JP2004311728A - Phase change recording film having high electric resistance - Google Patents

Phase change recording film having high electric resistance Download PDF

Info

Publication number
JP2004311728A
JP2004311728A JP2003103518A JP2003103518A JP2004311728A JP 2004311728 A JP2004311728 A JP 2004311728A JP 2003103518 A JP2003103518 A JP 2003103518A JP 2003103518 A JP2003103518 A JP 2003103518A JP 2004311728 A JP2004311728 A JP 2004311728A
Authority
JP
Japan
Prior art keywords
phase change
change recording
recording film
electric resistance
high electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003103518A
Other languages
Japanese (ja)
Inventor
Sohei Nonaka
荘平 野中
Hiroshi Kinoshita
啓 木之下
Akira Mori
暁 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003103518A priority Critical patent/JP2004311728A/en
Publication of JP2004311728A publication Critical patent/JP2004311728A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phase change recording film having a high electric resistance for reducing the level of a current flowing through a circuit. <P>SOLUTION: The phase change recording film having a high electric resistance has a composition of 15-30 atm% of Ge, 15-30 atm% of Sb, 0.1-10 atm% of nitrogen, and the remainder of Te and inevitable impurities. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、電気抵抗が高い相変化記録膜に関するものである。
【0002】
【従来の技術】
一般に、半導体不揮発メモリーの一種である相変化メモリー(Phase Change RAMまたはOvonics Unified Memory)に用いられる相変化記録層は、通常のDVD−RAMなどの光記録媒体などに広く用いられているGe−Sb−Te系記録膜が用いられている。この相変化記録層には結晶状態の相変化材料を用い、書き換えは、その一部をヒーターで急加熱して溶融し、即急冷して部分的に非晶質化させるか、或いは非晶質部を低温でゆっくり加熱して結晶状態に戻すことで行っている。そして読み出しは結晶状態と一部非晶質化した状態の電気抵抗差によって行なっている(例えば、特許文献1〜3、非特許文献1〜2参照)。
【0003】
【特許文献1】
特表2001−502848号公報
【特許文献2】
特表2002−512439号公報
【特許文献3】
特表2002−540605号公報
【非特許文献1】
「応用物理」第71巻 第12号(2002)第1513〜1517頁
【非特許文献2】
「日経 マイクロデバイス」2002年3月号第70〜78頁
【0004】
【発明が解決しようとする課題】
しかし、この従来の相変化記録膜は、書き込み消去時に回路に流れる電流値が大きいところから消費電力が大きくなり、また大電流のため、回路への負担が大きくなってデバイスの微細化の障害となっていた。
【0005】
【課題を解決するための手段】
そこで、本発明者らは、相変化記録膜の抵抗を高くし、書き込み消去動作時に流れる電流値を低減させるべく研究を行なった。その結果、
通常のGe−Sb−Te系相変化記録膜において、原子%で(以下、%は原子%を示す)窒素:0.1〜10%含有した相変化記録膜は、結晶状態での電気抵抗が高くなり、それによって書き込み消去動作時に流れる電流値を低減させることができる、という研究結果が得られたのである。
【0006】
この発明は、かかる研究結果に基づいて成されたものであって、
Ge:15〜30%、Sb:15〜30%を含有し、さらに窒素:0.1〜10%を含有し、残部がTeおよび不可避不純物からなる組成を有する電気抵抗が高い相変化記録膜、に特徴を有するものである。
【0007】
また、相変化記録膜をDTA(示差熱分析法)により結晶化温度および融点を測定したところ、窒素の添加量にしたがって結晶化温度は上昇し、融点は低下する傾向が見られる。ある程度までの結晶化温度の上昇は非晶質層の安定性が増すことを意味し、メモリーに用いたときにデータ保存特性の向上に寄与し、さらに融点の低下は非晶質化の際に用いる消費電力の低下に寄与するといった副次的な効果も得られる。
したがって、適度な結晶化温度の上昇は非晶質状態の安定性を高め、メモリーとして用いた場合に保持特性の向上が期待できるが、必要以上に高くなると結晶化が困難になり、結晶化のために必要な電力および時間が増大して消費電力の増加および書き換え速度の低下を招く。また、融点があまり上昇すると、溶融させることが困難になる。すなわち、結晶化温度および融点の必要以上の上昇は、結晶化、非晶質化(書き込み、消去)のために大きな電力が必要になるので好ましくないのである。
【0008】
この発明の電気抵抗が高い相変化記録膜の成分組成を前述のごとく限定した理由を説明する。
(a) 窒素
相変化記録膜に含まれる窒素の量が0.1%未満では膜の抵抗値を上げる効果が少ないので好ましくなく、一方、10%を越えて含有させると結晶化温度の上昇が大きくなるので好ましくない。したがって、相変化記録膜に含まれる窒素含有量を0.1〜10%に定めた。相変化記録膜に含まれる窒素含有量の一層好ましい範囲は0.4〜8%である。
【0009】
(b) Ge、Sb
この発明の窒素を含む電気抵抗が高い相変化記録膜に含まれるGeおよびSbは、Ge:15〜30%、Sb:15〜30%が好ましい。その理由は、Ge:15%未満、Sb:15%未満であっても、またGe:30%を越え、Sb:30%を越えても抵抗値が低くなったり結晶化時間が長くなって好ましくないことによるものである。
【0010】
この発明の電気抵抗が高い相変化記録膜は、結晶化後に四探針法により測定した比抵抗値が5×10−2〜5×10Ω・cm(一層好ましくは8×10−2〜1×10Ω・cm以下)であることが必要であり、その理由は、比抵抗値が5×10−2Ω・cm未満では回路に大きな電流が流れ、そのために消費電力が大きくなり、またデバイスを微細化した時の障害の原因になるので好ましくなく、一方、5×10Ω・cmを越えると非晶質時の抵抗値(1×10〜1×10Ω・cm程度)との差が小さくなり、この違いを読み出すことが困難になるという理由によるものである。
【0011】
この発明の窒素含有相変化記録膜は、通常のGe−Sb−Te系相変化記録膜形成用スパッタリングターゲットを用い、スパッタガス雰囲気を窒素ガス含有雰囲気とすることにより形成することができる。
【0012】
【発明の実施の形態】
直径:125mm、厚さ:5mmの寸法を有し、Ge:22.2%、Sb:22.2%、Te:残部からなる成分組成を有する通常のターゲットを用意し、このターゲットを銅製の冷却用バッキングプレートに純度:99.999重量%のインジウムろう材にてハンダ付けし、これを直流マグネトロンスパッタリング装置に装入し、ターゲットと基板(この基板として表面に厚さ:100nmのSiOを形成したSiウエーハを用いた)の間の距離を70mmになるようにセットした後、到達真空度:5×10−5Pa以下になるまで真空引きを行い、その後、表1に示される窒素分圧となるように調製された窒素ガスとArガスの混合ガスを、スパッタガス全圧:1.0Paになるように供給し、
・基板温度:室温、
・投入電力:50W(0.4W/cm)、
の条件でスパッタリングを行い、基板の表面に厚さ:300nmを有する本発明相変化記録膜1〜5、比較相変化記録膜1〜2および従来相変化記録膜1を形成した。
【0013】
このようにして得られた本発明相変化記録膜1〜5、比較相変化記録膜1〜2および従来相変化記録膜1の成分組成を測定し、その結果を表1に示した。膜中窒素含有量はEPMA(電子線プローブマイクロアナライザー)により測定した。
【0014】
さらに、得られた本発明相変化記録膜1〜5、比較相変化記録膜1〜2および従来相変化記録膜1を真空中、300℃に5分間保持して結晶化した後、四探針法で比抵抗を測定し、さらにDTA(示差熱分析法)により結晶化温度および融点を測定し、その結果を表1に示した。
【0015】
【表1】

