JP2005117031A - Phase-change film for semiconductor nonvolatile memory, and sputtering target for forming the film - Google Patents

Phase-change film for semiconductor nonvolatile memory, and sputtering target for forming the film Download PDF

Info

Publication number
JP2005117031A
JP2005117031A JP2004265288A JP2004265288A JP2005117031A JP 2005117031 A JP2005117031 A JP 2005117031A JP 2004265288 A JP2004265288 A JP 2004265288A JP 2004265288 A JP2004265288 A JP 2004265288A JP 2005117031 A JP2005117031 A JP 2005117031A
Authority
JP
Japan
Prior art keywords
phase change
change film
film
nonvolatile memory
semiconductor nonvolatile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004265288A
Other languages
Japanese (ja)
Inventor
Sohei Nonaka
荘平 野中
Hiroshi Kinoshita
啓 木之下
Akira Mori
暁 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004265288A priority Critical patent/JP2005117031A/en
Publication of JP2005117031A publication Critical patent/JP2005117031A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phase-change film for semiconductor nonvolatile memory, and to provide a sputtering target for forming the film. <P>SOLUTION: The phase change film for semiconductor nonvolatile memory has a composition containing 10-25% Ge, 10-25% Sb, one, two, or more kinds of elements selected from among 2-7% Sn, Bi, and Pb, and one, two, or more kinds of elements selected from among 2-10% B, Al, C, Si, lanthanoids, and the balance Te and inevitable elements. The sputtering target is used for forming the phase-change film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、半導体不揮発メモリー用相変化膜およびその相変化膜を形成するためのスパッタリングターゲットに関するものである。   The present invention relates to a phase change film for a semiconductor nonvolatile memory and a sputtering target for forming the phase change film.

半導体不揮発メモリー(Phase Change RAM(PCRAM))の相変化膜は、記録層として用いられており、記録層には結晶状態の相変化材料を用い、書き換えは、その一部をヒーターで急加熱して溶融し、即急冷して部分的に非晶質化させるか、或いは非晶質部を結晶化温度以上、融点以下の温度で加熱保持して結晶状態に戻すことで行っている。一方、読み出しは結晶状態と一部非晶質化した状態の電気抵抗差を検出することによって行なっている。この相変化膜の一つとして、Ge:10〜25%、Sb:10〜25%を含有し、残部がTeおよび不可避不純物からなる組成を有する相変化膜が知られており、そしてこの相変化記録層はこの相変化記録層とほぼ同じ成分組成を有するターゲットを用いてスパッタリングすることにより形成することも知られている(例えば、特許文献1〜3、非特許文献1〜2参照)。
特表2001−502848号公報 特表2002−512439号公報 特表2002−540605号公報 「応用物理」第71巻、第12号(2002)第1513〜1517頁 「日経マイクロデバイス」2003年3月号、第104頁
A phase change film of a semiconductor non-volatile memory (Phase Change RAM (PCRAM)) is used as a recording layer. A crystalline phase change material is used for the recording layer, and a part of the phase change film is rapidly heated by a heater. It is then melted and immediately cooled to be partially amorphous, or the amorphous part is heated and held at a temperature not lower than the crystallization temperature and not higher than the melting point to return to the crystalline state. On the other hand, reading is performed by detecting a difference in electrical resistance between a crystalline state and a partially amorphous state. As one of the phase change films, there is known a phase change film containing Ge: 10 to 25%, Sb: 10 to 25%, with the balance being Te and inevitable impurities, and this phase change It is also known that the recording layer is formed by sputtering using a target having almost the same component composition as the phase change recording layer (see, for example, Patent Documents 1 to 3 and Non-Patent Documents 1 and 2).
JP-T-2001-502848 Japanese translation of PCT publication No. 2002-512439 Special Table 2002-540605 gazette "Applied Physics" Vol. 71, No. 12 (2002) pp. 1513-1517 "Nikkei Microdevice" March 2003, p. 104

非特許文献1に示されるように、書き込み消去時、特に結晶状態を非晶質状態に変化(リセット動作)させるためには一度結晶を融点以上に上げて溶融する必要があるが、この時に600℃以上の高い融点を持つGe−Sb−Te系材料では溶融する為に回路に流す電流値を大きくしなければならず、そのために消費電力が大きくなり、大電流を流すために周辺回路への負担が大きくなり、また回路の微細化の障害にもなっていた。   As shown in Non-Patent Document 1, in order to change the crystal state to an amorphous state (reset operation) at the time of writing and erasing, it is necessary to raise the crystal once to a melting point or more, but at this time 600 In a Ge—Sb—Te-based material having a high melting point of not lower than ° C., the current value flowing through the circuit has to be increased in order to melt, which increases the power consumption and causes a large current to flow to the peripheral circuit. This increased the burden and hindered circuit miniaturization.

