JP2004303590A - Laminated battery, and manufacturing method of the same - Google Patents

Laminated battery, and manufacturing method of the same Download PDF

Info

Publication number
JP2004303590A
JP2004303590A JP2003095834A JP2003095834A JP2004303590A JP 2004303590 A JP2004303590 A JP 2004303590A JP 2003095834 A JP2003095834 A JP 2003095834A JP 2003095834 A JP2003095834 A JP 2003095834A JP 2004303590 A JP2004303590 A JP 2004303590A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
tab
laminated battery
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003095834A
Other languages
Japanese (ja)
Other versions
JP4565810B2 (en
Inventor
Yasunobu Kodama
康伸 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003095834A priority Critical patent/JP4565810B2/en
Publication of JP2004303590A publication Critical patent/JP2004303590A/en
Application granted granted Critical
Publication of JP4565810B2 publication Critical patent/JP4565810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated battery with improved liquid containing property, gas venting property, and battery capacity. <P>SOLUTION: The laminated battery has a laminate envelope and a flatly wound electrode body formed by arranging a separator between a positive electrode 1 on which a positive electrode mixture 7 containing positive electrode activator storing and releasing lithium ion is painted, having a positive electrode tab 3 on a metallic core foil 5, and a negative electrode 1 on which a negative electrode mixture containing negative electrode activator storing and releasing lithium ion is painted, having a negative electrode tab 3 on the metallic core foil, and winding and crushing the positive electrode and the negative electrode in a state of being insulated from each other by the separator. A part 2 where the positive electrode mixture 7 is not painted is arranged in the vicinity of the back and front side of the central part in longitudinal direction of the positive electrode. The positive electrode tab 3 is welded on one surface on which the positive electrode mixture is not painted, and exposed surface is coverer by an insulation tape 4, and the other surface of not painted part is covered by a protection tape 6. The inside of the flatly wound electrode is formed so as not to generate any bumpy part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ラミネート電池に関し、特に偏平巻回電極を使用したラミネート電池において、電解液の含液性やガス抜け性を良くし、また正負極間の絶縁不良等不具合をなくしてその信頼性を高めたラミネート電池に関する。
【0002】
【従来の技術】
携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化され、高容量でサイクル特性が優れ、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウム非水電解質二次電池が注目され、このリチウム非水電解質二次電池の占める割合は二次電池市場において大きな伸びを示している。
【0003】
このリチウム非水電解質二次電池は、細長いシート状の銅箔等からなる負極芯体(集電体)の両面にリチウムイオンを吸蔵放出する負極活物質を含む負極合剤を塗布した負極と、細長いシート状のアルミニウム箔等からなる正極芯体の両面にリチウムイオンを吸蔵・放出する正極活物質を含む正極合剤を塗布した正極との間に、微多孔性ポリプロピレンフィルム等からなるセパレータを配置し、負極及び正極をセパレータにより互いに絶縁した状態で円柱状又は楕円形状に巻回した後、角型電池の場合は更に巻回電極体を押し潰して偏平状に形成し、負極及び正極の各所定部分にそれぞれ負極タブ及び正極タブを接続し、その外側を外装で被覆することにより製造されている。
【0004】
従来の非水電解質二次電池においては、巻回電極体を円筒形の外装缶内に挿入した後、非水電解液を注入することにより非水電解質電池が製造されているが、この巻回電極体は、図4に示す如く、正極ないしは負極41の巻き始めか巻き終りの端に金属製芯体箔が露出した合剤の未塗布部42を設け、この未塗布部42にアルミニウム、ニッケルで代表されるタブ43を溶接し、このタブ部分を絶縁テープ44で被覆すると共に、このタブ43を電池の電極端子に接続する構造をとることが慣用的に行われている。(特許文献1参照)。
【0005】
ところで、上述の非水電解質二次電池においては、外装とし強度を与えるために主として金属製の外装缶が使用されているが、近年に至り重量低減、単位体積当たりの電池容量の増大等の目的でラミネートフィルムを使用したラミネート電池が製造されるようになってきた。そこで、本発明の理解のために、以下において図5を用いて従来から慣用的に行われているラミネート電池50の製造工程について説明する。
【0006】
まず最初に、前述の従来例と同様にして偏平巻回電極体11を製造する。その際、この偏平巻回電極体11は、負極の金属製芯体箔露出部に負極タブ12を溶接しておくと共に、正極の金属製芯体箔露出部にも正極タブ13を溶接しておく。続いて、図5(A)に示したように、所定の大きさの周知のラミネートフィルム54、例えばアルミラミネートフィルムを2つ折りし、この内部に前記偏平巻回電極体51を配置し、必要に応じて負極タブ52及び正極タブ53の導出部に両面に薄いシール材55、55’を配置した後、このラミネートフィルム54のトップ部(タブ側)をバー状の金型(図示せず)を用いて溶着し、トップ封止部56を形成する。なお、この際、トップ封止部56の外縁には、ラミネートフィルム54から溶けたシーラント層がはみ出して金型に付着しないようにするため、未溶着部56’が設けられている。
【0007】
次に、図5(B)に示したように、バー状の金型を用いて、ラミネートフィルム54のサイド部の一方側を溶着して第1のサイド封止部57を形成する。この場合も第1のサイド封止部57の外縁はラミネートフィルムから溶けたシーラント層がはみ出して金型に付着しないようにするため、未溶着部57’が設けられている。次いで、液状電解質をもう一方のサイド部側58から注入する。そうすると、この液状電解質は、偏平巻回電極体51の内部へ十分に浸透する。その後、図5(C)に示したように、ラミネートフィルム54の他方側をバー型の金型により仮溶着して仮封止部60を形成する。次いで、予備充電及びエージングした後、図5(D)に示したように、ラミネートフィルム54の他方側をバー型の金型で溶着して第2のサイド封止部61を形成する。そして、前記ラミネートフィルムの不要部を切断して、図5(E)に示したような従来例のラミネート電池50を得る。
【0008】
このように、従来例のラミネート電池においても、各電極のタブは各電極の巻き初めか巻き終わりの芯体箔に配置され、このタブの表面は対となる電極との間で短絡を起こさないようにするため、図4に示した電極と同様に、絶縁テープにより被覆されている。加えて、特に正極芯体箔の対面に負極活物質が存在すると、負極活物質から離脱した導電性の粉体により短絡しやすいことから、正極活物質が塗布されていない正極芯体露出部が絶縁テープで被覆されている場合もある(特許文献2参照)。
【0009】
したがって、金属製芯体箔上にリチウムイオンを吸蔵・放出する正極活物質を含む正極合剤が塗布された正極と、金属製芯体箔上にリチウムイオンを吸蔵放出する負極活物質を含む負極合剤が塗布された負極とを、微多孔性ポリプロピレンフィルムからなる2枚のセパレータを介して互いに絶縁した状態で巻回した後、押し潰して偏平巻回電極体を製造すると、各電極のタブのため及びこのタブの表面に設けられた絶縁テープの存在のために、偏平巻回電極体の内面へ向かって凹凸ができてしまうので、この部分に応力がかかり、ラミネート電池内への電解液の注入時及び充電ガス発生時の気泡がこの応力がかかってる部分にたまりやすいという問題点が存在していた。
