JP2004303710A - Positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method therefor - Google Patents

Positive electrode active material for non-aqueous electrolyte secondary battery and manufacturing method therefor Download PDF

Info

Publication number
JP2004303710A
JP2004303710A JP2003098408A JP2003098408A JP2004303710A JP 2004303710 A JP2004303710 A JP 2004303710A JP 2003098408 A JP2003098408 A JP 2003098408A JP 2003098408 A JP2003098408 A JP 2003098408A JP 2004303710 A JP2004303710 A JP 2004303710A
Authority
JP
Japan
Prior art keywords
manganese
nickel
composite oxide
lithium
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003098408A
Other languages
Japanese (ja)
Other versions
JP4581333B2 (en
Inventor
Hideo Sasaoka
英雄 笹岡
Atsushi Fukui
篤 福井
Satoru Matsumoto
哲 松本
Shuhei Oda
周平 小田
Riyuuichi Kuzuo
竜一 葛尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003098408A priority Critical patent/JP4581333B2/en
Publication of JP2004303710A publication Critical patent/JP2004303710A/en
Application granted granted Critical
Publication of JP4581333B2 publication Critical patent/JP4581333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode active material for a non-aqueous electrolyte secondary battery, having excellent flatness in charge/discharge potential, high tapping density for obtaining an Li ion secondary battery with high discharge capacity, and a single phase spinel crystal structure. <P>SOLUTION: A manufacturing method of a LiMnNi composite oxide of a spinel structure represented by a general formula: Li<SB>(1+X)</SB>Mn<SB>(2-Y-X)</SB>Ni<SB>Y</SB>O<SB>4</SB>, where X is -0.05≤X≤0.10, and Y is 0.45≤Y≤0.55, is provided. The method comprises a step of adding manganese salt and nickel salt into a solvent so as to obtain the atomic ratio of Mn and Ni in the general formula, crushing and mixing them until the average particle diameter becomes 0.1μm or smaller, and spray-drying the resulted slurry to obtain a mixture of Mn salt and Ni salt, a step of sintering the mixture at 800-1,000°C to obtain a MnNi composite oxide, a step of adjusting the MnNi composite oxide so that the ratio of the total mol number of Mn and Ni and the mol number of Li is 2:0.95-1.10, and a step of sintering the mixture at 600-750°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非水系電解質二次電池用正極活物質およびそれを用いた非水二次電池用正極に関し、さらに詳しくは、タップ密度(粉体充填密度)が高く、かつ実質的に異相のないスピネル型結晶構造を持つ非水系電解質二次電池用正極活物質およびその製造方法に関する。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコンなどの携帯機器の普及にともない、高いエネルギー密度を有する小型かつ軽量な二次電池に対する要求が高まっている。このようなものとして、非水電解液タイプのリチウムイオン二次電池があり、その研究開発は盛んに行われ、その実用化が図られている。このリチウムイオン二次電池は、リチウム含有複合酸化物を活物質とする正極と、リチウム、リチウム合金、金属酸化物あるいはカーボンのような、リチウムを吸蔵・放出することが可能な材料を活物質とする負極と、非水電解液を含むセパレータまたは固体電解質を主要構成要素とする。
【0003】
これら構成要素のうち、正極活物質として検討されているものには、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、リチウムマンガン複合酸化物(LiMn)等がある。特に、リチウムコバルト複合酸化物を正極に用いた電池については、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られ、実用化に至っている。
【0004】
しかし、二次電池に対する高エネルギー密度化の要求は年々高まる一方であり、現在実用化されているリチウムコバルト複合酸化物を正極に用いたリチウムイオン二次電池は、コバルトが資源として少ないため高価であることから、コバルトより安価で高エネルギー密度を実現できる代替材料が求められている。
【0005】
そのため、非水系電解質二次電池用の正極活物質として、LiCoOに代えて、スピネル型結晶構造を有するリチウムマンガン酸化物系材料が注目されている。このスピネル型構造のリチウムマンガン酸化物には、LiMn、LiMn12 、LiMnなどがあり、それらの中でも、LiMnが、Li(リチウム)電位に対して4V領域で充放電が可能であることから、盛んに研究が行われている(特開平6−76824号公報、特開平7−73883号公報、特開平7−230802号公報、特開平7−245106号公報など)。
【0006】
ところで、電池の高エネルギー密度化を図るためには、高電位の正極活物質を用いることが1つの方法であり、また、電気自動車用電源としては300V以上の高電圧が必要とされる。LiCoOを正極活物質とする場合では、その作動電圧が4.2V程度であるため、接続する電池数が多くなるという課題があった。そのため、LiCoOより高電圧の正極活物質を用いることが要求されるが、前記のスピネル型リチウムマンガン酸化物は、その作動電圧が4V以下であることから、LiCoOを用いる場合よりも容量が小さい上に、300Vの高電圧を得るためには接続する電池数がLiCoOを用いる場合よりさらに多くなるという問題を有している。
【0007】
そのため、スピネル型リチウムマンガン酸化物においても高電圧化が検討されている。たとえば、マンガンサイトをニッケルで置換した複合型のリチウムマンガン複合酸化物では、金属リチウム電位基準で4.5V以上の作動電圧が得られることが確認されている(特開平9−147867号公報、特開平11−73962号公報など)。
【0008】
しかしながら、上記材料は比較的合成が難しく、これまでの合成法ではスピネル構造単相の実現と高いタップ密度の両立は困難であった。たとえば、マンガンとニッケルの固溶が十分進むような微粉砕混合などの方法を用いると、スピネル構造単相を実現することができるが、粒径が細かくなって取扱いが困難となり、合成後の複合酸化物で高いタップ密度を達成することができない。一方、単純な固相法を用いて、充填密度が高く、取扱いの容易な適度な大きさの粒径をもった複合酸化物となるように合成すると、マンガンとニッケルの固溶が不十分となり、ニッケル酸化物などの異相が生成し、スピネル構造単相を実現することができない。その結果、放電曲線において4.8Vの高電位領域での容量が減少し、電位の平坦性が失われ、4V付近の低電位領域の棚が出現し、エネルギー密度の高い正極材料とならず、また、高温でのガスの発生が著しいという問題点があった。
【0009】
そこで、特開2001−185148号公報に開示のような錯体重合法等を代表とする液体−液体混合系での均一混合に着目したが、液相での均一混合を特徴としているため、得られた正極活物質粒子は粒径が非常に微細で、タップ密度の低いものしか得られないという問題点を有していた。当該公報の図面に示される放電曲線(電圧−容量)では、4.5Vを超える平坦領域が120mAh/gまで得られているが、当該放電曲線の下降部分の4.0V領域に棚が現れている。
【0010】
また、特開2001−146426号公報には、リチウム、マンガン、ニッケルの化合物を湿式で粉砕混合し、得られたスラリーを噴霧乾燥する方法が開示されているが、この方法では焼成時にリチウムの融解がマンガンとニッケルの分散を阻害するため均一固溶が進まず、その結果、放電曲線において4V付近の低電位領域の棚が出現してしまうという問題が残されていた。
【0011】
さらに、特開平2001−143704号公報には、マンガン化合物と金属M(Mは、ニッケルまたはニッケルを必須成分とし、これにアルミニウムまたは遷移金属元素から選ばれる1種または2種以上の金属を加えたもの)の化合物を、予め熱処理した後、リチウム化合物と熱処理する方法が開示されているが、当該公報の図面に示される放電曲線(電圧−容量)では、4.5Vを超える平坦領域が120mAh/gまで得られているが、当該放電曲線の下降部分の4.0V領域に棚が現れている。
【0012】
【特許文献1】
特開平6−76824号公報
【0013】
【特許文献2】
特開平7−73883号公報
【0014】
【特許文献3】
特開平7−230802号公報
【0015】
【特許文献4】
特開平7−245106号公報
【0016】
【特許文献5】
特開平9−147867号公報
【0017】
【特許文献6】
特開平11−73962号公報
【0018】
【特許文献7】
特開2001−185148号公報
【0019】
【特許文献8】
特開2001−146426号公報
【0020】
【特許文献9】
特開2001−143704号公報
【0021】
【発明が解決しようとする課題】
本発明では、タップ密度が高く、かつ、マンガンとニッケルの固溶が均一であり実質的に異相のない、スピネル型結晶構造を持つ非水系電解質二次電池用正極活物質およびその製造方法を提供し、その結果、充放電電位の平坦性に優れ、放電容量が大きなリチウムイオン二次電池を提供することにある。
【0022】
【課題を解決するための手段】
本発明による非水系電解質二次電池用正極活物質は、一般式Li(1+X) Mn(2−Y−X) Ni(ただし、式中X、Yは、各々−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル構造を有するリチウムマンガンニッケル複合酸化物であって、立方晶単位格子の格子定数が8.17〜8.18Åであり、比表面積が0.2〜1.0m/gであり、タップ密度が1.52g/cm 以上であり、さらに放電曲線において4.5Vを超える領域が120mAh/g以上あり、かつ、3.5〜4.5Vの電位領域の棚を排除したことを特徴とする。ここで、棚とは、放電曲線の下降部に現れる4V領域の電位段差をいう。
【0023】
また、本発明によるの非水系電解質二次電池用正極活物質の製造方法は、上記特徴を備える一般式Li(1+X) Mn(2−Y−X) Ni(ただし、式中X、Yは、各々−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル構造を有するリチウムマンガンニッケル複合酸化物の製造方法において、マンガン塩とニッケル塩を、上記一般式のマンガンとニッケルの原子比となるよう溶媒中に投入し、平均粒径が0.1μm以下に粉砕混合し、得られたスラリーを噴霧乾燥させてマンガン塩とニッケル塩の混合物を得る第1工程と、前記混合物を800〜1000℃で焼成してマンガンとニッケルの複合酸化物を得る第2工程と、第2工程で得られた複合酸化物とリチウム化合物を、マンガンとニッケルの合計のモル数とリチウムのモル数の比が実質的に2:0.95〜1.10となるように調整した混合物を600〜750℃で焼成する第3工程とからなることを特徴とする。
【0024】
マンガン塩とニッケル塩の混合物の焼成温度は800℃以上900℃未満であることが好ましい。
【0025】
マンガン塩として、炭酸マンガン、炭酸マンガン水和物、水酸化マンガン、オキシ水酸化マンガンの中から選ばれる少なくとも1種を用いることが好ましい。また、ニッケル塩として、炭酸ニッケル、炭酸ニッケル水和物、水酸化ニッケル、オキシ水酸化ニッケルの中から選ばれる少なくとも1種を用いることが好ましい。
【0026】
さらに、マンガン塩とニッケル塩の粉砕混合を、湿式微粉砕機を使用して行うことが好ましい。
【0027】
【発明の実施の形態】
発明者らは、従来の固相法により、非水系電解質二次電池用の正極活物質であるスピネル型構造を有するマンガンサイトをニッケルで置換した複合型のリチウムマンガン複合酸化物を製造した場合、Niが0.5まで置換せず、Mnの酸化還元に起因すると思われる、放電曲線において4V付近の低電位領域の棚が出現してしまう原因が、マンガンとニッケルの固溶の不均一性にあることを見出した。
【0028】
そこで、タップ密度の高い粉体特性の得られやすい固相法を詳細に検討して、リチウム化合物を混合する前に、マンガン原料とニッケル原料の金属塩をナノスケールまで微粉砕混合し、800℃以上で焼成することで均一に固溶させたマンガンニッケル複合酸化物を合成し、その後リチウム化合物を混合、焼成することで、上記問題を解決しうることを知見し、本発明に至った。
【0029】
本発明では、具体的には、一般式Li(1+X) Mn(2−Y−X) Ni(ただし、式中X、Yは、各々−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル構造を有するリチウムマンガンニッケル複合酸化物の製造方法において、マンガン塩とニッケル塩を、上記一般式のマンガンとニッケルの原子比となるよう溶媒中に投入し、平均粒径が0.1μm以下に粉砕混合し、得られたスラリーを噴霧乾燥させてマンガン塩とニッケル塩の混合物を得る第1工程と、前記混合物を800〜1000℃で焼成してマンガンとニッケルの複合酸化物を得る第2工程と、第2工程で得られた複合酸化物とリチウム化合物を、マンガンとニッケルの合計のモル数とリチウムのモル数の比が実質的に2:0.95〜1.10となるように調整した混合物を600〜750℃で焼成する第3工程を経ることで、非水系電解質二次電池用正極活物質を製造する。
【0030】
上記のスピネル型リチウムニッケルマンガン複合酸化物の合成にあたっては、マンガン塩として、炭酸マンガン、炭酸マンガン水和物、水酸化マンガン、オキシ水酸化マンガンの中から選ばれる少なくとも1種を用いることができる。また、ニッケル塩として、炭酸ニッケル、炭酸ニッケル水和物、水酸化ニッケル、オキシ水酸化ニッケルの中から選ばれる少なくとも1種を用いることができる。一方、リチウム原料としては、水酸化リチウム、炭酸リチウム、硝酸リチウム、酢酸リチウムなどを用いることができる。
【0031】
マンガン塩とニッケル塩を、上記一般式のマンガンとニッケルの原子比となるように、純水、エタノール、アセトンなどの溶媒中に投入し、マンガン塩とニッケル塩の平均粒径が0.1μm以下となるように粉砕混合する。粉砕混合には、ビーズミルなどの湿式微粉砕機、ボールミル、およびジェットミルなどの気流衝撃解砕装置などを用いる。マンガンとニッケルをより均一に分散させるためには、ビーズミルを用いることが好ましい。
【0032】
これらの平均粒径が0.1μmを超えていると、後工程において混合を行っても、マンガンとニッケルの固溶が不十分となり、ニッケル酸化物などの異相が生成し、その結果、スピネル構造単相が実現できなくなってしまう。
【0033】
その後、得られたスラリーをスプレードライヤーを用いて、噴霧乾燥させてマンガン塩とニッケル塩の混合造粒物を得る。この工程を経ずに直接、混合粉末を乾燥してリチウム塩と混合し、リチウムマンガン酸化物を合成すると、微粉末が凝集した状態で合成が進むため、異形状の凝集2次粒子が多くなってしまい、また、二次粒子の周囲には微粉も多く存在し、タップ密度の高い粉体特性が得られない。
【0034】
本発明のように、得られたスラリーを、スプレードライヤーを用いて噴霧乾燥させてマンガン塩とニッケル塩の混合造粒物を得ると、造粒物は球状あるいは球状に近い楕円体となっており、1次粒子が集まった2次粒子として比較的緻密な粒子が得られる。かかる造粒物の平均粒径としては3〜20μmが好ましい。この範囲を外れると、タップ密度の高い粉体特性が得られない。
【0035】
次に、前記混合物を、酸素あるいは大気雰囲気で、800〜1000℃で、2〜20時間程度焼成してマンガンとニッケルの複合酸化物を得る。焼成温度が800℃以上900℃未満であることがより好ましい。マンガンとニッケルの均一分散および固溶は、焼成温度を800℃以上とすることで促進されるが、焼成温度が800℃より低いと、マンガンとニッケルが完全に酸化せず、固溶も進まないことになる。一方、工業的にはエネルギーコストを考慮する必要がある。焼成温度が900℃未満の範囲でマンガンとニッケルの均一固溶に問題がないことが確認されている一方、1000℃を超えても結晶成長に影響が見られないことから、焼成温度は900℃未満に抑えることが望ましく、1000℃を超えることは好ましくない。
