JP2004309465A - 異方導電性コネクターおよび導電性ペースト組成物、プローブ部材並びにウエハ検査装置およびウエハ検査方法 - Google Patents

異方導電性コネクターおよび導電性ペースト組成物、プローブ部材並びにウエハ検査装置およびウエハ検査方法 Download PDF

Info

Publication number
JP2004309465A
JP2004309465A JP2004072009A JP2004072009A JP2004309465A JP 2004309465 A JP2004309465 A JP 2004309465A JP 2004072009 A JP2004072009 A JP 2004072009A JP 2004072009 A JP2004072009 A JP 2004072009A JP 2004309465 A JP2004309465 A JP 2004309465A
Authority
JP
Japan
Prior art keywords
conductive
anisotropic conductive
wafer
particles
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004072009A
Other languages
English (en)
Inventor
Hisao Igarashi
久夫 五十嵐
Katsumi Sato
克己 佐藤
Kazuo Inoue
和夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2004072009A priority Critical patent/JP2004309465A/ja
Publication of JP2004309465A publication Critical patent/JP2004309465A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】 ウエハに形成された複数の集積回路の電気的検査において、多数回にわたって繰り返して使用された場合に、長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる異方導電性コネクターおよびその応用を提供する。
【解決手段】 上記の課題は、導電性粒子が含有された厚み方向に伸びる複数の接続用導電部が形成された弾性異方導電膜を有する異方導電性コネクターにおいて、前記接続用導電部に含有された導電性粒子は、磁性を示す芯粒子の表面に磁性を示す芯粒子の表面に高導電性金属よりなる被覆層が積層されてなり、当該被覆層は高硬度な被覆層であることを特徴とする異方導電性コネクターによって解決される。
【選択図】 図4