Figure 2004311728
【0016】
表1示される結果から、結晶化させた本発明相変化記録膜1〜5は、結晶化させた従来相変化記録膜1に比べて比抵抗が高いことが分かる。しかし、この発明の条件から外れた窒素成分組成を有する結晶化させた比較相変化記録膜1〜2は比抵抗が小さくなったり、結晶化温度および融点が上がりすぎたりして好ましくないことが分かる。
【0017】
【発明の効果】
上述のように、この発明によると、1桁高い抵抗値が得られ、リセット時の電流値を低減し、低消費電力化、微細化に寄与し、相変化型不揮発メモリーの特性の向上およびコスト削減を行うことができるとともに、新しい半導体メモリー産業の発展に大いに貢献し得るものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a phase change recording film having a high electric resistance.
[0002]
[Prior art]
In general, a phase change recording layer used for a phase change memory (Phase Change RAM or Ovonics Unified Memory), which is a kind of semiconductor nonvolatile memory, is a Ge-Sb widely used for an optical recording medium such as a normal DVD-RAM. -A Te-based recording film is used. The phase-change recording layer is made of a crystalline phase-change material. For rewriting, a part of the phase-change material is rapidly heated and melted by a heater and then rapidly cooled to partially amorphize or This is done by slowly heating the part to a crystalline state at a low temperature. The reading is performed by a difference in electric resistance between a crystalline state and a partially amorphous state (for example, see Patent Documents 1 to 3 and Non-Patent Documents 1 and 2).
[0003]
[Patent Document 1]
JP 2001-502848 A [Patent Document 2]
JP-T-2002-512439 [Patent Document 3]
Japanese Unexamined Patent Publication No. 2002-540605 [Non-Patent Document 1]
"Applied Physics" Vol. 71, No. 12, (2002), pp. 1513-1517 [Non-Patent Document 2]
"Nikkei Micro Devices", March 2002, pp. 70-78.
[Problems to be solved by the invention]
However, this conventional phase-change recording film consumes a large amount of power because the current flowing through the circuit at the time of writing and erasing is large, and because of the large current, the load on the circuit is increased, and there is an obstacle to miniaturization of devices. Had become.
[0005]
[Means for Solving the Problems]
Therefore, the present inventors have studied to increase the resistance of the phase change recording film and to reduce the value of the current flowing during the write / erase operation. as a result,
In a normal Ge—Sb—Te phase change recording film, a phase change recording film containing 0.1 to 10% of nitrogen in atomic% (hereinafter, “%” represents atomic%) has an electric resistance in a crystalline state. Research results have shown that the current value can be increased, thereby reducing the value of the current flowing during the write / erase operation.
[0006]
The present invention has been made based on such research results,
A phase change recording film containing Ge: 15 to 30%, Sb: 15 to 30%, nitrogen: 0.1 to 10%, the balance being Te and unavoidable impurities, and having a high electrical resistance. It is characterized by the following.
[0007]
When the crystallization temperature and melting point of the phase change recording film were measured by DTA (differential thermal analysis), the crystallization temperature increased and the melting point tended to increase with the amount of nitrogen added. Increasing the crystallization temperature to a certain degree means that the stability of the amorphous layer is increased, which contributes to the improvement of data storage characteristics when used for memory, and the lowering of the melting point occurs during the amorphization. A secondary effect such as contributing to a reduction in power consumption can be obtained.
Therefore, an appropriate increase in the crystallization temperature can increase the stability of the amorphous state and improve the retention characteristics when used as a memory. However, if the temperature is higher than necessary, crystallization becomes difficult, and crystallization becomes difficult. As a result, the power and time required for this increase, resulting in an increase in power consumption and a decrease in the rewriting speed. Also, if the melting point is too high, it becomes difficult to melt. That is, unnecessarily increasing the crystallization temperature and the melting point are not preferable because large power is required for crystallization and amorphization (writing and erasing).
[0008]
The reason why the component composition of the phase change recording film having a high electric resistance according to the present invention is limited as described above will be described.
(A) If the amount of nitrogen contained in the nitrogen phase change recording film is less than 0.1%, the effect of increasing the resistance value of the film is small, so that it is not preferable. If the amount exceeds 10%, the crystallization temperature rises. It is not preferable because it becomes large. Therefore, the content of nitrogen contained in the phase change recording film is set to 0.1 to 10%. A more preferable range of the nitrogen content contained in the phase change recording film is 0.4 to 8%.