【0036】
次に、焼成工程で得られたマンガンとニッケルの複合酸化物とリチウム化合物を、マンガンとニッケルの合計のモル数とリチウムのモル数の比が実質的に2:0.95〜1.10となるように調整し、シェーカーミキサー、攪拌混合機、ロッキングミキサー等を用いて、球状の二次粒子の形骸が維持される程度の比較的弱い条件で混合する。その混合粉体を酸素雰囲気、あるいは大気雰囲気中で600〜750℃として10〜20時間焼成し、リチウムニッケルマンガン複合化合物を得る。
【0037】
得られたリチウムニッケルマンガン複合酸化物の結晶構造は、立方晶スピネルであることが必要である。マンガンとニッケルの固溶が不十分であったり、組成が目標組成からずれていると、ニッケル酸化物などの異相が生成し、スピネル構造単相が実現できない。スピネル構造単相でないと、放電曲線において4.8Vの高電位領域での容量が減少し、電位の平坦性が失われ、4Vの低電位領域の棚が出現し、エネルギー密度の高い正極材料とならず、また、高温でのガスの発生が著しいという問題点が現れてしまう。
【0038】
マンガンとニッケルの合計のモル数とリチウムのモル数の比が、実質的に2:0.95〜1.10から外れてリチウム元素が少ないと、スピネル型リチウムニッケルマンガン複合酸化物以外にNiOなどが発生しやすくなり、リチウム元素が多いと固溶しきれないリチウムがリチウムニッケルマンガン複合酸化物表面に残留し、電池性能の低下や、電解液との反応からゲルが発生したりと電池特性を悪化させる原因となり好ましくない。
【0039】
また、マンガンとニッケルの複合酸化物とリチウム化合物の混合粉体の焼成温度が600℃より低いと、リチウムの固溶が不十分となり好ましくなく、750℃を超えると酸素欠損が起こりスピネル構造でなくなってしまう。
【0040】
上記製法で得られるスピネル型リチウムニッケルマンガン複合酸化物は、立方晶単位格子の格子定数が8.17〜8.18Åであることが望ましい。また、該複合酸化物の比表面積は0.2〜1.0m /gであることが望ましい。さらには、タップ密度が1.52g/cm 以上であることが好ましい。これらの諸特性を満たすことによって、実質的に異相のないスピネル構造単相を有し、かつ、タップ密度の高いリチウムニッケルマンガン複合酸化物が得られる。この複合酸化物を非水系電解質二次電池用正極活物質として用いた非水系電解質二次電池においては、放電曲線において3.5〜4.5Vの低電位領域の棚を有しない非水系電解質二次電池用正極活物質が得られる。
【0041】
本発明による複合酸化物を正極活物質として用いた正極は、たとえば、この正極活物質に、必要に応じて導電助剤、バインダーなどを適宜添加して混合し、溶剤でペースト状にし(バインダーはあらかじめ溶剤に溶解させておいてから正極活物質などと混合してもよい)、得られた正極合剤含有ペーストをアルミニウム箔などからなる正極集電体に塗布し、乾燥して正極合剤層を形成し、必要に応じて加圧成形する工程を経ることにより作製される。ただし、正極の作製方法は、前記例示のものに限られることなく、任意の方法を採用できる。
【0042】
前記正極の作製にあたって、導電助剤としては、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)やアセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。また、バインダーとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンプロピレンジエンゴム、フッ素ゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
【0043】
前記正極活物質を含有する正極に対して対極となる負極の活物質としては、リチウム、リチウム−アルミニウムで代表されるリチウム合金、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭などのリチウムイオンを可逆的に吸蔵・放出できる炭素系材料、Si、Sn、Inなどの合金またはLiに近い低電位で充放電できる酸化物や窒化物などの化合物も負極活物質として用いることができる。
【0044】
負極は、負極活物質がリチウムやリチウム合金の場合は、そのまま用いるか、あるいは集電体に圧着することによって作製され、負極活物質が炭素系材料の場合は、必要に応じて正極の場合と同様のバインダーを負極活物質に添加して混合し、溶剤を用いてペースト状にし(バインダーはあらかじめ溶剤に溶解させておいてから負極活物質と混合してもよい)、得られた負極合剤含有ペーストを銅箔などからなる負極集電体に塗布し、乾燥して負極合剤層を形成し、必要に応じて加圧成形する工程を経ることによって作製される。ただし、負極の作製方法は、前記例示のものに限られることなく、任意の方法を採用できる。
【0045】
電解質としては、非水系の液状電解質、ゲル状ポリマー電解質のいずれも用いることができるが、本発明においては、通常、電解液と呼ばれる液状電解質が多用される。この液状電解質(電解液)は、有機溶媒を主材とする非水溶媒にリチウム塩などの電解質塩を溶解させることによって調製されるが、その溶媒としては、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、プロピオン酸メチルなどの鎖状エステル、リン酸トリメチルなどの鎖状リン酸トリエステル、1,2−ジメトキシエタン、1,3−ジオキソラン、テトラヒドロフラン、2−メチル−テトラヒドロフラン、ジエチルエーテルなどを用いることができる。そのほか、アミンイミド系有機溶媒やスルホランなどのイオウ系有機溶媒なども用いることができる。
【0046】
さらに、その他の溶媒成分として誘電率の高いエステル(導電率30以上)を用いることが、電池特性、特に負荷特性を向上させることから好ましく、その誘電率の高いエステルの具体例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトンなどが挙げられ、また、エチレングリコールサルファイトなどのイオウ系エステルも用いることができるが、環状構造のエステルが好ましく、特にエチレンカーボネートのような環状カーボネートが好ましい。これらの溶媒はそれぞれ単独でまたは2種以上混合して用いることができる。
【0047】
リチウム塩などの電解質塩としては、たとえば、LiClO、LiPF、LiBF、LiAsF、LiSbF、LiCFSO、LiCSO、LiCFCO、Li(SO、LiN(RfSO)(RfSO)〔ここで、Rf、Rfはフルオロアルキル基を含む置換基である〕、LiN(RfOSO)(RfOSO)〔ここで、Rf、Rfはフルオロアルキル基である〕、LiC2n+1 SO(n≧2)、LiC(RfSO、LiN(RfOSO〔ここでRf、Rfはフルオロアルキル基である〕、ポリマータイプイミドリチウム塩などが単独または2種以上混合して用いられる。電解液中における電解質塩の濃度は、特に限定されるものではないが、濃度を0.1〜2.0mol/lにすることが好ましい。
【0048】
ゲル状ポリマー電解質は、上記電解液をゲル化剤によってゲル化したものに相当するが、そのゲル化にあたっては、たとえば、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリアクリルニトリルなどの直鎖状ポリマーまたはそれらのコポリマー、紫外線や電子線などの活性光線の照射によりポリマー化する多官能モノマー(たとえば、ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレートなどの四官能以上のアクリレートおよび上記アクリレートと同様の四官能以上のメタクリレートなど)などが用いられる。ただし、モノマーの場合、モノマーそのものが電解液をゲル化させるのではなく、上記モノマーをポリマー化したポリマーがゲル化剤として作用する。
【0049】
上記のように多官能モノマーを用いて電解液をゲル化させる場合、必要であれば、重合開始剤として、ベンゾイル類、ベンゾインアルキルエーテル類、ベンゾフェノン類、ベンゾイルフェニルフォスフィンオキサイド類、アセトフェノン類、チオキサントン類、アントラキノン類、アミノエステルなども使用することもできる。
【0050】
本発明によって得られる正極活物質を用いた非水系電解質二次電池においては、放電容量が大きく、かつ、高電位での平坦性に優れ、しかもタップ密度が高いことから高エネルギー密度を有する非水系電解質二次電池が実現可能となる。
【0051】
【実施例】
(実施例1)
市販の炭酸マンガン六水和物(MnCO・6HO:和光純薬工業製)および水酸化ニッケル(Ni(OH):和光純薬工業製)を、MnとNiの原子比で1.5:0.5になるように秤量し、これに純水を加えて固形分濃度10重量%のスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分の平均粒子径が0.1μm以下になるまで粉砕した。
【0052】
その後、二流体ノズル噴霧型のスプレードライヤー(藤崎電機社製:MDL−050−M)を用いて、噴霧乾燥を行った。この時の平均粒径は8.5μmであった。さらに、酸素雰囲気中で890℃、20時間焼成し、マンガンニッケルの複合酸化物を得た。このマンガンニッケル複合酸化物のSEM写真像を図7(a)に示す。
【0053】
その後、Li:Mn:Ni=1.0:1.5:0.5(原子比)となるように、市販の水酸化リチウム一水和物(LiOH・(HO)(FMC社製))と前記マンガンニッケルの複合酸化物を秤量し、球状の二次粒子の形骸が維持される程度にシェーカーミキサーにより10分間混合し、酸素雰囲気中で700℃で20時間焼成した。
【0054】
その結果、平均粒子径約13μmで比表面積0.5m /gのほぼ球状の二次粒子が得られた。得られた粉末を、Cu−Kα線を用いた粉末X線回折で分析したところ、図1に示すように、立方晶のスピネル型リチウムマンガンニッケル複合酸化物単相であることが確認された。この粉末のSEM写真像を図7(b)に示す。
【0055】
なお、粒度分布測定は、レーザー回折・散乱式粒度分布測定装置(日機装製 マイクロトラックHRA)、比表面積は窒素吸着式BET法測定機(イワサアイオニックス社製 カンタソーブQS−10)、X線回折の測定はX線回折装置(リガク電機社製:RINT−1400)を用いて行った。
【0056】
この粉末12gを20mlのガラス製メスシリンダーに入れ、500回タップした後の、粉体充填密度(タップ密度)を測定したところ、1.58g/cm であった。
【0057】
また、X線回折パターンのリートベルト解析により格子定数を算出したところ、8.173Åであった。
【0058】
得られた活物質を用いて、以下のように電池を作製し、充放電容量を測定した。
【0059】
活物質52.5mg、アセチレンブラック15mgおよびポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mmφにプレス成形した。
【0060】
作製した電極を真空乾燥機中120℃で一晩乾燥した。図6に示す2032型コイン電池をAr雰囲気のグローブボックス中で組み立てた。負極には、直径17mmφ厚さ1mmのLi金属を用い、電解液には1MのLiPFを支持塩とするエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の等量混合液を用いた。セパレータには膜厚25μmのポリエチレン多孔膜を用いた。
【0061】
なお、コイン電池は、組み立て後10時間程度放置し、開回路電圧が安定した後、電流密度0.5mA/cmで充電および放電の終止電圧をそれぞれ4.9Vおよび3.0Vとして充放電試験を行った。その結果、図5に示すように、放電曲線において、4.5Vを超える領域が120mAh/g以上あり、かつ、3.5〜4V付近の低電位領域の棚は出現しなかった。
【0062】
(実施例2)
市販の炭酸マンガン六水和物(MnCO・6HO:和光純薬工業製)および炭酸ニッケル(NiCO:和光純薬工業製)を原料とし、マンガンニッケルの複合酸化物を得る時の焼成温度を800℃とした以外は、実施例1と同様にして、リチウムマンガンニッケルの複合酸化物を得た。
【0063】
その結果、平均粒子径約12μmで比表面積0.8m/gのほぼ球状の二次粒子が得られた。得られた粉末を、Cu−Kα線を用いた粉末X線回折で分析したところ、立方晶のスピネル型リチウムマンガンニッケル複合酸化物単相であることが確認された。
【0064】
得られた粉体のタップ密度を測定したところ、1.70g/cm であった。また、X線回折パターンのリートベルト解析により格子定数を算出すると8.173Åであった。また、得られた活物質を用いて電池を作製して充放電試験を行った結果、図5に示す実施例1の結果と同様に、放電曲線において、4.5Vを超える領域が120mAh/g以上あり、かつ、3.5〜4V付近の低電位領域の棚は出現しなかった。
【0065】
(実施例3)
市販の水酸化マンガン(Mn(OH):和光純薬工業製)および水酸化ニッケル(Ni(OH):和光純薬工業製)を原料とし、マンガンニッケルの複合酸化物を得る時の焼成温度を1000℃とした以外は、実施例1と同様にして、リチウムマンガンニッケルの複合酸化物を得た。
【0066】
その結果、平均粒子径約13.5μmで比表面積0.4m/gのほぼ球状の二次粒子が得られた。得られた粉末を、Cu−Kα線を用いた粉末X線回折で分析したところ、立方晶のスピネル型リチウムマンガンニッケル複合酸化物単相であることが確認された。
【0067】
得られた粉体のタップ密度を測定したところ、1.54g/cm であった。また、X線回折パターンのリートベルト解析により格子定数を算出すると8.174Åであった。また、得られた活物質を用いて電池を作製して充放電試験を行った結果、図5に示す実施例1の結果と同様に、放電曲線において、4.5Vを超える領域が120mAh/g以上あり、かつ、3.5〜4V付近の低電位領域の棚は出現しなかった。
【0068】
(実施例4)
水酸化リチウム一水和物(LiOH・(HO)(FMC社製))と前記マンガンニッケルの複合酸化物の混合比を、Li:Mn:Ni=0.95:1.5:0.5(原子比)とした以外は、実施例1と同様にして、リチウムマンガンニッケル複合酸化物を作製した。
【0069】
その結果、平均粒子径約13μmで比表面積0.5m/gのほぼ球状の二次粒子が得られた。得られた粉末を、Cu−Kα線を用いた粉末X線回折で分析したところ、立方晶のスピネル型リチウムマンガンニッケル複合酸化物単相であることが確認された。
【0070】
得られた粉体のタップ密度を測定したところ、1.56g/cm であった。また、X線回折パターンのリートベルト解析により格子定数を算出すると8.170Åであった。また、得られた活物質を用いて電池を作製して充放電試験を行った結果、図5に示す実施例1の結果と同様に、放電曲線において、4.5Vを超える領域が120mAh/g以上あり、かつ、3.5〜4V付近の低電位領域の棚は出現しなかった。
【0071】
(実施例5)
水酸化リチウム一水和物(LiOH・(HO)(FMC社製))と前記マンガンニッケルの複合酸化物の混合比を、Li:Mn:Ni=1.10:1.5:0.5(原子比)とした以外は、実施例1と同様にして、リチウムマンガンニッケル複合酸化物を作製した。
【0072】
その結果、平均粒子径約14μmで比表面積0.5m/gのほぼ球状の二次粒子が得られた。得られた粉末を、Cu−Kα線を用いた粉末X線回折で分析したところ、立方晶のスピネル型リチウムマンガンニッケル複合酸化物単相であることが確認された。
【0073】
得られた粉体のタップ密度を測定したところ、1.65g/cm であった。また、X線回折パターンのリートベルト解析により格子定数を算出すると8.175Åであった。また、得られた活物質を用いて電池を作製して充放電試験を行った結果、図5に示す実施例1の結果と同様に、放電曲線において、4.5Vを超える領域が120mAh/g以上あり、かつ、3.5〜4V付近の低電位領域の棚は出現しなかった。
【0074】
(実施例6)
水酸化リチウム一水和物(LiOH・(HO)(FMC社製))と前記マンガンニッケルの複合酸化物の混合後の焼成温度を600℃とした以外は、実施例1と同様にして、リチウムマンガンニッケル複合酸化物を作製した。
【0075】
その結果、平均粒子径約11μmで比表面積0.7m/gのほぼ球状の二次粒子が得られた。得られた粉末を、Cu−Kα線を用いた粉末X線回折で分析したところ、立方晶のスピネル型リチウムマンガンニッケル複合酸化物単相であることが確認された。
【0076】
得られた粉体のタップ密度を測定したところ、1.53g/cm であった。また、X線回折パターンのリートベルト解析により格子定数を算出すると8.171Åであった。また、得られた活物質を用いて電池を作製して充放電試験を行った結果、図5に示す実施例1の結果と同様に、放電曲線において、4.5Vを超える領域が120mAh/g以上あり、かつ、3.5〜4V付近の低電位領域の棚は出現しなかった。
【0077】
(実施例7)
水酸化リチウム一水和物(LiOH・(HO)(FMC社製))と前記マンガンニッケルの複合酸化物の混合後の焼成温度を750℃とした以外は、実施例1と同様にして、リチウムマンガンニッケル複合酸化物を作製した。
【0078】
その結果、平均粒子径約13μmで比表面積0.4m/gのほぼ球状の二次粒子が得られた。得られた粉末を、Cu−Kα線を用いた粉末X線回折で分析したところ、立方晶のスピネル型リチウムマンガンニッケル複合酸化物単相であることが確認された。
【0079】
得られた粉体の充填密度タップ密度を測定したところ、1.66g/cm であった。また、X線回折パターンのリートベルト解析により格子定数を算出すると8.175Åであった。また、得られた活物質を用いて電池を作製して充放電試験を行った結果、図5に示す実施例1の結果と同様に、放電曲線において、4.5Vを超える領域が120mAh/g以上あり、かつ、3.5〜4V付近の低電位領域の棚は出現しなかった。
【0080】
(比較例1)
マンガンニッケルの複合酸化物を得る時の焼成温度を700℃とし、および得られた噴霧乾燥品と市販の水酸化リチウム一水和物(LiOH・HO(FMC社製))をLiとMnとNiの原子比が0.9:1.5:0.5となるように秤量した以外は、実施例1と同様にし、球状の二次粒子の形骸が維持される程度にシェーカーミキサーにより10分間混合し、酸素雰囲気中で700℃で20時間焼成した。その結果、平均粒子径約6μmのほぼ球状の二次粒子が得られた。この粉末のSEM写真像を図7(c)に示す。