そこで、本発明者らは、かかる課題を解決すべく研究を行なった結果、
(イ)通常のGe:10〜25%、Sb:10〜25%を含有し、残部がTeおよび不可避不純物からなる組成を有する相変化材料にSn、BiおよびPbの内の1種または2種以上を合計で2〜7%含有させると融点を下げることができ、溶融のために必要な電流量を少なくすることができるので、消費電力を少なくすることができる、
(ロ)しかし、Sn、BiおよびPbの内の1種または2種以上を合計で2〜7%含有させると融点は下がるものの、同時に結晶状態での電気抵抗も大きく低下することから、電流が流れすぎるようになる欠点があり、融点を低下させつつ電気抵抗の低下を防ぐためにはさらにB、Al、C、Siおよびランタノイド元素の内の1種又は2種以上を合計で2〜10%含有せしめる必要がある、
(ハ)前記ランタノイド元素の内でもDy,Tb,Nd,Sm,Gdが特に有効である、などの研究結果が得られたのである。
Therefore, the present inventors conducted research to solve such problems,
(B) One or two of Sn, Bi, and Pb as a phase change material having a composition containing normal Ge: 10 to 25%, Sb: 10 to 25%, and the balance being Te and inevitable impurities When the total content is 2 to 7%, the melting point can be lowered, and the amount of current necessary for melting can be reduced, so that the power consumption can be reduced.
(B) However, if one or more of Sn, Bi and Pb are contained in a total of 2 to 7%, the melting point is lowered, but at the same time, the electrical resistance in the crystalline state is greatly reduced. In order to prevent the electric resistance from decreasing while lowering the melting point, it contains 2 to 10% in total of one or more of B, Al, C, Si and lanthanoid elements. It is necessary to
(C) Among the lanthanoid elements, research results such as Dy, Tb, Nd, Sm, and Gd are particularly effective were obtained.

この発明は、かかる研究結果に基づいて成されたものであって、
(1)原子%でGe:10〜25%、Sb:10〜25%を含有し、さらにSn、BiおよびPbの内の1種または2種以上を合計で2〜7%を含有し、さらにB、Al、C、Siおよびランタノイド元素の内の1種または2種以上を合計で2〜10%を含有し、残部がTeおよび不可避不純物からなる組成を有する半導体不揮発メモリー用相変化膜、
(2)前記ランタノイド元素は、Dy,Tb,Nd,Sm,Gdの内の1種または2種以上である前記(1)記載の半導体不揮発メモリー用相変化膜、に特徴を有するものである。
The present invention has been made based on such research results,
(1) It contains Ge: 10 to 25% and Sb: 10 to 25% in atomic%, and further contains 1 to 2 or more of Sn, Bi and Pb in total 2 to 7%, and A phase change film for a semiconductor non-volatile memory, containing a total of 2 to 10% of one or more of B, Al, C, Si and lanthanoid elements, the balance being Te and inevitable impurities;
(2) The lanthanoid element is characterized in the phase change film for semiconductor nonvolatile memory according to (1), wherein the lanthanoid element is one or more of Dy, Tb, Nd, Sm, and Gd.

前記(1)〜(2)記載の半導体不揮発メモリー用相変化膜は、結晶化後に四探針法により測定した比抵抗値が5×10−3〜5×10Ω・cmの範囲内にあり、かつ融点が600℃以下であることが好ましい。したがって、この発明は、
(3)結晶化後に四探針法により測定した比抵抗値が5×10−3〜5×10Ω・cmの範囲内にあり、かつ融点が600℃以下である前記(1)〜(2)の内のいずれかに記載の半導体不揮発メモリー用相変化膜、に特徴を有するものである。
The phase change film for semiconductor nonvolatile memory according to the above (1) to (2) has a specific resistance value measured by a four-probe method after crystallization within a range of 5 × 10 −3 to 5 × 10 Ω · cm, And it is preferable that melting | fusing point is 600 degrees C or less. Therefore, the present invention
(3) The specific resistance value measured by the four-probe method after crystallization is in the range of 5 × 10 −3 to 5 × 10 Ω · cm, and the melting point is 600 ° C. or less (1) to (2) The phase change film for semiconductor nonvolatile memory according to any one of the above.

この発明のスパッタリングターゲットを用いて形成した相変化膜は、抵抗をさほど低下させること無く低い融点が得られることから書き込み消去動作時の電流値を低減し、低消費電力化、デバイスの微細化に寄与し、新しい半導体メモリー産業の発展に大いに貢献し得るものである。   The phase change film formed by using the sputtering target of the present invention can obtain a low melting point without reducing the resistance so much, so that the current value at the time of write / erase operation is reduced, and the power consumption is reduced and the device is miniaturized. It can contribute greatly to the development of the new semiconductor memory industry.