[0009]
(B) Ge, Sb
Ge and Sb contained in the phase change recording film containing nitrogen having a high electric resistance according to the present invention are preferably Ge: 15 to 30% and Sb: 15 to 30%. The reason is that even if Ge is less than 15% and Sb is less than 15%, even if it exceeds Ge: 30% and Sb: more than 30%, the resistance value becomes low and the crystallization time becomes long, which is preferable. It is because there is not.
[0010]
The phase change recording film having a high electric resistance according to the present invention has a specific resistance of 5 × 10 −2 to 5 × 10 1 Ω · cm (more preferably 8 × 10 −2 to 5 × 10 −2) measured by a four-probe method after crystallization. (1 × 10 1 Ω · cm or less) is necessary because, when the specific resistance is less than 5 × 10 −2 Ω · cm, a large current flows through the circuit, and the power consumption increases. On the other hand, it is not preferable because it causes a trouble when the device is miniaturized. On the other hand, if it exceeds 5 × 10 1 Ω · cm, the resistance value in the amorphous state (about 1 × 10 2 to 1 × 10 3 Ω · cm) ) Is small, and it becomes difficult to read this difference.
[0011]
The nitrogen-containing phase change recording film of the present invention can be formed by using a normal Ge—Sb—Te-based phase change recording film forming sputtering target and changing the sputtering gas atmosphere to a nitrogen gas-containing atmosphere.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
A normal target having a diameter of 125 mm, a thickness of 5 mm, a component composition of Ge: 22.2%, Sb: 22.2%, and Te: balance is prepared, and this target is cooled by copper. The backing plate was soldered with an indium brazing material having a purity of 99.999% by weight, which was charged into a DC magnetron sputtering apparatus, and a target and a substrate (a SiO 2 layer having a thickness of 100 nm was formed on the surface as the substrate). Was set so as to be 70 mm, and vacuuming was performed until the ultimate vacuum degree became 5 × 10 −5 Pa or less, and then the nitrogen partial pressure shown in Table 1 was obtained. A mixed gas of a nitrogen gas and an Ar gas prepared so as to be supplied such that the total pressure of the sputtering gas becomes 1.0 Pa,
・ Substrate temperature: room temperature
-Input power: 50 W (0.4 W / cm 2 )
Was performed under the following conditions to form phase change recording films 1 to 5 of the present invention, comparative phase change recording films 1 and 2, and a conventional phase change recording film 1 having a thickness of 300 nm on the surface of the substrate.
[0013]
The component compositions of the phase change recording films 1 to 5 of the present invention, the comparative phase change recording films 1 and 2 and the conventional phase change recording film 1 thus obtained were measured, and the results are shown in Table 1. The nitrogen content in the film was measured by EPMA (electron probe microanalyzer).
[0014]
Further, after crystallizing the obtained phase change recording films 1 to 5 of the present invention, comparative phase change recording films 1 and 2 and conventional phase change recording film 1 in vacuum at 300 ° C. for 5 minutes, The specific resistance was measured by the method, and the crystallization temperature and melting point were measured by DTA (differential thermal analysis). The results are shown in Table 1.
[0015]
[Table 1]
Figure 2004311728
[0016]
From the results shown in Table 1, it can be seen that the crystallized phase change recording films 1 to 5 of the present invention have higher specific resistance than the crystallized conventional phase change recording film 1. However, it can be seen that the crystallized comparative phase change recording films 1 and 2 having a nitrogen component composition deviating from the conditions of the present invention are not preferable because the specific resistance becomes small or the crystallization temperature and the melting point become too high. .
[0017]
【The invention's effect】
As described above, according to the present invention, a resistance value which is one digit higher can be obtained, a current value at the time of resetting can be reduced, power consumption can be reduced, and miniaturization can be achieved. It can reduce the cost and contribute greatly to the development of the new semiconductor memory industry.