Description

本発明は、プリント回路基板、集積回路装置、ウエハに形成された集積回路、回路の形成された液晶パネルなどの電気的検査を行うために好適に用いられる異方導電性コネクター、およびこの異方導電性コネクターを得るための導電性ペースト組成物、この異方導電性コネクターを具えたプローブ部材、並びにこのプローブ部材を具えたウエハ検査装置およびこのプローブ部材を使用したウエハ検査方法に関する。更に詳しくは、ウエハに形成された集積回路について、プローブ試験やバーンイン試験などの電気的検査を行うために好適に用いられる異方導電性コネクターおよびこの異方導電性コネクターを得るための導電性ペースト組成物、この異方導電性コネクターを具えたプローブ部材、並びにこのプローブ部材を具えたウエハ検査装置およびこのプローブ部材を使用したウエハ検査方法に関する。
一般に、半導体集積回路装置の製造工程においては、例えばシリコンよりなるウエハに多数の集積回路を形成し、その後、これらの集積回路の各々について、基礎的な電気特性を検査することによって、欠陥を有する集積回路を選別するプローブ試験が行われる。このプローブ試験は、例えは85℃の温度環境下において行われている。次いで、このウエハを切断することによって半導体チップが形成され、この半導体チップが適宜のパッケージ内に収納されて封止される。更に、パッケージ化された半導体集積回路装置の各々について、例えば125℃の高温環境下において電気特性を検査することによって、潜在的欠陥を有する半導体集積回路装置を選別するバーンイン試験が行われる。
このようなプローブ試験またはバーイン試験などの集積回路の電気的検査においては、検査対象物における被検査電極の各々をテスターに電気的に接続するためにプローブ部材が用いられている。このようなプローブ部材としては、被検査電極のパターンに対応するパターンに従って検査電極が形成された検査用回路基板と、この検査用回路基板上に配置された異方導電性エラストマーシートとよりなるものが知られている。
かかる異方導電性エラストマーシートとしては、従来、種々の構造のものが知られており、例えば特許文献1等には、導電性粒子をエラストマー中に厚み方向に並ぶよう配向した状態で分散して得られる異方導電性エラストマーシート(以下、「分散型異方導電性エラストマーシート」という。)が開示され、また、特許文献2等には、導電性粒子をエラストマー中に厚み方向に並ぶよう配向した状態で不均一に分布させることにより、厚み方向に伸びる多数の導電部と、これらを相互に絶縁する絶縁部とが形成されてなる異方導電性エラストマーシート(以下、これを「偏在型異方導電性エラストマーシート」という。)が開示され、更に、特許文献3等には、導電部の表面と絶縁部との間に段差が形成された偏在型異方導電性エラストマーシートが開示されている。
そして、偏在型異方導電性エラストマーシートは、検査すべき集積回路の被検査電極のパターンに対応するパターンに従って導電部が形成されているため、分散型異方導電性エラストマーシートに比較して、被検査電極の配列ピッチすなわち隣接する被検査電極の中心間距離が小さい集積回路などに対しても電極間の電気的接続を高い信頼性で達成することができる点で、有利である。
また、これらの異方導電性エラストマーシートにおいては、当該異方導電性エラストマーシートを製造する際に、磁場の作用によって導電性粒子を厚み方向に並ぶよう配向させるために、当該導電性粒子として磁性を示すものを用いることが必要である。また、高い導電性を有し、かつ、その導電性が長時間維持される異方導電性エラストマーシートを得るためには、導電性粒子としては、それ自体高い導電性を有し、かつ、長時間にわたって化学的に安定なものであることが肝要である。このような観点から、導電性粒子としては、ニッケルなどの強磁性体よりなる芯粒子の表面に金よりなる被覆層が形成されてなるものが使用されている。
ところで、ウエハに形成された集積回路に対して行われるプローブ試験においては、従来、ウエハに形成された多数の集積回路のうち例えば16個または32個の集積回路からなる集積回路群について一括してプローブ試験を行い、順次、その他の集積回路群についてプローブ試験を行う方法が採用されている。
そして、近年、検査効率を向上させ、検査コストの低減化を図るために、ウエハに形成された多数の集積回路のうち例えば64個若しくは128個または全部の集積回路について一括してプローブ試験を行うことが要請されている。
このようなプローブ試験において、検査対象であるウエハが量産品である場合には、当該プローブ試験を行うためのプローブ部材に用いられる異方導電性エラストマーシートとしては、例えば5万回以上繰り返して使用することが可能な耐久性が求められる。
しかしながら、従来の異方導電性エラストマーシートにおいては、プローブ試験に例えば2万回以上繰り返して使用すると、導電部の導電性が著しく低下するため、その後の試験に供することができず、新たなものに交換することが必要であった。
また、バーンイン試験においては、検査対象である集積回路装置は微小なものであってその取扱いが不便なものであるため、多数の集積回路装置の電気的検査を個別的に行うためには,長い時間を要し、これにより、検査コストが相当に高いものとなる。このような理由から、ウエハ上に形成された多数の集積回路について、それらのバーンイン試験をウエハの状態で一括して行うWLBI(Wafer Lebel Burn−in)試験が提案されている。
このようなWLBI試験において、検査対象であるウエハが量産品である場合には、当該WLBI試験を行うためのプローブ部材に用いられる異方導電性エラストマーシートとしては、例えば500回以上繰り返して使用することが可能な耐久性が求められる。
しかしながら、従来の異方導電性エラストマーシートにおいては、WLBI試験に例えば200回以上繰り返して使用すると、導電部の導電性が著しく低下するため、その後の試験に供することができず、新たなものに交換することが必要であった。
また、例えばフリップチップ実装法においては、表面電極上に、共晶ハンダ、鉛フリーハンダ、高温ハンダ(鉛リッチハンダ)などよりなる半球状の突起電極が形成されてなる半導体チップが用いられており、このような半導体チップを高い効率で得るために、ウエハの状態で各集積回路における電極上に突起電極を形成することが行われている。
而して、ウエハのプローブ試験において、用いられる異方導電性エラストマーシートとしては、検査対象であるウエハが突起状の被検査電極を有するものである場合にも、多数回にわたって繰り返して使用することが可能な耐久性が求められる。
しかしながら、従来の異方導電性エラストマーシートにおいては、突起状の被検査電極を有するウエハのプローブ試験に例えば1万回以上繰り返して使用すると、導電部の導電性が著しく低下するため、その後の試験に供することができず、新たなものに交換することが必要であった。
特開昭51−93393号公報 特開昭53−147772号公報 特開昭61−250906号公報
本発明は、以上のような事情に基づいてなされたものであって、その第1の目的は、ウエハに形成された複数の集積回路の電気的検査において、多数回にわたって繰り返して使用された場合に、長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる異方導電性コネクターを提供することにある。
本発明の第2の目的は、ウエハに形成された複数の集積回路の電気的検査において、ウエハに形成された集積回路の被検査電極が突起状のものであっても、多数回にわたって繰り返して使用された場合に、長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる異方導電性コネクターを提供することにある。
本発明の第3の目的は、ウエハに形成された複数の集積回路の電気的検査において、当該電気的検査が高温環境下において行われるものであっても、多数回にわたって繰り返して使用された場合に、長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる異方導電性コネクターを提供することにある。
本発明の第4の目的は、上記の目的に加えて、ウエハに形成された集積回路の被検査電極に直接接触させて多数回にわたって繰り返して使用された場合に、長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる異方導電性コネクターを提供することにある。
本発明の第5の目的は、回路部品の電気的検査において、当該電気的検査が高温環境下において行われるものであっても、多数回にわたって繰り返して使用された場合に、長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる異方導電性コネクターを提供することにある。
本発明の第6の目的は、上記の異方導電性コネクターにおける弾性異方導電膜を形成するために好適な導電性ペースト組成物を提供することにある。
本発明の第7の目的は、ウエハに形成された複数の集積回路の電気的検査において、多数回にわたって繰り返して使用された場合に、長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られるプローブ部材を提供することにある。 本発明の第8の目的は、上記のプローブ部材を使用して、ウエハに形成された複数の集積回路の電気的検査をウエハの状態で行うウエハ検査装置およびウエハ検査方法を提供することにある。
本発明者らは、異方導電性コネクターを繰り返して使用した場合に、導電部の導電性が著しく低下する原因について鋭意検討を重ねたところ、導電性粒子における被覆層を構成する金が、金属としての硬度が小さいものであるため、繰り返して使用するに従って、導電性粒子同士の接触および導電性粒子と被検査電極との接触により、当該導電性粒子における被覆層に、剥離、磨耗、変形などが生じる結果、ニッケルなどよりなる芯粒子が表面に露出し、これにより、導電部の導電性が著しく低下することを見いだし、この知見に基づいて本発明を完成したものである。
本発明の異方導電性コネクターは、導電性粒子が含有された厚み方向に伸びる複数の接続用導電部が形成された弾性異方導電膜を有する異方導電性コネクターにおいて、
前記接続用導電部に含有された導電性粒子は、磁性を示す芯粒子の表面に高導電性金属よりなる被覆層が積層されてなり、当該被覆層は高硬度な被覆層であることを特徴とする。
本発明の異方導電性コネクターは、導電性粒子が含有された厚み方向に伸びる複数の接続用導電部が形成された弾性異方導電膜を有する異方導電性コネクターにおいて、
前記接続用導電部に含有された導電性粒子は、磁性を示す芯粒子の表面に高導電性金属よりなる複数の被覆層が積層されてなり、前記複数の被覆層のうち少なくとも最外層の被覆層は高硬度な被覆層であることを特徴とする。
本発明の異方導電性コネクターにおいては、高硬度な被覆層のビッカース硬度(HV)が40以上であることが好ましい。
また、導電性粒子におけるビッカース硬度(Hv)が40以上である被覆層は、2種類以上の高導電性金属よりなるものであってもよい。
このような異方導電性コネクターにおいては、導電性粒子におけるビッカース硬度(Hv)が40以上である被覆層は、金とその他の高導電性金属とよりなることが好ましい。 また、導電性粒子におけるビッカース硬度(Hv)が40以上である被覆層は、2種類以上の高導電性金属による合金をターゲットとするスパッター法により形成されていてもよい。
また、導電性粒子におけるビッカース硬度(Hv)が40以上である被覆層は、2種類以上の高導電性金属成分を含有してなるメッキ液によるメッキ処理により形成されていてもよい。
また、本発明の異方導電性コネクターにおいては、厚み方向に伸びる異方導電膜配置用孔が形成されたフレーム板を有し、このフレーム板の異方導電膜配置用孔に、弾性異方導電膜が配置され、当該フレーム板に支持されていることが好ましい。
また、本発明の異方導電性コネクターにおいては、ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うために用いられる異方導電性コネクターである場合には、検査対象であるウエハにおける集積回路の被検査電極が形成された電極領域に対応してそれぞれ厚み方向に伸びる複数の異方導電膜配置用孔が形成されたフレーム板を有し、このフレーム板の異方導電膜配置用孔の各々に、弾性異方導電膜が配置され、当該フレーム板に支持されていることが好ましい。
本発明の導電性ペースト組成物は、硬化されて弾性高分子物質となる高分子形成材料と、上記の導電性粒子とを含有してなることを特徴とする。
このような導電性ペースト組成物は、上記の異方導電性コネクターにおける弾性異方導電膜を形成するために好適なものである。
本発明のプローブ部材は、ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うために用いられるプローブ部材であって、
検査対象であるウエハにおける集積回路の被検査電極のパターンに対応するパターンに従って検査電極が表面に形成された検査用回路基板と、この検査用回路基板の表面に配置された、上記の異方導電性コネクターとを具えてなることを特徴とする。
本発明のプローブ部材においては、異方導電性コネクターが前記フレーム板を具えてなるものである場合には、当該異方導電性コネクターにおけるフレーム板の線熱膨張係数が3×10-5/K以下であり、検査用回路基板を構成する基板材料の線熱膨張係数が3×10-5/K以下であることが好ましい。
また、本発明のプローブ部材においては、異方導電性コネクター上に、絶縁性シートと、この絶縁性シートをその厚み方向に貫通して伸び、被検査電極のパターンに対応するパターンに従って配置された複数の電極構造体とよりなるシート状コネクターが配置されていてもよい。
本発明のウエハ検査装置は、ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うウエハ検査装置において、
上記のプローブ部材を具えてなり、当該プローブ部材を介して、検査対象であるウエハに形成された集積回路に対する電気的接続が達成されることを特徴とする。
本発明のウエハの検査方法は、ウエハに形成された複数の集積回路の各々を、上記のプローブ部材を介してテスターに電気的に接続し、当該ウエハに形成された集積回路の電気的検査を実行することを特徴とする。
本発明の異方導電性コネクターによれば、弾性異方導電膜における接続用導電部中に含有された導電性粒子は、例えばビッカ−ス硬度(Hv)が40以上である高硬度な被覆層が形成されてなるものであるため、例えばウエハに形成された集積回路の電気的検査において、多数回にわたって繰り返し使用した場合にも、導電性粒子同士の接触などによって、導電性粒子における被覆層に、剥離、摩耗、変形などが生じることが抑制され、その結果、長時間にわたって所要の導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる。
また、被覆層を金と他の高導電性金属とにより構成することにより、高い導電性を有する接続用導電部が得られると共に、高温環境下において多数回にわたって繰り返して使用された場合にも、導電性粒子の表面が変質することが抑制され、その結果、長期間にわたって所要の導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる。
また、弾性異方導電膜を支持するフレーム板を設けることにより、変形しにくくて取り扱い易く、ウエハとの電気的接続作業において、当該ウエハに対する位置合わせおよび保持固定を容易に行うことができる。
また、フレーム板として、検査対象であるウエハにおける集積回路の被検査電極が形成された電極領域に対応して複数の異方導電膜配置用孔が形成されてなるものを用いることにより、フレーム板の異方導電膜配置用孔の各々に配置される弾性異方導電膜は面積が小さいものでよいため、個々の弾性異方導電膜の形成が容易である。しかも、面積の小さい弾性異方導電膜は、熱履歴を受けた場合でも、当該弾性異方導電膜の面方向における熱膨張の絶対量が少ないため、フレーム板を構成する材料として線熱膨張係数の小さいものを用いることにより、弾性異方導電膜の面方向における熱膨張がフレーム板によって確実に規制される。従って、大面積のウエハに対してプローブ試験またはウエハレベルバーンイン試験を行う場合においても、良好な電気的接続状態を安定に維持することができる。
本発明の導電性ペースト組成物によれば、上記の異方導電性コネクターにおける弾性異方導電膜を有利に製造することができる。
本発明に係るプローブ部材によれば、上記の異方導電性コネクターを具えてなるため、多数回にわたって繰り返して使用された場合に、長期間にわたって良好な導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる。
本発明に係るウエハ検査装置およびウエハ検査方法によれば、耐久性が高くて使用寿命の長い異方導電性コネクターを有するプローブ部材を使用するため、多数回にわたってウエハの検査を行う場合において、異方導電性コネクターを新たなものに交換する頻度を少なくすることができ、これにより、高い効率でウエハの検査を行うことができると共に、検査コストの低減化を図ることができる。
以下、本発明の実施の形態について詳細に説明する。
〔異方導電性コネクター〕
図1は、本発明に係る異方導電性コネクターの一例を示す平面図、図2は、図1に示す異方導電性コネクターの一部を拡大して示す平面図、図3は、図1に示す異方導電性コネクターにおける弾性異方導電膜を拡大して示す平面図、図4は、図1に示す異方導電性コネクターにおける弾性異方導電膜を拡大して示す説明用断面図である。
図1に示す異方導電性コネクターは、例えば複数の集積回路が形成されたウエハについて当該集積回路の各々の電気的検査をウエハの状態で行うために用いられるものであって、図2に示すように、それぞれ厚み方向に貫通して伸びる複数の異方導電膜配置用孔11(破線で示す)が形成されたフレーム板10を有する。このフレーム板10の異方導電膜配置用孔11は、検査対象であるウエハにおける集積回路の被検査電極が形成された電極領域のパターンに対応して形成されている。フレーム板10の各異方導電膜配置用孔11内には、厚み方向に導電性を有する弾性異方導電膜20が、当該フレーム板10の当該異方導電膜配置用孔11の周辺部に支持された状態で、かつ、隣接する弾性異方導電膜20と互いに独立した状態で配置されている。また、この例におけるフレーム板10には、後述するウエハ検査装置において、減圧方式の加圧手段を用いる場合に、当該異方導電性コネクターとこれに隣接する部材との間の空気を流通させるための空気流通孔15が形成され、更に、検査対象であるウエハおよび検査用回路基板との位置決めを行うための位置決め孔16が形成されている。
弾性異方導電膜20は、弾性高分子物質によって形成されており、図3に示すように、厚み方向(図3において紙面と垂直な方向)に伸びる複数の接続用導電部22と、この接続用導電部22の各々の周囲に形成され、当該接続用導電部22の各々を相互に絶縁する絶縁部23とよりなる機能部21を有し、当該機能部21は、フレーム板10の異方導電膜配置用孔11に位置するよう配置されている。この機能部21における接続用導電部22は、検査対象であるウエハにおける集積回路の被検査電極のパターンに対応するパターンに従って配置され、当該ウエハの検査において、その被検査電極に電気的に接続されるものである。
機能部21の周縁には、フレーム板10における異方導電膜配置用孔11の周辺部に固定支持された被支持部25が、当該機能部21に一体に連続して形成されている。具体的には、この例における被支持部25は、二股状に形成されており、フレーム板10における異方導電膜配置用孔11の周辺部を把持するよう密着した状態で固定支持されている。 弾性異方導電膜20の機能部21における接続用導電部22には、図4に示すように、磁性を示す導電性粒子Pが厚み方向に並ぶよう配向した状態で密に含有されている。これに対して、絶縁部23は、導電性粒子Pが全く或いは殆ど含有されていないものである。この例においては、弾性異方導電膜20における被支持部25には、導電性粒子Pが含有されている。
また、図示の例では、弾性異方導電膜20における機能部21の両面には、接続用導電部22およびその周辺部分が位置する個所に、それ以外の表面から突出する突出部24が形成されている。
フレーム板10の厚みは、その材質によって異なるが、20〜600μmであることが好ましく、より好ましくは40〜400μmである。
この厚みが20μm未満である場合には、異方導電性コネクターを使用する際に必要な強度が得られず、耐久性が低いものとなりやすく、また、当該フレーム板10の形状が維持される程度の剛性が得られず、異方導電性コネクターの取扱い性が低いものとなる。一方、厚みが600μmを超える場合には、異方導電膜配置用孔11に形成される弾性異方導電膜20は、その厚みが過大なものとなって、接続用導電部22における良好な導電性および隣接する接続用導電部22間における絶縁性を得ることが困難となることがある。 フレーム板10の異方導電膜配置用孔11における面方向の形状および寸法は、検査対象であるウエハの被検査電極の寸法、ピッチおよびパターンに応じて設計される。
フレーム板10を構成する材料としては、当該フレーム板10が容易に変形せず、その形状が安定に維持される程度の剛性を有するものであれば特に限定されず、例えば、金属材料、セラミックス材料、樹脂材料などの種々の材料を用いることができ、フレーム板10を例えば金属材料により構成する場合には、当該フレーム板10の表面に絶縁性被膜が形成されていてもよい。
フレーム板10を構成する金属材料の具体例としては、鉄、銅、ニッケル、クロム、コバルト、マグネシウム、マンガン、モリブデン、インジウム、鉛、パラジウム、チタン、タングステン、アルミニウム、金、白金、銀などの金属またはこれらを2種以上組み合わせた合金若しくは合金鋼などが挙げられる。
フレーム板10を構成する樹脂材料の具体例としては、液晶ポリマー、ポリイミド樹脂などが挙げられる。
また、絶縁性被膜としては、フッ素樹脂被膜、ポリイミド樹脂被膜、フッ素樹脂やポリイミド樹脂を含む複合被膜、金属酸化物被膜などを用いることができる。
また、フレーム板10は、後述する方法により、弾性異方導電膜20における被支持部25に導電性粒子Pを容易に含有させることができる点で、少なくとも異方導電膜配置用孔11の周辺部すなわち弾性異方導電膜20を支持する部分が磁性を示すもの、具体的にはその飽和磁化が0.1Wb/m2 以上のものであることが好ましく、特に、当該フレーム板10の作製が容易な点で、フレーム板10全体が磁性体により構成されていることが好ましい。
このようなフレーム板10を構成する磁性体の具体例としては、鉄、ニッケル、コバルト若しくはこれらの磁性金属の合金またはこれらの磁性金属と他の金属との合金若しくは合金鋼などが挙げられる。
また、異方導電性コネクターをプローブ試験またはウエハレベルバーンイン試験に用いる場合には、フレーム板10を構成する材料としては、線熱膨張係数が3×10-5/K以下のものを用いることが好ましく、より好ましくは−1×10-7〜1×10-5/K、特に好ましくは1×10-6〜8×10-6/Kである。
このような材料の具体例としては、インバーなどのインバー型合金、エリンバーなどのエリンバー型合金、スーパーインバー、コバール、42合金などの磁性金属の合金または合金鋼などが挙げられる。
弾性異方導電膜20の全厚(図示の例では接続用導電部22における厚み)は、50〜3000μmであることが好ましく、より好ましくは70〜2500μm、特に好ましくは100〜2000μmである。この厚みが50μm以上であれば、十分な強度を有する弾性異方導電膜20が確実に得られる。一方、この厚みが3000μm以下であれば、所要の導電性特性を有する接続用導電部22が確実に得られる。
図示の例では、突出部24は、弾性異方導電膜20の両面の各々に形成されているが、弾性異方導電膜20の片面にのみ形成されていてもよい。このような突出部24の突出高さは、その合計が当該突出部24における厚みの10%以上であることが好ましく、より好ましくは20%以上である。このような突出高さを有する突出部24を形成することにより、小さい加圧力で接続用導電部22が十分に圧縮されるため、良好な導電性が確実に得られる。
また、突出部24の突出高さは、当該突出部24の最短幅または直径の100%以下であることが好ましく、より好ましくは70%以下である。このような突出高さを有する突出部24を形成することにより、当該突出部24が加圧されたときに座屈することがないため、所期の導電性が確実に得られる。
また、被支持部25の厚み(図示の例では二股部分の一方の厚み)は、5〜600μmであることが好ましく、より好ましくは10〜500μm、特に好ましくは20〜400μmである。
また、被支持部25は二股状に形成されることは必須のことではなく、フレーム板10の一面のみに固定されていてもよい。
弾性異方導電膜20を形成する弾性高分子物質としては、架橋構造を有する耐熱性の高分子物質が好ましい。かかる架橋高分子物質を得るために用いることができる硬化性の高分子物質形成材料としては、種々のものを用いることができるが、液状シリコーンゴムが好ましい。
液状シリコーンゴムは、付加型のものであっても縮合型のものであってもよいが、付加型液状シリコーンゴムが好ましい。この付加型液状シリコーンゴムは、ビニル基とSi−H結合との反応によって硬化するものであって、ビニル基およびSi−H結合の両方を含有するポリシロキサンからなる一液型(一成分型)のものと、ビニル基を含有するポリシロキサンおよびSi−H結合を含有するポリシロキサンからなる二液型(二成分型)のものがあるが、本発明においては、二液型の付加型液状シリコーンゴムを用いることが好ましい。
付加型液状シリコーンゴムとしては、その23℃における粘度が100〜1,000Pa・sのものを用いることが好ましく、さらに好ましくは150〜800Pa・s、特に好ましくは250〜500Pa・sのものである。この粘度が100Pa・s未満である場合には、後述する弾性異方導電膜20を得るための成形材料において、当該付加型液状シリコーンゴム中における導電性粒子の沈降が生じやすく、良好な保存安定性が得られず、また、成形材料層に平行磁場を作用させたときに、導電性粒子が厚み方向に並ぶよう配向せず、均一な状態で導電性粒子の連鎖を形成することが困難となることがある。一方、この粘度が1,000Pa・sを超える場合には、得られる成形材料が粘度の高いものとなるため、金型内に成形材料層を形成しにくいものとなることがあり、また、成形材料層に平行磁場を作用させても、導電性粒子が十分に移動せず、そのため、導電性粒子を厚み方向に並ぶよう配向させることが困難となることがある。
このような付加型液状シリコーンゴムの粘度は、B型粘度計によって測定することができる。
弾性異方導電膜20を液状シリコーンゴムの硬化物(以下、「シリコーンゴム硬化物」という。)によって形成する場合において、当該シリコーンゴム硬化物は、その150℃における圧縮永久歪みが10%以下であることが好ましく、より好ましくは8%以下、さらに好ましくは6%以下である。この圧縮永久歪みが10%を超える場合には、得られる異方導電性コネクターを高温環境下において繰り返し使用したときには、接続用導電部22における導電性粒子の連鎖に乱れが生じる結果、所要の導電性を維持することが困難となる。
ここで、シリコーンゴム硬化物の圧縮永久歪みは、JIS K 6249に準拠した方法によって測定することができる。
また、弾性異方導電膜20を形成するシリコーンゴム硬化物は、その23℃におけるデュロメーターA硬度が10〜60のものであることが好ましく、さらに好ましくは15〜60、特に好ましくは20〜60のものである。このデュロメーターA硬度が10未満である場合には、加圧されたときに、接続用導電部22を相互に絶縁する絶縁部23が過度に歪みやすく、接続用導電部22間の所要の絶縁性を維持することが困難となることがある。一方、このデュロメーターA硬度が60を超える場合には、接続用導電部22に適正な歪みを与えるために相当に大きい荷重による加圧力が必要となるため、例えば検査対象であるウエハに大きな変形や破壊が生じやすくなる。
ここで、シリコーンゴム硬化物のデュロメーターA硬度は、JIS K 6249に準拠した方法によって測定することができる。
また、弾性異方導電膜20を形成するシリコーンゴム硬化物は、その23℃における引き裂き強度が8kN/m以上のものであることが好ましく、さらに好ましくは10kN/m以上、より好ましくは15kN/m以上、特に好ましくは20kN/m以上のものである。この引き裂き強度が8kN/m未満である場合には、弾性異方導電膜20に過度の歪みが与えられたときに、耐久性の低下を起こしやすい。
ここで、シリコーンゴム硬化物の引き裂き強度は、JIS K 6249に準拠した方法によって測定することができる。
このような特性を有する付加型液状シリコーンゴムとしては、信越化学工業株式会社製の液状シリコーンゴム「KE2000」シリーズ、「KE1950」シリーズ、「KE1990」シリーズとして市販されているものを用いることができる。
本発明においては、付加型液状シリコーンゴムを硬化させるために適宜の硬化触媒を用いることができる。このような硬化触媒としては、白金系のものを用いることができ、その具体例としては、塩化白金酸およびその塩、白金−不飽和基含有シロキサンコンプレックス、ビニルシロキサンと白金とのコンプレックス、白金と1,3−ジビニルテトラメチルジシロキサンとのコンプレックス、トリオルガノホスフィンあるいはホスファイトと白金とのコンプレックス、アセチルアセテート白金キレート、環状ジエンと白金とのコンプレックスなどの公知のものが挙げられる。
硬化触媒の使用量は、硬化触媒の種類、その他の硬化処理条件を考慮して適宜選択されるが、通常、付加型液状シリコーンゴム100重量部に対して3〜15重量部である。
また、付加型液状シリコーンゴム中には、付加型液状シリコーンゴムのチクソトロピー性の向上、粘度調整、導電性粒子の分散安定性の向上、或いは高い強度を有する基材を得ることなどを目的として、必要に応じて、通常のシリカ粉、コロイダルシリカ、エアロゲルシリカ、アルミナなどの無機充填材を含有させることができる。
このような無機充填材の使用量は、特に限定されるものではないが、多量に使用すると、磁場による導電性粒子の配向を十分に達成することができなくなるため、好ましくない。
弾性異方導電膜20における接続用導電部22および被支持部25に含有される導電性粒子Pとしては、磁性を示す芯粒子(以下、「磁性芯粒子」ともいう。)の表面に、1層または2層以上の高導電性金属よりなる被覆層が形成されてなるものが用いられる。ここで、「高導電性金属」とは、0℃における導電率が5×106 Ω-1-1以上のものをいう。
導電性粒子Pを得るための磁性芯粒子は、その数平均粒子径が3〜50μmのものであることが好ましい。
ここで、磁性芯粒子の数平均粒子径は、レーザー回折散乱法によって測定されたものをいう。
上記数平均粒子径が3μm以上であれば、加圧変形が容易で、抵抗値が低くて接続信頼性の高い接続用導電部22が得られやすい。一方、上記数平均粒子径が50μm以下であれば、微細な接続用導電部22を容易に形成することができ、また、得られる接続用導電部22は、安定な導電性を有するものとなりやすい。