この発明の半導体不揮発メモリー用相変化膜の成分組成を前述のごとく限定した理由を説明する。
(a)Sn、Bi、Pb
これら成分は、Ge:10〜25%、Sb:10〜25%を含有し、残部がTeおよび不可避不純物からなる組成を有する相変化膜に含有せしめて相変化膜の融点を一層低下させる。しかし、Sn、BiおよびPbの内の1種または2種以上を合計で2%未満含有しても融点を下げる効果が少ないので好ましくなく、一方、Sn、BiおよびPbの内の1種または2種以上を合計で7%を越えて含有させると結晶状態での抵抗値が大きく低下してしまうために低電流化の効果が少なくなり、好ましくない。したがって、相変化膜に含有せしめるSn、BiおよびPbの量は、Sn、BiおよびPbの内の1種または2種以上を合計で量を2〜7%(一層好ましくは、3〜6%)に定めた。
The reason why the component composition of the phase change film for semiconductor nonvolatile memory according to the present invention is limited as described above will be described.
(A) Sn, Bi, Pb
These components contain Ge: 10 to 25%, Sb: 10 to 25%, and the remainder is contained in a phase change film having a composition composed of Te and inevitable impurities to further lower the melting point of the phase change film. However, even if one or more of Sn, Bi and Pb is contained in less than 2% in total, it is not preferable because the effect of lowering the melting point is small, while one or two of Sn, Bi and Pb are not preferred. If more than 7% is included in total, the resistance value in the crystalline state is greatly reduced, so the effect of reducing current is reduced, which is not preferable. Therefore, the amount of Sn, Bi and Pb contained in the phase change film is 2 to 7% (more preferably 3 to 6%) in total of one or more of Sn, Bi and Pb. Determined.

(b)B,Al,C,Si,ランタノイド元素
これら成分は、Sn、BiおよびPbの内の1種または2種以上を添加することにより相変化膜の結晶状態での抵抗値の低下を相殺する作用を有するが、その含有量が2%未満では低抵抗化を相殺する効果が少ないので好ましくなく、一方、10%を越えて含有すると相変化膜の結晶化温度の上昇が大きくなりすぎるので好ましくない。適度な結晶化温度の上昇は非晶質状態の安定性を高め、保持特性の向上につながるが、必要以上に高くなると結晶化するために必要な電力が増加し、低電力化の観点から好ましくないのである。したがって、これら成分の含有量は2〜10%に定めた。これらの含有量の一層好ましい範囲は3〜8%である。なお、ランタノイド元素の内でもDy,Tb,Nd,Sm,Gdが特に好ましい。
(B) B, Al, C, Si, lanthanoid elements These components offset the decrease in resistance value in the crystalline state of the phase change film by adding one or more of Sn, Bi and Pb. However, if the content is less than 2%, the effect of offsetting the low resistance is small, which is not preferable. On the other hand, if the content exceeds 10%, the increase in the crystallization temperature of the phase change film becomes too large. It is not preferable. A moderate increase in the crystallization temperature increases the stability of the amorphous state and leads to an improvement in retention characteristics, but if it becomes higher than necessary, the power required for crystallization increases, which is preferable from the viewpoint of lowering the power. There is no. Therefore, the content of these components is set to 2 to 10%. A more preferable range of these contents is 3 to 8%. Of the lanthanoid elements, Dy, Tb, Nd, Sm, and Gd are particularly preferable.

(c) Ge、Sb:
この発明の電気抵抗が高い相変化膜に含まれるGeおよびSbは、Ge:10〜25%、Sb:10〜25%が好ましい。その理由は、Ge:10%未満、Sb:10%未満であっても、またGe:25%を越え、Sb:25%を越えても抵抗値が低くなったり結晶化時間が長くなって好ましくないことによるものである。
(C) Ge, Sb:
Ge and Sb contained in the phase change film having a high electric resistance according to the present invention are preferably Ge: 10 to 25% and Sb: 10 to 25%. The reason is that even if Ge: less than 10%, Sb: less than 10%, Ge: more than 25%, and Sb: more than 25%, the resistance value is lowered or the crystallization time is preferably increased. This is due to the absence.

