JP2004308973A - Heat radiating device - Google Patents

Heat radiating device Download PDF

Info

Publication number
JP2004308973A
JP2004308973A JP2003100754A JP2003100754A JP2004308973A JP 2004308973 A JP2004308973 A JP 2004308973A JP 2003100754 A JP2003100754 A JP 2003100754A JP 2003100754 A JP2003100754 A JP 2003100754A JP 2004308973 A JP2004308973 A JP 2004308973A
Authority
JP
Japan
Prior art keywords
heat
radiant
radiating
absorbing
radiant heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003100754A
Other languages
Japanese (ja)
Other versions
JP4315722B2 (en
Inventor
Hiroto Hayasaka
浩人 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
TS Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TS Corp filed Critical TS Corp
Priority to JP2003100754A priority Critical patent/JP4315722B2/en
Publication of JP2004308973A publication Critical patent/JP2004308973A/en
Application granted granted Critical
Publication of JP4315722B2 publication Critical patent/JP4315722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simply formed and easily manufacturable cooling device used for electronic equipment and performing the cooling of a heating part by collecting and radiating heat from the heating part in non-contact with the heating part. <P>SOLUTION: In this heat radiating device for absorbing and radiating heat to and from a heating element, a single or a plurality of heat pipes are disposed so as to cover the heating surface of the heating element in no-contact therewith, a single or a plurality of radiant heat absorbing devices formed by combining heat pipes and fins as heat absorbing parts with the single or the plurality of heat pipes are connected to any portion, and the fins installed on the single or the plurality of radiant heat absorbing devices are disposed so that radiant heat radiated from a heat source becomes difficult to leak from the surface of the radiant heat absorbing devices facing the heat source. Also, the plate type thin hole heat pipes are used as the heat pipes. In addition, a heat radiating fin device is combined with the fan. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電子機器に使用されて発熱部の熱を発熱部に非接触で集熱し放熱することにより発熱部の冷却を行う放熱装置であって、構造が簡単で製作を容易にした放熱装置に関する。
【0002】
【従来の技術】
電子機器内部に半導体デバイスや発光素子等の局部的に発熱をする構成部材を持つ各種電子機器では、発熱体の過熱による障害(例えば当該発熱体や周辺に配置される装置部材動作不良や損傷など)を防止するため、これ等発熱体の発生する熱を放熱する放熱手段を有し発熱体を冷却して作動させる。
【0003】
例えば、コンピュータにはCPU(MPU)をはじめメモリやハードディスクドライブ等の発熱体があり、ブラウン管やプロジェクターは光源等の発熱体が数多く搭載されており、これらを安定動作させるために発熱体から筐体や筐体外に伝導伝熱させ外部に放熱させる自然空冷や、小型ファンによる強制空冷等が行われてきた。(特許文献1)