また、磁性芯粒子は、そのBET比表面積が10〜1500m2 /kgであることが好ましく、より好ましくは20〜1000m2 /kg、特に好ましくは50〜500m2 /kgである。
このBET比表面積が10m2 /kg以上であれば、当該磁性芯粒子はメッキ可能な領域が十分に大きいものであるため、当該磁性芯粒子に所要の量のメッキを確実に行うことができ、従って、導電性の大きい導電性粒子Pを得ることができると共に、当該導電性粒子P間において、接触面積が十分に大きいため、安定で高い導電性が得られる。一方、このBET比表面積が1500m2 /kg以下であれば、当該磁性芯粒子が脆弱なものとならず、物理的な応力が加わった際に破壊することが少なく、安定で高い導電性が保持される。
また、磁性芯粒子は、その粒子径の変動係数が50%以下のものであることが好ましく、より好ましくは40%以下、更に好ましくは30%以下、特に好ましくは20%以下のものである。
ここで、粒子径の変動係数は、式:(σ/Dn)×100(但し、σは、粒子径の標準偏差の値を示し、Dnは、粒子の数平均粒子径を示す。)によって求められるものである。
上記粒子径の変動係数が50%以下であれば、粒子径の均一性が大きいため、導電性のバラツキの小さい接続用導電部22を形成することかできる。
磁性芯粒子を構成する材料としては、鉄、ニッケル、コバルト、これらの金属を銅、樹脂にコーティングしたものなどを用いことができるが、その飽和磁化が0.1Wb/m2 以上のものを好ましく用いることができ、より好ましくは0.3Wb/m2 以上、特に好ましくは0.5Wb/m2 以上のものであり、具体的には、鉄、ニッケル、コバルトまたはそれらの合金を挙げることができる。
この飽和磁化が0.1Wb/m2 以上であれば、後述する方法によって、当該弾性異方導電膜20を形成するための成形材料層中において導電性粒子Pを容易に移動させることができ、これにより、当該成形材料層における接続用導電部となる部分に、導電性粒子Pを確実に移動させて導電性粒子Pの連鎖を形成することができる。
本発明においては、導電性粒子Pにおける被覆層が1層である場合には、当該被覆層は、例えばビッカース硬度(Hv)が40以上、好ましくは50以上の高硬度なものとされ、導電性粒子Pにおける被覆層が2層以上である場合には、それらのうち少なくとも最外層の被覆層(以下、「表面被覆層」という。)は、例えばビッカース硬度(Hv)が40以上、好ましくは150以上の高硬度なものとされる。
このような被覆層は、単一の金属により構成されていても2種以上の金属によって構成されていてもよい。また、2種類以上の金属により被覆層を構成する場合には、ビッカース硬度(Hv)が40以上の金属のみを用いる必要はなく、被覆層全体としてのビッカース硬度(Hv)が40以上であれば、ビッカース硬度(Hv)が40以上の金属とそれ以外の金属例えば金との合金よりなるものであってもよく、ビッカース硬度(Hv)が40以上の金属よりなる金属相がそれ以外の金属例えば金よりなる金属相中に分散された相分離構造を有するものであってもよい。
ビッカース硬度(Hv)が40以上の高導電性金属としては、パラジュウム、ロジウム、ルテニウム、イリジュウム、白金、タングステン、ニッケル、コバルト、クロムまたはこれらの合金などを用いることができ、これらの中では、化学的に安定でかつ高い導電率を有する点でパラジュウム、ロジウム、ルテニウム、イリジュウム、白金を用いるが好ましい。
また、ビッカース硬度(Hv)が40以上の金属と金との合金としては、金・パラジュウム合金、金・銅合金、白金・金合金、ニッケルやコバルトを0.1〜1.0%含有する硬質金などを用いることができ、これらの中では、化学的に安定でかつ高い導電率を有する点で、金・パラジュウム合金、ニッケルやコバルトを0.1〜1.0%含有する硬質金を用いることが好ましい。
また、2層以上の被覆層を有する導電性粒子においては、表面被覆層以外の被覆層(以下、「中間被覆層」という。)を構成する金属としては、特に限定されるものではないが、極めて高い導電性を有する点で、銀、銅、金を用いることが好ましく、特に、化学的に安定である点で金が好ましい。
導電性粒子Pは、磁性芯粒子の質量に対する被覆層の質量(2層以上の被覆層を有する場合にはその合計の質量)の割合〔(被覆層の質量/芯粒子の質量)×100〕が15質量%以上のものであることが好ましく、より好ましくは25〜35質量%である。
被覆層の質量の割合が15質量%未満である場合には、得られる異方導電性コネクターを高温環境下に繰り返し使用したとき、当該導電性粒子Pの導電性が著しく低下して所要の導電性を維持することが困難となることがある。
また、導電性粒子Pは、下記の数式によって算出される被覆層の厚みtが40nm以上のものであることが好ましく、より好ましくは100〜200nmである。
t=〔1/(Sw・ρ)〕×〔N/(1−N)〕
〔但し、tは被覆層の厚み(m)、Swは芯粒子のBET比表面積(m2 /kg)、ρは被覆層を構成する金属の比重(kg/m3 )、Nは(被覆層の質量/導電性粒子全体の質量)の値を示す。〕
上記の数式は、次のようにして導かれたものである。
(イ)磁性芯粒子の重量をMp(kg)とすると、磁性芯粒子の表面積S(m2 )は、
S=Sw・Mp ………式(1)
によって求められる。
(ロ)被覆層の質量をm(kg)とすると、当該被覆層の体積V(m3 )は、
V=m/ρ ………式(2)
によって求められる。
(ハ)ここで、被覆層の厚みが導電性粒子の表面全体にわたって均一なものであると仮定すると、t=V/Sであり、これに上記式(1)および式(2)を代入すると、被覆層の厚みtは、
t=(m/ρ)/(Sw・Mp)=m/(Sw・ρ・Mp) ………式(3)
によって求められる。
(ニ)また、Nは、導電性粒子全体の質量に対する被覆層の質量の比であるから、このNの値は、
N=m/(Mp+m) ………式(4)
によって求められる。
(ホ)この式(4)の右辺における分子・分母をMpで割ると、
N=(m/Mp)/(1+m/Mp)となり、両辺に(1+m/Mp)をかけると、
N(1+m/Mp)=m/Mp、更には、
N+N(m/Mp)=m/Mpとなり、N(m/Mp)を右辺に移行すると、
N=m/Mp−N(m/Mp)=(m/Mp)(1−N)となり、両辺を(1−N)で割ると、
N/(1−N)=m/Mpとなり、
従って、磁性芯粒子の質量Mpは、
Mp=m/〔N/(1−N)〕=m(1−N)/N ………式(5)
によって求められる。
(ヘ)そして、式(3)に式(5)を代入すると、
t=1/〔Sw・ρ・(1−N)/N〕
=〔1/(Sw・ρ)〕×〔N/(1−N)〕
が導かれる。
この被覆層の厚みtが40nm以上であれば、当該異方導電性コネクターを高温環境下に繰り返し使用した場合において、磁性芯粒子を構成する物質や被検査電極を構成する物質が被覆層中に移行しても、当該導電性粒子Pの表面には、高導電性金属が高い割合で存在するので、当該導電性粒子Pの導電性が著しく低下することがなく、所期の導電性が維持される。
また、導電性粒子Pは、そのBET比表面積が10〜1500m2 /kgであることが好ましい。
このBET比表面積が10m2 /kg以上であれば、被覆層の表面積が十分に大きいものであるため、高導電性金属の総重量が大きい被覆層を形成することができ、従って、導電性の大きいを粒子を得ることができると共に、当該導電性粒子P間において、接触面積が十分に大きいため、安定で高い導電性が得られる。一方、このBET比表面積が1500m2 /kg以下であれば、当該導電性粒子が脆弱なものとならず、物理的な応力が加わった際に破壊することが少なく、安定で高い導電性が保持される。
また、導電性粒子Pの数平均粒子径は、3〜50μmであることが好ましく、より好ましくは6〜15μmである。
このような導電性粒子Pを用いることにより、得られる弾性異方導電膜20は、加圧変形が容易なものとなり、また、当該弾性異方導電膜20における接続用導電部22において導電性粒子P間に十分な電気的接触が得られる。
また、導電性粒子Pの形状は、特に限定されるものではないが、高分子物質形成材料中に容易に分散させることができる点で、球状のもの、星形状のものあるいはこれらが凝集した2次粒子による塊状のものであることが好ましい。
また、導電性粒子Pは、下記に示す電気抵抗値Rが0.3Ω以下となるものであることが好ましく,より好ましくは0.1Ω以下のものである。
電気抵抗値R:導電性粒子6gと液状ゴム8gとを混練することによってペースト組成物を調製し、このペースト組成物を、0.5mmの離間距離で互いに対向するよう配置された、それぞれ径が1mmの一対の電極間に配置し、当該一対の電極間に0.3Tの磁場を作用させ、この状態で当該一対の電極間の電気抵抗値が安定するまで放置したときの当該電気抵抗値。
具体的には、この電気抵抗値Rは、以下のようにして測定される。
図5は、電気抵抗値Rを測定するための装置であり、71は試料室Sを形成するセラミック製のセルであって、筒状の側壁材72と、それぞれ中央に貫通孔73Hを有する一対の蓋材73とにより構成されている。74は導電性を有する一対の磁石であって、それぞれ表面から突出する、蓋材73の貫通孔73Hに適合する形状の電極部75を有し、この電極部75が蓋材73の貫通孔73Hに嵌合された状態で、当該蓋材73に固定されている。76は電気抵抗測定機であって、一対の磁石74の各々に接続されている。セル71の試料室Sは、直径d1が3mm、厚みd2が0.5mmの円板状であり、蓋材73の貫通孔73Hの内径すなわち磁石74の電極部75の直径rは1mmである。
そして、セル71の試料室Sに、上記のペースト組成物を充填し、磁石74の電極部75間に当該試料室Sの厚み方向に0.3Tの平行磁場を作用させながら、電気抵抗測定機76によって磁石74の電極部75間の電気抵抗値を測定する。その結果、ペースト組成物中に分散されていた導電性粒子が、平行磁場の作用により磁石74の電極部75間に集合し、更には厚み方向に並ぶよう配向し、この導電性粒子の移動に伴って、磁石74の電極部75間の電気抵抗値が低下した後安定状態となり、このときの電気抵抗値を測定する。ペースト組成物に平行磁場を作用させてから、磁石74の電極部75間の電気抵抗値が安定状態に達するまでの時間は、導電性粒子の種類によって異なるが、通常、ペースト組成物に平行磁場を作用させてから500秒間経過した後における電気抵抗値を電気抵抗値Rとして測定する。
この電気抵抗値Rが0.3Ω以下であれば、高い導電性を有する接続用導電部22が確実に得られる。
導電性粒子Pの含水率は、5質量%以下であることが好ましく、より好ましくは3質量%以下、さらに好ましくは2質量%以下、特に好ましくは1質量%以下である。このような条件を満足することにより、成形材料の調製または弾性異方導電膜20の形成において、硬化処理する際に気泡が生ずることが防止または抑制される。
また、導電性粒子Pは、その表面がシランカップリング剤などのカップリング剤で処理されたものあってもよい。導電性粒子Pの表面がカップリング剤で処理されることにより、当該導電性粒子Pと弾性高分子物質との接着性が高くなり、その結果、耐久性が高い導電性材料が得られる。
カップリング剤の使用量は、導電性粒子Pの導電性に影響を与えない範囲で適宜選択されるが、導電性粒子Pの表面におけるカップリング剤の被覆割合(導電性粒子の表面積に対するカップリング剤の被覆面積の割合)が5%以上となる量であることが好ましく、より好ましくは上記被覆率が7〜100%、さらに好ましくは10〜100%、特に好ましくは20〜100%となる量である。
このような導電性粒子Pは、例えは以下の方法によって得ることができる。
先ず、強磁性体材料を常法により粒子化し或いは市販の強磁性体粒子を用意し、この粒子に対して分級処理を行うことにより、所要の粒子径を有する磁性芯粒子を調製する。
ここで、粒子の分級処理は、例えば空気分級装置、音波ふるい装置などの分級装置によって行うことができる。
また、分級処理の具体的な条件は、目的とする磁性芯粒子の数平均粒子径、分級装置の種類などに応じて適宜設定される。
次いで、磁性芯粒子に対して表面酸化膜除去処理を行い、更に、例えば純水によって表面洗浄処理することにより、磁性芯粒子の表面に存在する汚れ、異物、酸化膜などの不純物を除去する。そして、必要に応じて、磁性芯粒子に対して酸化防止処理を行った後、当該磁性芯粒子の表面に高導電性金属よりなる被覆層を形成し、更に必要に応じて分級処理することによって、導電性粒子が得られる。 ここで、磁性芯粒子の表面酸化膜除去処理の具体的な方法としては、塩酸などの酸による処理方法を利用することができる。
また、磁性芯粒子の酸化防止処理の具体的な方法としては、水溶性フラーレンなどによる処理方法を利用することができる。
また、被覆層を形成する方法としては、特に限定されず種々の方法を利用することができ、例えば置換メッキ法や化学還元メッキ法等の無電解メッキ法、電気メッキ法などの湿式法、スパッター法、蒸着法などの乾式法を用いることができ、これらの中では、無電解メッキ法、電気メッキ法、スパッター法を好適に利用することができる。
化学還元メッキ法や置換メッキ法等の無電解メッキ法によって被覆層を形成する方法について説明すると、先ず、メッキ液中に、酸処理および洗浄処理された磁性芯粒子を添加してスラリーを調製し、このスラリーを攪拌しながら当該磁性芯粒子の無電解メッキを行う。次いで、スラリー中の粒子をメッキ液から分離し、その後、当該粒子を例えば純水によって洗浄処理することにより、磁性芯粒子の表面に高導電性金属よりなる被覆層が形成されてなる導電性粒子が得られる。
また、2層以上の被覆層を形成する場合には、例えば無電解メッキ法により、磁性芯粒子の表面に中間被覆層を形成し、その後、電気メッキ法により、中間被覆層の表面に表面被覆層を形成することが好ましい。
無電解メッキ法に用いられるメッキ液としては、特に限定されるものではなく、種々の市販のものを用いることができる。
また、磁性芯粒子の表面に高導電性金属を被覆する際に、粒子が凝集することにより、粒子径の大きい導電性粒子が発生することがあるため、必要に応じて、導電性粒子の分級処理を行うことが好ましく、これにより、所期の粒子径を有する導電性粒子が確実に得られる。
導電性粒子の分級処理を行うための分級装置としては、前述の磁性芯粒子を調製するための分級処理に用いられる分級装置として例示したものを挙げることができる。
機能部21の接続用導電部22における導電性粒子Pの含有割合は、体積分率で10〜60%、好ましくは15〜50%となる割合で用いられることが好ましい。この割合が10%未満の場合には、十分に電気抵抗値の小さい接続用導電部22が得られないことがある。一方、この割合が60%を超える場合には、得られる接続用導電部22は脆弱なものとなりやすく、接続用導電部22として必要な弾性が得られないことがある。
また、被支持部25における導電性粒子Pの含有割合は、弾性異方導電膜20を形成するための成形材料中の導電性粒子の含有割合によって異なるが、弾性異方導電膜20における接続用導電部22のうち最も外側に位置する接続用導電部22に、過剰な量の導電性粒子Pが含有されることが確実に防止される点で、成形材料中の導電性粒子の含有割合と同等若しくはそれ以上であることが好ましく、また、十分な強度を有する被支持部25が得られる点で、体積分率で30%以下であることが好ましい。
上記の異方導電性コネクターは、例えば以下のようにして製造することができる。
先ず、検査対象であるウエハにおける集積回路の被検査電極が形成された電極領域のパターンに対応して異方導電膜配置用孔11が形成された磁性金属よりなるフレーム板10を作製する。ここで、フレーム板10の異方導電膜配置用孔11を形成する方法としては、例えばエッチング法などを利用することができる。
次いで、硬化されて弾性高分子物質となる高分子形成材料中に上記の導電性粒子が分散されてなる導電性ペースト組成物を調製する。そして、図6に示すように、弾性異方導電性膜成形用の金型60を用意し、この金型60における上型61および下型65の各々の成形面に、弾性異方導電膜用の成形材料として上記の導電性ペースト組成物を、所要のパターンすなわち形成すべき弾性異方導電膜の配置パターンに従って塗布することによって成形材料層20Aを形成する。
ここで、金型60について具体的に説明すると、この金型60は、上型61およびこれと対となる下型65が互いに対向するよう配置されて構成されている。
上型61においては、図7に拡大して示すように、基板62の下面に、成形すべき弾性異方導電性膜20の接続用導電部22の配置パターンに対掌なパターンに従って強磁性体層63が形成され、この強磁性体層63以外の個所には、非磁性体層64が形成されており、これらの強磁性体層63および非磁性体層64によって成形面が形成されている。また、上型61の成形面には、成形すべき弾性異方導電膜20における突出部24に対応して凹所64aが形成されている。
一方、下型65においては、基板66の上面に、成形すべき弾性異方導電膜20の接続用導電部22の配置パターンと同一のパターンに従って強磁性体層67が形成され、この強磁性体層67以外の個所には、非磁性体層68が形成されており、これらの強磁性体層67および非磁性体層68によって成形面が形成されている。また、下型65の成形面には、成形すべき弾性異方導電膜20における突出部24に対応して凹所68aが形成されている。
上型61および下型65の各々における基板62,66は、強磁性体により構成されていることが好ましく、このような強磁性体の具体例としては、鉄、鉄−ニッケル合金、鉄−コバルト合金、ニッケル、コバルトなどの強磁性金属が挙げられる。この基板62,66は、その厚みが0.1〜50mmであることが好ましく、表面が平滑で、化学的に脱脂処理され、また、機械的に研磨処理されたものであることが好ましい。
また、上型61および下型65の各々における強磁性体層63,67を構成する材料としては、鉄、鉄−ニッケル合金、鉄−コバルト合金、ニッケル、コバルトなどの強磁性金属を用いることができる。この強磁性体層63,67は、その厚みが10μm以上であることが好ましい。この厚みが10μm以上であれば、成形材料層20Aに対して、十分な強度分布を有する磁場を作用させることができ、この結果、当該成形材料層20Aにおける接続用導電部22となる部分に導電性粒子を高密度に集合させることができ、良好な導電性を有する接続用導電部22が得られる。
また、上型61および下型65の各々における非磁性体層64,68を構成する材料としては、銅などの非磁性金属、耐熱性を有する高分子物質などを用いることができるが、フォトリソグラフィーの手法により容易に非磁性体層64,68を形成することができる点で、放射線によって硬化された高分子物質を好ましく用いることができ、その材料としては、例えばアクリル系のドライフィルムレジスト、エポキシ系の液状レジスト、ポリイミド系の液状レジストなどのフォトレジストを用いることができる。
上型61および下型65の成形面に成形材料を塗布する方法としては、スクリーン印刷法を用いることが好ましい。このような方法によれば、成形材料を所要のパターンに従って塗布することが容易で、しかも、適量の成形材料を塗布することができる。
次いで、図8に示すように、成形材料層20Aが形成された下型65の成形面上に、スペーサー69aを介して、フレーム板10を位置合わせして配置すると共に、このフレーム板10上に、スペーサー69bを介して、成形材料層20Aが形成された上型61を位置合わせして配置し、更に、これらを重ね合わせることにより、図9に示すように、上型61と下型65との間に、目的とする形態(形成すべき弾性異方導電膜20の形態)の成形材料層20Aが形成される。この成形材料層20Aにおいては、図10に示すように、導電性粒子Pは成形材料層20A全体に分散された状態で含有されている。
このようにフレーム板10と上型61および下型65との間にスペーサー69a,69bを配置することにより、目的とする形態の弾性異方導電膜を形成することができると共に、隣接する弾性異方導電膜同士が連結することが防止されるため、互いに独立した多数の弾性異方導電膜を確実に形成することができる。
その後、上型61における基板62の上面および下型65における基板66の下面に例えば一対の電磁石を配置してこれを作動させることにより、上型61および下型65が強磁性体層63,67を有するため、上型61の強磁性体層63とこれに対応する下型65の強磁性体層67との間においてその周辺領域より大きい強度を有する磁場が形成される。その結果、成形材料層20Aにおいては、当該成形材料層20A中に分散されていた導電性粒子Pが、図11に示すように、上型61の強磁性体層63とこれに対応する下型65の強磁性体層67との間に位置する接続用導電部22となる部分に集合して厚み方向に並ぶよう配向する。以上において、フレーム板10が磁性金属よりなるため、上型61および下型65の各々とフレーム板10との間においてその付近より大きい強度の磁場が形成される結果、成形材料層20Aにおけるフレーム板10の上方および下方にある導電性粒子Pは、上型61の強磁性体層63と下型65の強磁性体層67との間に集合せず、フレーム板10の上方および下方に保持されたままとなる。
そして、この状態において、成形材料層20Aを硬化処理することにより、弾性高分子物質中に導電性粒子Pが厚み方向に並ぶよう配向した状態で含有されてなる複数の接続用導電部22が、導電性粒子Pが全く或いは殆ど存在しない高分子弾性物質よりなる絶縁部23によって相互に絶縁された状態で配置されてなる機能部21と、この機能部21の周辺に連続して一体に形成された、弾性高分子物質中に導電性粒子Pが含有されてなる被支持部25とよりなる弾性異方導電膜20が、フレーム板10の異方導電膜配置用孔11の周辺部に当該被支持部25が固定された状態で形成され、以て異方導電性コネクターが製造される。
以上において、成形材料層20Aにおける接続用導電部22となる部分および被支持部25となる部分に作用させる外部磁場の強度は、平均で0.1〜2.5テスラとなる大きさが好ましい。
成形材料層20Aの硬化処理は、使用される材料によって適宜選定されるが、通常、加熱処理によって行われる。加熱により成形材料層20Aの硬化処理を行う場合には、電磁石にヒーターを設ければよい。具体的な加熱温度および加熱時間は、成形材料層20Aを構成する高分子物質形成材料などの種類、導電性粒子Pの移動に要する時間などを考慮して適宜選定される。
上記の異方導電性コネクターによれば、弾性異方導電膜20における接続用導電部22中に含有された導電性粒子Pは、ビッカ−ス硬度(Hv)が40以上である被覆層が形成されてなるものであるため、例えばウエハに形成された集積回路の電気的検査において、多数回にわたって繰り返し使用した場合にも、導電性粒子P同士の接触などによって、導電性粒子Pにおける被覆層に、剥離、摩耗、変形などが生じることが抑制され、その結果、長時間にわたって所要の導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる。
また、導電性粒子Pとして、金と他の高導電性金属とよりなるものを用いることにより、高い導電性を有する接続用導電部が得られると共に、高温環境下において多数回にわたって繰り返して使用された場合にも、導電性粒子の表面が変質することが抑制され、その結果、長期間にわたって所要の導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる。
また、導電性粒子Pとして、その被覆層20の質量の割合が芯粒子の質量に対して15質量%以上で、当該高導電性金属による被覆層の厚みtが40nm以上のものを用いることにより、高温環境下において繰り返して使用した場合に、導電性粒子Pにおける磁性芯粒子を構成する物質や被検査電極を構成する物質が被覆層中に移行しても、当該導電性粒子Pの表面には、高導電性金属が高い割合で存在するので、当該導電性粒子Pの導電性が著しく低下することがなく、その結果、長期間にわたって所要の導電性が維持され、従って、耐久性が高くて長い使用寿命が得られる。
また、弾性異方導電膜20には、接続用導電部22を有する機能部21の周縁に被支持部25が形成されており、この被支持部25がフレーム板10の異方導電膜配置用孔11の周辺部に固定されているため、変形しにくくて取扱いやすく、検査対象であるウエハとの電気的接続作業において、当該ウエハに対する位置合わせおよび保持固定を容易に行うことができる。
また、フレーム板10の異方導電膜配置用孔11の各々は、検査対象であるウエハにおける集積回路の被検査電極が形成された電極領域に対応して形成されており、当該異方導電膜配置用孔11の各々に配置される弾性異方導電膜20は面積が小さいものでよいため、個々の弾性異方導電膜20の形成が容易である。しかも、面積の小さい弾性異方導電膜20は、熱履歴を受けた場合でも、当該弾性異方導電膜20の面方向における熱膨張の絶対量が少ないため、フレーム板10を構成する材料として線熱膨張係数の小さいものを用いることにより、弾性異方導電膜20の面方向における熱膨張がフレーム板によって確実に規制される。従って、大面積のウエハに対してWLBI試験またはプローブ試験を行う場合においても、良好な電気的接続状態を安定に維持することができる。
また、フレーム板10として磁性を示すものを用いることにより、弾性異方導電膜20の形成において、成形材料層20Aにおける被支持部25となる部分に例えば磁場を作用させることによって当該部分に導電性粒子Pが存在したままの状態で、当該成形材料層20Aの硬化処理を行うことができるため、成形材料層20Aにおける被支持部25となる部分すなわちフレーム板10における異方導電膜配置用孔11の周辺部の上方および下方に位置する部分に存在する導電性粒子Pが、接続用導電部22となる部分に集合することがなく、その結果、得られる弾性異方導電膜20における接続用導電部22のうち最も外側に位置する接続用導電部22に、過剰な量の導電性粒子Pが含有されることが防止される。従って、成形材料層20A中の導電性粒子Pの含有量を少なくする必要もないので、弾性異方導電膜20の全ての接続用導電部22について、良好な導電性が確実に得られると共に隣接する接続用導電部22との絶縁性が確実に得られる。
また、フレーム板10に位置決め孔16が形成されているため、検査対象であるウエハまたは検査用回路基板に対する位置合わせを容易に行うことができる。
また、フレーム板10に空気流通孔15が形成されているため、後述するウエハ検査装置において、プローブ部材を押圧する手段として減圧方式によるものを利用した場合には、チャンバー内を減圧したときに、異方導電性コネクターと検査用回路基板との間に存在する空気がフレーム板10の空気流通孔15を介して排出され、これにより、異方導電性コネクターと検査用回路基板とを確実に密着させることができるので、所要の電気的接続を確実に達成することができる。
〔ウエハ検査装置〕
図12は、本発明に係る異方導電性コネクターを用いたウエハ検査装置の一例における構成の概略を示す説明用断面図である。このウエハ検査装置は、ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うためのものである。
図12に示すウエハ検査装置は、検査対象であるウエハ6の被検査電極7の各々とテスターとの電気的接続を行うプローブ部材1を有する。このプローブ部材1においては、図13にも拡大して示すように、検査対象であるウエハ6の被検査電極7のパターンに対応するパターンに従って複数の検査電極31が表面(図において下面)形成された検査用回路基板30を有し、この検査用回路基板30の表面には、図1〜図4に示す構成の異方導電性コネクター2が、その弾性異方導電膜20における接続用導電部22の各々が検査用回路基板30の検査電極31の各々に対接するよう設けられ、この異方導電性コネクター2の表面(図において下面)には、絶縁性シート41に検査対象であるウエハ6の被検査電極7のパターンに対応するパターンに従って複数の電極構造体42が配置されてなるシート状コネクター40が、当該電極構造体42の各々が異方導電性コネクター2の弾性異方導電膜20における接続用導電部22の各々に対接するよう設けられている。
また、プローブ部材1における検査用回路基板30の裏面(図において上面)には、当該プローブ部材1を下方に加圧する加圧板3が設けられ、プローブ部材1の下方には、検査対象であるウエハ6が載置されるウエハ載置台4が設けられており、加圧板3およびウエハ載置台4の各々には、加熱器5が接続されている。
検査用回路基板30を構成する基板材料としては、従来公知の種々の基板材料を用いることができ、その具体例としては、ガラス繊維補強型エポキシ樹脂、ガラス繊維補強型フェノール樹脂、ガラス繊維補強型ポリイミド樹脂、ガラス繊維補強型ビスマレイミドトリアジン樹脂等の複合樹脂材料、ガラス、二酸化珪素、アルミナ等のセラミックス材料などが挙げられる。
また、WLBI試験またはプローブ試験を行うためのウエハ検査装置を構成する場合には、線熱膨張係数が3×10-5/K以下のものを用いることが好ましく、より好ましくは1×10-7〜1×10-5/K、特に好ましくは1×10-6〜6×10-6/Kである。
このような基板材料の具体例としては、パイレックス(登録商標)ガラス、石英ガラス、アルミナ、ベリリア、炭化ケイ素、窒化アルミニウム、窒化ホウ素など挙げられる。
プローブ部材1におけるシート状コネクター40について具体的に説明すると、このシート状コネクター40は、柔軟な絶縁性シート41を有し、この絶縁性シート41には、当該絶縁性シート41の厚み方向に伸びる複数の金属よりなる電極構造体42が、検査対象であるウエハ6の被検査電極7のパターンに対応するパターンに従って、当該絶縁性シート41の面方向に互いに離間して配置されている。
電極構造体42の各々は、絶縁性シート41の表面(図において下面)に露出する突起状の表面電極部43と、絶縁性シート41の裏面に露出する板状の裏面電極部44とが、絶縁性シート41の厚み方向に貫通して伸びる短絡部45によって互いに一体に連結されて構成されている。
絶縁性シート41としては、絶縁性を有する柔軟なものであれば特に限定されるものではなく、例えばポリイミド樹脂、液晶ポリマー、ポリエステル、フッ素系樹脂などよりなる樹脂シート、繊維を編んだクロスに上記の樹脂を含浸したシートなどを用いることができる。
また、絶縁性シート41の厚みは、当該絶縁性シート41が柔軟なものであれば特に限定されないが、10〜50μmであることが好ましく、より好ましくは10〜25μmである。
電極構造体42を構成する金属としては、ニッケル、銅、金、銀、パラジウム、鉄などを用いることができ、電極構造体42としては、全体が単一の金属よりなるものであっても、2種以上の金属の合金よりなるものまたは2種以上の金属が積層されてなるものであってもよい。
また、電極構造体42における表面電極部43および裏面電極部44の表面には、当該電極部の酸化が防止されると共に、接触抵抗の小さい電極部が得られる点で、金、銀、パラジウムなどの化学的に安定で高導電性を有する金属被膜が形成されていることが好ましい。
電極構造体42における表面電極部43の突出高さは、ウエハ6の被検査電極7に対して安定な電気的接続を達成することができる点で、15〜50μmであることが好ましく、より好ましくは15〜30μmである。また、表面電極部43の径は、ウエハ6の被検査電極の寸法およびピッチに応じて設定されるが、例えば30〜80μmであり、好ましくは30〜50μmである。