【0010】
この現象を図面を用いて更に詳細に説明する。図6は、偏平巻回電極体70をタブ部方向から見た横断面図である。金属製正極芯体箔71の一方の表面には正極タブ72が溶接されており、更にその表面に絶縁テープ73、負極74、セパレータ75と順次積層されて偏平状巻回電極体70が形成されている、この偏平巻回電極体70の表面は偏平巻回電極体を製造するときに押し潰すために平らになっているが、正極タブ72及び絶縁テープ73が存在しているため、内部に向かって応力が加えられ、図6に示したような形に変形している。この場合、正極タブ72の角部76近傍のセパレータや負極に応力がかかり、非水電解液を注入した際や充電によりガスが発生した際にはこの応力がかかっている部分にガスがたまりやすくなるわけである。
【0011】
一方、円筒形の非水電解質二次電池の正極として、図7に示すように長尺状の金属箔81の表面に正極合剤84を塗着した後、長尺状の正極の中間に帯状の合剤剥離部分82を形成し、この剥離部分に正極タブ(リード板)83を接続し、正極タブ83と合剤剥離部分82の表面と周囲の正極合剤84にまたがって絶縁テープ85を貼り付けて被覆していたものが知られている(特許文献3参照)。
この正極は、正極タブが極板の幅方向に部分的に設けられているので、幅方向で上下部の厚みが異なるため、巻回電極体を形成した場合に正極板の位置ずれが発生するのを防ぐ目的で合剤の剥離部分に絶縁テープを貼り付けたものを用いている。
【0012】
しかしながら、この図7に記載されている非水電解質二次電池は、円筒状巻回電極体の形で使用するものであるから、偏平巻回電極体として使用する際の問題点については何も示唆されてはいない。すなわち、円筒状巻回電極体は、押し潰されることがないため、偏平巻回電極体のように押し潰されることにより生じる応力に起因する問題点は本質的に生じないからである。
【0013】
【特許文献1】
特開2000−277155号公報(段落[0002]〜[0006])
【特許文献2】
特開2002−42881号公報(段落[0002]〜[0013])
【特許文献3】
特開平8−7877号公報(段落[0002]〜[0008])
【0014】
【発明が解決しようとする課題】
このように、偏平巻回電極体を使用するラミネート電池には、押し潰して偏平巻回電極体を製造するため、タブが電極の端部に存在している場合、タブが存在する電極のすぐ外側はラミネート外装体であり、フラットな面となっているので、タブの厚みの出っ張りは内側にしわ寄せが来る。したがって、正極タブ及び絶縁テープが存在しているため、偏平巻回電極体は内面へ向かって凹凸ができてしまうので、ラミネート電池内への電解液の注入時及び充電ガス発生時の気泡が、この凹凸状態となった部分にたまりやすいという問題点が存在していた。
【0015】
本発明者は、上述の問題点を解決すべく種々検討を重ねた結果、偏平巻回電極体を使用するラミネート電池において、正極タブを正極の中間部分に設けられた芯体箔露出部に設けると、正極タブ及びこの正極タブを絶縁する絶縁テープが存在してもその厚みに凹凸が生じないようにでき、しかも、電解液注入後に再度偏平巻回電極体を加圧すると、偏平巻回電極体内に溜まっていた気泡を有効に除去することができるので、結果として電池の容量を大きくすることができることを見出し、本発明を完成するに至ったのである。
【0016】
すなわち、本発明は、偏平巻回電極体を有するラミネート電池において、従来のものよりも電解液の含液性を向上させて電池容量の増大を計ったラミネート電池及び該ラミネート電池の製造方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明の目的は、以下の構成により達成することができる。本発明の第1の態様によれば、少なくとも、金属製芯体箔上に正極タブが設けられていると共にリチウムイオンを吸蔵放出する正極活物質を含む正極合剤が塗布された正極と、金属製芯体箔上に負極タブが設けられていると共にリチウムイオンを吸蔵放出する負極活物質を含む負極合剤が塗布された負極との間にセパレータを配置し、正極及び負極をセパレータにより互いに絶縁した状態で積層巻回した後、押し潰して成形した偏平巻回電極体と、ラミネート外装を有するラミネート電池において、該正極の長手方向の中央部付近の表裏に正極合剤不塗布部分を設け、該正極合剤不塗布部分の一方の面に正極タブを溶着して露出面を絶縁テープで被覆するとともに、該正極合剤不塗布部分の他方の面を絶縁テープで被覆したラミネート電池が提供される。
【0018】
係る態様によれば、正極タブ及びこの正極タブを絶縁する絶縁テープが存在しても偏平巻回電極体内に凹凸が生じないようにできるので、内部に気泡が溜まりにくくなり、結果として電池の容量が増加する。すなわち、タブが電極の中央に存在している場合、タブは電極と電極との間に挟まれる。電極には活物質合剤が両面に塗布されているが、タブの部分は合剤が除去されているから、タブの領域は合剤両面分の厚みだけ空間が確保される。したがって、そこにタブや絶縁テープが収まることによって出っ張りが無くなるので、偏平巻回電極体の内部に凹凸が生じないようになる。
【0019】
係る態様によれば、前記正極は、巻き始め及び巻き終わりの芯体箔表面が露出しないように正極合剤塗布部において切断されていることが好ましい。このような構成であれば、巻き初め及び巻き終わりの芯体箔表面を露出させる必要はないので、その分だけ活物質合剤の塗布量を増加させることができ、電池の容量をより増加させることができる。すなわち、従来は正極端部にタブがあったためにその部分の活物質合剤を除去していたが、本発明では、正極タブが中央部にあるので端部の活物質合剤を除去する必要はなくなる。
【0020】
また、係る態様によれば、前記ラミネート電池が三方封止式の電池であることが好ましい。このような構成であればラミネート電池の製造が容易になる。さらに、係る態様によれば、前記ラミネート電池がポリマー電解質を有するものとすることが好ましい。かかる構成であれば、電解質がゲル化ないしは固体化しているので漏液することが少なくなる。更に、係る態様においては、前記負極タブが前記負極の巻き始めに位置していることが好ましい。係る態様によれば、従来から普通に使用されている負極を使用することができる。
【0021】
また、本発明の第2の態様によれば、下記(1)〜(4)の工程から成るラミネート電池の製造方法が提供される。
(1)正極と負極とをセパレータを介して巻回し、巻回電極体を形成する工程、(2)前記巻回電極体を押し潰し成形して偏平巻回電極体を形成する工程、
(3)前記巻回電極体をラミネート被覆すると共に電解液を注入する工程
(4)前記ラミネート被覆された巻回電極体を押圧する工程。
このような方法を採用すれば、偏平巻回電極体内に溜まっていた気泡を有効に除去することができるので、結果として電池の容量を大きくすることができる。
【0022】
【発明の実施の形態】
次に本発明の好ましい態様について説明するが、以下に示す実施例は本発明の技術思想を具体化するためのラミネート電池及びその製造方法を例示するものであって、本発明はこれらに限定されるものではない。
【0023】
【実施例】
以下、図面を参照して本発明の実施例を詳細に説明する。図1(A)は巻き回前の正極の平面図及び図1(B)は底面図であり、図2は巻き回前の負極の平面図、図3は巻き回後の正極の要部拡大断面図である。
【0024】
本発明のラミネート電池の製造においては、アルミニウム等の金属製芯体箔上にリチウムイオンを吸蔵放出する正極活物質を含む正極合剤を塗布した正極と、銅等の金属製芯体箔上にリチウムイオンを吸蔵放出する負極活物質を含む負極合剤を塗布した負極とを2枚のセパレータにより絶縁して巻き取り、積層巻回されたものを加圧成型して偏平な巻回電極体とする。
【0025】
正極には、例えばコバルト酸リチウムLiCoOを活物質とし、導電剤として炭素、結着剤としてポリ四フッ化エチレン樹脂を練り合わせペースト状とした合剤が、負極には例えば黒鉛等炭素材料を活物質とし、結着剤としてポリ四フッ化エチレン樹脂を練り合わせペースト状とした合剤が用いられている。これらの合剤はそれぞれの芯体箔基材の両面に塗布、乾燥、圧延し、所定の寸法に切断される。また、セパレータにはポリエチレン、ポリプロピレン等の微多孔性フィルムが使用される。
【0026】
図1(A)に示したように、巻き回前の正極1には、その正極1の長手方向の中央部付近に両面に正極合剤7の不塗布部分2が設けられ、この不塗布部分2に正極タブ3が溶接されている。さらに、正極タブ3には、補強と絶縁を兼ねた粘着テープのような絶縁テープ4が不塗布部分2の正極芯体箔5に貼り付けられ、また、その背面の正極活物質が設けられていない部分にも保護テープ6が施こされ、正極芯体箔表面が露出しないように被覆されている。これらのテープは、正極合剤7の不塗布部分2のみを覆い、隣接する正極合剤7層にはかからないように施される。なお、不塗布部分2は基材への合剤塗布時に不塗布部分を設けるか、基材に合剤を全面塗布しプレス加工後合剤を剥離して設ける方法があり、何れの方法を採用してもよい。そして、正極1の両端は、正極合剤7の塗布された部分で切断されており、正極1の端部まで活物質合剤が塗布されている。
【0027】
図2は、巻き回前の負極21の平面図で、その巻き始め端部21aに負極タブ22が溶接され、負極タブ溶接部の上は絶縁テープ23で覆われている。負極タブ溶接部の負極芯体箔24を介した対向面は、負極活物質合剤が塗布された負極活物質層となっている。
【0028】
正極1及び負極21を図示しないセパレータを介して重ねて巻き取り、積層巻回されたものを加圧成型して従来例のものと同様な偏平巻回電極体とする。この状態における正極1のタブ3の部分は、合剤が除去されているので合剤両面分の厚みだけ空間が確保されている。したがって、図3に示したように、そこにタブや絶縁テープが収まることによって、正極1のタブ3の部分の厚みは正極1と略同じになるので、従来例のように巻回電極体内に凹凸が生じることはなく、特に応力が加わっている部分が生じることがない。このようにして成型した巻回電極体をアルミラミネートシートを二つ折り状に折り曲げて底部を形成したものに挿入し、まず最初にトップ封止部側とサイド封止部の一方側を溶着して、サイド封止部の他方側が開口しているラミネート外装体を形成した。
【0029】
次いで、サイド封止部の未溶着部分からラミネート外装体内に有機電解液を注液した。電解液は、ポリマー電解質形成材料からなり、所定の割合に混合した混合溶媒に6フッ化リン酸リチウムを1mol/lの割合で溶解した電解液とポリプロピレングリコールジアクリレート
【化1】