【0081】
得られた焼成物を、Cu−Kα線を用いた粉末X線回折で分析したところ、図2に示すように、立方晶を有するスピネル型リチウムマンガンニッケル複合酸化物の他に、NiOの異相が確認できた。なお、この粉末のタップ密度は0.75g/cm、比表面積は12.4m/g、格子定数は8.174Åであった。また、得られた活物質を用いて電池を作製して充放電試験を行った結果、図5に示すように、放電曲線において、3.5〜4V付近の低電位領域の棚が出現した。
【0082】
(比較例2)
市販の硝酸リチウム(LiNO:関東化学製)、硝酸マンガン六水和物(Mn(NO・6HO:和光純薬工業製)および硝酸ニッケル六水和物(Ni(NO・6HO:和光純薬工業製)をLiとMnとNiの原子比が1.0:1.5:0.5になるように秤量し、純水50mlに溶かし水溶液とした。それにPVAの20%溶液を100g混合し、これをホットスターラーで加熱、保持し、150〜200℃程度の温度で水分を加熱除去することで、硝酸塩の分解、高分子の燃焼が起こった。生じた熱によりリチウムイオン、マンガンイオン、ニッケルイオンの反応が起こり、スピネル型LiMn1.5 Ni0.5 の前駆体の粉末が得られた。
【0083】
得られた前駆体をマッフル炉(modelKDF HR7:デンケン製)で500℃で2時間仮焼成したのち、600℃で20時間酸素雰囲気で焼成することで、スピネル型LiMn1.5 Ni0.5 を合成した。その結果、平均粒子径約24μmの発泡状粒子が得られた。この粉末のSEM写真像を図7(d)に示す。
【0084】
得られた焼成物を、Cu−Kα線を用いた粉末X線回折で分析したところ、図3に示すように、立方晶を有するスピネル型リチウムマンガンニッケル複合酸化物の他に、NiOの異相が確認できた。なお、タップ密度は0.92g/cm、比表面積は5.9m/g、格子定数は8.173Åであった。また、得られた活物質を用いて電池を作製して充放電試験を行った結果、図5に示すように、放電曲線において、3.5〜4V付近の低電位領域の棚が出現した。
【0085】
(比較例3)
市販の硫酸ニッケル六水和物(NiSO・6HO:住友金属鉱山製)、硫酸マンガン五水和物(MnSO・5HO:和光純薬工業製)をMnとNiの原子比が3:1になるように秤量し純水にて溶解、MnとNiで2mol/lの硫酸塩溶解液300ccを作成した。次に1リットルビーカーに純水を400cc添加し、その後攪拌しながら温度を60℃まで昇温後pH11.0と一定になるように25%苛性ソーダおよび前記Mn,Ni硫酸塩溶液を添加し、マンガンとニッケルに複合水酸化物を得た。
【0086】
Mn,Ni硫酸塩溶液添加終了後、複合水酸化物のろ過、水洗を行い、40℃で真空乾燥を行った。そして得られた乾燥物に市販の水酸化リチウム一水和物(LiOH・HO(FMC社製))をLiとMnとNiの原子比が1.0:1.5:0.5となるように秤量し、二次粒子の形骸が維持される程度でシェーカーミキサーにより10分間混合し酸素雰囲気中で600℃で20時間焼成した。その結果、微粉が凝集した異形状の平均粒子径約4μmの二次粒子が得られた。この粉末のSEM写真像を図7(e)に示す。
【0087】
得られた焼成物を、Cu−Kα線を用いた粉末X線回折で分析したところ、図4に示すように、立方晶を有するスピネル型リチウムマンガンニッケル複合酸化物の他に、NiO、NiMnOの異相が確認できた。なお、この粉末のタップ密度は0.71g/cm、比表面積は18.9m/g、格子定数は8.173Åであった。また、得られた活物質を用いて電池を作製して充放電試験を行った結果、図5に示すように、放電曲線において、3.5〜4V付近の低電位領域の棚が出現した。
【0088】
(比較例4)
マンガンニッケルの複合酸化物を得る時の焼成温度を750℃とした以外は、実施例1と同様にして、リチウムマンガンニッケルの複合酸化物を得た。
【0089】
その結果、平均粒子径約10μmで比表面積4.4m/gのほぼ球状の二次粒子が得られた。得られた粉末を、Cu−Kα線を用いた粉末X線回折で分析したところ、立方晶のスピネル型リチウムマンガンニッケル複合酸化物の他に、NiOのピークが確認された。
【0090】
得られた粉体のタップ密度を測定したところ、1.39g/cm であった。また、X線回折パターンのリートベルト解析により格子定数を算出すると8.183Åであった。
【0091】
また、得られた活物質を用いて電池を作製して充放電試験を行った結果、放電曲線において、3.5〜4V付近の低電位領域の棚が出現した。
【0092】
(比較例5)
マンガンニッケルの複合酸化物を得る時の焼成温度を1050℃とした以外は、実施例1と同様にして、リチウムマンガンニッケルの複合酸化物を得た。
【0093】
その結果、平均粒子径約15μmで比表面積0.5m/gのほぼ球状の二次粒子が得られた。得られた粉末を、Cu−Kα線を用いた粉末X線回折で分析したところ、立方晶のスピネル型リチウムマンガンニッケル複合酸化物の他に、NiOのピークが確認された。
【0094】
得られた粉体のタップ密度を測定したところ、1.61g/cm であった。また、X線回折パターンのリートベルト解析により格子定数を算出すると8.174Åであった。
【0095】
また、得られた活物質を用いて電池を作製して充放電試験を行った結果、放電曲線において、3.5〜4V付近の低電位領域の棚が出現した。
【0096】
(比較例6)
水酸化リチウム一水和物(LiOH・(HO)(FMC社製))と前記マンガンニッケルの複合酸化物の混合比を、Li:Mn:Ni=0.90:1.5:0.5(原子比)となるようにした以外は、実施例1と同様にして、リチウムマンガンニッケル複合酸化物を作製した。
【0097】
その結果、平均粒子径約10μmで比表面積0.5m/gのほぼ球状の二次粒子が得られた。得られた粉末を、Cu−Kα線を用いた粉末X線回折で分析したところ、立方晶のスピネル型リチウムマンガンニッケル複合酸化物の他にNiOのピークが確認された。
【0098】
得られた粉体のタップ密度を測定したところ、1.53g/cm であった。また、X線回折パターンのリートベルト解析により格子定数を算出すると8.176Åであった。
【0099】
また、得られた活物質を用いて電池を作製して充放電試験を行った結果、放電曲線において、3.5〜4V付近の低電位領域の棚が出現した。
【0100】
(比較例7)
水酸化リチウム一水和物(LiOH・(HO)(FMC社製))と前記マンガンニッケルの複合酸化物の混合を、Li:Mn:Ni=1.15:1.5:0.5(原子比)となるようにした以外は、実施例1と同様にして、リチウムマンガンニッケル複合酸化物を作製した。
【0101】
その結果、平均粒子径約14μmで比表面積0.5m/gのほぼ球状の二次粒子が得られた。得られた粉末を、Cu−Kα線を用いた粉末X線回折で分析したところ、立方晶のスピネル型リチウムマンガンニッケル複合酸化物の他にNiOのピークが確認された。
【0102】
得られた粉体の充填密度(タップ密度)を測定したところ、1.62g/cm であった。また、X線回折パターンのリートベルト解析により格子定数を算出すると8.176Åであった。
【0103】
また、得られた活物質を用いて電池を作製して充放電試験を行った結果、放電曲線において、3.5〜4V付近の低電位領域の棚が出現した。
【0104】
(比較例8)
水酸化リチウム一水和物(LiOH・(HO)(FMC社製))と前記マンガンニッケルの複合酸化物の混合後の焼成温度を550℃とした以外は、実施例1と同様にして、リチウムマンガンニッケル複合酸化物を作製した。
【0105】
その結果、平均粒子径約12μmで比表面積0.6m/gのほぼ球状の二次粒子が得られた。得られた粉末を、Cu−Kα線を用いた粉末X線回折で分析したところ、立方晶のスピネル型リチウムマンガンニッケル複合酸化物の他にNiO、NiMnOのピークが確認された。
【0106】
得られた粉体のタップ密度を測定したところ、1.09g/cm であった。また、X線回折パターンのリートベルト解析により格子定数を算出すると8.169Åであった。
【0107】
また、得られた活物質を用いて電池を作製して充放電試験を行った結果、放電曲線において、3.5〜4V付近の低電位領域の棚が出現した。これは、スピネル型リチウムマンガンニッケル複合酸化物の他に異相が出現したことと立方晶単位格子の格子定数が小さくなり過ぎたためと考えられる。
【0108】
(比較例9)
水酸化リチウム一水和物(LiOH・(HO)(FMC社製))と前記マンガンニッケルの複合酸化物の混合後の焼成温度を800℃とした以外は、実施例1と同様にして、リチウムマンガンニッケル複合酸化物を作製した。
【0109】
その結果、平均粒子径約14μmで比表面積0.4m/gのほぼ球状の二次粒子が得られた。得られた粉末を、Cu−Kα線を用いた粉末X線回折で分析したところ、立方晶のスピネル型リチウムマンガンニッケル複合酸化物の他にNiOのピークが確認された。
【0110】
得られた粉体のタップ密度を測定したところ、1.57g/cm であった。また、X線回折パターンのリートベルト解析により格子定数を算出すると8.186Åであった。
【0111】
また、得られた活物質を用いて電池を作製して充放電試験を行った結果、放電曲線において、3.5〜4V付近の低電位領域の棚が出現した。これは、スピネル型リチウムマンガンニッケル複合酸化物の他に多量の異相が出現したことと立方晶単位格子の格子定数が大きくなり過ぎたためと考えられる。
【0112】
表1に、各実施例および比較例の製造条件および得られたリチウムマンガンニッケル複合酸化物の物性をそれぞれ示す。
【0113】
【表1】

Figure 2004303710
【0114】
図5から明らかなように、実施例1との比較において、比較例1〜3は、放電曲線において、3.5〜4V付近の低電位領域の棚が出現している。これは、比較例1〜3が、図2〜4に示すようにスピネル構造単相でないためであると考えられる。
【0115】
一方、実施例は、タップ密度が1.5g/cm 以上あることから電池としての体積エネルギー密度の上昇が見込まれ、また、比表面積についても、実施例は比較例と比べ低比表面積を実現できており、これによってリチウムマンガン複合酸化物特有の高温時の特性劣化を防ぐ効果を確保しつつ、図5の実施例1の放電曲線で例示されるように、4.5Vを超える領域が120mAh/g以上あり、かつ、3.5〜4V付近の低電位領域の棚は出現していないという従来と比較した優位性が示されているといえる。
【0116】
【発明の効果】
本発明によって得られるスピネル型リチウム複合酸化物は、一般式Li(1+X)Mn(2−Y−X) Ni(ただし、式中X、Yは、各々−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル構造を有するリチウムマンガンニッケル複合酸化物の製造方法において、マンガン塩とニッケル塩を、上記一般式のマンガンとニッケルの原子比となるよう溶媒中に投入し、平均粒径が0.1μm以下に粉砕混合し、得られたスラリーを噴霧乾燥させてマンガン塩とニッケル塩の混合物を得る第1工程と、前記混合物を800〜1000℃で焼成してマンガンとニッケルの複合酸化物を得る第2工程と、第2工程で得られた複合酸化物とリチウム化合物を、マンガンとニッケルの合計のモル数とリチウムのモル数の比が実質的に2:0.95〜1.10となるように調整した混合物を600〜750℃で焼成する第3工程、を有する製造方法を用いて得られる複合酸化物であり、スピネル型結晶構造単一相で、結晶欠陥のないリチウムマンガンニッケル複合酸化物が得られる。このことにより、タップ密度が高いことを維持しつつ、かつ、放電曲線において、3.5〜4V付近の低電位領域の棚は出現しない、高電位領域での電位平坦性にも優れた、放電容量が大きく、かつ、高エネルギー密度の非水系電解質二次電池を実現できるという効果を有する。
【図面の簡単な説明】
【図1】本発明の実施例1の方法によって得られたリチウムニッケルマンガン複合酸化物の乾燥粉末のX線回折図である。
【図2】比較例1の方法によって得られたリチウムニッケルマンガン複合酸化物の乾燥粉末のX線回折図である。
【図3】比較例2の方法によって得られたリチウムニッケルマンガン複合酸化物の乾燥粉末のX線回折図である。
【図4】比較例3の方法によって得られたリチウムニッケルマンガン複合酸化物の乾燥粉末のX線回折図である。
【図5】実施例および比較例1〜3における充放電試験の結果を示す図である。
【図6】充放電試験を行う際に用いたコイン電池の構造を示す図である。
【図7】(a)および(b)は、実施例1のスプレードライヤーで噴霧乾燥後焼成したマンガンニッケル複合酸化物(a)と合成後のスピネル型リチウムマンガンニッケル複合酸化物(b)のSEM写真像であり、(c)〜(e)は、順に比較例1〜3それぞれのリチウムマンガンニッケル複合酸化物のSEM写真像である。
【符号の説明】
1 リチウム金属負極
2 セパレータ(電解液含浸)
3 正極(評価用電極)
4 ガスケット
5 負極缶
6 正極缶
7 集電体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a positive electrode for a non-aqueous secondary battery using the same. More specifically, the present invention has a high tap density (powder packing density) and substantially no foreign phase. The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery having a spinel type crystal structure and a method for producing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the spread of portable devices such as a mobile phone and a notebook computer, a demand for a small and lightweight secondary battery having a high energy density is increasing. As such a device, there is a non-aqueous electrolyte type lithium ion secondary battery, and research and development thereof have been actively carried out and its practical use has been attempted. This lithium ion secondary battery uses a positive electrode containing a lithium-containing composite oxide as an active material, and a material capable of occluding and releasing lithium, such as lithium, a lithium alloy, a metal oxide, or carbon, as an active material. The main components are a negative electrode to be used and a separator or a solid electrolyte containing a non-aqueous electrolyte.
[0003]
Among these components, those considered as a positive electrode active material include a lithium cobalt composite oxide (LiCoO 2 ), Lithium nickel composite oxide (LiNiO) 2 ), Lithium manganese composite oxide (LiMn) 2 O 4 ). In particular, with regard to batteries using lithium-cobalt composite oxide for the positive electrode, many developments have been made to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained, and commercialization has been achieved. Has reached.
[0004]
However, the demand for higher energy density for secondary batteries is increasing year by year, and lithium-ion secondary batteries using lithium-cobalt composite oxides, which are currently in practical use, for the positive electrode are expensive because cobalt is a scarce resource. For this reason, there is a need for an alternative material that is less expensive than cobalt and can achieve a high energy density.
[0005]
Therefore, LiCoO 2 is used as a positive electrode active material for a non-aqueous electrolyte secondary battery. 2 Instead, lithium manganese oxide-based materials having a spinel-type crystal structure have attracted attention. Lithium manganese oxide having this spinel structure has Li 2 Mn 4 O 9 , Li 4 Mn 5 O 12 , LiMn 2 O 4 Among them, among them, LiMn 2 O 4 However, since charging and discharging can be performed in a 4 V region with respect to the Li (lithium) potential, active research has been made (Japanese Patent Application Laid-Open Nos. 6-76824, 7-73883, 7-83). -230802, JP-A-7-245106, etc.).