電極構造体42における裏面電極部44の径は、短絡部45の径より大きく、かつ、電極構造体42の配置ピッチより小さいものであればよいが、可能な限り大きいものであることが好ましく、これにより、異方導電性コネクター2の弾性異方導電膜20における接続用導電部22に対しても安定な電気的接続を確実に達成することができる。また、裏面電極部44の厚みは、強度が十分に高くて優れた繰り返し耐久性が得られる点で、20〜50μmであることが好ましく、より好ましくは30〜40μmである。
電極構造体42における短絡部45の径は、十分に高い強度が得られる点で、30〜80μmであることが好ましく、より好ましくは30〜50μmである。
シート状コネクター40は、例えば以下のようにして製造することができる。
すなわち、絶縁性シート41上に金属層が積層されてなる積層材料を用意し、この積層材料における絶縁性シート41に対して、レーザ加工、ドライエッチング加工等によって、当該絶縁性シート41の厚み方向に貫通する複数の貫通孔を、形成すべき電極構造体42のパターンに対応するパターンに従って形成する。次いで、この積層材料に対してフォトリソグラフィーおよびメッキ処理を施すことによって、絶縁性シート41の貫通孔内に金属層に一体に連結された短絡部45を形成すると共に、当該絶縁性シート41の表面に、短絡部45に一体に連結された突起状の表面電極部43を形成する。その後、積層材料における金属層に対してフォトエッチング処理を施してその一部を除去することにより、裏面電極部44を形成して電極構造体42を形成し、以てシート状コネクター40が得られる。
このような電気的検査装置においては、ウエハ載置台4上に検査対象であるウエハ6が載置され、次いで、加圧板3によってプローブ部材1が下方に加圧されることにより、そのシート状コネクター40の電極構造体42における表面電極部43の各々が、ウエハ6の被検査電極7の各々に接触し、更に、当該表面電極部43の各々によって、ウエハ6の被検査電極7の各々が加圧される。この状態においては、異方導電性コネクター2の弾性異方導電膜20における接続用導電部22の各々は、検査用回路基板30の検査電極31とシート状コネクター40の電極構造体42の表面電極部43とによって挟圧されて厚み方向に圧縮されており、これにより、当該接続用導電部22にはその厚み方向に導電路が形成され、その結果、ウエハ6の被検査電極7と検査用回路基板30の検査電極31との電気的接続が達成される。その後、加熱器5によって、ウエハ載置台4および加圧板3を介してウエハ6が所定の温度に加熱され、この状態で、当該ウエハ6における複数の集積回路の各々について所要の電気的検査が実行される。
このようなウエハ検査装置によれば、耐久性が高くて使用寿命の長い異方導電性コネクター2を有するプローブ部材1を具えてなるため、多数回にわたってウエハの検査を行う場合において、異方導電性コネクター2を新たなものに交換する頻度を少なくすることができ、これにより、高い効率でウエハの検査を行うことができると共に、検査コストの低減化を図ることができる。
また、被検査電極7のピッチが小さいものであっても、当該ウエハに対する位置合わせおよび保持固定を容易に行うことができ、しかも、高温環境下において繰り返し使用した場合にも、所要の電気的検査を長期間にわたって安定して実行することができる。
また、異方導電性コネクター2における弾性異方導電膜20は、それ自体の面積が小さいものであり、熱履歴を受けた場合でも、当該弾性異方導電膜20の面方向における熱膨張の絶対量が少ないため、フレーム板10を構成する材料として線熱膨張係数の小さいものを用いることにより、弾性異方導電膜20の面方向における熱膨張がフレーム板によって確実に規制される。従って、大面積のウエハに対してWLBI試験を行う場合においても、良好な電気的接続状態を安定に維持することができる。
図14は、本発明に係る異方導電性コネクターを用いたウエハ検査装置の他の例における構成の概略を示す説明用断面図である。
このウエハ検査装置は、検査対象であるウエハ6が収納される、上面が開口した箱型のチャンバー50を有する。このチャンバー50の側壁には、当該チャンバー50の内部の空気を排気するための排気管51が設けられており、この排気管51には、例えば真空ポンプ等の排気装置(図示省略)が接続されている。
チャンバー50上には、図12に示すウエハ検査装置におけるプローブ部材1と同様の構成のプローブ部材1が、当該チャンバー50の開口を気密に塞ぐよう配置されている。具体的には、チャンバー50における側壁の上端面上には、弾性を有するO−リング55が密着して配置され、プローブ部材1は、その異方導電性コネクター2およびシート状コネクター40がチャンバー50内に収容され、かつ、その検査用回路基板30における周辺部がO−リング55に密着した状態で配置されており、更に、検査用回路基板30が、その裏面(図において上面)には設けられた加圧板3によって下方に加圧された状態とされている。
また、チャンバー50および加圧板3には、加熱器5が接続されている。
このようなウエハ検査装置においては、チャンバー50の排気管51に接続された排気装置を駆動させることにより、チャンバー50内が例えば1000Pa以下に減圧される結果、大気圧によって、プローブ部材1が下方に加圧される。これにより、O−リング55が弾性変形するため、プローブ部材1が下方に移動する結果、シート状コネクター40の電極構造体42における表面電極部43の各々によって、ウエハ6の被検査電極7の各々が加圧される。この状態においては、異方導電性コネクター2の弾性異方導電膜20における接続用導電部22の各々は、検査用回路基板30の検査電極31とシート状コネクター40の電極構造体42の表面電極部43とによって挟圧されて厚み方向に圧縮されており、これにより、当該接続用導電部22にはその厚み方向に導電路が形成され、その結果、ウエハ6の被検査電極7と検査用回路基板30の検査電極31との電気的接続が達成される。その後、加熱器5によって、チャンバー50および加圧板3を介してウエハ6が所定の温度に加熱され、この状態で、当該ウエハ6における複数の集積回路の各々について所要の電気的検査が実行される。
このようなウエハ検査装置によれば、図12に示すウエハ検査装置と同様の効果が得られ、更に、大型の加圧機構が不要であるため、検査装置全体の小型化を図ることができると共に、検査対象であるウエハ6が例えば直径が8インチ以上の大面積のものであっても、当該ウエハ6全体を均一な力で押圧することができる。しかも、異方導電性コネクター2におけるフレーム板10には、空気流通孔15が形成されているため、チャンバー50内を減圧したときに、異方導電性コネクター2と検査用回路基板30との間に存在する空気が、異方導電性コネクター2におけるフレーム板10の空気流通孔15を介して排出され、これにより、異方導電性コネクター2と検査用回路基板30とを確実に密着させることができるので、所要の電気的接続を確実に達成することができる。
〔他の実施の形態〕
本発明は、上記の実施の形態に限定されず、次のような種々の変更を加えることが可能である。
(1)異方導電性コネクターにおいては、弾性異方導電膜20には、接続用導電部22以外に、ウエハにおける被検査電極に電気的に接続されない非接続用導電部が形成されていてもよい。以下、非接続用導電部が形成された弾性異方導電膜を有する異方導電性コネクターについて説明する。
図15は、本発明に係る異方導電性コネクターの他の例における弾性異方導電膜を拡大して示す平面図である。この異方導電性コネクターの弾性異方導電膜20においては、その機能部21に、検査対象であるウエハの被検査電極に電気的に接続される厚み方向(図15において紙面と垂直な方向)に伸びる複数の接続用導電部22が、被検査電極のパターンに対応するパターンに従って2列に並ぶよう配置され、これらの接続用導電部22の各々は、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で密に含有されてなり、導電性粒子が全く或いは殆ど含有されていない絶縁部23によって相互に絶縁されている。
そして、接続用導電部22が並ぶ方向において、最も外側に位置する接続用導電部22とフレーム板10との間には、検査対象であるウエハの被検査電極に電気的に接続されない厚み方向に伸びる非接続用導電部26が形成されている。この非接続用導電部26は、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で密に含有されてなり、導電性粒子が全く或いは殆ど含有されていない絶縁部23によって、接続用導電部22と相互に絶縁されている。
また、図示の例では、弾性異方導電膜20における機能部21の両面には、接続用導電部22およびその周辺部分が位置する個所並びに非接続用導電部26およびその周辺部分が位置する個所に、それら以外の表面から突出する突出部24および突出部27が形成されている。
機能部21の周縁には、フレーム板10における異方導電膜配置用孔11の周辺部に固定支持された被支持部25が、当該機能部21に一体に連続して形成されており、この被支持部25には、導電性粒子が含有されている。
その他の構成は、基本的に図1〜図4に示す異方導電性コネクターの構成と同様である。
図16は、本発明に係る異方導電性コネクターの更に他の例における弾性異方導電膜を拡大して示す平面図である。この異方導電性コネクターの弾性異方導電膜20においては、その機能部21に、検査対象であるウエハの被検査電極に電気的に接続される厚み方向(図16において紙面と垂直な方向)に伸びる複数の接続用導電部22が、被検査電極のパターンに対応するパターンに従って並ぶよう配置され、これらの接続用導電部22の各々は、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で密に含有されてなり、導電性粒子が全く或いは殆ど含有されていない絶縁部23によって相互に絶縁されている。
これらの接続用導電部22のうち中央に位置する互いに隣接する2つの接続用導電部22は、その他の互いに隣接する接続用導電部22間における離間距離より大きい離間距離で配置されている。そして、中央に位置する互いに隣接する2つの接続用導電部22の間には、検査対象であるウエハの被検査電極に電気的に接続されない厚み方向に伸びる非接続用導電部26が形成されている。この非接続用導電部26は、磁性を示す導電性粒子が厚み方向に並ぶよう配向した状態で密に含有されてなり、導電性粒子が全く或いは殆ど含有されていない絶縁部23によって、接続用導電部22と相互に絶縁されている。
また、図示の例では、弾性異方導電膜20における機能部21の両面には、接続用導電部22およびその周辺部分が位置する個所並びに非接続用導電部26およびその周辺部分が位置する個所に、それら以外の表面から突出する突出部24および突出部27が形成されている。
機能部21の周縁には、フレーム板10における異方導電膜配置用孔11の周辺部に固定支持された被支持部25が、当該機能部21に一体に連続して形成されており、この被支持部25には、導電性粒子が含有されている。
その他の具体的な構成は、基本的に図1〜図4に示す異方導電性コネクターの構成と同様である。
図15に示す異方導電性コネクターおよび図16に示す異方導電性コネクターは、図7に示す金型の代わりに、成形すべき弾性異方導電性膜20の接続用導電部22および非接続用導電部26の配置パターンに対応するパターンに従って強磁性体層が形成され、この強磁性体層以外の個所には、非磁性体層が形成された上型および下型からなる金型を用いることにより、前述の図1〜図4に示す異方導電性コネクターを製造する方法と同様にして製造することができる。
すなわち、このような金型によれば、上型における基板の上面および下型における基板の下面に例えば一対の電磁石を配置してこれを作動させることにより、当該上型および当該下型の間に形成された成形材料層においては、当該成形材料層における機能部21となる部分に分散されていた導電性粒子が、接続用導電部22となる部分および非接続用導電部26となる部分に集合して厚み方向に並ぶよう配向し、一方、成形材料層におけるフレーム板10の上方および下方にある導電性粒子は、フレーム板10の上方および下方に保持されたままとなる。
そして、この状態において、成形材料層を硬化処理することにより、弾性高分子物質中に導電性粒子が厚み方向に並ぶよう配向した状態で含有されてなる複数の接続用導電部22および非接続用導電部26が、導電性粒子が全く或いは殆ど存在しない高分子弾性物質よりなる絶縁部23によって相互に絶縁された状態で配置されてなる機能部21と、この機能部21の周辺に連続して一体に形成された、弾性高分子物質中に導電性粒子が含有されてなる被支持部25とよりなる弾性異方導電膜20が、フレーム板10の異方導電膜配置用孔11の周辺部に当該被支持部25が固定された状態で形成され、以て異方導電性コネクターが製造される。
図15に示す異方導電性コネクターにおける非接続用導電部26は、弾性異方導電膜20の形成において、成形材料層における非接続用導電部26となる部分に磁場を作用させることにより、成形材料層における最も外側に位置する接続用導電部22となる部分とフレーム板10との間に存在する導電性粒子を、非接続用導電部26となる部分に集合させ、この状態で、当該成形材料層の硬化処理を行うことにより得られる。そのため、当該弾性異方導電膜20の形成において、導電性粒子が、成形材料層における最も外側に位置する接続用導電部22となる部分に過剰に集合することがない。従って、形成すべき弾性異方導電膜20が、比較的多数の接続用導電部22を有するものであっても、当該弾性異方導電膜20における最も外側に位置する接続用導電部22に、過剰な量の導電性粒子が含有されることが確実に防止される。
また、図16に示す異方導電性コネクターにおける非接続用導電部26は、弾性異方導電膜20の形成において、成形材料層における非接続用導電部26となる部分に磁場を作用させることにより、成形材料層における大きい離間距離で配置された隣接する2つの接続用導電部22となる部分の間に存在する導電性粒子を、非接続用導電部26となる部分に集合させ、この状態で、当該成形材料層の硬化処理を行うことにより得られる。そのため、当該弾性異方導電膜20の形成において、導電性粒子が、成形材料層における大きい離間距離で配置された隣接する2つの接続用導電部22となる部分に過剰に集合することがない。従って、形成すべき弾性異方導電膜20が、それぞれ大きい離間距離で配置された2つ以上の接続用導電部22を有するものであっても、それらの接続用導電部22に、過剰な量の導電性粒子が含有されることが確実に防止される。
(2)異方導電性コネクターにおいては、弾性異方導電膜20における突出部24は必須のものではなく、一面または両面が平坦面のもの、或いは凹所が形成されたものであってもよい。
(3)弾性異方導電膜20における接続用導電部22の表面には、金属層あるいはDLC(ダイヤモンドライクカーボン)層が形成されていてもよい。
(4)本発明の異方導電性コネクターの用途は、ウエハの検査に限定されるものではなく、半導体チップ、パッケージ化された集積回路装置などの電子部品の検査に用いられるコネクターや、電子部品の実装に用いられるコネクターとしても有用である。
(5)異方導電性コネクターの製造において、フレーム板10の基材として非磁性のものを用いる場合には、成形材料層20Aにおける被支持部25となる部分に磁場を作用させる方法として、当該フレーム板10における異方導電膜配置用孔11の周辺部に磁性体をメッキしてまたは磁性塗料を塗布して磁場を作用させる手段、金型60に、弾性異方導電膜20の被支持部25に対応して強磁性体層を形成して磁場を作用させる手段を利用することができる。
(6)成形材料層の形成において、スペーサーを用いることは必須のことではなく、他の手段によって、上型および下型とフレーム板との間に弾性異方導電膜成形用の空間を確保してもよい。
(7)プローブ部材1においては、シート状コネクター40は、必須のものではなく、図17に示すように、例えば検査対象であるウエハ6の被検査電極7がハンダよりなる半球状の突起電極である場合には、プローブ部材1は、異方導電性コネクター2における弾性異方導電膜20がウエハ6に接触して電気的接続を達成する構成のものであってもよい。
(8)本発明の異方導電性コネクターまたは本発明のプローブ部材を使用したウエハの検査方法においては、ウエハに形成された全ての集積回路について一括して行うことは必須のことではない。
バーンイン試験においては、集積回路の各々に必要な検査時間が数時間と長いため、ウエハに形成された全ての集積回路について一括して検査を行えば高い時間的効率が得られるが、プローブ試験においては、集積回路の各々に必要な検査時間が数分間と短いため、ウエハを2以上のエリアに分割し、分割されたエリア毎に、当該エリアに形成された集積回路について一括してプローブ試験を行うこともできる。
このように、ウエハに形成された集積回路について、分割されたエリア毎に電気的検査を行う方法によれば、直径が8インチまたは12インチのウエハに高い集積度で形成された集積回路について電気的検査を行う場合において、全ての集積回路について一括して検査を行う方法と比較して、用いられる検査用回路基板の検査電極数や配線数を少なくすることができ、これにより、検査装置の製造コストの低減化を図ることができる。
そして、本発明の異方導電性コネクターまたは本発明のプローブ部材は、繰り返し使用における耐久性が高いものであるため、ウエハに形成された集積回路について、分割されたエリア毎に電気的検査を行う方法に用いる場合には、異方導電性コネクターに故障が生じて新たなものに交換する頻度が少なくなるので、検査コストの低減化を図ることができる。
以下、本発明の具体的な実施例について説明するが、本発明は以下の実施例に限定されるものではない。
また、以下の実施例において、付加型液状シリコーンゴムの物性および導電性粒子における被覆層の物性は、次のようにして測定した。
(1)付加型液状シリコーンゴムの粘度:
B型粘度計により、23±2℃における粘度を測定した。
(2)シリコーンゴム硬化物の圧縮永久歪み:
二液型の付加型液状シリコーンゴムにおけるA液とB液とを等量となる割合で攪拌混合した。次いで、この混合物を金型に流し込み、当該混合物に対して減圧による脱泡処理を行った後、120℃、30分間の条件で硬化処理を行うことにより、厚みが12.7mm、直径が29mmのシリコーンゴム硬化物よりなる円柱体を作製し、この円柱体に対して、200℃、4時間の条件でポストキュアを行った。このようにして得られた円柱体を試験片として用い、JIS K 6249に準拠して150±2℃における圧縮永久歪みを測定した。
(3)シリコーンゴム硬化物の引裂強度:
上記(2)と同様の条件で付加型液状シリコーンゴムの硬化処理およびポストキュアを行うことにより、厚みが2.5mmのシートを作製した。このシートから打ち抜きによってクレセント形の試験片を作製し、JIS K 6249に準拠して23±2℃における引裂強度を測定した。
(4)デュロメーターA硬度:
上記(3)と同様にして作製されたシートを5枚重ね合わせ、得られた積重体を試験片として用い、JIS K 6249に準拠して23±2℃におけるデュロメーターA硬度を測定した。
(5)導電性粒子の被覆層のビッカース硬度:
導電性粒子の被覆層のビッカース硬度は、1mmの厚みの平坦なニッケル板上に、導電性粒子の被覆層と同様の方法(メッキ或いはスパッター)によって被覆層を形成し、この被覆層について、JIS Z 2244に準拠してビッカース硬度を測定した。
なお、形成される被覆層の厚みは、JIS Z 2244に準拠して設定されるが、スパッターにより被覆層を形成する場合には、厚みの大きい被覆層を形成することが困難なるため、0.5〜1μmの範囲内で設定した。
〔磁性芯粒子の調製例1〕
市販のニッケル粒子(Westaim社製,「FC1000」)を用い、以下のようにして磁性芯粒子[A]を調製した。
コアンダ効果を利用した空気分級機(日鉄鉱業社製,「エルボージェット分級機 EJ−L−3型」)によって、ニッケル粒子2kgを、比重8.9、エジェクター圧0.2MPa、カットポイントF6μm、M12μm、ニッケル粒子の供給速度1.47kg/hrの設定条件で分級処理して捕集することにより、磁性芯粒子1.4kgを調製した。この磁性芯粒子を「磁性芯粒子[A]」とする。
得られた磁性芯粒子[A]は、数平均粒子径が8.5μm、粒子径の変動係数が31%、BET比表面積が0.45×103 2 /kg、飽和磁化が0.6Wb/m2 であった。
〔磁性芯粒子の調製例2〕
市販のニッケル粒子(Westaim社製,「SF300」)を、そのまま磁性芯粒子[B]とした。
この磁性芯粒子[B]は、数平均粒子径が26.9μm、粒子径の変動係数が33%、BET比表面積が0.19×103 2 /kg、飽和磁化が0.6Wb/m2 であった。
〔導電性粒子の調製例1〕
(1)磁性芯粒子の表面酸化膜除去処理:
粉末処理槽内に、磁性芯粒子[A]100gを投入し、更に、3.2Nの塩酸水溶液2Lを加えて攪拌し、磁性芯粒子[A]を含有するスラリーを得た。このスラリーを常温で30分間攪拌することにより、磁性芯粒子[A]の表面酸化膜除去処理を行い、その後、1分間静置して磁性芯粒子[A]を沈殿させ、上澄み液を除去した。
次いで、表面酸化膜除去処理が施された磁性芯粒子[A]に純水2Lを加え、常温で2分間攪拌し、その後、1分間静置して磁性芯粒子[A]を沈殿させ、上澄み液を除去した。この操作を更に2回繰り返すことにより、磁性芯粒子[A]の表面洗浄処理を行った。
(2)磁性芯粒子の酸化防止処理:
表面酸化膜除去処理および表面洗浄処理が施された磁性芯粒子[A]に、水溶性フラーレン(三菱商事,「PEG−フラーレン」)の0.5質量%水溶液を加えて攪拌することにより、磁性芯粒子[A]を含有するスラリーを得た。このスラリーを常温で30分間攪拌することにより、磁性芯粒子の酸化防止処理を行い、その後、1分間静置して磁性芯粒子[A]を沈殿させ、上澄み液を除去した。
(3)中間被覆層の形成:
酸化防止処理が施された磁性芯粒子[A]を粉体メッキ装置の処理槽内に投入し、金の含有割合が20g/Lの金メッキ液(田中貴金属工業社製,「レクトロレス」)を加え、処理槽内の温度を90℃に昇温して攪拌することにより、スラリーを調製した。この状態で、スラリーを攪拌しながら、磁性芯粒子[A]に対して金の無電解メッキを行った。その後、スラリーを放冷しながら静置して粒子を沈殿させ、上澄み液を除去することにより、磁性芯粒子の表面に金よりなる中間被覆層が形成されてなる中間体粒子を調製した。次いで、処理槽内に純水2Lを加え、常温で2分間攪拌した後、1分間静置して粒子を沈殿させ、上澄み液を除去した。この操作を更に2回繰り返すことにより、中間体粒子の表面洗浄処理を行った。
(4)表面被覆層の形成:
メッシュ状の電極を配置した粉体電気メッキ装置の処理槽内に、金の含有量が15g/Lおよびコバルトの含有量が2g/Lの金−コバルト合金メッキ液(日本高純度化学(株)製,「オーロラブライトHS−15」)を投入した。次いで、金−コバルト合金メッキ液を攪拌しながら、当該金−コバルト合金メッキ液に中間体粒子を添加し、当該中間体粒子に対して金−コバルト合金の電気メッキを行うことにより、磁性芯粒子の表面に金よりなる中間被覆層を介して金−コバルト合金(コバルトの含有割合が1%)よりなる表面被覆層が形成されてなる導電性粒子を調製した。
次いで、処理槽内に純水2Lを加え、常温で2分間攪拌した後、1分間静置して粒子を沈殿させ、上澄み液を除去した。次いで、処理槽内に純水2Lを加え、90℃に加熱して攪拌して静置した後、上澄み液を除去した。この操作を更に繰り返し、その後、導電性粒子を含むスラリーを処理槽内から取り出し、当該スラリーを濾紙によって濾過することにより、導電性粒子を回収した。そして、この導電性粒子を、90℃に設定された乾燥機によって乾燥処理した。
(5)導電性粒子の分級処理:
導電性粒子を、セラミック棒の複数個が投入されたボールミル装置内に投入し、2時間粉砕処理を行った。その後、導電性粒子を、ボールミル装置から取り出し、音波篩器(筒井理化学機器(株)製,「SW−20AT形」)によって分級処理した。具体的には、それぞれ開口径が20μm、16μm、10μmの3つの篩を上からこの順で3段に重ね合わせ、篩の各々にセラミックボール7gを投入し、最上段の篩(開口径が20μm)に粉砕処理された導電性粒子を投入し、125Hzで15分間の条件で分級処理し、最下段の篩(開口径が10μm)に補集された導電性粒子を回収した。このような操作を2回行うことにより、導電性粒子の分級処理を行った。この分級処理した導電性粒子を「導電性粒子[A1]」とする。
導電性粒子[A1]は、数平均粒子径が8.8μm、BET比表面積が0.38×103 2 /kg、中間被覆層の厚みが42nm、表面被覆層の厚みが11μm(被覆層の合計の厚みが53μm)、磁性芯粒子[A]に対する中間被覆層の割合が27質量%、表面被覆層の割合が9質量%(被覆層の合計の割合が36質量%)、電気抵抗値Rが0.05Ωであった。また、中間被覆層のビッカース硬度(Hv)は20、表面被覆層のビッカース硬度(Hv)は200であった。
〔導電性粒子の調製例2〕
導電性粒子の調製例1と同様にして、磁性芯粒子[A]に対して、表面酸化膜除去処理、表面洗浄処理および酸化防止処理を行い、その後、真空乾燥機によって、150℃、1×10-3Pa、10時間の条件で乾燥処理を行った。次いで、この磁性芯粒子[A]を、粉体スパッター装置(日新製鋼社製)の処理槽内に投入し、金よりなるターゲットをセットした。その後、磁性芯粒子[A]を攪拌しながら、処理槽内の空気を雰囲気圧が1×10-3Paとなるまで排気し、当該処理槽内にアルゴンガスを雰囲気圧が1×10-1Paとなるよう導入した。そして、この状態で、磁性芯粒子[A]に対してスパッター処理を行うことにより、金よりなる被覆層が形成されてなる中間体粒子を調製した。
次いで、中間体粒子を冷却した後、処理槽から取り出し、当該中間体粒子をエタノール中に投入して攪拌し、2分間静置した後、上澄み液を除去した。この操作を更に2回繰り返すことにより、中間体粒子の洗浄処理を行った。その後、80℃のオーブンによって中間体粒子の乾燥処理を行った。
この中間体粒子を、粉体スパッター装置(日新製鋼社製)の処理槽内に投入し、ロジウムよりなるターゲットをセットした。その後、中間体粒子を攪拌しながら、処理槽内の空気を雰囲気圧が1×10-3Paとなるまで排気し、当該処理槽内にアルゴンガスを雰囲気圧が1×10-1Paとなるよう導入した。そして、この状態で、中間体粒子に対してスパッター処理を行ってロジウムよりなる表面被覆層を形成することにより、導電性粒子を調製した。
次いで、導電性粒子を冷却した後、処理槽から取り出し、当該導電性粒子をエタノール中に投入して攪拌し、2分間静置した後、上澄み液を除去した。この操作を更に2回繰り返すことにより、導電性粒子の洗浄処理を行った。その後、80℃のオーブンによって導電性粒子の乾燥処理を行った。
そして、導電性粒子の調製例1と同様にして導電性粒子の分級処理を行った。この導電性粒子を「導電性粒子[A2]」とする。
得られた導電性粒子[A2]は、数平均粒子径が8.9μm、BET比表面積が0.37×103 2 /kg、中間被覆層の厚みが40nm、表面被覆層の厚みが11nm(被覆層の合計の厚みが51nm)、磁性芯粒子[A]に対する中間被覆層の割合が26質量%、表面被覆層の割合が6質量%(被覆層の合計の割合が32質量%)、電気抵抗値Rが0.07Ωであった。また、中間被覆層のビッカース硬度(Hv)は21、表面被覆層のビッカース硬度(Hv)は800であった。
〔導電性粒子の調製例3〕
導電性粒子の調製例2において、金よりなるターゲットの代わりに銀よりなるターゲットを用いたこと以外は、導電性粒子の調製例2と同様にして導電性粒子を得た。この導電性粒子を「導電性粒子[A3]」とする。
得られた導電性粒子[A3]は、数平均粒子径が9.1μm、BET比表面積が0.35×103 2 /kg、中間被覆層の厚みが37nm、表面被覆層の厚みが20nm(被覆層の合計の厚みが57nm)、磁性芯粒子[A]に対する中間被覆層の割合が15質量%、表面被覆層の割合が10質量%(被覆層の合計の割合が25質量%)、電気抵抗値Rが0.08Ωであった。また、中間被覆層のビッカース硬度(Hv)は24、表面被覆層のビッカース硬度(Hv)は800であった。
〔導電性粒子の調製例4〕
導電性粒子の調製例2において、金よりなるターゲットの代わりに金とパラジウムとの合金(重量比:金/パラジウム=9/1)よりなるターゲットを用い、スパッター処理および洗浄処理の走査を一回としたこと以外は、導電性粒子の調製例2と同様にして導電性粒子を得た。この導電性粒子を「導電性粒子[A4]」とする。
得られた導電性粒子[A4]は、数平均粒子径が8.8μm、BET比表面積が0.38×103 2 /kg、表面被覆層の厚みが40nm(被覆層の合計の厚みが40nm)、磁性芯粒子[A]に対する表面被覆層の割合が25質量%(被覆層の合計の割合が25質量%)、電気抵抗値Rが0.08Ωであった。また、表面被覆層のビッカース硬度(Hv)は58であった。
〔導電性粒子の調製例5〕
導電性粒子の調製例1において、金の無電解メッキの処理条件を変更したことおよび金−コバルト合金の電気メッキを行わなかったこと以外は同様にして導電性粒子を調製した。この導電性粒子を「導電性粒子[A5]」とする。
得られた導電性粒子[A5]は、数平均粒子径が8.9μm、BET比表面積が0.37×103 2 /kg、被覆層の厚みが42μm、磁性芯粒子[A]に対する被覆層の割合が26質量%、電気抵抗値Rが0.04Ωであった。また、被覆層のビッカース硬度(Hv)は20であった。
〔導電性粒子の調製例6〕
導電性粒子の調製例1において、磁性芯粒子[A]の代わりに磁性芯粒子[B]を用い、金の無電解メッキの処理条件を変更したことおよび金−コバルト合金の電解メッキの処理条件を変更したこと、並びに、導電性粒子の分級処理において、開口径が20μm、16μmおよび10μmの篩の代わりに、開口径が50μm および32μmの篩を上からこの順で重ね合わせ、開口径が32μmの篩に捕集された導電性粒子を回収したこと以外は、同様にして導電性粒子を調製した。この導電性粒子を「導電性粒子[B1]」とする。
得られた導電性粒子[B1]は、数平均粒子径が、32.8μm、BET比表面積が0.12×103 2 /kg、中間被覆層の厚みが48nm、表面被覆層の厚みが5.5nm(被覆層の合計の厚みが54nm)、磁性芯粒子[B]に対する中間被覆層の割合が15質量%、表面被覆層の割合が2質量%(被覆層の合計の割合が17質量%)、電気抵抗値Rが0.03Ωであった。また、中間被覆層のビッカース硬度(Hv)は20、表面被覆層のビッカース硬度(Hv)は200であった。
〔導電性粒子の調製例7〕
導電性粒子の調製例6において、金の無電解メッキの処理条件を変更したことおよび金−コバルト合金の電解メッキを行わなかったこと以外は同様にして導電性粒子を調製した。この導電性粒子を「導電性粒子[B2] 」とする。
得られた導電性粒子[B2]は、数平均粒子径が、32μm、BET比表面積が0.14×103 2 /kg、表面被覆層の厚みが48nm(被覆層の合計の厚みが48nm)、磁性芯粒子[B]に対する表面被覆層の割合が15質量%(被覆層の合計の割合が15質量%)、電気抵抗値Rが0.03Ωであった。また、表面被覆層のビッカース硬度(Hv)は20であった。
以上、導電性粒子[A1]〜導電性粒子[A5]および導電性粒子[B1]〜導電性粒子[B2]の特性を、下記表1にまとめて示す。