この発明の相変化膜は、結晶化後に四探針法により測定した比抵抗値が5×10−3Ω・cm以上(一層好ましくは1×10-2Ω・cm以上)であることが必要であり、その理由は比抵抗値が5×10−3Ω・cm未満では相変化膜の一部を非晶質化する際、回路に大きな電流が流れ、そのために消費電力が大きくなり、また微細化時の障害になるので好ましくないことによるものである。また、非晶質状態のGe−Sb−Fe合金の比抵抗は通常1×10Ω・cm程度であり、安定した読み出しのためには結晶時と非晶質時で少なくとも一桁半程度の抵抗差があることが好ましい。このため、結晶時の相変化膜の抵抗値を5×10Ω・cm以下とすることが必要である。さらにこの発明の相変化膜の融点は低消費電力の観点から600℃以下であることが必要である。 The phase change film of the present invention needs to have a specific resistance measured by a four-probe method after crystallization of 5 × 10 −3 Ω · cm or more (more preferably 1 × 10 −2 Ω · cm or more). The reason is that when the specific resistance value is less than 5 × 10 −3 Ω · cm, when a part of the phase change film is amorphized, a large current flows through the circuit, which increases power consumption. This is because it becomes an obstacle at the time of miniaturization. In addition, the specific resistance of the Ge—Sb—Fe alloy in an amorphous state is usually about 1 × 10 3 Ω · cm. It is preferable that there is a resistance difference. For this reason, the resistance value of the phase change film during crystallization needs to be 5 × 10 Ω · cm or less. Furthermore, the melting point of the phase change film of the present invention is required to be 600 ° C. or less from the viewpoint of low power consumption.

この発明の前記成分組成を有する半導体不揮発メモリー用相変化膜を形成するためのスパッタリングターゲットは、原子%でGe:10〜26%、Sb:10〜26%を含有し、さらにSn、BiおよびPbの内の1種または2種以上を合計で2〜8%を含有し、さらにB、Al、C、Siおよびランタノイド元素の内の1種または2種以上を合計で2〜11%を含有し、残部がTeおよび不可避不純物からなる成分組成を有することが必要である。   A sputtering target for forming a phase change film for a semiconductor nonvolatile memory having the above component composition according to the present invention contains Ge: 10 to 26%, Sb: 10 to 26% in atomic%, and Sn, Bi and Pb. 2 or 8% in total of one or more of these, and further 2 to 11% in total of one or more of B, Al, C, Si and lanthanoid elements It is necessary that the balance has a component composition consisting of Te and inevitable impurities.

したがって、この発明は、
(4)原子%でGe:10〜26%、Sb:10〜26%を含有し、さらにSn、BiおよびPbの内の1種または2種以上を合計で2〜8%を含有し、さらにB、Al、C、Siおよびランタノイド元素の内の1種または2種以上を合計で2〜11%を含有し、残部がTeおよび不可避不純物からなる組成を有する前記(1)記載の半導体不揮発メモリー用相変化膜を形成するためのスパッタリングターゲット。
(5)前記ランタノイド元素は、Dy,Tb,Nd,Sm,Gdの内の1種または2種以上である前記(4)記載の半導体不揮発メモリー用相変化膜を形成するためのスパッタリングターゲット、に特徴を有するものである。
Therefore, the present invention
(4) It contains Ge: 10 to 26% and Sb: 10 to 26% in atomic%, and further contains one or more of Sn, Bi, and Pb in a total of 2 to 8%, and The semiconductor nonvolatile memory according to the above (1), which contains 2 to 11% in total of one or more of B, Al, C, Si and lanthanoid elements, and the balance is made of Te and inevitable impurities. Sputtering target for forming a phase change film for use.
(5) The sputtering target for forming the phase change film for semiconductor nonvolatile memory according to (4), wherein the lanthanoid element is one or more of Dy, Tb, Nd, Sm, and Gd. It has characteristics.