[0006]
Incidentally, in order to increase the energy density of a battery, one method is to use a positive electrode active material having a high potential, and a high voltage of 300 V or more is required as a power supply for an electric vehicle. LiCoO 2 In the case where is used as a positive electrode active material, since the operating voltage is about 4.2 V, there is a problem that the number of connected batteries increases. Therefore, LiCoO 2 Although it is required to use a positive electrode active material with a higher voltage, the spinel-type lithium manganese oxide has a working voltage of 4 V or less. 2 In addition to having a smaller capacity than in the case of using 2 There is a problem that the number is further increased than in the case of using.
[0007]
For this reason, higher voltage is being studied for spinel-type lithium manganese oxide. For example, it has been confirmed that a composite lithium manganese composite oxide in which manganese sites are replaced with nickel can obtain an operating voltage of 4.5 V or more based on the potential of metallic lithium (Japanese Patent Application Laid-Open No. 9-147867; Japanese Unexamined Patent Publication No. Hei 11-73962).
[0008]
However, the above materials are relatively difficult to synthesize, and it has been difficult to achieve both a single phase of spinel structure and a high tap density by conventional synthesis methods. For example, by using a method such as pulverization and mixing in which solid solution of manganese and nickel proceeds sufficiently, a single phase of spinel structure can be realized, but the particle diameter becomes small and handling becomes difficult, and the composite after synthesis becomes complex. High tap densities cannot be achieved with oxides. On the other hand, if a simple solid-phase method is used to synthesize a composite oxide with a high packing density and a moderately sized particle size that is easy to handle, the solid solution of manganese and nickel becomes insufficient. As a result, a hetero phase such as nickel oxide is generated, and a single phase having a spinel structure cannot be realized. As a result, in the discharge curve, the capacity in the high potential region of 4.8 V is reduced, the flatness of the potential is lost, the shelf in the low potential region around 4 V appears, and the positive electrode material does not have a high energy density. In addition, there is a problem that generation of gas at a high temperature is remarkable.
[0009]
Therefore, attention has been paid to uniform mixing in a liquid-liquid mixture system represented by a complex polymerization method or the like as disclosed in JP-A-2001-185148. In addition, the positive electrode active material particles have a problem that the particle diameter is very fine and only those having a low tap density can be obtained. In the discharge curve (voltage-capacity) shown in the drawings of this publication, a flat region exceeding 4.5 V was obtained up to 120 mAh / g, but a shelf appeared in a 4.0 V region in the lower part of the discharge curve. I have.
[0010]
Japanese Patent Application Laid-Open No. 2001-146426 discloses a method in which a compound of lithium, manganese, and nickel is pulverized and mixed by a wet method, and the obtained slurry is spray-dried. Disturbs the dispersion of manganese and nickel, so that uniform solid solution does not progress. As a result, there remains a problem that a low potential region shelf around 4 V appears on the discharge curve.
[0011]
Further, JP-A-2001-143704 discloses that a manganese compound and a metal M (M is nickel or nickel as essential components, and one or more metals selected from aluminum or a transition metal element are added thereto. A method is disclosed in which the compound of Example 1 is heat-treated in advance and then heat-treated with a lithium compound. However, in the discharge curve (voltage-capacity) shown in the drawings of this publication, a flat region exceeding 4.5 V has a flat area of 120 mAh / g, but a shelf appears in the 4.0 V region in the falling part of the discharge curve.
[0012]
[Patent Document 1]
JP-A-6-76824
[0013]
[Patent Document 2]
JP-A-7-73883
[0014]
[Patent Document 3]
JP-A-7-230802
[0015]
[Patent Document 4]
JP-A-7-245106
[0016]
[Patent Document 5]
JP-A-9-147867
[0017]
[Patent Document 6]
JP-A-11-73962
[0018]
[Patent Document 7]
JP 2001-185148 A
[0019]
[Patent Document 8]
JP 2001-146426 A
[0020]
[Patent Document 9]
JP 2001-143704 A
[0021]
[Problems to be solved by the invention]
In the present invention, a positive electrode active material for a non-aqueous electrolyte secondary battery having a spinel type crystal structure having a high tap density, a uniform solid solution of manganese and nickel and substantially no different phases, and a method for producing the same are provided. As a result, it is an object of the present invention to provide a lithium ion secondary battery having excellent charge / discharge potential flatness and a large discharge capacity.
[0022]
[Means for Solving the Problems]
The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention has a general formula Li (1 + X) Mn (2-YX) Ni Y O 4 (Where X and Y are -0.05 ≦ X ≦ 0.10 and 0.45 ≦ Y ≦ 0.55, respectively), which is a lithium manganese nickel composite oxide having a spinel structure, The cubic unit cell has a lattice constant of 8.17 to 8.18 ° and a specific surface area of 0.2 to 1.0 m. 2 / G and tap density of 1.52 g / cm 3 This is characterized in that a region exceeding 4.5 V in the discharge curve is 120 mAh / g or more, and a shelf in a potential region of 3.5 to 4.5 V is excluded. Here, the shelf refers to a potential step in the 4V region that appears at the falling part of the discharge curve.
[0023]
Further, the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention comprises a general formula Li having the above characteristics. (1 + X) Mn (2-YX) Ni Y O 4 (Where X and Y are -0.05 ≦ X ≦ 0.10 and 0.45 ≦ Y ≦ 0.55, respectively) In the method for producing a lithium manganese nickel composite oxide having a spinel structure represented by: , A manganese salt and a nickel salt are charged into a solvent so that the manganese and nickel have the atomic ratio of manganese and nickel in the above general formula. A first step of obtaining a mixture of a salt and a nickel salt, a second step of firing the mixture at 800 to 1000 ° C. to obtain a composite oxide of manganese and nickel, and a composite oxide and lithium obtained in the second step. A third step of firing a mixture at 600 to 750 ° C., wherein the mixture is prepared by adjusting the compound so that the ratio of the total number of moles of manganese and nickel to the number of moles of lithium is substantially 2: 0.95 to 1.10. Consisting of The features.
[0024]
The firing temperature of the mixture of the manganese salt and the nickel salt is preferably 800 ° C. or more and less than 900 ° C.
[0025]
As the manganese salt, it is preferable to use at least one selected from manganese carbonate, manganese carbonate hydrate, manganese hydroxide, and manganese oxyhydroxide. Further, as the nickel salt, it is preferable to use at least one selected from nickel carbonate, nickel carbonate hydrate, nickel hydroxide, and nickel oxyhydroxide.
[0026]
Further, it is preferable that the manganese salt and the nickel salt are pulverized and mixed using a wet pulverizer.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have produced a composite lithium manganese composite oxide in which manganese sites having a spinel structure, which is a positive electrode active material for a non-aqueous electrolyte secondary battery, are replaced with nickel by a conventional solid-phase method. The cause of the appearance of a shelf in a low potential region near 4 V in the discharge curve, which is considered to be caused by the oxidation reduction of Mn without replacing Ni to 0.5, is due to the non-uniformity of solid solution of manganese and nickel. I found something.