Figure 2004309465
〔試験用ウエハの作製〕
試験用ウエハW1:
図18に示すように、直径が8インチのシリコン(線熱膨張係数3.3×10-6/K)製のウエハ6上に、それぞれ寸法が6.5mm×6.5mmの正方形の集積回路Lを合計で596個形成した。ウエハ6に形成された集積回路Lの各々は、図19に示すように、その中央に被検査電極領域Aを有し、この被検査電極領域Aには、図20に示すように、それぞれ直径が80μmで高さが60μmの半球状の半田よりなる26個の被検査電極7が120μmのピッチで横方向に二列(一列の被検査電極7の数が13個)に配列されている。縦方向に隣接する被検査電極7の間の離間距離は、450μmである。また、26個の被検査電極7のうち2個ずつが互いに電気的に接続されている。このウエハ6全体の被検査電極7の総数は15496個である。以下、このウエハを「試験用ウエハW1」という。
試験用ウエハW2:
被検査電極を、寸法が70μm×220μmの矩形の平板状の金よりなるものとしたこと以外は、試験用ウエハW1と同様の構成の596個の集積回路を直径が8インチのシリコン(線熱膨張係数3.3×10-6/K)製のウエハ上に形成した。このウエハを「試験用ウェハW2」という。
試験用ウエハW3:
直径が8インチのシリコン(線熱膨張係数3.3×10-6/K)製のウエハ上に、それぞれ寸法が13.0mm×6.2mmの長方形の集積回路Lを合計で286個形成した。ウエハに形成された集積回路の各々は、それぞれ直径が450μmで高さが350μmの半球状の半田よりなる78個の被検査電極が、800μmのピッチで縦横に(縦方向に6個および横方向に13個)配列された被検査電極領域を有する。また、78個の被検査電極7のうち2個ずつが互いに電気的に接続されている。以下、このウエハを「試験用ウエハW3」という。
〈実施例1〉
(1)フレーム板:
図21および図22に示す構成に従い、下記の条件により、上記の試験用ウエハW1における各被検査電極領域に対応して形成された596の異方導電膜配置孔を有する直径が8インチのフレーム板を作製した。
このフレーム板10の材質はコバール(飽和磁化1.4Wb/m2 ,線熱膨張係数5×10-6/K)で、その厚みは、60μmである。
異方導電膜配置用孔11の各々は、その横方向(図21および図22において左右方向)の寸法が1800μmで縦方向(図21および図22において上下方向)の寸法が600μmである。
縦方向に隣接する異方導電膜配置用孔11の間の中央位置には、円形の空気流入孔15が形成されており、その直径は1000μmである。
(2)スペーサー:
下記の条件により、試験用ウエハW1における被検査電極領域に対応して形成された複数の貫通孔を有する弾性異方導電膜成形用のスペーサーを2枚作製した。
これらのスペーサーの材質はステンレス(SUS304)で、その厚みは20μmである。
各被検査電極領域に対応する貫通孔は、その横方向の寸法が2500μmで縦方向の寸法が1400μmである。
(3)金型:
図7および図23に示す構成に従い、下記の条件により、弾性異方導電膜成形用の金型を作製した。
この金型における上型61および下型65は、それぞれ厚みが6mmの鉄よりなる基板62,66を有し、この基板62,66上には、試験用ウエハW1における被検査電極のパターンに対応するパターンに従ってニッケルよりなる接続用導電部形成用の強磁性体層63(67)および非接続用導電部形成用の強磁性体層63a(67a)が配置されている。具体的には、接続用導電部形成用の強磁性体層63(67)の各々の寸法は60μm(横方向)×200μm(縦方向)×100μm(厚み)で、26個の強磁性体層63(67)が120μmのピッチで横方向に二列(一列の強磁性体層63(67)の数が13個で、縦方向に隣接する強磁性体層63(67)の間の離間距離が450μm)に配列されている。また、強磁性体層63(67)が並ぶ方向において、最も外側に位置する強磁性体層63(67)の外側には、非接続用導電部形成用の強磁性体層63a(67a)が配置されている。各強磁性体層63a(67a)の寸法は、80μm(横方向)×300μm(縦方向)×100μm(厚み)である。
そして、26個の接続用導電部形成用の強磁性体層63(67)および2個の非接続用導電部形成用の強磁性体層63a(67a)が形成された領域が、試験用ウエハW1における被検査電極領域に対応して合計で596個形成され、基板全体で15496個の接続用導電部形成用の強磁性体層63(67)および1192個の非接続用導電部形成用の強磁性体層63a(67a)が形成されている。 また、非磁性体層64(68)は、ドライフィルムレジストを硬化処理することによって形成され、接続用導電部形成用の強磁性体層63(67)が位置する凹所64a(68a)の各々の寸法は、70μm(横方向)×210μm(縦方向)×30μm(深さ)で、非接続用導電部形成用の強磁性体層63a(67a)が位置する凹所64b(68b)の各々の寸法は、90μm(横方向)×260μm(縦方向)×25μm(深さ)で、凹所以外の部分の厚みは75μm(凹所部分の厚み50μm)である。
(4)弾性異方導電膜:
上記のフレーム板、スペーサーおよび金型を用い、以下のようにしてフレーム板に弾性異方導電膜を形成した。
付加型液状シリコーンゴム100重量部に、導電性粒子[A1]30重量部を添加して混合し、その後、減圧による脱泡処理を施すことにより、導電性ペースト組成物を調製した。
以上において、付加型液状シリコーンゴムとしては、A液の粘度が250Pa・sで、B液の粘度が250Pa・sである二液型のものであって、硬化物の150℃における永久圧縮歪みが5%、硬化物のデュロメーターA硬度が32、硬化物の引裂強度が25kN/mのものを用いた。
上記の金型の上型および下型の表面に、弾性異方導電膜用の成形材料として調製した導電性ペースト組成物をスクリーン印刷によって塗布することにより、形成すべき弾性異方導電膜のパターンに従って成形材料層を形成し、下型の成形面上に、下型側のスペーサーを介してフレーム板を位置合わせして重ね、更に、このフレーム板上に、上型側のスペーサーを介して上型を位置合わせして重ねた。
そして、上型および下型の間に形成された成形材料層に対し、強磁性体層の間に位置する部分に、電磁石によって厚み方向に2Tの磁場を作用させながら、100℃、1時間の条件で硬化処理を施すことにより、フレーム板の異方導電膜配置用孔の各々に弾性異方導電膜を形成し、以て、異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC1」という。
得られた弾性異方導電膜について具体的に説明すると、弾性異方導電膜の各々は、横方向の寸法が2500μm、縦方向の寸法が1400μmである。弾性異方導電膜の各々における機能部には、26個の接続用導電部が120μmのピッチで横方向に二列(一列の接続用導電部の数が13個で、縦方向に隣接する接続用導電部の間の離間距離が450μm)に配列されており、接続用導電部の各々は、横方向の寸法が60μm、縦方向の寸法が200μm、厚みが160μmであり、機能部における絶縁部の厚みが100μmである。また、横方向において最も外側に位置する接続用導電部とフレーム板との間には、非接続用導電部が配置されている。非接続用導電部の各々は、横方向の寸法が80μm、縦方向の寸法が300μm、厚みが100μmである。また、弾性異方導電膜の各々における被支持部の厚み(二股部分の一方の厚み)は20μmである。
得られた異方導電性コネクターC1の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
また、弾性異方導電膜の被支持部および機能部における絶縁部を観察したところ、被支持部には導電性粒子が存在していることが確認され、機能部における絶縁部には導電性粒子がほとんど存在していないことが確認された。
〈実施例2〉
導電性粒子[A1]の代わりに導電性粒子[A2]を用いたこと以外は、実施例1と同様にして異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC2」という。
得られた異方導電性コネクターC2の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
また、弾性異方導電膜の被支持部および機能部における絶縁部を観察したところ、被支持部には導電性粒子が存在していることが確認され、機能部における絶縁部には導電性粒子がほとんど存在していないことが確認された。
〈実施例3〉
導電性粒子[A1]の代わりに導電性粒子[A3]を用いたこと以外は、実施例1と同様にして異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC3」という。
得られた異方導電性コネクターC3の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
また、弾性異方導電膜の被支持部および機能部における絶縁部を観察したところ、被支持部には導電性粒子が存在していることが確認され、機能部における絶縁部には導電性粒子がほとんど存在していないことが確認された。
〈実施例4〉
導電性粒子[A1]の代わりに導電性粒子[A4]を用いたこと以外は、実施例1と同様にして異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC4」という。
得られた異方導電性コネクターC4の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
また、弾性異方導電膜の被支持部および機能部における絶縁部を観察したところ、被支持部には導電性粒子が存在していることが確認され、機能部における絶縁部には導電性粒子がほとんど存在していないことが確認された。
〈実施例5〉
(1)フレーム板:
図24に示す構成に従い、下記の条件により、上記の試験用ウエハW3における各被検査電極領域に対応して形成された32個の異方導電膜配置孔を有するフレーム板を作製した。
このフレーム板10は、その材質が4,2アロイ(飽和磁化1.45Wb/m2,線熱膨張係数5×10−6/K)で、縦横の寸法が133.5mm×54.8mmの矩形の板状で、その厚みが150μmである。
また、このフレーム板10には、試験用ウエハW3における一部の集積回路のパターンに対応して、それぞれ横方向(図24において左右方向)の寸法が11.2mmで縦方向(図24において上下方向)の寸法が5.6mmである32個の異方導電膜配置用孔11が、縦横に並ぶよう(縦方向に4個、横方向8個)形成されている。
また、このフレーム板10の外周縁部には、合計で10個の位置決め用孔16が形成されており、それらの直径はいずれも3.0mmである。
(2)スペーサー:
下記の条件により、試験用ウエハW3における被検査電極領域に対応して形成された複数の貫通孔を有する弾性異方導電膜成形用のスペーサーを2枚作製した。
これらのスペーサーの材質はステンレス(SUS304)で、その厚みは、30μmである。
各被検査電極領域に対応する貫通孔は、その横方向の寸法が104.1mmで縦方向の寸法が26.4mmである。
(3)金型:
図25および図26に示す構成に従い、下記の条件により、弾性異方導電膜成形用の金型を作製した。
この金型における上型61および下型65は、それぞれ厚みが6mmの鉄よりなり、表面に試験用ウエハW3における一部の集積回路に対応して複数の凹所62a,66aが形成された基板62,66を有し、この基板62,66の凹所には、試験用ウエハW3の一部の集積回路における被検査電極のパターンに対応するパターンに従って配置された接続用導電部形成用の強磁性体層63,67と、試験用ウエハW3の一の集積回路における被検査電極に対応する複数の強磁性体層63,67を取り囲むよう配置された複数の非接続用導電部形成用の強磁性体層63a,67aとが形成されている。これらの基板62,66および強磁性体層63,63a,67,67aは、基板材をエッチングすることによって形成されたものであり、従って、強磁性体層63,63a,67,67aは、基板62,66に連続して一体に形成され、その材質は鉄である。
試験用ウエハW3の一の集積回路における被検査電極に対応する強磁性体層63,67について説明すると、接続用導電部形成用の強磁性体層63,67の各々の寸法は350μm(直径)×150μm(厚み)で、78個の強磁性体層63,67が800μmのピッチで横方向に6列(一列の強磁性体層63,67の数が13個)で配列されている。また、78個の強磁性体層63,67の周囲には,42個の非接続用導電部形成用の強磁性体層63a,67aが800μmのピッチで配置されている。
そして、78個の接続用導電部形成用の強磁性体層63,67および42個の非接続用導電部形成用の強磁性体層63a,67aが形成された領域が、試験用ウエハW3における32個の集積回路Lの被検査電極領域に対応して合計で32個形成されている。
また、基板62,66の凹所62a,66aにおける各強磁性体層63,63a,67,67aの間には、液状樹脂を硬化処理することによって形成された第1の非磁性体層64c,68cが設けられ、基板62,66の表面の凹所62a,66a以外の個所、第1の非磁性体層64c,68cの表面および非接続用導電部形成用の強磁性体層63a,67の表面上には、ドライフィルムレジストを硬化処理することによって形成された第2の非磁性体層64d,68dが設けられ、これにより、接続用導電部形成用の強磁性体層63,67が位置する個所には凹所64a,68aが形成されている。一方、非接続用導電部形成用の強磁性体層63a,67aが位置する個所には、凹所が形成されていない。上型61における凹所64aの各々の寸法は、380μm(直径)×30μm(深さ)、下型65における68aの各々の寸法は、380μm(直径)×100μm(深さ)である。
(4)弾性異方導電膜:
上記のフレーム板、スペーサーおよび金型を用い、以下のようにしてフレーム板に弾性異方導電膜を形成した。
付加型液状シリコーンゴム100重量部に、導電性粒子[B1]67重量部を添加して混合し、その後、減圧による脱泡処理を施すことにより、導電性ペースト組成物を調製した。
以上において、付加型液状シリコーンゴムとしては、A液の粘度が250Pa・sで、B液の粘度が250Pa・sである二液型のものであって、硬化物の150℃における永久圧縮歪みが5%、硬化物のデュロメーターA硬度が32、硬化物の引裂強度が25kN/mのものを用いた。
上記の金型の上型および下型の表面に、弾性異方導電膜用の成形材料として調製した導電性ペースト組成物をスクリーン印刷によって塗布することにより、形成すべき弾性異方導電膜のパターンに従って成形材料層を形成し、下型の成形面上に、下型側のスペーサーを介してフレーム板を位置合わせして重ね、更に、このフレーム板上に、上型側のスペーサーを介して上型を位置合わせして重ねた。
そして、上型および下型の間に形成された成形材料層に対し、強磁性体層の間に位置する部分に、電磁石によって厚み方向に2Tの磁場を作用させながら、100℃、1時間の条件で硬化処理を施すことにより、フレーム板の異方導電膜配置用孔の各々に弾性異方導電膜を形成し、以て、異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC5」という。
得られた弾性異方導電膜について具体的に説明すると、横方向の寸法が104.1mm、縦方向の寸法が26.4mmである。弾性異方導電膜の各々における機能部には、78個の接続用導電部が800μmのピッチで横方向に6列(一列の接続用導電部の数が13個)に配列されており、接続用導電部の各々は、直径が380μm、厚みが340μmであり、機能部における絶縁部の厚みが210μmである。また、接続用導電部とフレーム板との間には、非接続用導電部が配置されている。非接続用導電部の各々の寸法は、直径が350μm、厚みが210μmである。また、弾性異方導電膜の各々における被支持部の厚み(二股部分の一方の厚み)は30μmである。
得られた異方導電性コネクターC5の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
また、弾性異方導電膜の被支持部および機能部における絶縁部を観察したところ、被支持部には導電性粒子が存在していることが確認され、機能部における絶縁部には導電性粒子がほとんど存在していないことが確認された。
〈比較例1〉
導電性粒子[A1]の代わりに導電性粒子[A5]を用いたこと以外は、実施例1と同様にして異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC6」という。
得られた異方導電性コネクターC6の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
また、弾性異方導電膜の被支持部および機能部における絶縁部を観察したところ、被支持部には導電性粒子が存在していることが確認され、機能部における絶縁部には導電性粒子がほとんど存在していないことが確認された。
〈比較例2〉
導電性粒子[B1]の代わりに導電性粒子[B2]を用いたこと以外は、実施例5と同様にして異方導電性コネクターを製造した。以下、この異方導電性コネクターを「異方導電性コネクターC7」という。
得られた異方導電性コネクターC7の弾性異方導電膜の各々における接続用導電部中の導電性粒子の含有割合を調べたところ、全ての接続用導電部について体積分率で約30%であった。
また、弾性異方導電膜の被支持部および機能部における絶縁部を観察したところ、被支持部には導電性粒子が存在していることが確認され、機能部における絶縁部には導電性粒子がほとんど存在していないことが確認された。
〔異方導電性コネクターの評価〕
(1)検査用回路基板の作製:
基板材料としてアルミナセラミックス(線熱膨張係数4.8×10-6/K)を用い、試験用ウエハW1における被検査電極のパターンに対応するパターンに従って検査電極が形成された検査用回路基板を作製した。この検査用回路基板は、全体の寸法が30cm×30cmの矩形であり、その検査電極は、横方向の寸法が60μmで縦方向の寸法が200μmであり、その表面には金メッキが施されている。以下、この検査用回路基板を「検査用回路基板T1」という。
また、基板材料としてアルミナセラミックス(線熱膨張係数4.8×10-6/K)を用い、試験用ウエハW3における32個(4個×8個)の集積回路の被検査電極のパターンに対応するパターンに従って検査電極が形成された検査用回路基板を作製した。この検査用回路基板は、全体の寸法が140mm×60mmの矩形であり、検査電極の各々は、直径が450μmの円形であり、その表面には金メッキが施されている。以下、この検査用回路基板を「検査用回路基板T2」という。
(2)試験1:
実施例1に係る異方導電性コネクターC1、実施例2に係る異方導電性コネクターC2および比較例1に係る異方導電性コネクターC6について、以下の試験を行った。
試験用ウエハW1を、電熱ヒーターを具えた試験台に配置し、この試験用ウエハW1上に異方導電性コネクターをその接続用導電部の各々が当該試験用ウエハW1の被検査電極上に位置するよう位置合わせして配置し、この異方導電製コネクター上に、検査用回路基板Tをその検査電極の各々が当該異方導電性コネクターの接続用導電部上に位置するよう位置合わせして配置し、更に、検査用回路基板Tを下方に150kgの荷重(接続用導電部1個当たりに加わる荷重が平均で約10g)で1分間加圧した。そして、室温(25℃)下において、検査用回路基板Tにおける15496個の検査電極について、異方導電性コネクターおよび試験用ウエハW1を介して互いに電気的に接続された2個の検査電極の間の電気抵抗を順次測定し、測定された電気抵抗値から予め測定された試験用ウエハW1の回路の電気抵抗値を差し引き、その値の2分の1の値を異方導電性コネクターにおける接続用導電部の電気抵抗(以下、「導通抵抗」という。)として測定した。この操作を「操作(i)」とする。次いで、検査用回路基板Tに対する加圧を解除し、この無加圧の状態で15秒間放置した。この操作を「操作(ii)」とする。そして、操作(i)および操作(ii)を1サイクルとして繰り返して行い、操作(i)において測定された導通抵抗の値が1Ωを超えるまでのサイクル数を求めた。
以上において、接続用導電部の導通抵抗が1Ω以上のものについては、ウエハに形成された集積回路の電気的検査において、これを実際上使用することが困難である。
以上の結果を下記表2に示す。
Figure 2004309465
(3)試験2:
実施例1に係る異方導電性コネクターC1、実施例2に係る異方導電性コネクターC2および比較例1に係る異方導電性コネクターC6について、試験用ウエハW1の代わりに試験用ウエハW2を用いたこと以外は試験1と同様にして、異方導電性コネクターにおける接続用導電部の導通抵抗の値が1Ωを超えるまでのサイクル数を求めた。結果を下記表3に示す。
Figure 2004309465
(4)試験3:
実施例5に係る異方導電性コネクターC5および比較例2に係る異方導電性コネクターC7について、以下の試験を行った。
試験用ウエハW3を、電熱ヒーターを具えた試験台に配置し、この試験用ウエハW3に形成された集積回路のうち隣接する32個(4個×8個)の集積回路が形成された領域上に、異方導電性コネクターをその接続用導電部の各々が当該試験用ウエハW3の被検査電極上に位置するよう位置合わせして配置し、この異方導電性コネクター上に、検査用回路基板T2をその検査電極の各々が当該異方導電性コネクターの接続用導電部上に位置するよう位置合わせして配置し、更に、検査用回路基板T2を下方に移動させて異方導電性コネクターを加圧し、異方導電性コネクターの接続用導電部が導通する最小変位位置を見出した。次いで、検査用回路基板T2を最小変位位置から更に60μm下方に変位させ、この状態で1分間保持した。そして、試験台を85℃に加熱し、異方導電性コネクターにおける接続用導電部の導通抵抗を測定した。この操作を「操作(i)」とする。次いで、検査用回路基板T2に対する加圧を解除し、この無加圧の状態で15秒間放置した。この操作を「操作(ii)」とする。そして、操作(i)および操作(ii)を1サイクルとして繰り返して行い、操作(i)において測定された導通抵抗の値が1Ωを超えるまでのサイクル数を求めた。
この試験3においては、3000サイクル毎に、試験用ウエハW3における試験に供される集積回路を変更し、試験ウエハW3の全ての集積回路について試験が行われ後には、試験用ウエハW3を新たなものに交換して、試験3を継続した。
以上において、接続用導電部の導通抵抗が1Ω以上のものについては、ウエハに形成された集積回路の電気的検査において、これを実際上使用することが困難である。
以上の結果を表4に示す。
Figure 2004309465
(5)試験4:
実施例1〜4に係る異方導電性コネクターC1〜異方導電性コネクターC4および比較例1に係る異方導電性コネクターC6について、以下の試験を行った。
試験用ウエハW2を、恒温槽内に設けられた試験台に配置し、この試験用ウエハW2上に異方導電性コネクターC1をその接続用導電部の各々が当該試験用ウエハW2の被検査電極上に位置するよう位置合わせして配置し、この異方導電性コネクター上に、検査用回路基板Tをその検査電極の各々が当該異方導電性コネクターC1の接続用導電部上に位置するよう位置合わせして配置し、更に、検査用回路基板T1を下方に150kgの荷重(接続用導電部1個当たりに加わる荷重が平均で約10g)で加圧した。そして、恒温槽内の温度を125℃まで上昇させ、125℃の温度条件下で4 時間加圧保持し、その後、異方導電性コネクターにおける接続用導電部の導通抵抗をとして測定した。この操作を「操作(i)」とする。次いで、温度を室温(30℃以下)まで降下させた後、検査用回路基板T1に対する加圧を解除し、この無加圧の状態で15分間放置した。この操作を「操作(ii)」とする。そして、操作(i)および操作(ii)を1サイクルとして繰り返して行い、操作(i)において測定された導通抵抗の値が1Ωを超えるまでのサイクル数を求めた。 以上において、異方導電性コネクターの接続用導電部の導通抵抗が1Ω以上のものについては、ウエハに形成された集積回路の電気的検査において、これを実際上使用することが困難である。
以上の結果を表5に示す。