【0004】
しかし、近年ではマイクロプロセッサ等の半導体デバイスの高性能化やモジュール化、半導体素子の小型化や高密度配置により発熱密度の増加が著しい。また、小型で高蛍度の発光体を得るため、発光素子の発熱密度の増加も著しくなっている。
【0005】
上記の様な課題に対して、例えば金属板等からなる集熱手段を発熱体に密着配設し、集熱手段により集められた発熱体の熱を偏平のヒートパイプ等の熱移送手段を用い筐体の外部まで移送し、移送された熱を筐体の外周部に配設した放熱フィンやファン等からなる放熱手段により強制空冷して発熱体の冷却を行う熱移送型冷却装置が考案され実用化されている。
【0006】
【特許文献1】
特開平08−125370号公報
【0007】
【発明が解決しようとする課題】
しかしながら、たとえ前記熱移送型放熱装置を用いた場合に於いても、狭い空間に発熱体が配置されている場合は、上記のように発熱体に直接冷却装置を密着させることにより放熱することが出来ない場合もある。例えば、振動があり接触面が剥がれてしまう可能性がある場合や、小型化省スペース化により大きさの異なる発熱密度の大きな半導体デバイスを狭い空間に密集して多数配置されているために、複数の放熱装置を配置することができない場合や、発熱体素子の冷却面の向きや高さが異なるために、加工の容易な一枚のプレート型ヒートパイプを配置して全ての素子に接触させて放熱するような簡易な放熱装置が適応できない場合がある。また、プロジェクターの高発熱体である光源のように複雑な形状をした発熱体に密着するような形状に放熱装置を製作する場合も、光源の形状に合わせて複雑な形状の放熱装置を加工しなければいけないために、容易に製作できないという問題もあった。
【0008】
本発明は、かかる課題に鑑みて成されたものであり、本発明の目的は電子機器に使用されて発熱部の熱を発熱部に非接触で集熱し放熱することにより発熱部の冷却を行う構造が単純で製作を容易にした放熱装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために本件発明では、請求項1の発明によると発熱体から熱を吸収し放熱するための放熱装置において、単数もしくは複数のヒートパイプを前記発熱体の発熱面に非接触で覆うように配置し、該単数もしくは複数のヒートパイプに吸熱部としてヒートパイプとフィンを組み合わせた単数もしくは複数の輻射熱吸熱器具を任意の箇所に接合し、単数もしくは複数の輻射熱吸熱器具に取り付けられているフィンを熱源から放射される輻射熱が前記輻射熱吸熱器具の熱源に面した面から反対面に漏れにくくなるように配置したことを特徴とする。このような構成にすることにより熱源に対して非接触でも、熱源から熱を吸収して放熱をすることができる。
【0010】
請求項2の発明によると、前記ヒートパイプとしてプレート式細孔ヒートパイプを用いたことを特徴とする。このような構成にすることにより、冷却装置の配置姿勢による冷却効率の悪化を抑えることができる。
【0011】
請求項3の発明によると、前記放熱用フィン装置とファンを組合わせたことを特徴とする。このような構成にすることにより、放熱用フィン装置を空冷することができ、より効率のいい冷却装置を構成することができる。
【0012】
請求項4の発明によると、前記放熱装置の熱源から輻射熱を受ける面を黒色にしたことを特徴とする。このような構成にすることにより、熱源からの輻射熱を放熱装置へより効率的に吸収することができる。
【0013】
請求項5の発明によると、前記放熱装置の熱源から輻射熱を受ける面に吸熱用フィンを装着したことを特徴とする。このような構成にすることにより、熱源からの輻射熱を放熱装置へより効率的に吸収することができる。
【0014】
【発明の実施の形態】
以降本発明の好ましい実施の態様について図を用いて説明する。まず図1及び図2には、本発明に係る放熱装置の第1実施実施例における全体構成を示している。
図1、図2及び図3はそれぞれ本発明の冷却装置を半導体素子に適応した時の実施例の吸熱面の図、側面図及び上面図である。図1、図2及び図3において201及び202はプレート型細孔ヒートパイプである。
【0015】
ここで、プレート型細孔ヒートパイプについて説明する。図3及び図4の様な蛇行細孔トンネルプレート型ヒートパイプもしくは平行プレート型細孔ヒートパイプで構成されている。これらプレート型細孔ヒートパイプについて蛇行プレート型細孔ヒートパイプを例にとって説明する。なお、ここで、細孔ヒートパイプとは、以下の特性を有するヒートパイプのことである(特開平4−190090号参照)。
(1)細管(熱媒体通路)の両端末が相互に流通自在に連結されて密閉されている。
(2)細管のある部分は受熱部、他のある部分は放熱部となっている。
(3)受熱部と放熱部が交互に配設されており、両部の間を細管が蛇行している。
(4)細管内には2相凝縮性作動流体が封入されている。
(5)細管の内壁は、上記作動流体が常に管内を閉塞した状態のままで循環又は移動することが出来る最大流体直径以下の直径である。
このような細管ヒートパイプを用いることにより、発熱体への細管ヒートパイプの取り付け姿勢に関係なく熱輸送させることができる。
【0016】
プレート型の蛇行細管ヒートパイプは、アルミニウムやマグネシウム等の軽金属の多孔扁平管を用いる。この多孔扁平管51は、全体として平板状の外形を有し、内部に平行に配置された多数の貫通細孔57a、57bが押し出し成形により形成されている。細孔57a、57bの端面の隔壁57を一条おきに所定の深さだけ切除し、反対側の端面では一条づつずらせて切除する。各細孔は端部で連通して一連の蛇行トンネル(熱媒体通路)となり、ここに作動流体が封入される。