[0028]
Therefore, the solid-phase method that easily obtains powder properties with a high tap density is examined in detail, and before mixing the lithium compound, the manganese raw material and the metal salt of the nickel raw material are finely pulverized and mixed to a nanoscale, and then 800 ° C. The inventors have found that the above problem can be solved by baking as described above to synthesize a manganese-nickel composite oxide uniformly dissolved, and then mixing and baking a lithium compound, thereby leading to the present invention.
[0029]
In the present invention, specifically, the general formula Li (1 + X) Mn (2-YX) Ni Y O 4 (Where X and Y are -0.05 ≦ X ≦ 0.10 and 0.45 ≦ Y ≦ 0.55, respectively) In the method for producing a lithium manganese nickel composite oxide having a spinel structure represented by: , A manganese salt and a nickel salt are introduced into a solvent so as to have an atomic ratio of manganese and nickel represented by the above general formula, and pulverized and mixed to an average particle size of 0.1 μm or less. A first step of obtaining a mixture of a salt and a nickel salt, a second step of firing the mixture at 800 to 1000 ° C. to obtain a composite oxide of manganese and nickel, and a composite oxide and lithium obtained in the second step. A third step of calcining the compound at 600 to 750 ° C., wherein the mixture is prepared by adjusting the compound so that the ratio of the total number of moles of manganese and nickel to the number of moles of lithium is substantially 2: 0.95 to 1.10. Through Producing a positive active material for a non-aqueous electrolyte secondary battery.
[0030]
In synthesizing the spinel-type lithium nickel manganese composite oxide, at least one selected from manganese carbonate, manganese carbonate hydrate, manganese hydroxide, and manganese oxyhydroxide can be used as the manganese salt. As the nickel salt, at least one selected from nickel carbonate, nickel carbonate hydrate, nickel hydroxide, and nickel oxyhydroxide can be used. On the other hand, as a lithium raw material, lithium hydroxide, lithium carbonate, lithium nitrate, lithium acetate and the like can be used.
[0031]
A manganese salt and a nickel salt are introduced into a solvent such as pure water, ethanol, or acetone so that the manganese and nickel have the atomic ratio of manganese and nickel in the above general formula, and the average particle size of the manganese salt and the nickel salt is 0.1 μm or less. And pulverize and mix. For pulverization and mixing, a wet fine pulverizer such as a bead mill, an airflow impact pulverizer such as a ball mill, and a jet mill are used. In order to disperse manganese and nickel more uniformly, it is preferable to use a bead mill.
[0032]
If the average particle size exceeds 0.1 μm, even if mixing is performed in a later step, the solid solution of manganese and nickel becomes insufficient, and a hetero phase such as nickel oxide is generated, and as a result, the spinel structure Single phase cannot be realized.
[0033]
Thereafter, the obtained slurry is spray-dried using a spray dryer to obtain a mixed granulated product of a manganese salt and a nickel salt. When the mixed powder is directly dried without being subjected to this step and mixed with a lithium salt to synthesize lithium manganese oxide, the synthesis proceeds in a state in which the fine powder is aggregated, so that irregularly shaped aggregated secondary particles increase. In addition, many fine powders are present around the secondary particles, and powder characteristics with a high tap density cannot be obtained.
[0034]
As in the present invention, when the obtained slurry is spray-dried using a spray drier to obtain a mixed granulated product of a manganese salt and a nickel salt, the granulated product has a spherical shape or an ellipsoid close to a spherical shape. First, relatively dense particles are obtained as secondary particles in which primary particles are gathered. The average particle size of such a granulated product is preferably 3 to 20 μm. Outside this range, powder properties with a high tap density cannot be obtained.
[0035]
Next, the mixture is baked at 800 to 1000 ° C. for about 2 to 20 hours in an oxygen or air atmosphere to obtain a composite oxide of manganese and nickel. It is more preferable that the firing temperature is at least 800 ° C and less than 900 ° C. Uniform dispersion and solid solution of manganese and nickel are promoted by setting the firing temperature to 800 ° C. or higher, but if the firing temperature is lower than 800 ° C., manganese and nickel are not completely oxidized and solid solution does not proceed. Will be. On the other hand, it is necessary to consider energy costs industrially. It has been confirmed that there is no problem in the uniform solid solution of manganese and nickel when the firing temperature is lower than 900 ° C, but no crystal growth is affected even when the firing temperature exceeds 1000 ° C. It is desirable to keep the temperature below 1000 ° C., and it is not preferable to exceed 1000 ° C.
[0036]
Next, the composite oxide of manganese and nickel and the lithium compound obtained in the firing step were mixed with the total molar number of manganese and nickel and the molar number of lithium to substantially 2: 0.95 to 1.10. Then, the mixture is mixed using a shaker mixer, a stirring mixer, a rocking mixer, or the like under relatively weak conditions such that the shape of the spherical secondary particles is maintained. The mixed powder is fired at 600 to 750 ° C. for 10 to 20 hours in an oxygen atmosphere or an air atmosphere to obtain a lithium nickel manganese composite compound.
[0037]
The crystal structure of the obtained lithium nickel manganese composite oxide needs to be cubic spinel. If the solid solution of manganese and nickel is insufficient, or if the composition deviates from the target composition, a hetero phase such as nickel oxide is generated, and a single phase of spinel structure cannot be realized. If the spinel structure is not a single phase, the capacity in the high potential region of 4.8 V decreases in the discharge curve, the flatness of the potential is lost, and a shelf in the low potential region of 4 V appears, and the positive electrode material having a high energy density is formed. In addition, a problem that gas generation at a high temperature is remarkable appears.
[0038]
When the ratio of the total number of moles of manganese and nickel to the number of moles of lithium deviates substantially from 2: 0.95 to 1.10 and the amount of lithium is small, NiO or the like may be used in addition to the spinel-type lithium nickel manganese composite oxide. When lithium content is high, lithium that cannot be dissolved completely remains on the surface of the lithium nickel manganese composite oxide, which deteriorates battery performance and causes gelation from reaction with the electrolytic solution. It is not preferable because it causes deterioration.
[0039]
On the other hand, if the firing temperature of the mixed powder of the composite oxide of manganese and nickel and the lithium compound is lower than 600 ° C., the solid solution of lithium is insufficient, which is not preferable. If it exceeds 750 ° C., oxygen deficiency occurs and the spinel structure is lost. Would.
[0040]
The spinel-type lithium nickel manganese composite oxide obtained by the above production method preferably has a lattice constant of a cubic unit cell of 8.17 to 8.18 °. The specific surface area of the composite oxide is 0.2 to 1.0 m. 2 / G is desirable. Further, the tap density is 1.52 g / cm. 3 It is preferable that it is above. By satisfying these characteristics, a lithium-nickel-manganese composite oxide having a single phase with a spinel structure substantially free from a different phase and having a high tap density can be obtained. In a non-aqueous electrolyte secondary battery using this composite oxide as a positive electrode active material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery having no shelf in a low potential region of 3.5 to 4.5 V in a discharge curve. A positive electrode active material for a secondary battery is obtained.
[0041]
A positive electrode using the composite oxide according to the present invention as a positive electrode active material is, for example, appropriately adding a conductive additive, a binder, and the like as necessary to the positive electrode active material, mixing the mixture, and forming a paste with a solvent (the binder is It may be previously dissolved in a solvent and then mixed with the positive electrode active material), and the obtained positive electrode mixture-containing paste is applied to a positive electrode current collector made of aluminum foil or the like, dried, and dried. And, if necessary, through a step of pressure molding. However, the method for manufacturing the positive electrode is not limited to the above-described example, and any method can be adopted.
[0042]
In producing the positive electrode, graphite (natural graphite, artificial graphite, expanded graphite, or the like), carbon black-based material such as acetylene black, Ketjen black, or the like can be used as the conductive additive. In addition, as the binder, polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, fluoro rubber, styrene butadiene, cellulose resin, polyacrylic acid, or the like can be used.
[0043]
Examples of the active material of the negative electrode which is a counter electrode to the positive electrode containing the positive electrode active material include lithium, a lithium alloy represented by lithium-aluminum, graphite, pyrolytic carbons, cokes, glassy carbons, and organic materials. Carbon materials such as fired molecular compounds, mesocarbon microbeads, carbon fibers, activated carbon, etc., which can reversibly occlude and release lithium ions, alloys such as Si, Sn, In, etc., or oxidations that can be charged and discharged at a low potential close to Li Compounds such as materials and nitrides can also be used as the negative electrode active material.
[0044]
When the negative electrode active material is lithium or a lithium alloy, the negative electrode is used as it is, or is produced by press-bonding to a current collector.When the negative electrode active material is a carbon-based material, the negative electrode The same binder is added to the negative electrode active material and mixed, and the mixture is made into a paste using a solvent (the binder may be dissolved in a solvent in advance and then mixed with the negative electrode active material). The paste is prepared by applying the containing paste to a negative electrode current collector made of copper foil or the like, drying it to form a negative electrode mixture layer, and, if necessary, performing pressure molding. However, the method for manufacturing the negative electrode is not limited to the above-described example, and any method can be adopted.
[0045]
As the electrolyte, any of a non-aqueous liquid electrolyte and a gel polymer electrolyte can be used. In the present invention, a liquid electrolyte called an electrolyte is generally used frequently. This liquid electrolyte (electrolyte solution) is prepared by dissolving an electrolyte salt such as a lithium salt in a non-aqueous solvent containing an organic solvent as a main component. Examples of the solvent include dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. , A chain ester such as methyl propionate, a chain phosphate triester such as trimethyl phosphate, 1,2-dimethoxyethane, 1,3-dioxolan, tetrahydrofuran, 2-methyl-tetrahydrofuran, diethyl ether and the like. it can. In addition, an amine imide organic solvent and a sulfur organic solvent such as sulfolane can also be used.
[0046]
Further, it is preferable to use an ester having a high dielectric constant (conductivity of 30 or more) as another solvent component from the viewpoint of improving battery characteristics, particularly load characteristics, and a specific example of the ester having a high dielectric constant is ethylene carbonate. , Propylene carbonate, butylene carbonate, γ-butyrolactone, and the like.Also, sulfur-based esters such as ethylene glycol sulfite can be used.Esters having a cyclic structure are preferable, and cyclic carbonates such as ethylene carbonate are particularly preferable. . These solvents can be used alone or in combination of two or more.
[0047]
As an electrolyte salt such as a lithium salt, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (Rf 1 SO 2 ) (Rf 2 SO 2 ) [Where Rf 1 , Rf 2 Is a substituent containing a fluoroalkyl group], LiN (Rf 3 OSO 2 ) (Rf 4 OSO 2 ) [Where Rf 3 , Rf 4 Is a fluoroalkyl group], LiC n F 2n + 1 SO 3 (N ≧ 2), LiC (Rf 5 SO 2 ) 2 , LiN (Rf 6 OSO 2 ) 2 [Where Rf 5 , Rf 6 Is a fluoroalkyl group], and a polymer type imide lithium salt or the like is used alone or in combination of two or more. The concentration of the electrolyte salt in the electrolyte is not particularly limited, but is preferably 0.1 to 2.0 mol / l.
[0048]
The gel-like polymer electrolyte is equivalent to the above-mentioned electrolyte solution gelled with a gelling agent. In the gelation, for example, a linear polymer such as polyvinylidene fluoride, polyethylene oxide, or polyacrylonitrile or a linear polymer thereof is used. Copolymers, polyfunctional monomers that polymerize upon irradiation with actinic rays such as ultraviolet rays or electron beams (for example, tetrafunctional or higher such as pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, ethoxylated pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, etc.) Acrylate and tetrafunctional or higher methacrylate similar to the above acrylate). However, in the case of a monomer, a polymer obtained by polymerizing the above-mentioned monomer acts as a gelling agent, instead of the monomer itself gelling the electrolytic solution.
[0049]
When gelling an electrolytic solution using a polyfunctional monomer as described above, if necessary, as a polymerization initiator, benzoyls, benzoin alkyl ethers, benzophenones, benzoylphenylphosphine oxides, acetophenones, thioxanthone , Anthraquinones, amino esters and the like can also be used.
[0050]
In the non-aqueous electrolyte secondary battery using the positive electrode active material obtained by the present invention, a non-aqueous electrolyte having a large discharge capacity, excellent flatness at a high potential, and a high energy density due to a high tap density. An electrolyte secondary battery becomes feasible.
[0051]
【Example】
(Example 1)
Commercially available manganese carbonate hexahydrate (MnCO 3 ・ 6H 2 O: Wako Pure Chemical Industries) and nickel hydroxide (Ni (OH) 2 : Wako Pure Chemical Industries, Ltd.) was weighed so that the atomic ratio of Mn to Ni was 1.5: 0.5, and pure water was added thereto to prepare a slurry having a solid content concentration of 10% by weight. While stirring the slurry, the slurry was pulverized using a circulating medium stirring type wet pulverizer until the average particle diameter of the solid content in the slurry became 0.1 μm or less.
[0052]
Thereafter, spray drying was performed using a two-fluid nozzle spray type spray dryer (MDL-050-M, manufactured by Fujisaki Electric Co., Ltd.). The average particle size at this time was 8.5 μm. Further, firing was performed at 890 ° C. for 20 hours in an oxygen atmosphere to obtain a manganese nickel composite oxide. FIG. 7A shows an SEM photographic image of this manganese nickel composite oxide.
[0053]
Then, a commercially available lithium hydroxide monohydrate (LiOH. (H) is used so that Li: Mn: Ni = 1.0: 1.5: 0.5 (atomic ratio). 2 O) (manufactured by FMC)) and the manganese nickel composite oxide were weighed, mixed with a shaker mixer for 10 minutes to such an extent that spherical secondary particles were maintained, and then at 700 ° C. for 20 hours in an oxygen atmosphere. Fired.