Figure 2004309465
表2から表5の結果から明らかなように、実施例1〜実施例5に係る異方導電性コネクターによれば、被検査電極が突起状のものおよび平面状のもののいずれであっても、長時間にわたって良好な導電性が維持されることが確認された。
本発明に係る異方導電性コネクターの一例を示す平面図である。 図1に示す異方導電性コネクターの一部を拡大して示す平面図である。 図1に示す異方導電性コネクターにおける弾性異方導電膜を拡大して示す平面図である。 図1に示す異方導電性コネクターにおける弾性異方導電膜を拡大して示す説明用断面図である。 電気抵抗値Rを測定するための装置の構成を示す説明用断面図である。 弾性異方導電膜成形用の金型に成形材料が塗布されて成形材料層が形成された状態を示す説明用断面図である。 弾性異方導電成形用の金型をその一部を拡大して示す説明用断面図である。 図6に示す金型の上型および下型の間にスペーサーを介してフレーム板が配置された状態を示す説明用断面図である。 金型の上型と下型の間に、目的とする形態の成形材料層が形成された状態を示す説明用断面図である。 図9に示す成形材料層を拡大して示す説明用断面図である。 図10に示す成形材料層にその厚み方向に強度分布を有する磁場が形成された状態を示す説明用断面図である。 本発明に係る異方導電性コネクターを使用したウエハ検査装置の一例における構成を示す説明用断面図である。 本発明に係るプローブ部材の一例における要部の構成を示す説明用断面図である。 本発明に係る異方導電性コネクターを使用したウエハ検査装置の他の例における構成を示す説明用断面図である。 本発明に係る異方導電性コネクターの他の例における弾性異方導電膜を拡大して示す平面図である。 本発明に係る異方導電性コネクターの更に他の例における弾性異方導電膜を拡大して示す平面図である。 本発明に係る異方導電性コネクターを使用したウエハ検査装置の更に他の例における構成を示す説明用断面図である。 実施例で使用した試験用ウエハの上面図である。 図18に示す試験用ウエハに形成された集積回路の被検査電極領域の位置を示す説明図である。 図18に示す試験用ウエハに形成された集積回路の被検査電極を示す説明図である。 実施例1で作製したフレーム板の上面図である。 図21に示すフレーム板の一部を拡大して示す説明図である。 実施例1で作製した金型の成形面を拡大して示す説明図である。 実施例5で作製したフレーム板の上面図である。 実施例5で作製した金型の一部を拡大して示す説明用断面図である。 実施例5で作製した金型の成形面を拡大して示す説明図である。
符号の説明
1 プローブ部材 2 異方導電性コネクター
3 加圧板 4 ウエハ載置台
5 加熱器 6 ウエハ
7 被検査電極 10 フレーム板
11 異方導電膜配置用孔
15 空気流通孔
16 位置決め孔 20 弾性異方導電膜
20A 成形材料層 21 機能部
22 接続用導電部 23 絶縁部
24 突出部 25 被支持部
26 非接続用導電部 27 突出部
30 検査用回路基板 31 検査電極
41 絶縁性シート 40 シート状コネクター
42 電極構造体 43 表面電極部
44 裏面電極部 45 短絡部
50 チャンバー 51 排気管
55 O−リング
60 金型 61 上型
62 基板 62a 凹所
63 強磁性体層 64 非磁性体層
64a,64b 凹所
64c 第1の非磁性体層
64d 第2の非磁性体層
65 下型 66 基板
66a 凹所 67,67a 強磁性体層
68 非磁性体層 68a,68b 凹所
68c 第1の非磁性体層
68d 第2の非磁性体層
69a,69b スペーサー
71 セル 72 側壁材
73 蓋材 73H 貫通孔
74 磁石 75 電極部
76 電気抵抗測定機