【0017】
次に本件発明の冷却装置を高発熱半導体素子203が装着されている電子基盤200に適応した場合の実施例について説明する。
一枚のプレート型細孔ヒートパイプ201が3箇所のフィン装着部ができるように巻かれ、該3箇所のフィン装着部にコルゲートフィン215,217及び218を配置することにより輻射熱吸熱器具205が構成されている。該コルゲートフィン215,217及び218は図2からわかるように高発熱半導体素子203からの輻射熱を透過せずに吸収しやすくするために高発熱半導体素子203からの輻射熱の進行方向に対してフィン面が斜めになるように配置される。
該輻射熱吸収器具205には吸収した輻射熱を放熱部に移送するためのプレート型細管ヒートパイプ202が半田付けや熱伝導シール等で取り付けられている。本実施例ではプレート型細管ヒートパイプ202を用いて熱を移送して放熱しているが、輻射熱吸熱器具205単独で放熱装置を構成したり、輻射熱吸熱器具205に対して、高発熱半導体素子203と反対面に直接ファンを取り付けて放熱装置を構成することもできる。
ここで、プレート型細孔ヒートパイプ202及び輻射熱吸熱器具205の高発熱半導体素子203からの輻射熱が当たる部分を黒く塗ることにより高発熱半導体素子203からの輻射熱の吸収率を上げることができる。
また、本件実施例ではコルゲートフィン215,217及び218を斜めに取り付けた例を示したが前記フィンとしてはコルゲートフィン215,217及び218を用いたが図6及び図7に示すように複数の板状の部材227をブラインドのように斜めに配置することにより輻射熱を吸収することもできる。つまり、高発熱半導体素子203からの輻射熱が輻射熱吸熱器具205の高発熱半導体素子203からの輻射熱が当たる面から反対面に高発熱半導体素子203からの輻射熱が漏れないようなフィンの構造にすることにより、本件発明の効果は期待できる。
さらに、本件実施例では、輻射熱吸熱器具205を一つ用いていたのに対して複数の輻射熱吸熱器具を用いることによりさらに放熱効果を上げることができる。例えば複数の輻射熱吸熱器具を重ねて用いたり発熱源に対して複数の輻射熱吸熱器具を用いて複数面を覆うように配置して放熱することもできる。
【0018】
次に図8を用いて本件発明の第二実施例を示す。本発明は家庭用照明に用いられる高発熱の電球や高発光素子等の平面部を持たない高発熱素子に適応した実施例を示す。
本件実施例における輻射熱吸熱器具305は第一実施例における輻射熱吸熱器具と同じ構成を持つので説明は省略する。
プレート型細孔ヒートパイプ301の一端部は光源303を覆うようにして折り曲げられ非接触で配置されている。プレート型細孔ヒートパイプ301の他端部には輻射熱吸熱器具305が半田付けやろう接等で取り付けられている。このような配置にすることにより高温になった光源303からの輻射熱をプレート型細孔ヒートパイプ301で吸収し、輻射熱吸熱器具305まで熱を輸送して該輻射熱吸熱器具305で放熱することができる。
また、輻射熱吸熱器具305自体でも光源303からの輻射熱をフィンで吸収するので放熱効果は向上する。
また、光源303からの輻射熱が当たる部分を黒く塗ることにより光源からの輻射熱の吸収率を上げることができる。
【0019】
図9は図8の放熱装置にフィン401を取り付けたものである。(第三実施例)このような構成にすることによりフィン部でも輻射熱の吸収及び放熱を行うことができるようになり放熱効率を向上することができる。
【0020】
【発明の効果】
上記課題を解決するために本件発明では、請求項1の発明によると発熱体から熱を吸収し放熱するための放熱装置において、単数もしくは複数のヒートパイプを前記発熱体の発熱面に非接触で覆うように配置し、該単数もしくは複数のヒートパイプに放熱部として単数もしくは複数の放熱用フィン装置を任意の箇所に接合し、単数もしくは複数の放熱用フィン装置に取り付けられているフィンを熱源から放射される輻射熱が前記放熱用フィン装置の熱源に面した面から反対面に漏れにくくなるように斜めに配置した構成にすることにより熱源に対して非接触でも、熱源から熱を吸収して放熱をすることができる。
【0021】
請求項2の発明によると、前記ヒートパイプとしてプレート式細孔ヒートパイプを用いた構成にすることにより、冷却装置の配置姿勢による冷却効率の悪化を抑えることができる。
【0022】
請求項3の発明によると、前記放熱用フィン装置とファンを組合わせた構成にすることにより、放熱用フィン装置を空冷することができ、より効率のいい冷却装置を構成することができる。
【0023】
請求項4の発明によると、前記放熱装置の熱源から輻射熱を受ける面を黒色にした構成にすることにより、熱源からの輻射熱を放熱装置へより効率的に吸収することができる。
【0024】
請求項5の発明によると、前記放熱装置の熱源から輻射熱を受ける面に吸熱用フィンを装着したことを特徴とする。このような構成にすることにより、熱源からの輻射熱を放熱装置へより効率的に吸収することができる。
【図面の簡単な説明】
【図1】本件発明の第一実施例の吸熱面の図。
【図2】本件発明の第一実施例の側面図。
【図3】本件発明の第一実施例の上面図。
【図4】プレート式蛇行細管ヒートパイプ。
【図5】プレート型平行細孔ヒートパイプ。
【図6】本件発明の第一実施例の別の輻射熱吸熱器具の吸熱面の図。
【図7】本件発明の第一実施例の別の輻射熱吸熱器具の正面図。
【図8】本件発明の第二実施例の側面図。
【図9】本件発明の第三実施例の平面図。