この発明の前記(1)記載の成分組成を有する半導体不揮発メモリー用相変化膜を形成するためのスパッタリングターゲットは、所定の成分組成を有するGe−Sb−Te系合金をArガス雰囲気中で溶解した後、Sn、BiおよびPbの内の1種または2種以上を添加し、鉄製モールドに出湯して合金インゴットを作製し、これら合金インゴットを不活性ガス雰囲気中で粉砕して200μm以下の合金粉末を作製し、この合金粉末を真空ホットプレスすることにより作製する。前記真空ホットプレスは、圧力:15〜155MPa、温度:370〜580℃、1〜2時間保持の条件で行なわれ、その後、モールドの温度が270〜300℃まで下がった時点で冷却速度:1〜3℃/分で常温まで冷却することにより行われる。
さらに、この発明の前記(2)記載の成分組成を有する半導体不揮発メモリー用相変化膜を形成するためのスパッタリングターゲットは、Ge−Sb−Te系合金にSn、BiおよびPbを添加し、この合金粉末と、別途作製した200μm以下のB,Al,C,Si,ランタノイド元素(好ましくは、Dy,Tb,Nd,Sm,Gd)の各粉末をこの発明の成分組成となるように混合して混合粉末を作製し、この混合粉末を真空ホットプレスすることにより作製する。前記真空ホットプレスは、圧力:146〜155MPa、温度:370〜430℃、1〜2時間保持の条件で行なわれ、その後、モールドの温度が270〜300℃まで下がった時点で冷却速度:1〜3℃/分で常温まで冷却することにより行われる。
A sputtering target for forming a phase change film for a semiconductor nonvolatile memory having the component composition described in (1) of the present invention is obtained by dissolving a Ge—Sb—Te alloy having a predetermined component composition in an Ar gas atmosphere. Thereafter, one or more of Sn, Bi, and Pb are added, and an alloy ingot is produced by pouring out into an iron mold, and the alloy ingot is pulverized in an inert gas atmosphere to have an alloy powder of 200 μm or less. The alloy powder is produced by vacuum hot pressing. The vacuum hot press is performed under the conditions of a pressure of 15 to 155 MPa, a temperature of 370 to 580 ° C. and a holding time of 1 to 2 hours, and then a cooling rate of 1 to 3 when the temperature of the mold is lowered to 270 to 300 ° C. It is performed by cooling to room temperature at 3 ° C./min.
Furthermore, a sputtering target for forming a phase change film for a semiconductor nonvolatile memory having the component composition described in (2) of the present invention is obtained by adding Sn, Bi and Pb to a Ge—Sb—Te alloy, Powder and separately prepared powders of B, Al, C, Si, lanthanoid elements (preferably Dy, Tb, Nd, Sm, Gd) of 200 μm or less are mixed and mixed so as to have the component composition of the present invention. A powder is produced, and this mixed powder is produced by vacuum hot pressing. The vacuum hot press is performed under the conditions of pressure: 146 to 155 MPa, temperature: 370 to 430 ° C., holding for 1 to 2 hours, and then cooling rate: 1 to 1 when the temperature of the mold is lowered to 270 to 300 ° C. It is performed by cooling to room temperature at 3 ° C./min.

Ge、Sb、TeをArガス雰囲気中で溶解し、得られた溶湯にSn、BiおよびPbの内の1種または2種以上を添加し、このSn、BiおよびPbの内の1種または2種以上を添加して得られた溶湯を鋳造して合金インゴットを作製し、この合金インゴットをAr雰囲気中で粉砕することにより、いずれも粒径:100μm以下の合金粉末を作製した。この合金粉末と、粒径:100μm以下のB,Al,C,Si,Dy,Tb,Nd,Sm,Gdの各要素粉末を混合して混合粉末を作製した。
このようにして得られた混合粉末をそれぞれ温度:400℃、圧力:146MPaで真空ホットプレスすることによりホットプレス体を作製し、これらホットプレス体を超硬バイトを使用し、旋盤回転数:200rpmの条件で研削加工することにより直径:125mm、厚さ:5mmの寸法を有する円盤状の表1〜3に示される成分組成を有する本発明ターゲット1〜23、比較ターゲット1〜10および従来ターゲット1を作製した。
Ge, Sb, Te are melted in an Ar gas atmosphere, and one or more of Sn, Bi, and Pb are added to the resulting molten metal, and one or two of Sn, Bi, and Pb are added. An alloy ingot was produced by casting a molten metal obtained by adding seeds or more, and the alloy ingot was pulverized in an Ar atmosphere, thereby producing alloy powders each having a particle size of 100 μm or less. This alloy powder was mixed with each element powder of B, Al, C, Si, Dy, Tb, Nd, Sm, and Gd having a particle size of 100 μm or less to prepare a mixed powder.
The mixed powders thus obtained were each hot-pressed by vacuum hot pressing at a temperature of 400 ° C. and a pressure of 146 MPa, and these hot-pressed bodies were manufactured using a carbide tool, with a lathe rotation speed of 200 rpm. The present invention targets 1 to 23, comparative targets 1 to 10 and conventional targets 1 having the component compositions shown in Tables 1 to 3 having a disk shape having a diameter of 125 mm and a thickness of 5 mm by grinding under the conditions of Was made.