Figure 2004303590
又は、ポリプロピレングリコールジメタクリレート
【化2】
Figure 2004303590
(ただし、n=3)
を、重量比で12:1の割合で混合した溶液に重合開始剤としてt−へキシルパーオキシピパレートを5000ppm添加して形成し、巻回電極体を収納したラミネート包材の内部に注液した。
【0030】
なお、電解質としてはLiPFのほかにLiBF、LiN(SOCF、LiN(SO及びこれらを混合したものを用いることができる。次いで、電解液を注液したラミネート外装体の他方のサイド側を仮溶着した後、60℃オーブン中に3時間静置して熱硬化させ、予備充電及びエージングを行った。
【0031】
結いで、仮溶着されていたラミネートのサイド部の片側(残り側)を、金型で溶着して本封止部を形成した。予備室の不要部分を切断除去し、サイド封止部を折り曲げてリチウムラミネート電池を得た。
【0032】
本発明のラミネート電池に係る実施例と、正極タブを金属製芯体箔の巻き初めに設けた従来のラミネート電池に係る比較例とについて、それぞれ電池サイズ2.6×80×120mm、公称容量2200mAh(公称電圧3.6V)の電池を作製し、以下に述べる条件下で充放電試験を行った。
(1)充電:初期には2200mAの定電流で充電し、電池電圧が4.2Vまで上昇したときに定電流充電から定電圧充電に切換えた。定電圧充電では電池電圧を4.2Vに保つように、充電の進行に伴って電流値を低下させていき、電流値が440mAになったときに充電終了とした。
(2)放電:2200mAの定電流で放電させ、電池電圧が3Vまで低下したときに放電終了とした。
その測定結果を結果を表1にまとめて示す。
【0033】
【表1】
Figure 2004303590
【0034】
上記の表により、本発明の実施例の方が比較例に比べ大きい容量が得られたことが分かる。
【0035】
【発明の効果】
以上述べたように、本発明のラミネート電池によれば、正極タブが正極の長さ方向中央部付近に配置されていることにより、偏平巻回電極体の凹凸が抑制され、含液性及びガス抜け性が向上し、結果として従来のラミネート電池より電池容量が増大するという効果が得られる。
【図面の簡単な説明】
【図1】本発明の巻回前の正極を示し、図1(A)は平面図、図1(B)は底面図である。
【図2】本発明の巻回前の負極の平面図である。
【図3】本発明の巻回加圧成形後の正極の要部拡大断面図
【図4】従来の巻回される前の電極の平面図である。
【図5】従来のラミネート電池の製造方法を示す図である。
【図6】従来の偏平巻回電極体の押し潰し成形後の正極タブ部の断面図である。
【図7】従来の長さ方向中央部にタブを有する巻回される前の電極の平面図である。
【符号の説明】
1 正極
2 不塗布部分
3 正極タブ
4 絶縁テープ
5 正極芯体箔
6 保護テープ
7 正極合剤
21 負極
21a 負極巻き始め端部
22 負極タブ
23 絶縁テープ
24 負極芯体箔[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a laminated battery, and particularly to a laminated battery using a flat wound electrode, improves the liquid content and outgassing property of the electrolyte, and eliminates the defects such as poor insulation between the positive and negative electrodes to improve the reliability. Related to an enhanced laminated battery.
[0002]
[Prior art]
With the rapid spread of portable electronic devices, the requirements for batteries used in them have become stricter year by year, and in particular, smaller and thinner, higher capacity, superior cycle characteristics, and stable performance are required. ing. In the field of secondary batteries, lithium non-aqueous electrolyte secondary batteries, which have a higher energy density than other batteries, are attracting attention, and the proportion of lithium non-aqueous electrolyte secondary batteries has shown a significant growth in the secondary battery market. ing.
[0003]
The lithium non-aqueous electrolyte secondary battery includes a negative electrode in which a negative electrode mixture containing a negative electrode active material that inserts and desorbs lithium ions is applied to both surfaces of a negative electrode core (current collector) formed of a long and thin sheet-like copper foil, A separator made of a microporous polypropylene film or the like is placed between a positive electrode coated with a positive electrode mixture containing a positive electrode active material that absorbs and releases lithium ions on both surfaces of a positive electrode core made of an elongated sheet-like aluminum foil, etc. Then, after winding the negative electrode and the positive electrode in a cylindrical or elliptical shape in a state in which they are insulated from each other by a separator, in the case of a prismatic battery, further crush the wound electrode body to form a flat shape, and form each of the negative electrode and the positive electrode. It is manufactured by connecting a negative electrode tab and a positive electrode tab to predetermined portions, respectively, and covering the outside with an exterior.
[0004]
In a conventional non-aqueous electrolyte secondary battery, a non-aqueous electrolyte battery is manufactured by inserting a wound electrode body into a cylindrical outer can and then injecting a non-aqueous electrolyte. As shown in FIG. 4, the electrode body is provided with an uncoated portion 42 of a mixture in which a metal core foil is exposed at the beginning or end of the winding of the positive electrode or the negative electrode 41. It is customary to weld a tab 43 represented by the following formula, cover this tab portion with an insulating tape 44, and connect the tab 43 to an electrode terminal of a battery. (See Patent Document 1).
[0005]
By the way, in the above-mentioned non-aqueous electrolyte secondary battery, a metal outer can is mainly used in order to provide an outer casing and to provide strength. However, in recent years, the purpose is to reduce weight, increase battery capacity per unit volume, and the like. As a result, laminated batteries using a laminated film have been manufactured. Therefore, in order to understand the present invention, a conventional manufacturing process of the laminated battery 50 will be described below with reference to FIG.
[0006]
First, the flat wound electrode body 11 is manufactured in the same manner as in the above-described conventional example. At this time, the flat wound electrode body 11 has a negative electrode tab 12 welded to the negative electrode metal core foil exposed portion and a positive electrode tab 13 also welded to the positive electrode metal core foil exposed portion. deep. Subsequently, as shown in FIG. 5A, a well-known laminated film 54 having a predetermined size, for example, an aluminum laminated film is folded in two, and the flat wound electrode body 51 is disposed therein, and if necessary, Accordingly, thin sealing materials 55 and 55 ′ are arranged on both sides of the lead-out portions of the negative electrode tab 52 and the positive electrode tab 53, and the top part (tab side) of the laminated film 54 is placed in a bar-shaped mold (not shown). To form a top sealing portion 56. At this time, an unwelded portion 56 ′ is provided on the outer edge of the top sealing portion 56 so that the melted sealant layer does not protrude from the laminate film 54 and adhere to the mold.
[0007]
Next, as shown in FIG. 5B, a first side sealing portion 57 is formed by welding one side of the side portion of the laminated film 54 using a bar-shaped mold. Also in this case, the outer edge of the first side sealing portion 57 is provided with a non-welded portion 57 ′ so that the melted sealant layer does not protrude from the laminate film and adhere to the mold. Next, the liquid electrolyte is injected from the other side portion side 58. Then, the liquid electrolyte sufficiently penetrates into the flat wound electrode body 51. Thereafter, as shown in FIG. 5C, the other side of the laminate film 54 is temporarily welded with a bar-shaped mold to form a temporarily sealed portion 60. Next, after pre-charging and aging, as shown in FIG. 5D, the other side of the laminate film 54 is welded with a bar mold to form a second side sealing portion 61. Then, unnecessary portions of the laminate film are cut to obtain a conventional laminated battery 50 as shown in FIG.
[0008]
Thus, also in the conventional laminated battery, the tab of each electrode is arranged on the core foil at the beginning or end of the winding of each electrode, and the surface of this tab does not cause a short circuit between the pair of electrodes. To do so, it is covered with an insulating tape like the electrodes shown in FIG. In addition, particularly when the negative electrode active material is present on the opposite surface of the positive electrode core foil, the conductive powder detached from the negative electrode active material tends to cause a short circuit. It may be covered with an insulating tape (see Patent Document 2).
[0009]
Therefore, a positive electrode in which a positive electrode mixture containing a positive electrode active material that absorbs and releases lithium ions is applied on a metal core foil, and a negative electrode that contains a negative electrode active material that inserts and releases lithium ions on a metal core foil The negative electrode coated with the mixture is wound in a state insulated from each other via two separators made of a microporous polypropylene film, and then crushed to produce a flat wound electrode body. Due to the presence of the insulating tape provided on the surface of the tab, irregularities are formed toward the inner surface of the flat wound electrode body. However, there is a problem that air bubbles during the injection of the gas and the generation of the charged gas tend to collect in the portion where the stress is applied.
[0010]