【符号の説明】
101、102、201、202 プレート型細孔ヒートパイプ
200 プロジェクター
205 プロジェクターの筐体
203、325 光源
210、313、315 放熱用フィン装置
215,217、218、301,303、305、307,309、311 コルゲートフィン
221、321 ファン
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat radiating device that is used in an electronic apparatus and cools a heat generating portion by collecting heat of the heat generating portion in a non-contact manner and dissipating heat to cool the heat generating portion. .
[0002]
[Prior art]
In various electronic devices having components that locally generate heat, such as a semiconductor device and a light emitting element, inside the electronic device, a failure due to overheating of the heating element (for example, malfunction or damage of the heating element or a device member disposed in the vicinity thereof). In order to prevent this, the heat generating means is provided with a heat radiating means for radiating the heat generated by the heat generating element, and the heat generating element is cooled and operated.
[0003]
For example, a computer has a heating element such as a CPU (MPU), a memory, a hard disk drive, etc., and a cathode ray tube or a projector has a large number of heating elements such as a light source. Air cooling that conducts heat to the outside of the housing and radiates heat to the outside, forced air cooling by a small fan, and the like have been performed. (Patent Document 1)
[0004]
However, in recent years, the heat generation density has been remarkably increased due to high performance and modularization of semiconductor devices such as microprocessors, miniaturization and high density arrangement of semiconductor elements. Further, in order to obtain a small-sized and high-fluorescent light-emitting body, the heat generation density of the light-emitting element has been significantly increased.
[0005]
To solve the above problems, for example, a heat collecting means made of a metal plate or the like is disposed in close contact with the heating element, and the heat of the heating element collected by the heat collecting means is used using a heat transfer means such as a flat heat pipe. A heat transfer type cooling device has been devised in which the heat is transferred to the outside of the housing, and the transferred heat is forcibly air-cooled by a heat radiating means such as a radiating fin or a fan arranged on the outer peripheral portion of the housing to cool the heating element. Has been put to practical use.