[0054]
As a result, the average particle diameter was about 13 μm and the specific surface area was 0.5 m. 2 / G of substantially spherical secondary particles were obtained. The obtained powder was analyzed by powder X-ray diffraction using Cu-Kα radiation, and as shown in FIG. 1, it was confirmed to be a cubic spinel-type lithium manganese nickel composite oxide single phase. FIG. 7B shows an SEM photographic image of this powder.
[0055]
The particle size distribution was measured by a laser diffraction / scattering type particle size distribution analyzer (Microtrac HRA manufactured by Nikkiso Co., Ltd.). The measurement was performed using an X-ray diffractometer (RINT-1400 manufactured by Rigaku Corporation).
[0056]
12 g of this powder was placed in a 20 ml glass measuring cylinder, and after tapping 500 times, the powder packing density (tap density) was measured to be 1.58 g / cm. 3 Met.
[0057]
The lattice constant calculated by Rietveld analysis of the X-ray diffraction pattern was 8.173 °.
[0058]
Using the obtained active material, a battery was prepared as follows, and the charge / discharge capacity was measured.
[0059]
52.5 mg of the active material, 15 mg of acetylene black and 7.5 mg of polytetrafluoroethylene resin (PTFE) were mixed and press-molded at a pressure of 100 MPa to a diameter of 11 mmφ.
[0060]
The prepared electrode was dried in a vacuum dryer at 120 ° C. overnight. The 2032 type coin battery shown in FIG. 6 was assembled in a glove box in an Ar atmosphere. For the negative electrode, Li metal having a diameter of 17 mm and a thickness of 1 mm was used, and for the electrolyte, 1M LiPF was used. 6 A mixed solution of an equal amount of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) using as a supporting salt was used. A 25 μm-thick polyethylene porous film was used as the separator.
[0061]
The coin battery was left for about 10 hours after assembly, and after the open circuit voltage was stabilized, the current density was 0.5 mA / cm. 2 The charge / discharge test was performed with the end voltages of charging and discharging of 4.9 V and 3.0 V, respectively. As a result, as shown in FIG. 5, in the discharge curve, a region exceeding 4.5 V was 120 mAh / g or more, and a shelf in a low potential region around 3.5 to 4 V did not appear.
[0062]
(Example 2)
Commercially available manganese carbonate hexahydrate (MnCO 3 ・ 6H 2 O: Wako Pure Chemical Industries) and nickel carbonate (NiCO 3 : Manufactured by Wako Pure Chemical Industries, Ltd.), and a lithium manganese nickel composite oxide was obtained in the same manner as in Example 1, except that the sintering temperature for obtaining the manganese nickel composite oxide was 800 ° C.
[0063]
As a result, the average particle diameter was about 12 μm and the specific surface area was 0.8 m. 2 / G of substantially spherical secondary particles were obtained. When the obtained powder was analyzed by powder X-ray diffraction using Cu-Kα radiation, it was confirmed that the powder was a cubic spinel-type lithium manganese nickel composite oxide single phase.
[0064]
When the tap density of the obtained powder was measured, it was 1.70 g / cm. 3 Met. The lattice constant calculated by Rietveld analysis of the X-ray diffraction pattern was 8.173 °. In addition, as a result of producing a battery using the obtained active material and performing a charge / discharge test, a region exceeding 4.5 V in the discharge curve was 120 mAh / g as in the case of the example 1 shown in FIG. Above, and no shelf in the low potential region around 3.5-4 V appeared.
[0065]
(Example 3)
Commercially available manganese hydroxide (Mn (OH) 2 : Wako Pure Chemical Industries) and nickel hydroxide (Ni (OH) 2 : Manufactured by Wako Pure Chemical Industries, Ltd.), and a lithium manganese nickel composite oxide was obtained in the same manner as in Example 1 except that the calcination temperature for obtaining the manganese nickel composite oxide was 1000 ° C.
[0066]
As a result, the average particle diameter was about 13.5 μm and the specific surface area was 0.4 m. 2 / G of substantially spherical secondary particles were obtained. When the obtained powder was analyzed by powder X-ray diffraction using Cu-Kα radiation, it was confirmed that the powder was a cubic spinel-type lithium manganese nickel composite oxide single phase.
[0067]
When the tap density of the obtained powder was measured, it was 1.54 g / cm. 3 Met. The lattice constant calculated by Rietveld analysis of the X-ray diffraction pattern was 8.174 °. In addition, as a result of producing a battery using the obtained active material and performing a charge / discharge test, a region exceeding 4.5 V in the discharge curve was 120 mAh / g as in the case of the example 1 shown in FIG. Above, and no shelf in the low potential region around 3.5-4 V appeared.
[0068]
(Example 4)
Lithium hydroxide monohydrate (LiOH. (H 2 O) (manufactured by FMC)) and the above-mentioned manganese nickel composite oxide, except that the mixture ratio was Li: Mn: Ni = 0.95: 1.5: 0.5 (atomic ratio). In the same manner as in the above, a lithium manganese nickel composite oxide was produced.
[0069]
As a result, the average particle diameter was about 13 μm and the specific surface area was 0.5 m. 2 / G of substantially spherical secondary particles were obtained. When the obtained powder was analyzed by powder X-ray diffraction using Cu-Kα radiation, it was confirmed that the powder was a cubic spinel-type lithium manganese nickel composite oxide single phase.
[0070]
When the tap density of the obtained powder was measured, it was 1.56 g / cm. 3 Met. The lattice constant calculated by Rietveld analysis of the X-ray diffraction pattern was 8.170 °. In addition, as a result of producing a battery using the obtained active material and performing a charge / discharge test, a region exceeding 4.5 V in the discharge curve was 120 mAh / g as in the case of the example 1 shown in FIG. Above, and no shelf in the low potential region around 3.5-4 V appeared.
[0071]
(Example 5)
Lithium hydroxide monohydrate (LiOH. (H 2 Example 1 except that the mixing ratio of O) (manufactured by FMC)) and the composite oxide of manganese nickel was set to Li: Mn: Ni = 1.10: 1.5: 0.5 (atomic ratio). In the same manner as in the above, a lithium manganese nickel composite oxide was produced.
[0072]
As a result, the average particle diameter was about 14 μm and the specific surface area was 0.5 m. 2 / G of substantially spherical secondary particles were obtained. When the obtained powder was analyzed by powder X-ray diffraction using Cu-Kα radiation, it was confirmed that the powder was a cubic spinel-type lithium manganese nickel composite oxide single phase.
[0073]
When the tap density of the obtained powder was measured, it was 1.65 g / cm. 3 Met. The calculated lattice constant by Rietveld analysis of the X-ray diffraction pattern was 8.175 °. In addition, as a result of producing a battery using the obtained active material and performing a charge / discharge test, a region exceeding 4.5 V in the discharge curve was 120 mAh / g as in the case of the example 1 shown in FIG. Above, and no shelf in the low potential region around 3.5-4 V appeared.
[0074]
(Example 6)
Lithium hydroxide monohydrate (LiOH. (H 2 O) (manufactured by FMC)) and the manganese nickel composite oxide were mixed, and a manganese-nickel composite oxide was produced in the same manner as in Example 1 except that the calcination temperature was set to 600 ° C.
[0075]
As a result, the average particle diameter was about 11 μm and the specific surface area was 0.7 m. 2 / G of substantially spherical secondary particles were obtained. When the obtained powder was analyzed by powder X-ray diffraction using Cu-Kα radiation, it was confirmed that the powder was a cubic spinel-type lithium manganese nickel composite oxide single phase.
[0076]
When the tap density of the obtained powder was measured, it was 1.53 g / cm. 3 Met. The lattice constant calculated by Rietveld analysis of the X-ray diffraction pattern was 8.171 °. In addition, as a result of producing a battery using the obtained active material and performing a charge / discharge test, a region exceeding 4.5 V in the discharge curve was 120 mAh / g as in the case of the example 1 shown in FIG. Above, and no shelf in the low potential region around 3.5-4 V appeared.
[0077]
(Example 7)
Lithium hydroxide monohydrate (LiOH. (H 2 O) (manufactured by FMC)) and the manganese nickel composite oxide were mixed, and a manganese nickel composite oxide was produced in the same manner as in Example 1 except that the firing temperature was 750 ° C.
[0078]
As a result, the average particle diameter was about 13 μm and the specific surface area was 0.4 m. 2 / G of substantially spherical secondary particles were obtained. When the obtained powder was analyzed by powder X-ray diffraction using Cu-Kα radiation, it was confirmed that the powder was a cubic spinel-type lithium manganese nickel composite oxide single phase.
[0079]
When the packing density and tap density of the obtained powder were measured, the density was 1.66 g / cm. 3 Met. The calculated lattice constant by Rietveld analysis of the X-ray diffraction pattern was 8.175 °. In addition, as a result of producing a battery using the obtained active material and performing a charge / discharge test, a region exceeding 4.5 V in the discharge curve was 120 mAh / g as in the case of the example 1 shown in FIG. Above, and no shelf in the low potential region around 3.5-4 V appeared.
[0080]
(Comparative Example 1)
The calcination temperature for obtaining the manganese nickel composite oxide was 700 ° C., and the obtained spray-dried product and a commercially available lithium hydroxide monohydrate (LiOH · H 2 O (manufactured by FMC)) was performed in the same manner as in Example 1 except that the atomic ratio of Li: Mn: Ni was 0.9: 1.5: 0.5 to obtain spherical secondary particles. The mixture was mixed for 10 minutes using a shaker mixer to the extent that the shape was maintained, and fired at 700 ° C. for 20 hours in an oxygen atmosphere. As a result, substantially spherical secondary particles having an average particle diameter of about 6 μm were obtained. FIG. 7C shows an SEM photographic image of this powder.
[0081]
The obtained fired product was analyzed by powder X-ray diffraction using Cu-Kα radiation. As shown in FIG. 2, in addition to the spinel-type lithium manganese nickel composite oxide having a cubic crystal, a hetero phase of NiO was observed. It could be confirmed. The tap density of this powder was 0.75 g / cm. 3 , Specific surface area is 12.4m 2 / G, and the lattice constant was 8.174 °. In addition, as a result of performing a charge / discharge test by producing a battery using the obtained active material, as shown in FIG. 5, a shelf in a low potential region around 3.5 to 4 V appeared in the discharge curve.
[0082]
(Comparative Example 2)
Commercially available lithium nitrate (LiNO 3 : Kanto Chemical), manganese nitrate hexahydrate (Mn (NO 3 ) 2 ・ 6H 2 O: Wako Pure Chemical Industries) and nickel nitrate hexahydrate (Ni (NO 3 ) 2 ・ 6H 2 O: manufactured by Wako Pure Chemical Industries, Ltd.) was weighed so that the atomic ratio of Li: Mn: Ni was 1.0: 1.5: 0.5, and dissolved in 50 ml of pure water to obtain an aqueous solution. Then, 100 g of a 20% PVA solution was mixed with the mixture, and the mixture was heated and held by a hot stirrer, and the water was removed by heating at a temperature of about 150 to 200 ° C., whereby nitrate decomposition and polymer burning occurred. The generated heat causes a reaction between lithium ions, manganese ions, and nickel ions, resulting in spinel-type LiMn. 1.5 Ni 0.5 O 4 Was obtained.
[0083]
The obtained precursor is calcined at 500 ° C. for 2 hours in a muffle furnace (model KDF HR7: manufactured by Denken), and then calcined at 600 ° C. for 20 hours in an oxygen atmosphere to obtain spinel-type LiMn. 1.5 Ni 0.5 O 4 Was synthesized. As a result, foamed particles having an average particle diameter of about 24 μm were obtained. FIG. 7D shows an SEM photographic image of this powder.
[0084]
The obtained fired product was analyzed by powder X-ray diffraction using Cu-Kα radiation. As shown in FIG. 3, in addition to the spinel-type lithium manganese nickel composite oxide having a cubic crystal, a heterogeneous phase of NiO was observed. It could be confirmed. The tap density is 0.92 g / cm 3 , Specific surface area is 5.9m 2 / G, and the lattice constant was 8.173 °. In addition, as a result of performing a charge / discharge test by producing a battery using the obtained active material, as shown in FIG. 5, a shelf in a low potential region around 3.5 to 4 V appeared in the discharge curve.
[0085]
(Comparative Example 3)
Commercially available nickel sulfate hexahydrate (NiSO 4 ・ 6H 2 O: manufactured by Sumitomo Metal Mining), manganese sulfate pentahydrate (MnSO 4 ・ 5H 2 O: manufactured by Wako Pure Chemical Industries, Ltd.) was weighed such that the atomic ratio of Mn to Ni was 3: 1 and dissolved in pure water to prepare 300 cc of a 2 mol / l sulfate solution of Mn and Ni. Next, 400 cc of pure water was added to a 1-liter beaker, and then the temperature was raised to 60 ° C. while stirring, and then 25% caustic soda and the above-mentioned Mn, Ni sulfate solution were added so that the pH became constant at 11.0. And a composite hydroxide was obtained on nickel.
[0086]
After the completion of the addition of the Mn and Ni sulfate solutions, the composite hydroxide was filtered, washed with water, and vacuum-dried at 40 ° C. Then, a commercially available lithium hydroxide monohydrate (LiOH.H 2 O (manufactured by FMC) is weighed so that the atomic ratio of Li: Mn: Ni is 1.0: 1.5: 0.5. Then, the mixture was mixed and baked at 600 ° C. for 20 hours in an oxygen atmosphere. As a result, secondary particles having an average particle diameter of about 4 μm having an irregular shape in which fine powder was aggregated were obtained. FIG. 7E shows an SEM photographic image of this powder.