Figure 2005117031
Figure 2005117031

Figure 2005117031
Figure 2005117031

Figure 2005117031
Figure 2005117031

次に、表1〜3に示される本発明ターゲット1〜23、比較ターゲット1〜10および従来ターゲット1をそれぞれ銅製の冷却用バッキングプレートに純度:99.999重量%のインジウムろう材にてハンダ付けし、これを直流マグネトロンスパッタリング装置に装入し、ターゲットと基板(表面に厚さ:100nmのSiOを形成したSiウエーハ)の間の距離を70mmになるようにセットした後、到達真空度:5×10-5Pa以下になるまで真空引きを行い、その後、全圧:1.0PaになるまでArガスを供給し、
・基板温度:室温、
・投入電力:50W(0.4W/cm)、
の条件でスパッタリングを行い、基板の表面に厚さ:300nmを有し表4〜6に示される成分組成を有する本発明相変化膜1〜23、比較相変化膜1〜10および従来相変化膜1を形成した。
Next, the present invention targets 1 to 23, comparative targets 1 to 10 and the conventional target 1 shown in Tables 1 to 3 are each soldered to a copper cooling backing plate with an indium brazing material having a purity of 99.999% by weight. Then, this was inserted into a DC magnetron sputtering apparatus, and after setting the distance between the target and the substrate (Si wafer having a thickness of 100 nm of SiO 2 on the surface) to be 70 mm, the ultimate vacuum: Evacuate until 5 × 10 −5 Pa or less, and then supply Ar gas until the total pressure is 1.0 Pa,
-Substrate temperature: room temperature,
-Input power: 50 W (0.4 W / cm 2 ),
The present invention phase change films 1 to 23, comparative phase change films 1 to 10 and conventional phase change films having a thickness of 300 nm on the surface of the substrate and the component compositions shown in Tables 4 to 6 are used. 1 was formed.

このようにして得られた本発明相変化膜1〜23、比較相変化膜1〜10および従来相変化膜1の成分組成をICP(誘導結合プラズマ法)により測定し、その結果を表4〜6示した。さらに、得られた本発明相変化膜1〜23、比較相変化膜1〜10および従来相変化膜1を窒素フロー中、280℃に5分間保持して結晶化した後、四探針法で比抵抗を測定し、その結果を表4〜6示した。また上記と同じ条件で直径:120mmのポリカーボネート基板上に3μmの厚さで成膜し、付いた膜を全量剥離して粉末化したものについてDTA(示差熱分析法)により毎分200mlのArフロー中、昇温速度10℃/分の条件で結晶化温度および融点を測定し、その結果を表4〜6に示した。なお、本測定に用いた試料は15mgで統一した。ここでは160〜340℃付近に現れる発熱ピークを結晶化温度とし、540〜620℃付近に現れる発熱ピークを融点とした。   The component compositions of the present invention phase change films 1 to 23, comparative phase change films 1 to 10 and the conventional phase change film 1 thus obtained were measured by ICP (inductively coupled plasma method), and the results are shown in Tables 4 to 4 below. 6 shown. Furthermore, after crystallizing the obtained phase change films 1 to 23, comparative phase change films 1 to 10 and the conventional phase change film 1 of the present invention at 280 ° C for 5 minutes in a nitrogen flow, The specific resistance was measured, and the results are shown in Tables 4-6. In addition, a film having a thickness of 3 μm was formed on a polycarbonate substrate having a diameter of 120 mm under the same conditions as described above, and the attached film was completely peeled and pulverized to 200 ml of Ar flow per minute by DTA (differential thermal analysis). Medium, the crystallization temperature and the melting point were measured under the condition of a heating rate of 10 ° C./min, and the results are shown in Tables 4-6. The sample used for this measurement was unified at 15 mg. Here, the exothermic peak that appears in the vicinity of 160 to 340 ° C. was defined as the crystallization temperature, and the exothermic peak that appeared in the vicinity of 540 to 620 ° C. was defined as the melting point.

Figure 2005117031
Figure 2005117031

Figure 2005117031
Figure 2005117031

Figure 2005117031
Figure 2005117031

表4〜6示される結果から、本発明ターゲット1〜23を用いてスパッタリングすることにより得られた結晶化させた本発明相変化膜1〜23は、従来ターゲット1を用いてスパッタリングすることにより得られた従来相変化膜1に比べて融点が低く、比抵抗の低下が少ないなど優れた相変化膜であることが分かる。しかし、この発明の範囲から外れて添加成分を含む比較相変化膜1〜10は少なくとも一つの好ましくない特性が現れることが分かる。   From the results shown in Tables 4 to 6, crystallized present invention phase change films 1 to 23 obtained by sputtering using the present invention targets 1 to 23 are obtained by sputtering using the conventional target 1. It can be seen that the phase change film is excellent in that the melting point is lower than that of the conventional phase change film 1 and the specific resistance is less decreased. However, it can be seen that the comparative phase change films 1 to 10 including the additive component are out of the scope of the present invention and at least one undesirable characteristic appears.