Claims (16)

  1. 導電性粒子が含有された厚み方向に伸びる複数の接続用導電部が形成された弾性異方導電膜を有する異方導電性コネクターにおいて、
    前記接続用導電部に含有された導電性粒子は、磁性を示す芯粒子の表面に高導電性金属よりなる被覆層が積層されてなり、当該被覆層は高硬度な被覆層であることを特徴とする異方導電性コネクター。
  2. 導電性粒子が含有された厚み方向に伸びる複数の接続用導電部が形成された弾性異方導電膜を有する異方導電性コネクターにおいて、
    前記接続用導電部に含有された導電性粒子は、磁性を示す芯粒子の表面に高導電性金属よりなる複数の被覆層が積層されてなり、前記複数の被覆層のうち少なくとも最外層の被覆層は高硬度な被覆層であることを特徴とする異方導電性コネクター。
  3. 高硬度な被覆層のビッカース硬度(Hv)が40以上であることを特徴とする請求項1または請求項2に記載の異方導電性コネクター。
  4. 導電性粒子におけるビッカース硬度(Hv)が40以上である被覆層は、2種類以上の高導電性金属よりなることを特徴とする請求項3に記載の異方導電性コネクター。
  5. 導電性粒子におけるビッカース硬度(Hv)が40以上である被覆層は、金とその他の高導電性金属とよりなることを特徴とする請求項4に記載の異方導電性コネクター。
  6. 導電性粒子におけるビッカース硬度(Hv)が40以上である被覆層は、2種類以上の高導電性金属による合金をターゲットとするスパッター法により形成されていることを特徴とする請求項4または請求項5に記載の異方導電性コネクター。
  7. 導電性粒子におけるビッカース硬度(Hv)が40以上である被覆層は、2種類以上の高導電性金属成分を含有してなるメッキ液によるメッキ処理により形成されていることを特徴とする請求項4または請求項5に記載の異方導電性コネクター。
  8. 厚み方向に伸びる異方導電膜配置用孔が形成されたフレーム板を有し、このフレーム板の異方導電膜配置用孔に、弾性異方導電膜が配置され、当該フレーム板に支持されていることを特徴とする請求項1乃至請求項7のいずれかに記載の異方導電性コネクター。
  9. ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うために用いられる異方導電性コネクターであって、
    検査対象であるウエハにおける集積回路の被検査電極が形成された電極領域に対応してそれぞれ厚み方向に伸びる複数の異方導電膜配置用孔が形成されたフレーム板を有し、このフレーム板の異方導電膜配置用孔の各々に、弾性異方導電膜が配置され、当該フレーム板に支持されていることを特徴とする請求項1乃至請求項7のいずれかに記載の異方導電性コネクター。
  10. 硬化されて弾性高分子物質となる高分子形成材料と、請求項1乃至請求項7のいずれかに記載の導電性粒子とを含有してなることを特徴とする導電性ペースト組成物。
  11. 請求項1乃至請求項9のいずれかに記載の異方導電性コネクターにおける弾性異方導電膜を形成するためのものであることを特徴とする請求項10に記載の導電性ペースト組成物。
  12. ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うために用いられるプローブ部材であって、
    検査対象であるウエハにおける集積回路の被検査電極のパターンに対応するパターンに従って検査電極が表面に形成された検査用回路基板と、この検査用回路基板の表面に配置された、請求項1乃至請求項9のいずれかに記載の異方導電性コネクターとを具えてなることを特徴とするプローブ部材。
  13. 請求項8または請求項9に記載の異方導電性コネクターを具えてなり、当該異方導電性コネクターにおけるフレーム板の線熱膨張係数が3×10-5/K以下であり、検査用回路基板を構成する基板材料の線熱膨張係数が3×10-5/K以下であることを特徴とする請求項12に記載のプローブ部材。
  14. 異方導電性コネクター上に、絶縁性シートと、この絶縁性シートをその厚み方向に貫通して伸び、被検査電極のパターンに対応するパターンに従って配置された複数の電極構造体とよりなるシート状コネクターが配置されていることを特徴とする請求項12または請求項13に記載のプローブ部材。
  15. ウエハに形成された複数の集積回路の各々について、当該集積回路の電気的検査をウエハの状態で行うウエハ検査装置において、
    請求項12乃至請求項14のいずれかに記載のプローブ部材を具えてなり、当該プローブ部材を介して、検査対象であるウエハに形成された集積回路に対する電気的接続が達成されることを特徴とするウエハ検査装置。
  16. ウエハに形成された複数の集積回路の各々を、請求項12乃至請求項14のいずれかに記載のプローブ部材を介してテスターに電気的に接続し、当該ウエハに形成された集積回路の電気的検査を実行することを特徴とするウエハ検査方法。
JP2004072009A 2003-03-26 2004-03-15 異方導電性コネクターおよび導電性ペースト組成物、プローブ部材並びにウエハ検査装置およびウエハ検査方法 Pending JP2004309465A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072009A JP2004309465A (ja) 2003-03-26 2004-03-15 異方導電性コネクターおよび導電性ペースト組成物、プローブ部材並びにウエハ検査装置およびウエハ検査方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003085092 2003-03-26
JP2004072009A JP2004309465A (ja) 2003-03-26 2004-03-15 異方導電性コネクターおよび導電性ペースト組成物、プローブ部材並びにウエハ検査装置およびウエハ検査方法