Claims (2)

原子%で(以下、%は原子%を示す)Ge:15〜30%、Sb:15〜30%を含有し、さらに窒素:0.1〜10%を含有し、残部がTeおよび不可避不純物からなる組成を有することを特徴とする電気抵抗が高い相変化記録膜。Ge: 15 to 30%, Sb: 15 to 30%, and nitrogen: 0.1 to 10%. A phase change recording film having a high electrical resistance, characterized by having a composition as follows: 結晶化後に四探針法により測定した比抵抗値が5×10−2〜5×10Ω・cmであることを特徴とする請求項2記載の電気抵抗が高い相変化記録膜。The phase change recording film having a high electric resistance according to claim 2, wherein a specific resistance value measured by a four probe method after crystallization is 5 × 10 −2 to 5 × 10 1 Ω · cm.
JP2003103518A 2003-04-08 2003-04-08 Phase change recording film having high electric resistance Pending JP2004311728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003103518A JP2004311728A (en) 2003-04-08 2003-04-08 Phase change recording film having high electric resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003103518A JP2004311728A (en) 2003-04-08 2003-04-08 Phase change recording film having high electric resistance

Publications (1)

Publication Number Publication Date
JP2004311728A true JP2004311728A (en) 2004-11-04

Family

ID=33466588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003103518A Pending JP2004311728A (en) 2003-04-08 2003-04-08 Phase change recording film having high electric resistance

Country Status (1)

Country Link
JP (1) JP2004311728A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244235A (en) * 2004-02-25 2005-09-08 Samsung Electronics Co Ltd Phase change memory device and method for manufacturing same
JP2006156886A (en) * 2004-12-01 2006-06-15 Renesas Technology Corp Semiconductor integrated circuit device and manufacturing method therefor
JP2006165553A (en) * 2004-12-02 2006-06-22 Samsung Electronics Co Ltd Phase-change memory device comprising phase-change substance layer including phase-change nano particle and method for manufacturing the same
JP2007194586A (en) * 2006-01-19 2007-08-02 Elpida Memory Inc Nonvolatile memory element, and method of manufacturing same
JP2009520374A (en) * 2005-12-20 2009-05-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Vertical phase change memory cell and manufacturing method thereof
JP2009530817A (en) * 2006-03-17 2009-08-27 マイクロン テクノロジー, インク. Low power phase change memory and method of forming the same
US8049202B2 (en) 2004-12-02 2011-11-01 Samsung Electronics Co., Ltd. Phase change memory device having phase change material layer containing phase change nano particles
CN102623632A (en) * 2011-01-28 2012-08-01 中国科学院上海微系统与信息技术研究所 N-Ge-Te phase change memory material used for high temperature environment and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203392A (en) * 2000-10-27 2002-07-19 Matsushita Electric Ind Co Ltd Memory, write-in device, read-out device, and its method
JP2003100084A (en) * 2001-09-27 2003-04-04 Toshiba Corp Phase change type nonvolatile memory