Claims (5)

原子%でGe:10〜25%、Sb:10〜25%を含有し、さらにSn,Bi,Pbの内の1種又は2種以上を合計で2〜7%を含有し、さらにB、Al、C、Siおよびランタノイド元素の内の1種または2種以上を合計で2〜10%を含有し、残部がTeおよび不可避不純物からなる組成を有することを特徴とする半導体不揮発メモリー用相変化膜。 It contains Ge: 10-25% and Sb: 10-25% in atomic%, and further contains one or more of Sn, Bi, Pb in a total of 2-7%, and further contains B, Al Phase change film for semiconductor non-volatile memory, comprising a total of 2 to 10% of one or more of C, Si and lanthanoid elements, with the balance being Te and inevitable impurities . 前記ランタノイド元素は、Dy,Tb,Nd,Sm,Gdの内の1種または2種以上であることを特徴とする請求項1記載の半導体不揮発メモリー用相変化膜。 2. The phase change film for a semiconductor nonvolatile memory according to claim 1, wherein the lanthanoid element is one or more of Dy, Tb, Nd, Sm, and Gd. 結晶化後に、四探針法により測定した比抵抗値が5×10−3〜5×10Ω・cmの範囲内であり、かつ融点が600℃以下であることを特徴とする請求項1〜2の内のいずれかに記載の半導体不揮発メモリー用相変化膜。 The specific resistance value measured by a four-probe method after crystallization is in the range of 5 × 10 −3 to 5 × 10 Ω · cm, and the melting point is 600 ° C. or lower. A phase change film for a semiconductor nonvolatile memory according to any one of the above. 原子%でGe:10〜26%、Sb:10〜26%を含有し、さらにSn,Bi,Pbの内の1種又は2種以上を合計で2〜8%を含有し、さらにB、Al、C、Siおよびランタノイド元素の内の1種または2種以上を合計で2〜11%を含有し、残部がTeおよび不可避不純物からなる組成を有することを特徴とする半導体不揮発メモリー用相変化膜を形成するためのスパッタリングターゲット。 Atomic% contains Ge: 10-26%, Sb: 10-26%, and further contains one or more of Sn, Bi, and Pb containing 2-8% in total, and further contains B, Al Phase change film for semiconductor non-volatile memory, comprising a total of 2 to 11% of one or more of C, Si and lanthanoid elements, with the balance being Te and inevitable impurities Sputtering target for forming. 前記ランタノイド元素は、Dy,Tb,Nd,Sm,Gdの内の1種または2種以上であることを特徴とする請求項4記載の半導体不揮発メモリー用相変化膜を形成するためのスパッタリングターゲット。 The sputtering target for forming a phase change film for a semiconductor nonvolatile memory according to claim 4, wherein the lanthanoid element is one or more of Dy, Tb, Nd, Sm, and Gd.
JP2004265288A 2003-09-17 2004-09-13 Phase-change film for semiconductor nonvolatile memory, and sputtering target for forming the film Pending JP2005117031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265288A JP2005117031A (en) 2003-09-17 2004-09-13 Phase-change film for semiconductor nonvolatile memory, and sputtering target for forming the film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003324063 2003-09-17
JP2004265288A JP2005117031A (en) 2003-09-17 2004-09-13 Phase-change film for semiconductor nonvolatile memory, and sputtering target for forming the film

Publications (1)

Publication Number Publication Date
JP2005117031A true JP2005117031A (en) 2005-04-28

Family

ID=34554490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265288A Pending JP2005117031A (en) 2003-09-17 2004-09-13 Phase-change film for semiconductor nonvolatile memory, and sputtering target for forming the film

Country Status (1)

Country Link
JP (1) JP2005117031A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119733A1 (en) * 2006-04-13 2007-10-25 Ulvac, Inc. Method for fabricating variable resistance element
WO2008099692A1 (en) * 2007-01-30 2008-08-21 Ricoh Company, Ltd. Optical recording medium, and sputtering target and method for producing the same
JP2015103695A (en) * 2013-11-26 2015-06-04 株式会社日立製作所 Phase change memory and semiconductor recording/reproducing device
KR20160078478A (en) 2014-03-25 2016-07-04 제이엑스금속주식회사 Sputtering target of sintered sb-te-based alloy
US10889887B2 (en) 2016-08-22 2021-01-12 Honeywell International Inc. Chalcogenide sputtering target and method of making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127176A (en) * 1994-10-31 1996-05-21 Hitachi Ltd Information recording thin film, manufacture thereof information recording medium and using method therefor
WO2000054982A1 (en) * 1999-03-15 2000-09-21 Matsushita Electric Industrial Co., Ltd. Information recording medium and method for manufacturing the same
JP2001322357A (en) * 2000-03-10 2001-11-20 Matsushita Electric Ind Co Ltd Information recording medium and its manufacturing method
JP2003100991A (en) * 2001-09-20 2003-04-04 Ricoh Co Ltd Phase change type nonvolatile memory cell, memory array using phase change type nonvolatile memory cell and method for recording information in phase change type nonvolatile memory cell
JP2004289029A (en) * 2003-03-25 2004-10-14 Hitachi Ltd Memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127176A (en) * 1994-10-31 1996-05-21 Hitachi Ltd Information recording thin film, manufacture thereof information recording medium and using method therefor
WO2000054982A1 (en) * 1999-03-15 2000-09-21 Matsushita Electric Industrial Co., Ltd. Information recording medium and method for manufacturing the same
JP2001322357A (en) * 2000-03-10 2001-11-20 Matsushita Electric Ind Co Ltd Information recording medium and its manufacturing method
JP2003100991A (en) * 2001-09-20 2003-04-04 Ricoh Co Ltd Phase change type nonvolatile memory cell, memory array using phase change type nonvolatile memory cell and method for recording information in phase change type nonvolatile memory cell
JP2004289029A (en) * 2003-03-25 2004-10-14 Hitachi Ltd Memory