This phenomenon will be described in more detail with reference to the drawings. FIG. 6 is a cross-sectional view of the flat wound electrode body 70 as viewed from the tab portion direction. A positive electrode tab 72 is welded to one surface of the metal positive electrode core foil 71, and an insulating tape 73, a negative electrode 74, and a separator 75 are sequentially laminated on the surface to form a flat wound electrode body 70. Although the surface of the flat wound electrode body 70 is flat to be crushed when manufacturing the flat wound electrode body, since the positive electrode tab 72 and the insulating tape 73 are present, the inside thereof is inside. Stress is applied in the direction, and the shape is deformed as shown in FIG. In this case, stress is applied to the separator and the negative electrode near the corner 76 of the positive electrode tab 72, and when a non-aqueous electrolyte is injected or gas is generated by charging, the gas easily accumulates in the portion where the stress is applied. That is.
[0011]
On the other hand, as a positive electrode of a cylindrical non-aqueous electrolyte secondary battery, a positive electrode mixture 84 is applied to the surface of a long metal foil 81 as shown in FIG. A positive electrode tab (lead plate) 83 is connected to the peeled portion, and the insulating tape 85 is spread over the positive electrode tab 83 and the surface of the raw material release portion 82 and the surrounding positive electrode mixture 84. One that has been pasted and covered is known (see Patent Document 3).
In this positive electrode, since the positive electrode tab is partially provided in the width direction of the electrode plate, the thickness of the upper and lower portions differs in the width direction, so that when the wound electrode body is formed, the displacement of the positive electrode plate occurs. In order to prevent this, an adhesive tape is applied to a part where the mixture is peeled off.
[0012]
However, since the non-aqueous electrolyte secondary battery described in FIG. 7 is used in the form of a cylindrical wound electrode body, there is no problem with using it as a flat wound electrode body. Not suggested. That is, since the cylindrical wound electrode body is not crushed, there is essentially no problem caused by the stress caused by being crushed like the flat wound electrode body.
[0013]
[Patent Document 1]
JP-A-2000-277155 (paragraphs [0002] to [0006])
[Patent Document 2]
JP-A-2002-42881 (paragraphs [0002] to [0013])
[Patent Document 3]
JP-A-8-7877 (paragraphs [0002] to [0008])
[0014]
[Problems to be solved by the invention]
As described above, in the laminated battery using the flat wound electrode body, since the flat wound electrode body is manufactured by crushing, when the tab is present at the end of the electrode, the tab is located immediately adjacent to the electrode on which the tab is present. The outer side is a laminate exterior body and has a flat surface, so that the protrusion of the thickness of the tab is wrinkled inward. Therefore, since the positive electrode tab and the insulating tape are present, the flat wound electrode body has irregularities toward the inner surface, so that bubbles during the injection of the electrolyte solution into the laminated battery and the generation of the charging gas, There has been a problem that the uneven portion easily accumulates.
[0015]
The present inventor has conducted various studies to solve the above-described problems, and as a result, in a laminated battery using a flat wound electrode body, a positive electrode tab is provided on an exposed portion of a core foil provided in an intermediate portion of a positive electrode. Even if a positive electrode tab and an insulating tape for insulating the positive electrode tab are present, it is possible to prevent unevenness in the thickness thereof, and if the flat wound electrode body is pressed again after the injection of the electrolytic solution, the flat wound electrode The present inventors have found that since the air bubbles accumulated in the body can be effectively removed, the capacity of the battery can be increased as a result, and the present invention has been completed.
[0016]
That is, the present invention provides a laminated battery having a flat spirally wound electrode body in which the battery capacity is increased by improving the liquid content of the electrolytic solution as compared with the conventional battery, and a method of manufacturing the laminated battery. The purpose is to do.
[0017]
[Means for Solving the Problems]
The object of the present invention can be achieved by the following configurations. According to the first aspect of the present invention, at least a positive electrode on which a positive electrode tab is provided on a metal core foil and a positive electrode mixture containing a positive electrode active material that absorbs and releases lithium ions is applied; A negative electrode tab is provided on the core body foil, and a separator is arranged between the negative electrode coated with a negative electrode mixture containing a negative electrode active material that absorbs and releases lithium ions, and the positive electrode and the negative electrode are insulated from each other by the separator After being wound in a stacked state in a flat state, a flat wound electrode body crushed and formed, and in a laminated battery having a laminate exterior, a positive electrode mixture non-applied portion is provided on the front and back near the center in the longitudinal direction of the positive electrode, A laminated battery in which a positive electrode tab is welded to one surface of the positive electrode mixture non-applied portion and the exposed surface is covered with insulating tape, and the other surface of the positive electrode mixture non-applied portion is covered with insulating tape, It is subjected.
[0018]
According to this aspect, even when the positive electrode tab and the insulating tape insulating the positive electrode tab are present, unevenness can be prevented from being generated in the flat wound electrode body, so that bubbles hardly accumulate inside, and as a result, the capacity of the battery Increase. That is, when the tab is located at the center of the electrode, the tab is sandwiched between the electrodes. The active material mixture is applied to both sides of the electrode, but since the mixture is removed from the tab portion, a space is secured in the tab region by the thickness of both surfaces of the mixture. Therefore, since the tab or the insulating tape is settled therein, the protrusion is eliminated, so that the unevenness does not occur inside the flat wound electrode body.
[0019]
According to this aspect, it is preferable that the positive electrode is cut at the positive electrode mixture application portion so that the core foil surfaces at the start and end of winding are not exposed. With such a configuration, it is not necessary to expose the core foil surface at the beginning and end of winding, so that the application amount of the active material mixture can be increased by that amount, and the capacity of the battery is further increased. be able to. That is, conventionally, the active material mixture was removed at the end of the positive electrode because of the tab, but in the present invention, since the positive electrode tab is located at the center, it is necessary to remove the active material mixture at the end. Is gone.
[0020]
According to this aspect, it is preferable that the laminated battery is a three-way sealed battery. Such a configuration facilitates the manufacture of a laminated battery. Further, according to this aspect, it is preferable that the laminated battery has a polymer electrolyte. With such a configuration, the electrolyte is gelled or solidified, so that leakage is reduced. Further, in this aspect, it is preferable that the negative electrode tab is located at the beginning of winding of the negative electrode. According to this aspect, a conventionally used negative electrode can be used.
[0021]
According to a second aspect of the present invention, there is provided a method of manufacturing a laminated battery including the following steps (1) to (4).
(1) a step of winding a positive electrode and a negative electrode through a separator to form a wound electrode body; (2) a step of crushing and shaping the wound electrode body to form a flat wound electrode body;
(3) a step of laminating the wound electrode body and injecting an electrolytic solution; and (4) a step of pressing the laminated electrode body.
By adopting such a method, the air bubbles accumulated in the flat wound electrode body can be effectively removed, and as a result, the capacity of the battery can be increased.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, preferred embodiments of the present invention will be described. However, the following examples illustrate a laminated battery for embodying the technical idea of the present invention and a method for manufacturing the same, and the present invention is not limited thereto. Not something.