[0087]
The obtained calcined product was analyzed by powder X-ray diffraction using Cu-Kα radiation. As shown in FIG. 4, in addition to the spinel-type lithium manganese nickel composite oxide having a cubic crystal, NiO, NiMnO 3 Was confirmed. The tap density of this powder was 0.71 g / cm. 3 , Specific surface area is 18.9m 2 / G, and the lattice constant was 8.173 °. In addition, as a result of performing a charge / discharge test by producing a battery using the obtained active material, as shown in FIG. 5, a shelf in a low potential region around 3.5 to 4 V appeared in the discharge curve.
[0088]
(Comparative Example 4)
A lithium manganese nickel composite oxide was obtained in the same manner as in Example 1, except that the firing temperature at the time of obtaining the manganese nickel composite oxide was 750 ° C.
[0089]
As a result, the average particle diameter was about 10 μm, and the specific surface area was 4.4 m. 2 / G of substantially spherical secondary particles were obtained. When the obtained powder was analyzed by powder X-ray diffraction using Cu-Kα radiation, NiO peak was confirmed in addition to the cubic spinel-type lithium manganese nickel composite oxide.
[0090]
When the tap density of the obtained powder was measured, it was 1.39 g / cm. 3 Met. The lattice constant calculated by Rietveld analysis of the X-ray diffraction pattern was 8.183 °.
[0091]
In addition, as a result of performing a charge / discharge test by producing a battery using the obtained active material, a shelf in a low potential region around 3.5 to 4 V appeared in a discharge curve.
[0092]
(Comparative Example 5)
A lithium manganese nickel composite oxide was obtained in the same manner as in Example 1, except that the firing temperature at the time of obtaining the manganese nickel composite oxide was 1050 ° C.
[0093]
As a result, the average particle diameter was about 15 μm and the specific surface area was 0.5 m. 2 / G of substantially spherical secondary particles were obtained. When the obtained powder was analyzed by powder X-ray diffraction using Cu-Kα radiation, NiO peak was confirmed in addition to the cubic spinel-type lithium manganese nickel composite oxide.
[0094]
When the tap density of the obtained powder was measured, it was 1.61 g / cm. 3 Met. The lattice constant calculated by Rietveld analysis of the X-ray diffraction pattern was 8.174 °.
[0095]
In addition, as a result of performing a charge / discharge test by producing a battery using the obtained active material, a shelf in a low potential region around 3.5 to 4 V appeared in a discharge curve.
[0096]
(Comparative Example 6)
Lithium hydroxide monohydrate (LiOH. (H 2 O) (manufactured by FMC)) and the composite oxide of manganese nickel, except that the mixing ratio was Li: Mn: Ni = 0.90: 1.5: 0.5 (atomic ratio). In the same manner as in Example 1, a lithium manganese nickel composite oxide was produced.
[0097]
As a result, the average particle diameter was about 10 μm and the specific surface area was 0.5 m. 2 / G of substantially spherical secondary particles were obtained. When the obtained powder was analyzed by powder X-ray diffraction using Cu-Kα radiation, NiO peak was confirmed in addition to the cubic spinel-type lithium manganese nickel composite oxide.
[0098]
When the tap density of the obtained powder was measured, it was 1.53 g / cm. 3 Met. The calculated lattice constant by Rietveld analysis of the X-ray diffraction pattern was 8.176 °.
[0099]
In addition, as a result of performing a charge / discharge test by producing a battery using the obtained active material, a shelf in a low potential region around 3.5 to 4 V appeared in a discharge curve.
[0100]
(Comparative Example 7)
Lithium hydroxide monohydrate (LiOH. (H 2 O) (manufactured by FMC)) and the composite oxide of manganese nickel described above, except that the ratio of Li: Mn: Ni was 1.15: 1.5: 0.5 (atomic ratio). In the same manner as in Example 1, a lithium manganese nickel composite oxide was produced.
[0101]
As a result, the average particle diameter was about 14 μm and the specific surface area was 0.5 m. 2 / G of substantially spherical secondary particles were obtained. When the obtained powder was analyzed by powder X-ray diffraction using Cu-Kα radiation, NiO peak was confirmed in addition to the cubic spinel-type lithium manganese nickel composite oxide.
[0102]
When the packing density (tap density) of the obtained powder was measured, it was 1.62 g / cm. 3 Met. The calculated lattice constant by Rietveld analysis of the X-ray diffraction pattern was 8.176 °.
[0103]
In addition, as a result of performing a charge / discharge test by producing a battery using the obtained active material, a shelf in a low potential region around 3.5 to 4 V appeared in a discharge curve.
[0104]
(Comparative Example 8)
Lithium hydroxide monohydrate (LiOH. (H 2 O) (manufactured by FMC)) and the manganese nickel composite oxide were mixed, and a lithium manganese nickel composite oxide was produced in the same manner as in Example 1 except that the firing temperature was 550 ° C.
[0105]
As a result, the average particle diameter was about 12 μm, and the specific surface area was 0.6 m. 2 / G of substantially spherical secondary particles were obtained. When the obtained powder was analyzed by powder X-ray diffraction using Cu-Kα ray, NiO and NiMnO were used in addition to the cubic spinel-type lithium manganese nickel composite oxide. 3 Was confirmed.
[0106]
When the tap density of the obtained powder was measured, it was 1.09 g / cm 3 Met. The lattice constant calculated by Rietveld analysis of the X-ray diffraction pattern was 8.169 °.
[0107]
In addition, as a result of performing a charge / discharge test by producing a battery using the obtained active material, a shelf in a low potential region around 3.5 to 4 V appeared in a discharge curve. This is presumably because a heterogeneous phase appeared in addition to the spinel-type lithium-manganese-nickel composite oxide and the lattice constant of the cubic unit cell became too small.
[0108]
(Comparative Example 9)
Lithium hydroxide monohydrate (LiOH. (H 2 O) (manufactured by FMC)) and the manganese nickel composite oxide were mixed, and a manganese nickel composite oxide was prepared in the same manner as in Example 1 except that the sintering temperature was 800 ° C.
[0109]
As a result, the average particle diameter was about 14 μm and the specific surface area was 0.4 m. 2 / G of substantially spherical secondary particles were obtained. When the obtained powder was analyzed by powder X-ray diffraction using Cu-Kα radiation, NiO peak was confirmed in addition to the cubic spinel-type lithium manganese nickel composite oxide.
[0110]
When the tap density of the obtained powder was measured, it was 1.57 g / cm. 3 Met. The lattice constant calculated by Rietveld analysis of the X-ray diffraction pattern was 8.186 °.
[0111]
In addition, as a result of performing a charge / discharge test by producing a battery using the obtained active material, a shelf in a low potential region around 3.5 to 4 V appeared in a discharge curve. This is probably because a large amount of heterogeneous phase appeared in addition to the spinel-type lithium manganese nickel composite oxide and the lattice constant of the cubic unit cell became too large.
[0112]
Table 1 shows the production conditions and the physical properties of the obtained lithium manganese nickel composite oxide in each of the examples and comparative examples.
[0113]
[Table 1]
Figure 2004303710
[0114]
As is clear from FIG. 5, in comparison with Example 1, in Comparative Examples 1 to 3, shelves in a low potential region around 3.5 to 4 V appear in the discharge curves. This is considered to be because Comparative Examples 1 to 3 were not single-phase spinel structures as shown in FIGS.
[0115]
On the other hand, in Example, the tap density was 1.5 g / cm. 3 From the above, it is expected that the volume energy density of the battery will increase, and the specific surface area of the example can be reduced as compared with the comparative example. As shown in the discharge curve of Example 1 in FIG. 5, while maintaining the effect of preventing the characteristic deterioration of the above, a region exceeding 4.5 V is 120 mAh / g or more and a low region around 3.5 to 4 V is obtained. It can be said that the superiority in comparison with the related art that the shelf in the potential region does not appear is shown.
[0116]
【The invention's effect】
The spinel-type lithium composite oxide obtained by the present invention has a general formula Li (1 + X) Mn (2-YX) Ni Y O 4 (Where X and Y are -0.05 ≦ X ≦ 0.10 and 0.45 ≦ Y ≦ 0.55, respectively) In the method for producing a lithium manganese nickel composite oxide having a spinel structure represented by: , A manganese salt and a nickel salt are charged into a solvent so that the manganese and nickel have the atomic ratio of manganese and nickel in the above general formula. A first step of obtaining a mixture of a salt and a nickel salt, a second step of firing the mixture at 800 to 1000 ° C. to obtain a composite oxide of manganese and nickel, and a composite oxide and lithium obtained in the second step. A third step of calcining the compound at 600 to 750 ° C., wherein the mixture is adjusted so that the ratio of the total number of moles of manganese and nickel to the number of moles of lithium is substantially 2: 0.95 to 1.10. Made with The method is a complex oxide obtained using a spinel-type crystal structure single phase, with no crystal defect lithium-manganese-nickel composite oxide is obtained. Thus, while maintaining a high tap density, the discharge curve does not show a shelf in a low potential region near 3.5 to 4 V, and has excellent potential flatness in a high potential region. This has the effect of realizing a non-aqueous electrolyte secondary battery having a large capacity and a high energy density.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction diagram of a dry powder of a lithium nickel manganese composite oxide obtained by a method of Example 1 of the present invention.
FIG. 2 is an X-ray diffraction diagram of a dry powder of a lithium nickel manganese composite oxide obtained by the method of Comparative Example 1.
FIG. 3 is an X-ray diffraction diagram of a dry powder of a lithium nickel manganese composite oxide obtained by the method of Comparative Example 2.
4 is an X-ray diffraction diagram of a dry powder of a lithium nickel manganese composite oxide obtained by the method of Comparative Example 3. FIG.
FIG. 5 is a diagram showing the results of a charge / discharge test in Examples and Comparative Examples 1 to 3.
FIG. 6 is a diagram showing the structure of a coin battery used for performing a charge / discharge test.
FIGS. 7A and 7B are SEMs of a manganese nickel composite oxide (a) spray-dried and fired by the spray dryer of Example 1 and a spinel-type lithium manganese nickel composite oxide (b) synthesized. It is a photographic image, (c)-(e) is a SEM photographic image of the lithium manganese nickel composite oxide of each of Comparative Examples 1-3 in order.
[Explanation of symbols]
1 Lithium metal negative electrode
2 Separator (impregnated with electrolyte)
3 Positive electrode (Evaluation electrode)
4 Gasket
5 Negative electrode can
6 Positive electrode can
7 Current collector

Claims (6)

一般式:Li(1+X) Mn(2−Y−X) Ni (ただし、式中X、Yは、各々−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル構造を有するリチウムマンガンニッケル複合酸化物であって、立方晶単位格子の格子定数が8.17〜8.18Å、比表面積が0.2〜1.0m /g、タップ密度が1.52g/cm 以上であり、さらに放電曲線において4.5Vを超える領域が120mAh/g以上あり、かつ、3.5〜4.5Vに電位領域の棚を排除したことを特徴とする非水系電解質二次電池用正極活物質。General formula: Li (1 + X) Mn (2-YX) Ni Y O 4 (where X and Y in the formula are -0.05 ≦ X ≦ 0.10 and 0.45 ≦ Y ≦ 0.55, respectively) are lithium manganese nickel composite oxides having a spinel structure. The cubic unit cell has a lattice constant of 8.17 to 8.18 °, a specific surface area of 0.2 to 1.0 m 2 / g, a tap density of 1.52 g / cm 3 or more, and a discharge curve of 4 A positive electrode active material for a non-aqueous electrolyte secondary battery, wherein a region exceeding 0.5 V is 120 mAh / g or more, and a shelf in a potential region is excluded from 3.5 to 4.5 V. 一般式:Li(1+X) Mn(2−Y−X) Ni (ただし、式中X、Yは、各々−0.05≦X≦0.10、0.45≦Y≦0.55)で表されるスピネル構造を有するリチウムマンガンニッケル複合酸化物の製造方法において、
上記一般式のマンガンとニッケルの原子比となるようにマンガン塩とニッケル塩を溶媒中に投入し、平均粒径が0.1μm以下となるまで粉砕混合し、得られたスラリーを噴霧乾燥させてマンガン塩とニッケル塩の混合物を得る第1工程と、
前記混合物を800〜1000℃で焼成して、マンガンとニッケルの複合酸化物を得る第2工程と、
得られた複合酸化物とリチウム化合物を、マンガンとニッケルの合計のモル数とリチウムのモル数の比が実質的に2:0.95〜1.10となるように調整し、得られた混合物を600〜750℃で焼成する第3工程、
とからなる非水系電解質二次電池用正極活物質の製造方法。
General formula: Li (1 + X) Mn (2-YX) Ni Y Production of lithium manganese nickel composite oxide having a spinel structure represented by O 4 (where X and Y are -0.05 ≦ X ≦ 0.10 and 0.45 ≦ Y ≦ 0.55, respectively) In the method,
A manganese salt and a nickel salt are charged into a solvent so as to have an atomic ratio of manganese and nickel represented by the above general formula, pulverized and mixed until the average particle size becomes 0.1 μm or less, and the obtained slurry is spray-dried. A first step of obtaining a mixture of a manganese salt and a nickel salt;
A second step of firing the mixture at 800 to 1000 ° C. to obtain a composite oxide of manganese and nickel;
The resulting composite oxide and lithium compound were adjusted such that the ratio of the total number of moles of manganese and nickel to the number of moles of lithium was substantially 2: 0.95-1.10, and the resulting mixture was obtained. A third step of firing at 600 to 750 ° C.