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119733A1 (en) * 2006-04-13 2007-10-25 Ulvac, Inc. Method for fabricating variable resistance element
WO2008099692A1 (en) * 2007-01-30 2008-08-21 Ricoh Company, Ltd. Optical recording medium, and sputtering target and method for producing the same
JP2008210492A (en) * 2007-01-30 2008-09-11 Ricoh Co Ltd Optical recording medium, sputtering target, and method for producing same
US8227067B2 (en) 2007-01-30 2012-07-24 Ricoh Company, Ltd. Optical recording medium, and sputtering target and method for producing the same
JP2015103695A (en) * 2013-11-26 2015-06-04 株式会社日立製作所 Phase change memory and semiconductor recording/reproducing device
KR20160078478A (en) 2014-03-25 2016-07-04 제이엑스금속주식회사 Sputtering target of sintered sb-te-based alloy
US10854435B2 (en) 2014-03-25 2020-12-01 Jx Nippon Mining & Metals Corporation Sputtering target of sintered Sb—Te-based alloy
US10889887B2 (en) 2016-08-22 2021-01-12 Honeywell International Inc. Chalcogenide sputtering target and method of making the same
US11946132B2 (en) 2016-08-22 2024-04-02 Honeywell International Inc. Chalcogenide sputtering target and method of making the same

Similar Documents

Publication Publication Date Title
JP4766441B2 (en) Phase change film for semiconductor non-volatile memory and sputtering target for forming the phase change film
KR101157150B1 (en) Phase change recording film having high electrical resistance and sputtering target for forming phase change recording film
TWI303281B (en)
JP4061557B2 (en) A sputtering target for forming a phase change film and a method for producing the same.
JP2006245251A (en) Phase change recording film with stable amorphous state, and sputtering target for forming it
TW201042064A (en) Sintered body target and method for producing sintered body
JP2005117030A (en) Phase-change film for semiconductor nonvolatile memory, and sputtering target for forming the film
JP4606721B2 (en) Phase change recording film with high electrical resistance
JP2005117031A (en) Phase-change film for semiconductor nonvolatile memory, and sputtering target for forming the film
JP4606720B2 (en) Phase change recording film with high electrical resistance
JP2012108997A (en) Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium
JP2004311728A (en) Phase change recording film having high electric resistance
JP4454253B2 (en) Phase change recording film having high electrical resistance and sputtering target for forming the phase change recording film
JP4300328B2 (en) Sputtering target for phase change recording film
JP4687949B2 (en) Method for producing target for forming phase change recording film with short pre-sputtering time
JP2004311729A (en) Phase change recording film having high electric resistance
JP2005290404A (en) High-strength sputtering target
JP4465711B2 (en) GaSb phase change recording film for producing phase change recording medium excellent in storage stability of recording mark and sputtering target for forming this recording film
JP4172015B2 (en) Sputtering target for phase change memory film formation with excellent spatter crack resistance
JP2005022406A (en) GaSb-BASED PHASE CHANGING TYPE RECORDING FILM WITH LOW MELTING POINT AND LOW CRYSTALLIZATION TEMPERATURE AND SPUTTERING TARGET FOR FORMING THE GaSb-BASED PHASE CHANGING TYPE RECORDING FILM
JP2007293966A (en) Gesb-based phase-change recording film excellent in storage stability of recording mark and spattering target for forming the gesb-based phase-change recording film
JPH062131A (en) Sputtering target for magneto-optical recording medium and its production
JP2006181887A (en) GaSb PHASE CHANGE TYPE RECORDING FILM EXCELLENT IN SHELF STABILITY OF RECORDING MARK AND SPUTTERING TARGET FOR FORMING THIS GaSb PHASE CHANGE TYPE RECORDING FILM
JP2004292895A (en) Method for manufacturing high-strength sputtering target for forming phase-change memory film
CN114717524A (en) Ru-Sb-Te alloy sputtering target material suitable for serving as long-storage phase change storage medium and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110414