[0023]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1A is a plan view of the positive electrode before winding, FIG. 1B is a bottom view, FIG. 2 is a plan view of the negative electrode before winding, and FIG. 3 is an enlarged main part of the positive electrode after winding. It is sectional drawing.
[0024]
In the production of the laminated battery of the present invention, a positive electrode prepared by applying a positive electrode mixture containing a positive electrode active material for absorbing and releasing lithium ions onto a metal core foil such as aluminum, and a metal core foil such as copper A negative electrode coated with a negative electrode mixture containing a negative electrode active material that absorbs and releases lithium ions is insulated by two separators and wound up. I do.
[0025]
For the positive electrode, for example, lithium cobalt oxide LiCoO 2 is used as an active material, carbon is used as a conductive agent, and a polytetrafluoroethylene resin is used as a binder. As a substance, a mixture in which a polytetrafluoroethylene resin is kneaded into a paste is used as a binder. These mixtures are applied to both sides of each core foil substrate, dried, rolled, and cut into predetermined dimensions. Further, a microporous film such as polyethylene or polypropylene is used for the separator.
[0026]
As shown in FIG. 1 (A), the non-coated portion 2 of the positive electrode mixture 7 is provided on both surfaces of the positive electrode 1 before winding, near the center in the longitudinal direction of the positive electrode 1. 2, a positive electrode tab 3 is welded. Further, on the positive electrode tab 3, an insulating tape 4 such as an adhesive tape for both reinforcement and insulation is adhered to the positive electrode core foil 5 of the uncoated portion 2, and a positive electrode active material on the back surface is provided. The protective tape 6 is also applied to the non-existing portion, and is coated so that the positive electrode core foil surface is not exposed. These tapes are applied so as to cover only the non-applied portion 2 of the positive electrode mixture 7 and not to cover the adjacent positive electrode mixture 7 layers. The non-applied portion 2 may be provided by providing an unapplied portion at the time of applying the mixture to the substrate, or by applying the mixture over the entire surface of the substrate, pressing the mixture, and then peeling off the mixture. May be. Then, both ends of the positive electrode 1 are cut at portions where the positive electrode mixture 7 is applied, and the active material mixture is applied to the end of the positive electrode 1.
[0027]
FIG. 2 is a plan view of the negative electrode 21 before being wound. The negative electrode tab 22 is welded to the winding start end 21 a, and an upper portion of the negative electrode tab weld is covered with an insulating tape 23. The opposite surface of the negative electrode tab welding portion via the negative electrode core foil 24 is a negative electrode active material layer to which the negative electrode active material mixture is applied.
[0028]
The positive electrode 1 and the negative electrode 21 are stacked and wound via a separator (not shown), and the laminated and wound one is subjected to pressure molding to obtain a flat wound electrode body similar to that of the conventional example. Since the mixture is removed from the tab 3 of the positive electrode 1 in this state, a space is secured by the thickness of both surfaces of the mixture. Therefore, as shown in FIG. 3, when the tab or the insulating tape is fitted therein, the thickness of the tab 3 of the positive electrode 1 becomes substantially the same as that of the positive electrode 1, so that the inside of the spirally wound electrode body as in the conventional example is There is no unevenness, and there is no particular stressed portion. The wound electrode body molded in this way is inserted into the aluminum laminate sheet which is folded in two to form a bottom portion, and firstly, the top sealing portion side and one side of the side sealing portion are welded. Then, a laminate exterior body in which the other side of the side sealing portion was open was formed.
[0029]
Next, an organic electrolyte solution was injected into the laminate exterior body from the unwelded portion of the side sealing portion. The electrolytic solution is composed of a polymer electrolyte forming material, and an electrolytic solution obtained by dissolving lithium hexafluorophosphate at a ratio of 1 mol / l in a mixed solvent mixed at a predetermined ratio and polypropylene glycol diacrylate.
Figure 2004303590
Or, polypropylene glycol dimethacrylate
Figure 2004303590
(However, n = 3)
Was formed by adding 5000 ppm of t-hexylperoxypiparate as a polymerization initiator to a solution obtained by mixing at a ratio of 12: 1 by weight, and injected into the inside of a laminate packaging material containing a wound electrode body. did.
[0030]
Note that, in addition to LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and a mixture thereof can be used as the electrolyte. Next, after temporarily welding the other side of the laminate exterior body into which the electrolyte was injected, the laminate exterior body was left standing in a 60 ° C. oven for 3 hours to be thermally cured, and precharged and aged.
[0031]
By tying, one side (remaining side) of the side portion of the temporarily welded laminate was welded with a mold to form a final sealed portion. Unnecessary portions of the preliminary chamber were cut and removed, and the side sealing portions were bent to obtain a lithium laminated battery.
[0032]
For the example of the laminated battery of the present invention and the comparative example of the conventional laminated battery in which the positive electrode tab was provided at the beginning of the winding of the metal core foil, the battery size was 2.6 × 80 × 120 mm and the nominal capacity was 2200 mAh, respectively. (Nominal voltage of 3.6 V) was prepared, and a charge / discharge test was performed under the following conditions.
(1) Charging: The battery was initially charged at a constant current of 2200 mA, and was switched from constant current charging to constant voltage charging when the battery voltage rose to 4.2 V. In the constant voltage charging, the current value was decreased as the charging progressed so as to keep the battery voltage at 4.2 V, and the charging was terminated when the current value reached 440 mA.
(2) Discharge: Discharge was performed at a constant current of 2200 mA, and discharge was terminated when the battery voltage dropped to 3 V.
Table 1 summarizes the measurement results.
[0033]
[Table 1]
Figure 2004303590
[0034]
From the above table, it can be seen that a larger capacity was obtained in the example of the present invention than in the comparative example.
[0035]
【The invention's effect】
As described above, according to the laminated battery of the present invention, since the positive electrode tab is disposed near the center in the length direction of the positive electrode, unevenness of the flat wound electrode body is suppressed, and the liquid-containing property and gas It is possible to obtain the effect that the removability is improved, and as a result, the battery capacity is increased as compared with the conventional laminated battery.
[Brief description of the drawings]
FIG. 1 shows a positive electrode before winding according to the present invention, wherein FIG. 1 (A) is a plan view and FIG. 1 (B) is a bottom view.
FIG. 2 is a plan view of a negative electrode before winding according to the present invention.
FIG. 3 is an enlarged cross-sectional view of a main part of a positive electrode after wound pressure molding of the present invention. FIG. 4 is a plan view of a conventional electrode before being wound.
FIG. 5 is a diagram showing a conventional method for manufacturing a laminated battery.
FIG. 6 is a cross-sectional view of a positive electrode tab after a conventional flat wound electrode body is crushed and formed.
FIG. 7 is a plan view of a conventional unwound electrode having a tab at the center in the longitudinal direction.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Uncoated part 3 Positive electrode tab 4 Insulating tape 5 Positive electrode core foil 6 Protective tape 7 Positive electrode mixture 21 Negative electrode 21a Negative winding start end 22 Negative electrode tab 23 Insulating tape 24 Negative electrode core foil