[0006]
[Patent Document 1]
JP 08-125370 A
[Problems to be solved by the invention]
However, even in the case of using the heat transfer type heat radiating device, when the heating element is arranged in a narrow space, heat can be radiated by directly contacting the cooling device with the heating element as described above. In some cases, it is not possible. For example, when there is a possibility that the contact surface may be peeled off due to vibration, or because a large number of semiconductor devices having different sizes and large heat generation densities are densely arranged in a narrow space due to miniaturization and space saving, a plurality of If it is not possible to arrange the heat radiating device, or because the direction and height of the cooling surface of the heating element are different, arrange a single plate-type heat pipe that is easy to process and contact all the elements. In some cases, a simple heat dissipation device that dissipates heat cannot be applied. Also, when manufacturing a radiator with a shape that is in close contact with a heater with a complicated shape, such as a light source, which is a high heat generator of a projector, the radiator with a complex shape must be processed according to the shape of the light source. There was also a problem that it could not be easily manufactured because it had to be done.
[0008]
The present invention has been made in view of such a problem, and an object of the present invention is to cool an exothermic unit by collecting heat of the exothermic unit in a non-contact manner and radiating the heat in an electronic device. An object of the present invention is to provide a heat radiating device having a simple structure and easy manufacture.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, according to the present invention, according to the first aspect of the present invention, in a heat radiating device for absorbing and radiating heat from a heating element, one or more heat pipes are provided in a non-contact manner with a heating surface of the heating element. Arranged to cover, one or more radiant heat absorbers combining heat pipes and fins as heat sinks to the one or more heat pipes are joined to any location, attached to one or more radiant heat absorbers The fins are arranged such that radiant heat radiated from the heat source is less likely to leak from the surface facing the heat source of the radiant heat absorbing device to the opposite surface. With such a configuration, even when the heat source is not in contact with the heat source, the heat can be absorbed from the heat source and radiated.
[0010]
According to the invention of claim 2, a plate-type pore heat pipe is used as the heat pipe. With such a configuration, it is possible to suppress deterioration of the cooling efficiency due to the arrangement posture of the cooling device.
[0011]
According to a third aspect of the present invention, the radiating fin device and the fan are combined. With such a configuration, the radiating fin device can be air-cooled, and a more efficient cooling device can be configured.
[0012]
According to a fourth aspect of the present invention, a surface of the heat dissipation device that receives radiant heat from a heat source is made black. With such a configuration, the radiant heat from the heat source can be more efficiently absorbed by the radiator.
[0013]
According to a fifth aspect of the present invention, a heat absorbing fin is mounted on a surface of the heat dissipation device that receives radiant heat from a heat source. With such a configuration, the radiant heat from the heat source can be more efficiently absorbed by the radiator.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, FIGS. 1 and 2 show an overall configuration of a heat radiation device according to a first embodiment of the present invention.
FIGS. 1, 2, and 3 are a diagram, a side view, and a top view, respectively, of a heat absorbing surface of an embodiment when the cooling device of the present invention is applied to a semiconductor device. 1, 2, and 3, 201 and 202 are plate-type pore heat pipes.
[0015]
Here, the plate-type pore heat pipe will be described. It is constituted by a meandering pore tunnel plate type heat pipe or a parallel plate type pore heat pipe as shown in FIGS. These plate-type pore heat pipes will be described taking a meandering plate-type pore heat pipe as an example. Here, the pore heat pipe is a heat pipe having the following characteristics (see Japanese Patent Application Laid-Open No. 4-190090).
(1) Both ends of the thin tube (heat medium passage) are connected to each other in a freely circulating manner and are sealed.
(2) One part of the thin tube is a heat receiving part, and another part is a heat radiating part.
(3) The heat receiving portion and the heat radiating portion are alternately arranged, and the narrow tube meanders between both portions.
(4) A two-phase condensable working fluid is sealed in the thin tube.
(5) The inner wall of the thin tube has a diameter smaller than the maximum fluid diameter that allows the working fluid to circulate or move while always closing the inside of the tube.