A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery comprising:
マンガン塩とニッケル塩の混合物の焼成温度を800℃以上900℃未満とする請求項2に記載の非水系電解質二次電池用正極活物質の製造方法。The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 2, wherein the firing temperature of the mixture of the manganese salt and the nickel salt is 800 ° C or more and less than 900 ° C. マンガン塩として、炭酸マンガン、炭酸マンガン水和物、水酸化マンガン、オキシ水酸化マンガンの中から選ばれる少なくとも1種を用いる請求項2に記載の非水系電解質二次電池用正極活物質の製造方法。3. The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 2, wherein at least one selected from manganese carbonate, manganese carbonate hydrate, manganese hydroxide, and manganese oxyhydroxide is used as the manganese salt. . ニッケル塩として、炭酸ニッケル、炭酸ニッケル水和物、水酸化ニッケル、オキシ水酸化ニッケルの中から選ばれる少なくとも1種を用いる請求項2に記載の非水系電解質二次電池用正極活物質の製造方法。The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 2, wherein at least one selected from nickel carbonate, nickel carbonate hydrate, nickel hydroxide, and nickel oxyhydroxide is used as the nickel salt. . マンガン塩とニッケル塩の粉砕混合に際して、湿式微粉砕機を使用する請求項2に記載の非水系電解質二次電池用正極活物質の製造方法。The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 2, wherein a wet pulverizer is used for pulverizing and mixing the manganese salt and the nickel salt.
JP2003098408A 2003-04-01 2003-04-01 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same Expired - Lifetime JP4581333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003098408A JP4581333B2 (en) 2003-04-01 2003-04-01 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003098408A JP4581333B2 (en) 2003-04-01 2003-04-01 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004303710A true JP2004303710A (en) 2004-10-28
JP4581333B2 JP4581333B2 (en) 2010-11-17

Family

ID=33409938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003098408A Expired - Lifetime JP4581333B2 (en) 2003-04-01 2003-04-01 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4581333B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149414A (en) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and manufacturing method of its lithium compound oxide
JP2008524820A (en) * 2004-12-21 2008-07-10 コミツサリア タ レネルジー アトミーク Anode material optimum for battery, method for producing the same, electrode, and battery for carrying out the method
JP2008529253A (en) * 2005-02-02 2008-07-31 アイユーシーエフ エイチワイユー (インダストリー ユニヴァーシティー コオペレイション ファウンデイション ハンヤン ユニヴァーシティー) 3V-class spinel composite oxide as positive electrode active material for lithium secondary battery, its production method by carbonate coprecipitation method, and lithium secondary battery using the same
WO2012127919A1 (en) * 2011-03-18 2012-09-27 株式会社 村田製作所 Secondary battery electrode active material and secondary battery provided with same
WO2012127920A1 (en) * 2011-03-18 2012-09-27 株式会社 村田製作所 Secondary battery electrode active material, method for producing same, and secondary battery provided with same
WO2012132155A1 (en) * 2011-03-31 2012-10-04 戸田工業株式会社 Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
JP2013020736A (en) * 2011-07-07 2013-01-31 Toda Kogyo Corp Positive electrode active material particle for nonaqueous electrolyte secondary battery and manufacturing method therefor, and nonaqueous electrolyte secondary battery
KR101392525B1 (en) 2012-04-04 2014-05-07 삼성정밀화학 주식회사 Positive active material, method of preparing the same, and lithium battery using the same
JP2014110176A (en) * 2012-12-03 2014-06-12 Jgc Catalysts & Chemicals Ltd Lithium complex oxide, manufacturing method thereof, secondary battery positive electrode active material including lithium complex oxide, secondary battery positive electrode including positive electrode active material, and lithium ion secondary battery using the same
WO2014181455A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Positive electrode active material for non-aqueous secondary cell, positive electrode for non-aqueous secondary cell using same, non-aqueous secondary cell, and method for manufacturing same
KR101547632B1 (en) 2012-09-21 2015-08-27 주식회사 포스코이에스엠 5 5 manufacuring method of 5 spinel complex-oxide 5 spinel complex-oxide made by the same and lithium rechargeable batteries comprising the same
JP2016162719A (en) * 2015-03-05 2016-09-05 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2017100904A (en) * 2015-11-30 2017-06-08 日揮触媒化成株式会社 Lithium manganate, positive electrode including the lithium manganate, and lithium ion secondary battery comprising the positive electrode
CN113165906A (en) * 2018-12-19 2021-07-23 托普索公司 Lithium positive electrode active material
CN115485243A (en) * 2020-09-21 2022-12-16 株式会社Lg化学 Solid-phase synthesized positive electrode active material and method for producing same
CN115557545A (en) * 2022-11-14 2023-01-03 宜宾锂宝新材料有限公司 High-rate positive electrode material, preparation method thereof and lithium ion battery
CN116102088A (en) * 2022-11-30 2023-05-12 四川兴储能源科技有限公司 Negative electrode material of lamellar sodium ion battery and preparation method thereof
WO2023092491A1 (en) * 2021-11-26 2023-06-01 宁德时代新能源科技股份有限公司 Positive electrode active material, preparation method therefor and application thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298115A (en) * 1995-04-26 1996-11-12 Japan Storage Battery Co Ltd Positive electrode active material for lithium battery and manufacture thereof
JPH09147867A (en) * 1995-09-13 1997-06-06 Moli Energy 1990 Ltd High-voltage insertion compound for lithium battery
JP2000515672A (en) * 1996-07-22 2000-11-21 日本電池株式会社 Positive electrode for lithium battery
JP2001143704A (en) * 1999-11-12 2001-05-25 Japan Energy Corp Method of manufacturing positive electrode material for lithiun secondary battery
JP2001185148A (en) * 1999-12-27 2001-07-06 Japan Metals & Chem Co Ltd Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor
JP2002042814A (en) * 2000-07-28 2002-02-08 Hitachi Maxell Ltd Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP2002063900A (en) * 2000-08-14 2002-02-28 Hitachi Ltd Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2002216744A (en) * 2001-01-17 2002-08-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2002338247A (en) * 2001-05-17 2002-11-27 Dainippon Toryo Co Ltd Lithium manganese based compound oxide particle, manufacturing method therefor and secondary battery
JP2002343356A (en) * 2001-05-17 2002-11-29 Dainippon Toryo Co Ltd Lithium manganese double oxide particle, its manufacturing method and secondary battery
JP2003034538A (en) * 2001-05-17 2003-02-07 Mitsubishi Chemicals Corp Method for producing lithium nickel manganese complex oxide
JP2003092108A (en) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2003323893A (en) * 2002-03-01 2003-11-14 Matsushita Electric Ind Co Ltd Positive electrode active material, its manufacturing method and nonaqueous electrolyte secondary battery

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298115A (en) * 1995-04-26 1996-11-12 Japan Storage Battery Co Ltd Positive electrode active material for lithium battery and manufacture thereof
JPH09147867A (en) * 1995-09-13 1997-06-06 Moli Energy 1990 Ltd High-voltage insertion compound for lithium battery
JP2000515672A (en) * 1996-07-22 2000-11-21 日本電池株式会社 Positive electrode for lithium battery
JP2001143704A (en) * 1999-11-12 2001-05-25 Japan Energy Corp Method of manufacturing positive electrode material for lithiun secondary battery
JP2001185148A (en) * 1999-12-27 2001-07-06 Japan Metals & Chem Co Ltd Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor
JP2002042814A (en) * 2000-07-28 2002-02-08 Hitachi Maxell Ltd Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP2002063900A (en) * 2000-08-14 2002-02-28 Hitachi Ltd Positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2002216744A (en) * 2001-01-17 2002-08-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2002338247A (en) * 2001-05-17 2002-11-27 Dainippon Toryo Co Ltd Lithium manganese based compound oxide particle, manufacturing method therefor and secondary battery
JP2002343356A (en) * 2001-05-17 2002-11-29 Dainippon Toryo Co Ltd Lithium manganese double oxide particle, its manufacturing method and secondary battery
JP2003034538A (en) * 2001-05-17 2003-02-07 Mitsubishi Chemicals Corp Method for producing lithium nickel manganese complex oxide
JP2003092108A (en) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2003323893A (en) * 2002-03-01 2003-11-14 Matsushita Electric Ind Co Ltd Positive electrode active material, its manufacturing method and nonaqueous electrolyte secondary battery

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524820A (en) * 2004-12-21 2008-07-10 コミツサリア タ レネルジー アトミーク Anode material optimum for battery, method for producing the same, electrode, and battery for carrying out the method
US8956759B2 (en) 2005-02-02 2015-02-17 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University 3V class spinel complex oxides as cathode active materials for lithium secondary batteries, method for preparing the same by carbonate coprecipitation, and lithium secondary batteries using the same
JP2008529253A (en) * 2005-02-02 2008-07-31 アイユーシーエフ エイチワイユー (インダストリー ユニヴァーシティー コオペレイション ファウンデイション ハンヤン ユニヴァーシティー) 3V-class spinel composite oxide as positive electrode active material for lithium secondary battery, its production method by carbonate coprecipitation method, and lithium secondary battery using the same
US9553313B2 (en) 2005-02-02 2017-01-24 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) 3V class spinel complex oxides as cathode active materials for lithium secondary batteries, method for preparing the same by carbonate coprecipitation, and lithium secondary batteries using the same
JP2007149414A (en) * 2005-11-25 2007-06-14 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and manufacturing method of its lithium compound oxide
WO2012127919A1 (en) * 2011-03-18 2012-09-27 株式会社 村田製作所 Secondary battery electrode active material and secondary battery provided with same
WO2012127920A1 (en) * 2011-03-18 2012-09-27 株式会社 村田製作所 Secondary battery electrode active material, method for producing same, and secondary battery provided with same
WO2012132155A1 (en) * 2011-03-31 2012-10-04 戸田工業株式会社 Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
CN103460455A (en) * 2011-03-31 2013-12-18 户田工业株式会社 Manganese-nickel composite oxide particle powder, production method therefor, positive-electrode active material particle powder for nonaqueous electrolyte secondary batteries, production method therefor, and nonaqueous electrolyte secondary battery
US11072869B2 (en) 2011-03-31 2021-07-27 Toda Kogyo Corporation Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery
US10161057B2 (en) 2011-03-31 2018-12-25 Toda Kogyo Corporation Manganese/nickel composite oxide particles and process for producing the manganese nickel composite oxide particles, positive electrode active substance particles for non-aqueous electrolyte secondary batteries and process for producing the positive electrode active substance particles, and non-aqueous electrolyte secondary battery
JP2013020736A (en) * 2011-07-07 2013-01-31 Toda Kogyo Corp Positive electrode active material particle for nonaqueous electrolyte secondary battery and manufacturing method therefor, and nonaqueous electrolyte secondary battery
KR101392525B1 (en) 2012-04-04 2014-05-07 삼성정밀화학 주식회사 Positive active material, method of preparing the same, and lithium battery using the same
KR101547632B1 (en) 2012-09-21 2015-08-27 주식회사 포스코이에스엠 5 5 manufacuring method of 5 spinel complex-oxide 5 spinel complex-oxide made by the same and lithium rechargeable batteries comprising the same
JP2014110176A (en) * 2012-12-03 2014-06-12 Jgc Catalysts & Chemicals Ltd Lithium complex oxide, manufacturing method thereof, secondary battery positive electrode active material including lithium complex oxide, secondary battery positive electrode including positive electrode active material, and lithium ion secondary battery using the same
WO2014181455A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Positive electrode active material for non-aqueous secondary cell, positive electrode for non-aqueous secondary cell using same, non-aqueous secondary cell, and method for manufacturing same
JP2016162719A (en) * 2015-03-05 2016-09-05 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2017100904A (en) * 2015-11-30 2017-06-08 日揮触媒化成株式会社 Lithium manganate, positive electrode including the lithium manganate, and lithium ion secondary battery comprising the positive electrode
CN113165906A (en) * 2018-12-19 2021-07-23 托普索公司 Lithium positive electrode active material
CN115485243A (en) * 2020-09-21 2022-12-16 株式会社Lg化学 Solid-phase synthesized positive electrode active material and method for producing same
WO2023092491A1 (en) * 2021-11-26 2023-06-01 宁德时代新能源科技股份有限公司 Positive electrode active material, preparation method therefor and application thereof
CN115557545A (en) * 2022-11-14 2023-01-03 宜宾锂宝新材料有限公司 High-rate positive electrode material, preparation method thereof and lithium ion battery
CN115557545B (en) * 2022-11-14 2023-04-14 宜宾锂宝新材料有限公司 High-rate positive electrode material, preparation method thereof and lithium ion battery
CN116102088A (en) * 2022-11-30 2023-05-12 四川兴储能源科技有限公司 Negative electrode material of lamellar sodium ion battery and preparation method thereof

Also Published As

Publication number Publication date
JP4581333B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
KR101964726B1 (en) Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof
KR20190035670A (en) Spherical or Spherical-like Cathode Material for a Lithium Battery, a battery and preparation method and application thereof
JP4581333B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6201277B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP4951638B2 (en) Positive electrode material for lithium ion secondary battery and lithium ion secondary battery using the same
JP2004253174A (en) Positive pole active material for nonaqueous electrolytic secondary battery
WO2005124898A1 (en) Positive electrode active material powder for lithium secondary battery
JP2007039266A (en) Manufacturing method of lithium-manganese-nickel complex oxide and positive electrode active material for non-aqueous electrolyte secondary cell
JP2006107845A (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using this, and its manufacturing method
JP2014123529A (en) Positive electrode material for lithium secondary battery
JP2004006094A (en) Nonaqueous electrolyte secondary battery
JP7561973B2 (en) Positive Electrode and Electrochemical Device
JP5013386B2 (en) Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP2005060162A (en) Method for producing lithium-manganese-nickel composite oxide, and positive pole active material for nonaqueous electrolytic secondary battery using the same
JP4028738B2 (en) Positive electrode active material for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP3661183B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2001080920A (en) Aggregated granular lithium multiple oxide, its production and lithium secondary battery
JP6035669B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2002042814A (en) Positive electrode active material for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP2006196293A (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery, and positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JP2008159543A (en) Positive electrode active material for non-aqueous type electrolyte secondary battery, and method for manufacturing the material, and non-aqueous type electrolyte secondary battery using the material
JP2004047448A (en) Positive electrode activator for nonaqueous electrolyte secondary battery
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Ref document number: 4581333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

EXPY Cancellation because of completion of term