Publications (1)

Publication Number Publication Date
JP2004309465A true JP2004309465A (ja) 2004-11-04

Family

ID=33478286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072009A Pending JP2004309465A (ja) 2003-03-26 2004-03-15 異方導電性コネクターおよび導電性ペースト組成物、プローブ部材並びにウエハ検査装置およびウエハ検査方法

Country Status (1)

Country Link
JP (1) JP2004309465A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030438A1 (ja) * 2016-08-08 2018-02-15 積水化学工業株式会社 導通検査装置用部材及び導通検査装置
US20210359434A1 (en) * 2018-10-11 2021-11-18 Sekisui Polymatech Co., Ltd. Electrical connection sheet and terminal-equipped glass plate structure
US12100573B2 (en) 2019-09-11 2024-09-24 Canon Electron Tubes & Devices Co., Ltd. X-ray tube device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030438A1 (ja) * 2016-08-08 2018-02-15 積水化学工業株式会社 導通検査装置用部材及び導通検査装置
JPWO2018030438A1 (ja) * 2016-08-08 2019-06-13 積水化学工業株式会社 導通検査装置用部材及び導通検査装置
US11092620B2 (en) 2016-08-08 2021-08-17 Sekisui Chemical Co., Ltd. Conduction inspection device member and conduction inspection device
US20210359434A1 (en) * 2018-10-11 2021-11-18 Sekisui Polymatech Co., Ltd. Electrical connection sheet and terminal-equipped glass plate structure
US12021322B2 (en) * 2018-10-11 2024-06-25 Sekisui Polymatech Co., Ltd. Electrical connection sheet and terminal-equipped glass plate structure
US12100573B2 (en) 2019-09-11 2024-09-24 Canon Electron Tubes & Devices Co., Ltd. X-ray tube device

Similar Documents

Publication Publication Date Title
KR100756120B1 (ko) 이방 도전성 커넥터 및 도전성 페이스트 조성물, 프로브부재 및 웨이퍼 검사 장치 및 웨이퍼 검사 방법
KR100714327B1 (ko) 이방 도전성 커넥터 및 도전성 페이스트 조성물, 프로우브부재 및 웨이퍼 검사 장치 및 웨이퍼 검사 방법
JP3685192B2 (ja) 異方導電性コネクターおよび導電性ペースト組成物、プローブ部材並びにウエハ検査装置およびウエハ検査方法
JP3804542B2 (ja) 異方導電性コネクターおよびその製造方法、プローブ部材並びにウエハ検査装置およびウエハ検査方法
KR100715751B1 (ko) 이방 도전성 커넥터 및 프로우브 부재 및 웨이퍼 검사장치 및 웨이퍼 검사 방법
WO2006025279A1 (ja) ウエハ検査用異方導電性コネクターおよびその製造方法並びにその応用
JP2004172589A (ja) シート状コネクターおよびその製造方法並びにその応用
WO2004102208A1 (ja) シート状プローブおよびその製造方法並びにその応用
WO2006046650A1 (ja) ウエハ検査用探針部材、ウエハ検査用プローブカードおよびウエハ検査装置
KR100741228B1 (ko) 이방 도전성 커넥터 및 프로브 부재 및 웨이퍼 검사 장치및 웨이퍼 검사 방법
JP2007085833A (ja) ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカード並びにウエハ検査装置
JP4423991B2 (ja) 異方導電性コネクターおよびプローブ部材並びにウエハ検査装置およびウエハ検査方法
JP2004309465A (ja) 異方導電性コネクターおよび導電性ペースト組成物、プローブ部材並びにウエハ検査装置およびウエハ検査方法
JP3685190B2 (ja) 異方導電性コネクターおよび導電性ペースト組成物、プローブ部材並びにウエハ検査装置およびウエハ検査方法
JP3938117B2 (ja) 異方導電性コネクターおよびプローブ部材並びにウエハ検査装置およびウエハ検査方法
JP2006351504A (ja) ウエハ検査用異方導電性コネクターおよびその製造方法、ウエハ検査用プローブカードおよびその製造方法並びにウエハ検査装置
JP2006216502A (ja) 異方導電性コネクター、プローブカード並びにウエハ検査装置およびウエハ検査方法
JP3685191B2 (ja) 異方導電性コネクターおよびプローブ部材並びにウエハ検査装置およびウエハ検査方法
JP2009115579A (ja) プローブ部材およびこのプローブ部材を用いたプローブカードならびにこれを用いたウエハ検査装置
JP2006098395A (ja) ウエハ検査用異方導電性コネクターおよびその製造方法並びにその応用
JP2006100391A (ja) ウエハ検査用プローブカードおよびウエハ検査装置
TW200540429A (en) Sheet-shaped probe, manufacturing method thereof and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020