By using such a thin tube heat pipe, heat can be transferred regardless of the mounting posture of the thin tube heat pipe to the heating element.
[0016]
The plate-shaped meandering thin tube heat pipe uses a porous flat tube made of a light metal such as aluminum or magnesium. The porous flat tube 51 has a flat outer shape as a whole, and has a large number of through-holes 57a and 57b arranged in parallel inside by extrusion molding. The partition walls 57 on the end surfaces of the pores 57a and 57b are cut off every other line by a predetermined depth, and the other end surfaces are cut off by one line at a time. Each pore communicates at the end to form a series of meandering tunnels (heat medium passages) in which the working fluid is sealed.
[0017]
Next, an embodiment in which the cooling device of the present invention is applied to the electronic board 200 on which the high heat generation semiconductor element 203 is mounted will be described.
One plate-type pore heat pipe 201 is wound so as to form three fin mounting portions, and the corrugated fins 215, 217, and 218 are arranged at the three fin mounting portions, thereby forming the radiant heat absorbing device 205. Have been. As can be seen from FIG. 2, the corrugated fins 215, 217 and 218 are provided so that the radiant heat from the high heat generating semiconductor element 203 can be easily absorbed without being transmitted. Are arranged obliquely.
A plate-type thin tube heat pipe 202 for transferring the absorbed radiant heat to the radiator is attached to the radiant heat absorbing device 205 by soldering or a heat conductive seal. In the present embodiment, the heat is transferred and radiated by using the plate-type thin tube heat pipe 202. However, the radiant heat absorbing device 205 alone may constitute a heat radiating device, or the radiant heat absorbing device 205 may be provided with a high heat generating semiconductor element 203. Alternatively, a heat radiator can be configured by directly attaching a fan to the opposite surface.
Here, the absorptivity of the radiant heat from the high heat generating semiconductor element 203 can be increased by painting black the portions of the plate-type pore heat pipe 202 and the radiant heat absorbing device 205 to which the radiant heat from the high heat generating semiconductor element 203 is applied.
Further, in the present embodiment, an example was shown in which the corrugated fins 215, 217 and 218 were attached diagonally, but the corrugated fins 215, 217 and 218 were used as the fins, but as shown in FIG. 6 and FIG. The radiant heat can be absorbed by disposing the member 227 in an oblique manner like a blind. In other words, a fin structure is used in which the radiant heat from the high heat generating semiconductor element 203 does not leak from the surface of the radiant heat absorbing device 205 on which the radiant heat from the high heat generating semiconductor element 203 is applied to the opposite surface. Thus, the effect of the present invention can be expected.
Further, in the present embodiment, one radiation heat absorbing device 205 is used, but by using a plurality of radiation heat absorbing devices, the heat radiation effect can be further improved. For example, a plurality of radiant heat absorbing devices may be used in a stack, or a plurality of radiant heat absorbing devices may be used to cover a plurality of surfaces with respect to a heat source to radiate heat.
[0018]
Next, a second embodiment of the present invention will be described with reference to FIG. The present invention shows an embodiment applied to a high heat generating element having no flat portion such as a high heat generating light bulb and a high light emitting element used for home lighting.
The radiant heat absorbing device 305 in the present embodiment has the same configuration as the radiant heat absorbing device in the first embodiment, and a description thereof will be omitted.
One end of the plate-type pore heat pipe 301 is bent so as to cover the light source 303 and is arranged in a non-contact manner. A radiant heat absorbing device 305 is attached to the other end of the plate-type pore heat pipe 301 by soldering, brazing, or the like. With such an arrangement, the radiant heat from the light source 303, which has become hot, can be absorbed by the plate-type pore heat pipe 301, the heat can be transported to the radiant heat absorber 305, and the heat can be radiated by the radiant heat absorber 305. .
Further, the radiant heat absorbing device 305 itself absorbs the radiant heat from the light source 303 by the fins, so that the heat radiation effect is improved.
Further, by applying black to a portion to which the radiant heat from the light source 303 is applied, the absorption rate of the radiant heat from the light source can be increased.