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203392A (en) * 2000-10-27 2002-07-19 Matsushita Electric Ind Co Ltd Memory, write-in device, read-out device, and its method
JP2003100084A (en) * 2001-09-27 2003-04-04 Toshiba Corp Phase change type nonvolatile memory

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244235A (en) * 2004-02-25 2005-09-08 Samsung Electronics Co Ltd Phase change memory device and method for manufacturing same
JP2006156886A (en) * 2004-12-01 2006-06-15 Renesas Technology Corp Semiconductor integrated circuit device and manufacturing method therefor
JP2006165553A (en) * 2004-12-02 2006-06-22 Samsung Electronics Co Ltd Phase-change memory device comprising phase-change substance layer including phase-change nano particle and method for manufacturing the same
US8049202B2 (en) 2004-12-02 2011-11-01 Samsung Electronics Co., Ltd. Phase change memory device having phase change material layer containing phase change nano particles
JP2009520374A (en) * 2005-12-20 2009-05-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Vertical phase change memory cell and manufacturing method thereof
JP2007194586A (en) * 2006-01-19 2007-08-02 Elpida Memory Inc Nonvolatile memory element, and method of manufacturing same
JP4577694B2 (en) * 2006-01-19 2010-11-10 エルピーダメモリ株式会社 Nonvolatile memory device and manufacturing method thereof
JP2009530817A (en) * 2006-03-17 2009-08-27 マイクロン テクノロジー, インク. Low power phase change memory and method of forming the same
US8173988B2 (en) 2006-03-17 2012-05-08 Micron Technology, Inc. Reduced power consumption phase change memory and methods for forming the same
CN102623632A (en) * 2011-01-28 2012-08-01 中国科学院上海微系统与信息技术研究所 N-Ge-Te phase change memory material used for high temperature environment and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101157150B1 (en) Phase change recording film having high electrical resistance and sputtering target for forming phase change recording film
Zhu et al. Uniform Ti-doped Sb2Te3 materials for high-speed phase change memory applications
JP5403565B2 (en) Phase change material and phase change type memory device
US9917252B2 (en) GaSbGe phase change memory materials
JP4766441B2 (en) Phase change film for semiconductor non-volatile memory and sputtering target for forming the phase change film
TWI476971B (en) Phase-separated type non-volatile memory
US8920684B2 (en) Al-Sb-Te phase change material used for phase change memory and fabrication method thereof
JP2004311728A (en) Phase change recording film having high electric resistance
JP2006245251A (en) Phase change recording film with stable amorphous state, and sputtering target for forming it
JP2004311729A (en) Phase change recording film having high electric resistance
JP2005117030A (en) Phase-change film for semiconductor nonvolatile memory, and sputtering target for forming the film
JP6598166B2 (en) Phase change material and phase change type memory device
JP4606721B2 (en) Phase change recording film with high electrical resistance
CN100590903C (en) Si-Te-Sb series phase-change thin film material for phase-change memory
CN102569644B (en) Sb2Tey-Si3N4 composite phase change material for phase change memory and preparation method thereof
JP4606720B2 (en) Phase change recording film with high electrical resistance
JP2005117031A (en) Phase-change film for semiconductor nonvolatile memory, and sputtering target for forming the film
CN106960907B (en) A kind of rare earth Er doping Ge2Sb2Te5Phase transiting storing thin-film material and preparation method thereof
CN111725397A (en) Phase change material structure, memory unit and manufacturing method thereof
JP4454253B2 (en) Phase change recording film having high electrical resistance and sputtering target for forming the phase change recording film
JP4300328B2 (en) Sputtering target for phase change recording film
WO2023008432A1 (en) Phase change material
CN107546325B (en) Composite film phase-change material
WO2024041611A1 (en) Gating tube material, phase change memory chip, storage device, and electronic device
JP4465711B2 (en) GaSb phase change recording film for producing phase change recording medium excellent in storage stability of recording mark and sputtering target for forming this recording film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100616