Claims (6)

少なくとも、金属製芯体箔上に正極タブが設けられていると共にリチウムイオンを吸蔵放出する正極活物質を含む正極合剤が塗布された正極と、金属製芯体箔上に負極タブが設けられていると共にリチウムイオンを吸蔵放出する負極活物質を含む負極合剤が塗布された負極との間にセパレータを配置し、正極及び負極をセパレータにより互いに絶縁した状態で積層巻回した後、押し潰して成形した偏平巻回電極体と、ラミネート外装を有するラミネート電池において、該正極の長手方向の中央部付近の表裏に正極合剤不塗布部分を設け、該正極合剤不塗布部分の一方の面に正極タブを溶着して露出面を絶縁テープで被覆するとともに、該正極合剤不塗布部分の他方の面を絶縁テープで被覆したことを特徴とするラミネート電池。At least a positive electrode tab provided on a metal core foil and a positive electrode coated with a positive electrode mixture containing a positive electrode active material for inserting and extracting lithium ions, and a negative electrode tab provided on the metal core foil A separator is disposed between the negative electrode and a negative electrode mixture containing a negative electrode active material that absorbs and releases lithium ions, and the positive electrode and the negative electrode are stacked and wound in a state in which they are insulated from each other by the separator, and then crushed. In a flat wound electrode body molded and formed, and in a laminated battery having a laminate exterior, a positive electrode mixture non-applied portion is provided on the front and back near the center in the longitudinal direction of the positive electrode, and one surface of the positive electrode mixture non-applied portion is provided. A positive electrode tab is welded to the positive electrode mixture, the exposed surface is covered with an insulating tape, and the other surface of the portion where the positive electrode mixture is not applied is covered with an insulating tape. 前記正極は、巻き始め及び巻き終わりの芯体箔表面が露出しないように正極合剤塗布部において切断されていることを特徴とする請求項1に記載のラミネート電池。2. The laminated battery according to claim 1, wherein the positive electrode is cut at a positive electrode mixture application portion so that a core foil surface at the beginning and end of winding is not exposed. 前記ラミネート電池が三方封止式の電池であることを特徴とする請求項1に記載のラミネート電池。The laminated battery according to claim 1, wherein the laminated battery is a three-way sealed battery. 前記ラミネート電池がポリマー電解質を有していることことを特徴とする請求項1に記載のラミネート電池。The laminated battery according to claim 1, wherein the laminated battery has a polymer electrolyte. 前記負極タブが前記負極の巻き始めに位置していることを特徴とする請求項1に記載のラミネート電池。The laminated battery according to claim 1, wherein the negative electrode tab is located at the beginning of winding of the negative electrode. 下記(1)〜(4)の工程から成ることを特徴とするラミネート電池の製造方法。
(1)正極と負極とをセパレータを介して巻回し、巻回電極体を形成する工程、(2)前記巻回電極体を押し潰し成形して偏平巻回電極体を形成する工程、
(3)前記巻回電極体をラミネート被覆すると共に電解液を注入する工程、
(4)前記ラミネート被覆された巻回電極体を押圧する工程。
A method for manufacturing a laminated battery, comprising the following steps (1) to (4).
(1) a step of winding a positive electrode and a negative electrode through a separator to form a wound electrode body; (2) a step of crushing and shaping the wound electrode body to form a flat wound electrode body;
(3) laminating the wound electrode body and injecting an electrolyte solution;
(4) A step of pressing the wound electrode body coated with the laminate.
JP2003095834A 2003-03-31 2003-03-31 Laminated battery Expired - Fee Related JP4565810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095834A JP4565810B2 (en) 2003-03-31 2003-03-31 Laminated battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095834A JP4565810B2 (en) 2003-03-31 2003-03-31 Laminated battery