[0019]
FIG. 9 shows the radiator of FIG. 8 with fins 401 attached. (Third Embodiment) By adopting such a structure, the fin portion can absorb and radiate the radiant heat, and the heat radiation efficiency can be improved.
[0020]
【The invention's effect】
In order to solve the above problem, according to the present invention, according to the first aspect of the present invention, in a heat radiating device for absorbing and radiating heat from a heating element, one or more heat pipes are provided in a non-contact manner with a heating surface of the heating element. It is arranged so as to cover, and one or more heat radiating fin devices are joined to the one or more heat pipes as a heat radiating part at an arbitrary position, and the fins attached to the one or more heat radiating fin devices from the heat source. By arranging diagonally so that radiated radiant heat is less likely to leak from the surface facing the heat source of the heat dissipating fin device to the opposite surface, even without contact with the heat source, it absorbs heat from the heat source and dissipates heat. Can be.
[0021]
According to the second aspect of the present invention, by adopting a configuration using a plate-type pore heat pipe as the heat pipe, it is possible to suppress the deterioration of the cooling efficiency due to the arrangement posture of the cooling device.
[0022]
According to the third aspect of the present invention, by combining the radiating fin device and the fan, the radiating fin device can be air-cooled, and a more efficient cooling device can be configured.
[0023]
According to the fourth aspect of the present invention, since the surface of the heat radiating device that receives the radiant heat from the heat source is made black, the radiant heat from the heat source can be more efficiently absorbed by the heat radiating device.
[0024]
According to a fifth aspect of the present invention, a heat absorbing fin is mounted on a surface of the heat dissipation device that receives radiant heat from a heat source. With such a configuration, the radiant heat from the heat source can be more efficiently absorbed by the radiator.
[Brief description of the drawings]
FIG. 1 is a diagram of a heat absorbing surface according to a first embodiment of the present invention.
FIG. 2 is a side view of the first embodiment of the present invention.
FIG. 3 is a top view of the first embodiment of the present invention.
FIG. 4 is a plate type meandering thin tube heat pipe.
FIG. 5 is a plate-type parallel pore heat pipe.
FIG. 6 is a diagram of a heat absorbing surface of another radiant heat absorbing device according to the first embodiment of the present invention.
FIG. 7 is a front view of another radiant heat absorbing device according to the first embodiment of the present invention.
FIG. 8 is a side view of a second embodiment of the present invention.
FIG. 9 is a plan view of a third embodiment of the present invention.
[Explanation of symbols]
101, 102, 201, 202 Plate-type pore heat pipe 200 Projector 205 Projector housing 203, 325 Light source 210, 313, 315 Radiating fin device 215, 217, 218, 301, 303, 305, 307, 309, 311 Corrugated fins 221 and 321 fans

Claims (5)

発熱体から熱を吸収し放熱するための放熱装置において、単数もしくは複数のヒートパイプを前記発熱体の発熱面に非接触で覆うように配置し、該単数もしくは複数のヒートパイプに吸熱部としてヒートパイプとフィンを組み合わせた単数もしくは複数の輻射熱吸熱器具を任意の箇所に接合し、単数もしくは複数の輻射熱吸熱器具に取り付けられているフィンを熱源から放射される輻射熱が前記輻射熱吸熱器具の熱源に面した面から反対面に漏れにくくなるように配置したことを特徴とする放熱装置。In a heat radiating device for absorbing and radiating heat from a heat generating element, one or more heat pipes are arranged so as to cover a heat generating surface of the heat generating element in a non-contact manner, and heat is applied to the single or plural heat pipes as a heat absorbing portion. One or more radiant heat absorbing devices combining pipes and fins are joined to an arbitrary location, and fins attached to one or more radiant heat absorbing devices are exposed to radiant heat radiated from a heat source facing the heat source of the radiant heat absorbing device. A heat radiating device, wherein the heat radiating device is arranged so as to be hardly leaked from the surface to the opposite surface. 前記ヒートパイプとしてプレート式細孔ヒートパイプを用いたことを特徴とする請求項1に記載の放熱装置。The heat radiator according to claim 1, wherein a plate-type pore heat pipe is used as the heat pipe. 前記放熱用フィン装置とファンを組合わせたことを特徴とする請求項1または2に記載の放熱装置。The heat dissipation device according to claim 1, wherein the heat dissipation fin device and a fan are combined. 前記放熱装置の熱源から輻射熱を受ける面を黒色にしたことを特徴とする請求項1、2または3に記載の放熱装置。The heat radiating device according to claim 1, wherein a surface of the heat radiating device that receives radiant heat from a heat source is black. 前記放熱装置の熱源から輻射熱を受ける面に吸熱用フィンを装着したことを特徴とする請求項1、2、3または4に記載の放熱装置。The heat radiating device according to claim 1, wherein a heat absorbing fin is mounted on a surface of the heat radiating device that receives radiant heat from a heat source.
JP2003100754A 2003-04-03 2003-04-03 Heat dissipation device Expired - Fee Related JP4315722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003100754A JP4315722B2 (en) 2003-04-03 2003-04-03 Heat dissipation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003100754A JP4315722B2 (en) 2003-04-03 2003-04-03 Heat dissipation device

Publications (2)

Publication Number Publication Date
JP2004308973A true JP2004308973A (en) 2004-11-04
JP4315722B2 JP4315722B2 (en) 2009-08-19

Family

ID=33464783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003100754A Expired - Fee Related JP4315722B2 (en) 2003-04-03 2003-04-03 Heat dissipation device

Country Status (1)

Country Link
JP (1) JP4315722B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925290A (en) * 2009-06-11 2010-12-22 发那科株式会社 Flat type heat radiating mechanism on heating surface with parallel radiator fins
JP2020031169A (en) * 2018-08-24 2020-02-27 富士電機株式会社 Reactor unit and power converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925290A (en) * 2009-06-11 2010-12-22 发那科株式会社 Flat type heat radiating mechanism on heating surface with parallel radiator fins
CN101925290B (en) * 2009-06-11 2013-08-07 发那科株式会社 Flat type heat radiating mechanism on heating surface with parallel radiator fins
JP2020031169A (en) * 2018-08-24 2020-02-27 富士電機株式会社 Reactor unit and power converter
JP7247489B2 (en) 2018-08-24 2023-03-29 富士電機株式会社 Reactor unit and power converter

Also Published As

Publication number Publication date
JP4315722B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4391366B2 (en) Heat sink with heat pipe and method of manufacturing the same
KR101070842B1 (en) Heat-dissipating device and electronic apparatus having the same
JP5472955B2 (en) Heat dissipation module
JP2010251756A (en) Heat dissipation device and method of manufacturing the same
TWI619430B (en) Heat sink
JP4720688B2 (en) Electronic control unit cooling system
JP2007234744A (en) Refrigerator and electronic apparatus
US20100032141A1 (en) cooling system utilizing carbon nanotubes for cooling of electrical systems
JP2011091384A (en) Heat dissipation device with heat pipeheat pipe heat radiator
KR20120002299U (en) Heat dissipation device with multiple heat conducting pipes
CN114423135A (en) Radiation source
JP2004293833A (en) Cooling device
JP4707840B2 (en) Radiator and manufacturing method thereof
JP2009099995A (en) Refrigerator and electronic apparatus
JP4315722B2 (en) Heat dissipation device
JP4229738B2 (en) Heat pipe type heat dissipation unit
KR101087774B1 (en) Thermosyphon type heat sink
KR200319226Y1 (en) Heat-radiate device for heat-pipe having fan-shape heat-pin
JP2004156835A (en) Device radiator
JPH11243289A (en) Electronic equipment
JP2018031549A (en) Heat radiator
JP2005051127A (en) Cooling module and laminated structure of heat radiator
JP3122899U (en) Heat dissipation system
JP4324364B2 (en) Heat dissipation device
JP2004247574A (en) Substrate cooling device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041022

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees