における前記半導体層の膜厚よりも、前記結晶質半導体粒子の前記天頂側からの平面視であらわれる輪郭線以下の前記半導体層の膜厚が薄いことを特徴とする光電変換装置。
  3. 前記結晶質半導体粒子の前記輪郭線以下の前記半導体層の膜厚が、前記結晶質半導体粒子の前記天頂における前記半導体層の膜厚の70%以下であることを特徴とする請求項1または2に記載の光電変換装置
  4. 前記結晶質半導体粒子の前記輪郭線以下の表面に、前記結晶質半導体粒子の内側への段差を設けたことを特徴とする請求項1または2に記載の光電変換装置。
  5. 前記結晶質半導体粒子の表面が粗面であることを特徴とする請求項1または2に記載の光電変換装置。
  6. 請求項1乃至5のいずれかに記載の光電変換装置を発電手段として用い、該光発電手段の発電電力を負荷へ供給するように成した光発電装置。
JP2004089973A 2003-03-26 2004-03-25 光電変換装置および光発電装置 Withdrawn JP2004311989A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004089973A JP2004311989A (ja) 2003-03-26 2004-03-25 光電変換装置および光発電装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003086064 2003-03-26
JP2004089973A JP2004311989A (ja) 2003-03-26 2004-03-25 光電変換装置および光発電装置

Publications (1)

Publication Number Publication Date
JP2004311989A true JP2004311989A (ja) 2004-11-04

Family

ID=33478322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089973A Withdrawn JP2004311989A (ja) 2003-03-26 2004-03-25 光電変換装置および光発電装置

Country Status (1)

Country Link
JP (1) JP2004311989A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018535554A (ja) * 2015-11-19 2018-11-29 インスティトュート フィュル ゾラールエネルギーフォルシュング ゲーエムベーハー 電荷担体の選択的接合を介して相互接続される複数の吸収体を備えた太陽電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018535554A (ja) * 2015-11-19 2018-11-29 インスティトュート フィュル ゾラールエネルギーフォルシュング ゲーエムベーハー 電荷担体の選択的接合を介して相互接続される複数の吸収体を備えた太陽電池

Similar Documents

Publication Publication Date Title
US9537032B2 (en) Low-cost high-efficiency solar module using epitaxial Si thin-film absorber and double-sided heterojunction solar cell with integrated module fabrication
US20100300507A1 (en) High efficiency low cost crystalline-si thin film solar module
US7402747B2 (en) Photoelectric conversion device and method of manufacturing the device
JP2004014958A (ja) 薄膜多結晶太陽電池とその製造方法
WO2014034677A1 (ja) 光起電力素子およびその製造方法
JP2012064839A (ja) 結晶シリコン系太陽電池およびその製造方法
JP5677469B2 (ja) 太陽電池素子の製造方法、太陽電池素子、および太陽電池モジュール
JP2012509603A (ja) 多重接合光電デバイスおよびその製造プロセス
JP4340031B2 (ja) 太陽電池用基板の粗面化方法
JP5127925B2 (ja) 薄膜太陽電池およびその製造方法
JP4532008B2 (ja) 反射防止膜の成膜方法
JP6114603B2 (ja) 結晶シリコン太陽電池、およびその製造方法、ならびに太陽電池モジュール
JPWO2014175066A1 (ja) 光電変換素子
TWI667877B (zh) Method for measuring solar cell IV, IV measuring device for solar cell, manufacturing method of solar cell, manufacturing method of solar cell module, and solar cell module
JP2015133341A (ja) 裏面接合型太陽電池及びその製造方法
KR20050087253A (ko) 전사법을 이용한 태양전지 및 그 제조방법
KR101193021B1 (ko) 도트형 전극을 갖는 저가 양산의 고효율 태양전지 및 그 제조방법
JP2011181620A (ja) 結晶シリコン系太陽電池
US20210384364A1 (en) Solar cell structure and fabrication method thereof
JP2004311989A (ja) 光電変換装置および光発電装置
CN115036381A (zh) 一种p型硅背接触电池和制备方法
JP2002280590A (ja) 多接合型薄膜太陽電池及びその製造方法
JP2006294696A (ja) 太陽電池の製造方法および太陽電池用シリコン基板
JP2011066213A (ja) 光電変換装置及びその製造方法
Li et al. Facile fabrication of Si nanowire arrays for solar cell application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090828