Publications (2)

Publication Number Publication Date
JP2004303590A true JP2004303590A (en) 2004-10-28
JP4565810B2 JP4565810B2 (en) 2010-10-20

Family

ID=33408062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095834A Expired - Fee Related JP4565810B2 (en) 2003-03-31 2003-03-31 Laminated battery

Country Status (1)

Country Link
JP (1) JP4565810B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059249A (en) * 2005-08-25 2007-03-08 Nec Tokin Corp Secondary battery
JP2008147009A (en) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd Bipolar battery and its manufacturing method
WO2008078635A1 (en) * 2006-12-27 2008-07-03 Calsonic Kansei Corporation Battery cooling system for vehicle
WO2013164998A1 (en) * 2012-05-01 2013-11-07 株式会社 豊田自動織機 Accumulator device
JP2016126857A (en) * 2014-12-26 2016-07-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. Nonaqueous electrolyte secondary battery
WO2017010046A1 (en) * 2015-07-10 2017-01-19 パナソニックIpマネジメント株式会社 Wound type battery
US9598691B2 (en) 2008-04-29 2017-03-21 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation to create tissue scaffolds
JP2017092047A (en) * 2012-04-05 2017-05-25 エルジー・ケム・リミテッド Battery cell of stair-like structure
US9764145B2 (en) 2009-05-28 2017-09-19 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
JP2017174998A (en) * 2016-03-24 2017-09-28 太陽誘電株式会社 Electrochemical device
JP2017183539A (en) * 2016-03-30 2017-10-05 太陽誘電株式会社 Electrochemical device
US9867652B2 (en) 2008-04-29 2018-01-16 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
JP2018129459A (en) * 2017-02-10 2018-08-16 太陽誘電株式会社 Power storage element
US10117707B2 (en) 2008-04-29 2018-11-06 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US10154874B2 (en) 2008-04-29 2018-12-18 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
US10238447B2 (en) 2008-04-29 2019-03-26 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US10245105B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Electroporation with cooling to treat tissue
US10272178B2 (en) 2008-04-29 2019-04-30 Virginia Tech Intellectual Properties Inc. Methods for blood-brain barrier disruption using electrical energy
US10292755B2 (en) 2009-04-09 2019-05-21 Virginia Tech Intellectual Properties, Inc. High frequency electroporation for cancer therapy
US10463426B2 (en) 2001-08-13 2019-11-05 Angiodynamics, Inc. Method for treating a tubular anatomical structure
US10471254B2 (en) 2014-05-12 2019-11-12 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US10470822B2 (en) 2008-04-29 2019-11-12 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
JP2019207895A (en) * 2014-12-26 2019-12-05 三星エスディアイ株式会社Samsung SDI Co., Ltd. Nonaqueous electrolyte secondary battery
US10658124B2 (en) 2016-10-18 2020-05-19 Taiyo Yuden Co., Ltd. Electrochemical device
US10694972B2 (en) 2014-12-15 2020-06-30 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US10702326B2 (en) 2011-07-15 2020-07-07 Virginia Tech Intellectual Properties, Inc. Device and method for electroporation based treatment of stenosis of a tubular body part
CN112005405A (en) * 2018-04-06 2020-11-27 松下知识产权经营株式会社 Electrode plate, electrode body, and battery
CN112086585A (en) * 2019-06-14 2020-12-15 东莞新能德科技有限公司 Battery with a battery cell
US11043700B2 (en) 2014-12-26 2021-06-22 Samsung Sdi Co., Ltd. Non-aqueous electrolyte rechargeable battery
CN113299975A (en) * 2021-07-06 2021-08-24 合肥国轩高科动力能源有限公司 Lithium ion battery structure and assembly method
US11254926B2 (en) 2008-04-29 2022-02-22 Virginia Tech Intellectual Properties, Inc. Devices and methods for high frequency electroporation
US11272979B2 (en) 2008-04-29 2022-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US11311329B2 (en) 2018-03-13 2022-04-26 Virginia Tech Intellectual Properties, Inc. Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
WO2022138625A1 (en) * 2020-12-23 2022-06-30 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US11382681B2 (en) 2009-04-09 2022-07-12 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US11453873B2 (en) 2008-04-29 2022-09-27 Virginia Tech Intellectual Properties, Inc. Methods for delivery of biphasic electrical pulses for non-thermal ablation
US11607537B2 (en) 2017-12-05 2023-03-21 Virginia Tech Intellectual Properties, Inc. Method for treating neurological disorders, including tumors, with electroporation
US11638603B2 (en) 2009-04-09 2023-05-02 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US11723710B2 (en) 2016-11-17 2023-08-15 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
US11779395B2 (en) 2011-09-28 2023-10-10 Angiodynamics, Inc. Multiple treatment zone ablation probe
US11925405B2 (en) 2018-03-13 2024-03-12 Virginia Tech Intellectual Properties, Inc. Treatment planning system for immunotherapy enhancement via non-thermal ablation
US11931096B2 (en) 2010-10-13 2024-03-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
US11950835B2 (en) 2019-06-28 2024-04-09 Virginia Tech Intellectual Properties, Inc. Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210370A (en) * 2000-01-27 2001-08-03 Sony Corp Manufacturing method of gel electrolyte battery
JP2002151156A (en) * 2000-11-13 2002-05-24 Toshiba Battery Co Ltd Method of manufacturing lithium secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210370A (en) * 2000-01-27 2001-08-03 Sony Corp Manufacturing method of gel electrolyte battery
JP2002151156A (en) * 2000-11-13 2002-05-24 Toshiba Battery Co Ltd Method of manufacturing lithium secondary battery

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10463426B2 (en) 2001-08-13 2019-11-05 Angiodynamics, Inc. Method for treating a tubular anatomical structure
JP2007059249A (en) * 2005-08-25 2007-03-08 Nec Tokin Corp Secondary battery
JP2008147009A (en) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd Bipolar battery and its manufacturing method
WO2008078635A1 (en) * 2006-12-27 2008-07-03 Calsonic Kansei Corporation Battery cooling system for vehicle
US10828086B2 (en) 2008-04-29 2020-11-10 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
US10245098B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Acute blood-brain barrier disruption using electrical energy based therapy
US11453873B2 (en) 2008-04-29 2022-09-27 Virginia Tech Intellectual Properties, Inc. Methods for delivery of biphasic electrical pulses for non-thermal ablation
US10286108B2 (en) 2008-04-29 2019-05-14 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation to create tissue scaffolds
US9598691B2 (en) 2008-04-29 2017-03-21 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation to create tissue scaffolds
US11272979B2 (en) 2008-04-29 2022-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US10470822B2 (en) 2008-04-29 2019-11-12 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US11952568B2 (en) 2008-04-29 2024-04-09 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of biphasic electrical pulses for non-thermal ablation
US11737810B2 (en) 2008-04-29 2023-08-29 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using electroporation
US11254926B2 (en) 2008-04-29 2022-02-22 Virginia Tech Intellectual Properties, Inc. Devices and methods for high frequency electroporation
US10272178B2 (en) 2008-04-29 2019-04-30 Virginia Tech Intellectual Properties Inc. Methods for blood-brain barrier disruption using electrical energy
US9867652B2 (en) 2008-04-29 2018-01-16 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US10828085B2 (en) 2008-04-29 2020-11-10 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
US11607271B2 (en) 2008-04-29 2023-03-21 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US10245105B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Electroporation with cooling to treat tissue
US10117707B2 (en) 2008-04-29 2018-11-06 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US10154874B2 (en) 2008-04-29 2018-12-18 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
US10238447B2 (en) 2008-04-29 2019-03-26 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US10959772B2 (en) 2008-04-29 2021-03-30 Virginia Tech Intellectual Properties, Inc. Blood-brain barrier disruption using electrical energy
US10537379B2 (en) 2008-04-29 2020-01-21 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US11890046B2 (en) 2008-04-29 2024-02-06 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US11655466B2 (en) 2008-04-29 2023-05-23 Virginia Tech Intellectual Properties, Inc. Methods of reducing adverse effects of non-thermal ablation
US11382681B2 (en) 2009-04-09 2022-07-12 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US10448989B2 (en) 2009-04-09 2019-10-22 Virginia Tech Intellectual Properties, Inc. High-frequency electroporation for cancer therapy
US11638603B2 (en) 2009-04-09 2023-05-02 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US10292755B2 (en) 2009-04-09 2019-05-21 Virginia Tech Intellectual Properties, Inc. High frequency electroporation for cancer therapy
US11707629B2 (en) 2009-05-28 2023-07-25 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9764145B2 (en) 2009-05-28 2017-09-19 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
US11931096B2 (en) 2010-10-13 2024-03-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
US10702326B2 (en) 2011-07-15 2020-07-07 Virginia Tech Intellectual Properties, Inc. Device and method for electroporation based treatment of stenosis of a tubular body part
US11779395B2 (en) 2011-09-28 2023-10-10 Angiodynamics, Inc. Multiple treatment zone ablation probe
JP2017092047A (en) * 2012-04-05 2017-05-25 エルジー・ケム・リミテッド Battery cell of stair-like structure
US9401526B2 (en) 2012-05-01 2016-07-26 Kabushiki Kaisha Toyota Jidoshokki Power storage device
JP2013232374A (en) * 2012-05-01 2013-11-14 Toyota Industries Corp Power storage device
WO2013164998A1 (en) * 2012-05-01 2013-11-07 株式会社 豊田自動織機 Accumulator device
US11957405B2 (en) 2013-06-13 2024-04-16 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
US10471254B2 (en) 2014-05-12 2019-11-12 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US11406820B2 (en) 2014-05-12 2022-08-09 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US11903690B2 (en) 2014-12-15 2024-02-20 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US10694972B2 (en) 2014-12-15 2020-06-30 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US11043700B2 (en) 2014-12-26 2021-06-22 Samsung Sdi Co., Ltd. Non-aqueous electrolyte rechargeable battery
JP2016126857A (en) * 2014-12-26 2016-07-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. Nonaqueous electrolyte secondary battery
JP2019207895A (en) * 2014-12-26 2019-12-05 三星エスディアイ株式会社Samsung SDI Co., Ltd. Nonaqueous electrolyte secondary battery
JPWO2017010046A1 (en) * 2015-07-10 2018-04-19 パナソニックIpマネジメント株式会社 Winding battery
WO2017010046A1 (en) * 2015-07-10 2017-01-19 パナソニックIpマネジメント株式会社 Wound type battery
JP2017174998A (en) * 2016-03-24 2017-09-28 太陽誘電株式会社 Electrochemical device
CN107230554A (en) * 2016-03-24 2017-10-03 太阳诱电株式会社 Electrochemical device
JP2017183539A (en) * 2016-03-30 2017-10-05 太陽誘電株式会社 Electrochemical device
CN107275117A (en) * 2016-03-30 2017-10-20 太阳诱电株式会社 Electrochemical device
US10658124B2 (en) 2016-10-18 2020-05-19 Taiyo Yuden Co., Ltd. Electrochemical device
US11723710B2 (en) 2016-11-17 2023-08-15 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
JP2018129459A (en) * 2017-02-10 2018-08-16 太陽誘電株式会社 Power storage element
US10896785B2 (en) 2017-02-10 2021-01-19 Taiyo Yuden Co., Ltd. Electric storage element
US11607537B2 (en) 2017-12-05 2023-03-21 Virginia Tech Intellectual Properties, Inc. Method for treating neurological disorders, including tumors, with electroporation
US11925405B2 (en) 2018-03-13 2024-03-12 Virginia Tech Intellectual Properties, Inc. Treatment planning system for immunotherapy enhancement via non-thermal ablation
US11311329B2 (en) 2018-03-13 2022-04-26 Virginia Tech Intellectual Properties, Inc. Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
CN112005405B (en) * 2018-04-06 2023-09-01 松下知识产权经营株式会社 Electrode plate manufacturing method, electrode body and battery
CN112005405A (en) * 2018-04-06 2020-11-27 松下知识产权经营株式会社 Electrode plate, electrode body, and battery
CN112086585B (en) * 2019-06-14 2023-09-26 东莞新能德科技有限公司 Battery cell
CN112086585A (en) * 2019-06-14 2020-12-15 东莞新能德科技有限公司 Battery with a battery cell
US11950835B2 (en) 2019-06-28 2024-04-09 Virginia Tech Intellectual Properties, Inc. Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy
WO2022138625A1 (en) * 2020-12-23 2022-06-30 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN113299975A (en) * 2021-07-06 2021-08-24 合肥国轩高科动力能源有限公司 Lithium ion battery structure and assembly method
CN113299975B (en) * 2021-07-06 2022-12-02 合肥国轩高科动力能源有限公司 Lithium ion battery structure and assembly method

Also Published As

Publication number Publication date
JP4565810B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP4565810B2 (en) Laminated battery
JP4863636B2 (en) Spiral electrode square battery
JP4559405B2 (en) Pouch-type battery and manufacturing method thereof
JP5484242B2 (en) Secondary battery and manufacturing method thereof
US6617074B1 (en) Lithium ion polymer secondary battery and gelatinous polymer electrolyte for sheet battery
JP2009530778A (en) Soft package large capacity lithium ion battery and method of manufacturing the same
JP4443248B2 (en) Manufacturing method of laminated battery
JP2010244930A (en) Method for manufacturing laminated battery
CA2259769A1 (en) Thin type sealed cell and producing method thereof
KR20140013133A (en) Method of manufactoring secondary battery
JP4443178B2 (en) Laminate battery manufacturing method and laminate battery manufacturing mold
KR101154883B1 (en) Method for Production of Electrode Assembly with Improved Electrolyte Wetting Property
JP4518744B2 (en) LAMINATED BATTERY, PROCESS FOR PRODUCING THE SAME, AND L-SHAPE FOR PRODUCTION OF LAMINATED BATTERY
JP2000277066A5 (en)
JP2006019199A (en) Electrode plate for secondary battery, its manufacturing method and secondary battery using electrode plate
JP2011129446A (en) Laminated type battery
JP2015053224A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2009117290A (en) Sealed battery
KR100670438B1 (en) Pouch type lithium secondary battery
JP2005285526A (en) Laminated unit cell
JP5334109B2 (en) Laminated battery
JP2011216209A (en) Laminated battery and its manufacturing method
JP2015002043A (en) Lithium ion secondary battery
JP3806540B2 (en) Method for manufacturing thin battery using laminate outer package
JP2010244865A (en) Laminated battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees